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ABSTRACT | Personal voice assistants (PVAs) are increasingly

used as interfaces to digital environments. Voice commands

are used to interact with phones, smart homes, or cars. In

the United States alone, the number of smart speakers, such

as Amazon’s Echo and Google Home, has grown by 78% to

118.5 million, and 21% of the U.S. population own at least

one device. Given the increasing dependency of society on

PVAs, security and privacy of these have become a major

concern of users, manufacturers, and policy makers. Conse-

quently, a steep increase in research efforts addressing secu-

rity and privacy of PVAs can be observed in recent years.

While some security and privacy research applicable to the PVA

domain predates their recent increase in popularity, many new

research strands have emerged. This article provides a survey

of the state of the art in PVA security and privacy. The focus

of this work is on the security and privacy challenges arising

from the use of the acoustic channel. Work that describes

both attacks and countermeasures is discussed. We highlight

established areas such as voice authentication (VA) and new

areas such as acoustic Denial of Service (DoS) that deserve

more attention. This survey describes research areas where

the threat is relatively well understood but where counter-

measures are lacking, for example, in the area of hidden

voice commands. We also discuss work that looks at privacy

implications; for example, work on management of recording
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consent. This survey is intended to provide a comprehensive

research map for PVA security and privacy.
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I. I N T R O D U C T I O N
The personal voice assistants (PVAs), such as the Amazon
Echo, Siri, or Google Home, are now commonplace and are
changing the way users interact with computer systems.
Users are becoming used to interacting with devices and
digitized environments, such as smart homes and cars
using speech. PVAs are deployed as standalone devices,
such as Amazon Echo or Google Home, and are integrated
within every phone, tablet, and PC (Siri and Cortana).
They are used in appliances such as TVs and set-top boxes
(LG and SKYQ) and are integrated into cars (Mercedes
and Jaguar). Some appliances have PVA capability with-
out users being aware of it and others feature micro-
phones that are dormant but can be activated by software
updates [1].

Given the usefulness of PVAs, their deployment density
is rapidly increasing. For example, 21% of the U.S. pop-
ulation own at least one smart speaker [2] and 81% of
adults own a smartphone [3]. It is therefore very likely
that users are always in range of at least one PVA. Users
may not be aware of their presence, able to influence their
behavior, or unable to deactivate them. As the devices are
capable of monitoring and understanding speech, individ-
uals have legitimate concerns regarding their privacy [4].
Users would be interested in answering questions such
as: how can I control which PVAs are listening to my
conversation? how can I track conversation recordings?
and how can I express my privacy requirements in a
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world observed by numerous PVAs? Besides the obvious
capability of listening to conversations, acoustic systems
can also identify activities, such as laughter, crying, or
eating [5]. It might also be possible to identify room char-
acteristics such as room size or shape by analyzing record-
ings. Active acoustic sensing is possible too, PVA speakers
can be used to emit (inaudible) sound, and reflections can
be received by microphones [6]. Users would therefore
like to know: how much information about my daily rou-
tines and the environment I live in is exposed? As PVAs
are an interface to computer systems and smart environ-
ments, it is necessary to police access. Commands can be
injected [7] without a user’s ability to detect this, for exam-
ple, by transmitting inaudible commands [8] or by exploit-
ing psychoacoustic characteristics [9]. Speaker recognition
can be employed to authenticate user interaction; a PVA
can be trained to recognize an individual [10]. However,
it is possible to circumvent identification, for example.
by using recordings [11] or speech synthesis [12]. Users
would therefore like to know: what possibilities exist to cir-
cumvent PVA access control? In many scenarios, resilient
PVA operation is necessary. However, it is also possible
to prevent a PVA from operating using Denial of Service
(DoS), interfering with audio processing [13] or speech
recognition (SR) [14]. Users would like to understand:
what kind of DoS attack methods are possible?

This survey aims to address the aforementioned ques-
tions. We summarize the state of the art in PVA security
and privacy and introduce a taxonomy to structure existing
research efforts. This survey extends and enhances the
taxonomy and overview of the PVA security and privacy
topic outlined in the thesis by Cheng [15]. The focus of our
work is on security and privacy challenges arising from the
use of the acoustic channel. A PVA is a networked computer
system, and as such, it is subject to general threats [16].
A PVA can be hacked and, for example, can be used as
a node in a botnet. The PVA cloud infrastructure can be
breached and user-specific data can be stolen. Such clas-
sical security challenges must obviously also be addressed
within PVAs and associated service infrastructures. How-
ever, these are out of scope for this survey paper. Instead,
our work specifically looks at issues that relate to the
acoustic channel.

Work is included in this survey if it clearly falls in one of
the following four categories.

1) C1—Access Control: The PVA’s acoustic channel is
used to circumvent authentication. The PVA’s SR
chain is manipulated to trigger unauthorized action.
An example here is voice command injection.

2) C2—Acoustic DoS: The acoustic channel is subject to
a DoS attack. The voice interface is (temporarily)
disabled. A simple example here is acoustic jamming.

3) C3—Voice Privacy: The use of the PVA’s acoustic chan-
nel leads to a loss of privacy. The recorded voice is
used such that a user’s privacy requirements are not
met. An example here is conversation recording.

4) C4—Acoustic Sensing: The acoustic channel is used
for an attack, not focused on the speech processing
chain. The PVA’s acoustic system is used to extract
security-relevant information by analyzing sound. For
example, the PVA is used as passive or active acoustic
sonar. Although other categorization of this research
domain is possible, we believe that it is useful as it
aligns with perception of security and privacy in the
PVA domain and existing work can be placed in these
four categories.

In the next paragraph, we summarize industry and
public view of security and privacy in the PVA domain.
Section II gives a PVA technology background. Section III
describes our security and privacy PVA research tax-
onomy. The following four sections describe work in
the main branches of our taxonomy: C1—access control
(Section IV), C2—acoustic DoS (Section V), C3—voice pri-
vacy (Section VI), and C4—acoustic sensing (Section VII).
Section VIII summarizes our work and outlines areas in
which we feel research advances are necessary.

A. Public PVA Security and Privacy Perception

PVAs are becoming a main interface for digital envi-
ronments. The number of smart speakers in the United
States has grown by 78% to 118.5 million, and 21% of the
U.S. population own at least one [2]. The 2019 Australia
Smart Speaker Consumer Adoption Report [17] shows that
5.7 million Australians owned smart speakers, accounting
for 29.3% of the adult population. Research undertaken by
Strategy Analystics [18] shows that the United Kingdom,
Ireland, Canada, South Korea, Australia, Germany, and
France will reach the 50% adoption threshold within the
next four years.

Recently, a number of highly visible news articles have
brought PVA security and privacy to the attention of the
wider public. In April 2019, Amazon admitted that user
recordings from PVAs are listened to by Amazon workers
regularly to improve services [19]. In July 2019, Google
admitted that contractors regularly listen to voice record-
ings obtained by their PVAs [20]. There have also been
frequent reports on incidents where PVAs record or trigger
action without user intent [21]. A prominent case was
the interruption of U.K. MP Gavin Williamson by Apple’s
Siri, while he addressed the House of Commons [21].
Industry is now starting to tackle this growing public
concern. For example, Amazon Alexa, Siri, and Google
Home now support speaker recognition, however, mainly
to distinguish speakers in a household sharing a PVA.
Amazon introduced the command “Delete everything I say
today” in 2019 to provide users with more privacy control.
Project Alias [22] is a device that feeds a smart speaker
constant white noise to disable it and provides the user
with control on when to activate the PVA. Mycroft [23] is
a PVA specifically designed with privacy in mind, focusing
on local processing to avoid cloud analysis of recordings.
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Voice data are considered sensitive data, and legal
frameworks, such as the EU General Data Protection Regu-
lation (GDPR) [24] or the California Consumer Privacy Act
(CCPA) of 2018 [25], must be considered. However, with
respect to recent developments of PVA technology, these
existing regulations are often not clear enough and further
clarification is required. Legislators in several countries are
also investigating the legal context of PVA systems and
it is debated if new laws are required and what form
these should take. In Germany, the Parliament investi-
gated the legality of PVA data collection and came to the
conclusion that it is questionable how third parties and
minors can be excluded from data collection to comply
with laws [26]. Furthermore, it was deemed unclear how
third parties may use data in the future after collection. In
California, Assembly Bill 1395 is proposed, which would
prohibit smart speaker operators from retaining or distrib-
uting voice recordings or transcriptions without the user’s
consent [27].

The general public is concerned about PVA security and
privacy and industry and legislators are starting to react.
However, as this survey shows, research has already iden-
tified much more sophisticated and serious security chal-
lenges than the ones currently triggering public debate.
This survey will help to look ahead and to inform the
debate.

II. P V A T E C H N O L O G Y
This section provides a definition of the term PVA followed
by a functional description of the main PVA components.
Attacks described in the remaining document usually tar-
get one specific point in the PVA processing chain that we
describe here in detail.

A. PVA Definition and Ecosystem

A PVA is a device that is able to understand spoken
commands and to carry out actions accordingly. A PVA
contains hardware and software to record, process, and
analyze sound and in most cases also contains speakers to
provide users with acoustic feedback. Thus, PVAs are often
referred to as smart speakers. The term smart speakers is
fitting for purpose-built PVA, such as the Amazon Echo
or Google Home. However, it is also possible to create
a PVA by incorporating specialized software in existing
computing platforms with sound processing capabilities,
such as mobile phones, game consoles, or car navigation
systems. In this case, solutions, such as Siri or Cortana, are
referred to as intelligent assistants. In this work, we use the
more general term PVA which encompasses smart speakers
and intelligent assistants.

The PVA is often a distributed system and part of its
functionality is located away from the device. For example,
voice processing or command interpretation is usually
carried out in back-end infrastructure. Command actuation
is usually carried out by other Internet of Things (IoT)
components.

Fig. 1. Example of how user interact with the PVA ecosystem to

turn on a smart bulb (inspired by [28]).

A PVA records sound continuously to perform wake
word detection (“Alexa” in case of Amazon’s Echo). Once a
wake word is detected, the PVA submits the recent audio
recording to a cloud-based back-end system where sophis-
ticated Automatic Speech Recognition (ASR) is carried
out. The speech is analyzed, any commands requested are
executed, and a response might be formed and sent to the
PVA to be played out via device speakers. Recordings are
often stored in the back end and can be used for continuous
ASR algorithm improvements and other services.

The aforementioned operation mode is most common,
and however, variations are possible. For example, ASR
might also be executed locally without involving a back
end; speech may not be stored in a back end; not all PVA
provide audio feedback in response to a command.

A typical PVA smart home use case is shown in Fig. 1.
The user speaks a command such as Alexa, turn the light
on. The PVA recognizes the keyword Alexa and the follow-
ing audio Turn the light on is transported to a back end.
There, ASR is used to transcribe the audio signal into text.
Thereafter, the back end translates the textual command
into an application programming interface (API) call to the
lighting system installed in the users’ home. The known
location of the PVA can be used to determine the correct
light to be switched ON. The back end may generate audio
feedback (e.g., light has been switched ON) and send this
back to the PVA to play via speaker; however, in this case,
visual feedback from the light may not require additional
voice feedback.

B. Audio Processing

A PVA includes at least one microphone and associated
digitization processing chain, as shown in Fig. 2. It is
important to consider this analog part of the processing
chain as some PVA attacks focus on it.

The system usually consists of components, including
a microphone, a preamplifier, a low-pass filter, and an
analog-to-digital converter (ADC). There are two types
of microphones: electret condenser microphones (ECMs)
and microelectro mechanical systems (MEMS). However,
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Fig. 2. Microphone components and the sound signal flow through

them [29]. Note that we do not show the sampling and hold and

quantization details of the ADC but show the final digital signal

instead.

MEMS dominates the smart device market due to advan-
tages in packaging and power consumption [8] and most
commercial off-the-shelf (COTS) microphones are of this
type. The microphone is a transducer converting the air-
borne acoustic signal into an electric signal, which only
reacts to sound within the spectrum from 20 Hz to 20 kHz.
The preamplifier amplifies the signal for processing in later
stages. The low-pass filter removes noise above 20 kHz,
which is outside the audible sound range. The ADC con-
verts the analog signal into digital form. The sampling fre-
quency is normally 44.1 kHz, which restricts the maximum
frequency of the analog signal to 22 kHz as described by
the Nyquist theorem [8].

The speaker system used in a PVA is in principle the
exact reverse of the microphone. The digital signal is con-
verted into analog form via a digital-to-analog converter
(DAC). Then, the analog electrical signal is transferred to
an air pressure signal via the vibration of the diaphragm of
the speaker [29].

C. Automatic Speech Recognition

ASR is an interdisciplinary field of research, incorporat-
ing linguistics, computer science, and electrical engineer-
ing. The goal of SR is to transcribe speech to text automat-
ically. A classic ASR system mimics how humans process
speech. The analog acoustic signal is transformed into a
digital representation, from which features are extracted.
Machine learning and statistical analysis are applied to
extract phonemes, the units of sound distinguishing one
word from another in a language, and to finally compose
text [30].

ASR is a hot topic in machine learning area and it has
gone through four development stages. Gaussian mixture
model–hidden Markov model (GMM-HMM) is the tradi-
tional ASR [31]; deep neural network–hidden Markov
model (DNN-HMM) ASR, replacing the Gaussian mix-
ture model (GMM) element with a deep neural network
(DNN) appeared after 2012 [32]; and recurrent neural
network–connectionist temporal classification (RNN-CTC)
ASR replaced the hidden Markov model (HMM) with a
connectionist temporal classification (CTC) [33]. In recent
years, end-to-end ASR techniques using a single neural
network (NN) to directly map audio input to text has
drawn much attention [34]. Researchers have been study-
ing attention/transformer-based end-to-end ASR [33].

A description of these recent developments in ASR design
is out of the scope of this survey and we refer here to
literature detailing this work [30].

word error rate (WER) is the most widely used perfor-
mance metric for ASR evaluation. WER is defined as edit
distance on a word level

WER = (Nsub + Nins + Ndel)/Nref (1)

where Nsub is the number of words that are incorrectly
transcribed, Nins is the number of words that appear in the
current transcription but are not present in the reference,
and Ndel is the number of words in the reference that do
not appear in the transcription.

Most papers detailed in this survey use WER as a basic
evaluation metric. Some works also use character error
rate (CER) that measures the edit distance between a
generated and target transcription on a character instead
of word level.

D. Attacks on ASR

The purpose of ASR is to transcribe speech to the cor-
responding text. An adversary is able to modify an audio
signal to interfere with this process. The adversary can
create a specific audio signal or modify an existing signal
by adding perturbations (noise) to achieve an attack goal.

Certain signals used to attack deep learning systems are
classified as obfuscated examples and adversarial exam-
ples. In the context of this survey, an obfuscated example
is a signal perceived by humans as noise, while the PVA
interprets a command. An adversarial example tries to fool
the PVA, while it is perceived as a (benign) audio signal by
humans.

We distinguish so-called targeted and nontargeted
adversarial examples. In case of a targeted adversarial
example, the attacker is interested in one specific com-
mand transcription, which is carefully selected. In case of
a nontargeted adversarial example, the attacker does not
care what specific command would be decoded by the ASR
as long as the command transcription is incorrect.

Note that obfuscated examples are also called obfus-
cated commands in the literature. In contrast, adversarial
commands are a specific type of adversarial example: a
targeted adversarial example is the same as an adversarial
command.

To create an either obfuscated or adversarial example,
it is helpful for the attacker to have access to the inter-
nal workings of the ASR. An attack relying on internal
knowledge of the ASR (e.g., the structure and parameters
of the model to be attacked) is referred to as a white-
box attack (see [35]–[37]). A gray-box setting means
that the structure and parameters of the target model
are hidden to the attacker. However, besides the final
decision results, the attacker can also query the output
of the last layer of the target model to acquire numerical
confidence or prediction scores [38]. These values can
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guide the optimization process of the attack. Finally, a
black-box setting is a situation where the attacker can only
get the final decision results. It is the hardest case to be
considered, but it is also the most realistic scenario.

To evaluate adversarial command attacks, the attack
success rate (also referred to as accuracy, effectiveness,
and efficiency) is measured. The attack is successful if the
ASR transcribes every single word in the target command
correctly. The success rate is the percentage of successful
attacks in all attack trials and measures sentence-level
accuracy. The relation between success rate and WER
(CER) is that a targeted adversarial example can only be
treated as a successful attack when the WER and CER
is 0%.

III. P V A S E C U R I T Y A N D P R I V A C Y
TA X O N O M Y
This survey reports on the existing security and privacy
work in the PVA context with a specific focus on the
acoustic channel. The survey uses the terms security and
privacy in its title as both have to be considered together to
cover appropriately the space that PVA users are concerned
about (see Section I-A). We consider work that reports on
attacks but also consider reported defense mechanisms.

Security is defined as a system condition in which
system resources are free from unauthorized access and
from unauthorized or accidental change, destruction, or
loss (see RFC4949 [39]). Secure systems can be char-
acterized by referring to the CIA triad [40] comprising
confidentiality, integrity, and availability. Confidentiality
means that data and resources are protected from unau-
thorized access. Integrity specifies that data and services
are protected from unauthorized changes and are reliable.
Availability means that data and services are available
when required.

Privacy is defined as the right of a user to determine the
degree to which they are willing to share their personal
information with others (see RFC4949 [39]). Privacy may
be compromised in three distinct ways. More information
might be shared than the user has agreed to (leakage). The
information that the user has agreed to share is used for
purposes that the user has not consented to (purpose).
The information may be stolen (breach). Security is a
precondition to achieve privacy as only a secure system
can prevent a breach. However, arrangements for users to
consent on which data can be shared and the prevention
of leakage and definition of processing purpose is beyond
provision of security.

Security and privacy must also be designed with users in
mind to be effective. This approach may be referred to as
user-centered security, usable privacy and security, or the
study of trust user experience [41]. In the PVA domain,
user-focused security and privacy work is also emerging.
For example, Lau et al. [42] investigated the mismatches
between PVA controls and user needs; Bonilla and Martin-
Hammond [43] studied older adults’ perception of PVA
privacy and transparency guidelines. This survey includes

technically focused work on PVA security and privacy and
we do not report work with a focus on usability.

We use the following four main categories to group
existing work: C1—access control, C2—acoustic DoS,
C3—voice privacy, and C4—acoustic sensing. Existing
work fits well in this taxonomy and there is a clear rela-
tion between these four groups and the aforementioned
view on the security and privacy domain. Categories,
C1—access control and C2—acoustic DoS, are related to
the term security, while categories, C3—voice privacy and
C4—acoustic sensing, are related to the term privacy.

In the PVA context, a major security threat is the com-
promise of access control, which allows an adversary to
access data and interact with services controlled by the
device. Work in Category C1 is related to confidentiality
in the CIA triad. The work described in C1 considers com-
promise of access control via the acoustic channel only and
classical attacks (e.g., attacks on the OS or communication
network of the PVA) are out of scope. As the compromise
of access control allows an adversary to interact with PVA
services and data, Category C1 of the taxonomy is also
related to integrity in the CIA triad. C1 is also related to
some privacy aspects as a bypass of access control is a
breach, which may lead to loss of confidential data.

Category C2—DoS is related to availability in the CIA
triad. In the PVA, context availability means specifically the
availability of PVA services. However, in this work, we only
consider DoS attacks that make use of the acoustic channel.
We do not consider classical DoS attacks on other PVA
system components such as the communication interface.

In the PVA, context users have privacy concerns as
conversations are recorded. Users would like to keep con-
versations overheard by a PVA private and they would
like to control how these recordings are processed. Also,
speech recordings can reveal additional information about
a user such as speaker identity or speaker emotions. In
the context of this work, the Category C3—voice privacy
is used to describe work dealing with privacy issues arising
from processing of speech signals.

Category C4—acoustic sensing is also related to pri-
vacy concerns. However, different from Category C3, the
acoustic channel is considered beyond the processing of
voice signals. The acoustic system provided by a PVA can
be used to process rich acoustic information revealing
personal information for which a user may not have given
consent. For example, acoustic sensing can reveal user
behavior, information about the user environment, and the
user itself.

Fig. 3 shows the categorization of the surveyed work
according to this taxonomy. In the following paragraphs,
we describe each category in more detail and explain
further division in subcategories.

A. C1—Access Control

All works that fall under this category aim at circum-
venting access control to services a user can access via
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Fig. 3. Taxonomy of PVA security and privacy challenges. Categories C1.1 and C3.1 are shown with a dashed line as these areas have

significant relevance outside of the PVA domain.
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the acoustic channel of the PVA. Furthermore, work on the
defense side is included, which aims to prevent bypassing
the access control.

We use two subcategories here labeled voice authentica-
tion (VA) (C1.1) and hidden voice commands (C1.2).

C1.1 groups work that aims to authenticate a speaker
and two significant lines of work are distinguished here:
acoustic characteristics (C1.1.1) and second factor authen-
tication (C1.1.2). C1.1.1 describes work that exploits
acoustic characteristics of the speech signal for spoofing
detection. C1.1.2 lists work that correlates a second source
of information with the speech signal. The acoustic channel
itself may provide this secondary source of information. For
example, speakers and microphones can be used as a sonar
system to read facial expressions of a human speaker.

It should be noted that work presented in Category C1.1
is not only relevant in the PVA context but has broader
applications. However, the recent dramatic increase in the
use of PVAs has highlighted the issue of VA in this context.
Fig. 3 therefore shows C1.1 with a dashed box to indicate
this broader context.

C1.2 contains work where the PVA’s SR chain is manipu-
lated to trigger unauthorized action. Generally, these forms
of PVA attacks are referred to as command injection and
the attacker aims to carry out the attack without being
noticed. Three general types of hidden voice commands
are distinguished: hardware nonlinearity (C1.2.1), obfus-
cated commands (C1.2.2), and adversarial commands
(C1.2.3).

Work in Category C1.2.1 targets the analog signal
processing path of a PVAs. The second class of work
(C1.2.2) aims at submission of an audio signal that humans
perceive as noise, while the command is understood by the
PVA. Work in Category C1.2.3 aims at generating an audio
signal, which is interpreted differently by humans and the
ASR system.

Most works covered in this survey fall into Category C1;
it is the most active research active area. However, it seems
not to be the area most users are concerned with. As we
outlined in Section I-A, much of the discussion in the media
and under consideration by legislators in response to that
are focusing on user privacy. Indeed, recent user studies
such as by Abdi et al. [28] find that “users are mostly
worried about unwanted listening from the device.”

B. C2—Denial of Service

The acoustic channel can be subject to a DoS attack. The
attacker aims at blocking services provided by a PVA using
the acoustic channel.

Current work in this area falls in two categories: skill
market (C2.1) and jamming (C2.2). Attacks in Category
C2.1 aim to manipulate the back-end processing chain of
the service invocation after SR. Jamming attacks (C2.2)
usually target wake word recognition of the PVA.

There is little research work in this area given that PVA
will be used as an interface for critical systems where

continuous operation should be ensured. For example,
PVAs are used to support surgeons [44] and it is vital that
voice commands to operating equipment are not blocked.

C. C3—Voice Privacy

The use of the PVA’s acoustic channel can lead to a loss
of privacy as voice recordings may reveal sensitive user
information.

Methods have been proposed to ensure that voice
recordings do not reveal such user information. Methods
based on hardware support, cryptographic methods, dele-
tion, federated learning, and anonymization have been
proposed.

For example, hardware support, such as Intel’s Software
Guard Extensions (SGX) architecture, can be leveraged.
Encryption schemes, such as homomorphic encryption or
secure multiparty computation, can be used to process
voice data in encrypted form. Federated learning can be
used to protect user data. An area of intense work is
anonymization. These aim at transforming the recorded
audio signal before ASR processing (potentially on a back-
end server) and removing cues that may enable speaker
recognition or detection of speaker characteristics such
as their mood. These works are summarized under the
category, privacy preservation (C3.1).

It should be noted that work presented in Category C3.1
has relevance outside of the PVA domain. A lot of works in
this category are carried out without direct consideration
of PVAs; however, the increasing popularity of PVAs has
highlighted the importance of privacy preservation in this
context. Fig. 3 therefore shows C3.1 with a dashed box to
indicate this broader context.

The category consent management (C3.2) details work
that aims at giving users some degree of control in regards
to PVA recordings. Users would like to be able to control
which PVA in their vicinity records their voice and legisla-
tors also require that users are able to provide consent.

There is substantial existing work on privacy preserva-
tion (C3.1). However, less work has investigated the issue
of consent management in a PVA context (C3.2).

D. C4—Acoustic Sensing

This category summarizes work in which the acoustic
channel is used for an attack, but the focus is not on
the speech processing chain. The PVA’s acoustic system is
used to extract security and privacy relevant information
by analyzing sound.

In Category C4.1, we outline existing work using passive
sensing. The acoustic channel is observed and information
is extracted. The attacker may use audio data recorded
by the PVA itself or use an additional device. Category
C4.2 describes active sensing. The PVA might also be used
actively and an acoustic signal is emitted and the response
is evaluated. A substantial body of work has investigated
active and passive sensing in the acoustic domain, which is
directly applicable to the PVA context.
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It has to be noted that sensing also leads to a loss
of privacy. However, the distinction between categories
C3 and C4 is that while C3 purely assumes extraction
of information from a voice signal, C4 is broader and
considers sensing in general.

E. Paper Inclusion

In this survey, we include existing work that describes
attacks and/or countermeasures in the outlined four areas:
C1—access control, C2—acoustic DoS, C3—voice privacy,
and C4—acoustic sensing. Sometimes, existing works in
the acoustic domain do not use a PVA as an example system
when describing or evaluating work. However, when it is
clear that the findings can be directly applied to the PVA
domain, we also include such work. For example, work
on speaker recognition is generally not described in the
context of PVA but is clearly a technology that could be
included directly in a PVA’s processing chain to facilitate
authentication.

F. Naming Convention

When we describe existing work, we try to use an easily
recognizable term. Many authors have given their system,
attack, or countermeasure a distinct name, and in these
cases, we use this established term together with the year
they were published to refer to the work. Examples are
DolphinAttack’17 [8] or SonarSnoop’18 [6]. If the authors
have not introduced a specific name in their work, we
use the combination of the lead author’s surname and the
year of publication as reference (e.g., Carlini’16 [45] or
Cheng’19 [46]).

IV. C 1—A C C E S S C O N T R O L
In this category, we describe the work that broadly relates
to the large research areas of VA and command injection.
VA (Category C1.1 in this survey) is a mature research field
and its results are now slowly applied to the PVA domain.
It has to be noted that methods of VA are not designed as
a direct countermeasure to voice injection, and however,
it might be useful in this role. Injection of (hidden) voice
commands (Category C1.2 in this survey) is a relatively
recent research field, triggered by the appearance of PVAs.

A. Voice Authentication

VA (also known as speaker recognition or speaker
authentication) is increasingly used on smart devices.
Voice, among other biometric modalities such as finger-
print, facial, and iris, has been widely adopted due to
two reasons. First, it can be carried out remotely over
communication channels [47], and second, it represents a
very natural way for users to interact with machines [48].
The goal of VA is to use voice features to identify (or verify)
the identity of a speaker. Analogous to a fingerprint, the
voice profile can be referred to as a voiceprint. It is solving
the problem of “who is speaking,” while SR addresses the
issue of “what was spoken.”

VA uses two steps: enrollment and authentication. Dur-
ing enrollment, the user is asked to provide voice samples
and the unique voice features are extracted to form a user-
specific model. Then, during the authentication phase, this
model is used for comparison with the voice utterance to
verify whether the current speaker matches the model.

Note that VA can be used in different ways. Speaker
identification aims to identify to which speaker a voice
belongs while considering a set of candidate voices.
Speaker verification only aims to verify whether the voice
belongs to the target speaker. Both variants can be imple-
mented using similar techniques.

Some PVAs, such as Siri, already apply VA and the
device is not triggered if the voiceprint does not match a
legitimate profile. However, VA is not used by all PVAs. For
example, the Google Assistant can still be triggered by a
stranger. Smart speakers usually only check whether the
keyword semantic content is correct (is “Alexa” or “Hey
Google” being said?) but do not verify the voiceprint. Even
though both Amazon and Google support voice recognition
as reported [49], [50], these features are not used for
access control but only to provide a more personalized
service by linking commands to user profiles. For instance,
any person or even text-to-speech (TTS) speech can trigger
Amazon Echo and obtain a response [51].

Work on VA has a long tradition and started well before
the relatively recent introduction of PVAs. Thus, it has to
be noted that work presented here has relevance beyond
the PVA context.

VA in itself is subject to attacks called spoofing attack
where via replay or generated sound an attacker aims to
circumvent authentication. Five different forms of spoofing
attacks on VA can be distinguished: replay attacks, imper-
sonation attacks, speech synthesis attacks, voice conver-
sion (VC) attacks, and adversarial attacks.

A replay attack refers to a playback of a legitimate
user’s voice sample, prerecorded by an attacker. If the
attack requires a spoken sentence that could not be pre-
recorded, the audio signal has to be created to match
the target speaker. Impersonation attack, voice synthesis
asttack (e.g., [53] and [54]), VC attack (e.g., [55] and
[56]), and adversarial attack (e.g., [56]) can be used for
this purpose.

Recent work on security of VA is structured around
defense mechanisms against spoofing attacks. We distin-
guish four categories of work: acoustic characteristics,
second factor authentication, copy detection, and chal-
lenge response. The first group of studies exploits acoustic
characteristics of the speech signal for spoofing detection.
The acoustic signal is not only analyzed for the purpose of
SR and VA. In addition, signal features are used that enable
the identification of a spoofed signal.

The second group of work uses a second source of
information that is then correlated with the speech signal.
For example, a camera can be used for lip reading and
the result can be compared to the SR result. To avoid an
additional sensor, the acoustic channel may also be used to
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provide this secondary source of information. For example,
speakers and microphones can be used as sonar systems to
read articulatory gestures (VoiceGesture’17 [47]).

Copy detection aims at comparing previous voice com-
mands to the currently issued command to ensure that
each voice command is unique [57].

There is also work that employs protocols between
speaker and PVA to ensure that each command is gen-
uine. Such prompted-phrase Automatic Speaker Verifica-
tion (ASV) [58], [59] has attracted much work in the past.

In the next paragraphs, we focus on work in the first
two categories as these attracted most of the recent work.
Simple copy detection is not seen anymore as feasible
countermeasure as it is resource-intensive to keep copies
of previous commands and it is too easy to circumvent
this mechanism with current voice generation techniques.
Challenge–response protocols can prevent attacks but are
seen as impractical in a PVA context as they disturb natural
speech-based user interaction.

1) Spoofing Detection via Acoustic Characteristics: Voice
spoofing attacks and countermeasures have attracted a lot
of interest in both research and industry communities.
There is a large amount of literature, including surveys,
covering this specific area [52]–[56], [60]. Thus, we do not
aim to discuss exhaustively existing work in this specific
area. However, we present the research progress and state
of the art in this domain. ASV systems have been proved to
be vulnerable to spoofing attacks. To mitigate the spoofing
threat, countermeasures can be developed, which can be
integrated in existing ASV.

A common problem is that it is difficult to compare the
proposed spoofing countermeasures (CMs) as the differ-
ent works use different datasets, experiment configura-
tions, and evaluation metrics. To address these limitations,
ASVspoof [61] has been founded. ASVspoof collects and
distributes standard datasets, evaluation protocols, and
metrics and facilitates competitions in which participants
test their proposed algorithms. ASVspoof aims to develop
generalized countermeasures effective for detecting vari-
ous known and unknown attacks by controlling the prior
knowledge provided to the competitors [61]. A known
attack here means that the competitors are aware of
the algorithm used to generate attack samples. Unknown
attacks are the cases where the algorithm used to generate
the attack signal is not known beforehand and it is, there-
fore, impossible to use this knowledge in constructing the
countermeasure.

The first ASVspoof challenge was held in 2015 (referred
to as ASVspoof’15 [61] in our taxonomy), and it solely
focused on voice synthesis and VC attacks. Organizers
provided freely accessible datasets generated by ten dif-
ferent synthesis and VC attack algorithms. Participants
submitted their spoofing detection algorithms, which were
assessed using a provided evaluation metric. The spoofing
algorithms used were not accessible to the participants.

The second ASVspoof challenge was held in 2017
(referred to as ASVspoof’17 [62] in our taxonomy), and
unlike the first version of the challenge, ASVspoof’17
focused on replay attack detection rather than synthesis
and VC attack. The biggest challenge in detecting replay
attacks from acoustic characteristics is the variations in the
recorded audio samples. ASVspoof’17 tried to explore the
practical limits of replay attack detection and facilitated
the development of countermeasures robust enough to
detect a replay attack in varying acoustic environments.
ASVspoof’17 provided a baseline spoofing classifier. Sub-
sequently, the ASVspoof organizers published the second
version of the 2017 challenge dataset [63]. This dataset
contains corrections for a number of anomalies, new meta-
data, enhancements to the original baseline system, and
corresponding comparison results.

The third challenge in 2019 (referred to as
ASVspoof’19 [64] in our taxonomy) introduced changes
from the previous two events. First, ASVspoof’19
considered both logical access (LA) and in addition
physical access (PA) scenarios. In an LA scenario, the
attack signals are generated by TTS synthesis and VC
techniques and are directly fed to the ASV. In a PA
scenario, speech is captured by a microphone in a physical
and reverberant environment (a real-world setup). This
scenario is used to study replay attacks; to distinguish
a voice signal from a human speaker and a replay from
a loudspeaker. Second, ASVspoof’19 considers all three
types of spoofing attacks (VC, synthesis, and replay
attacks). Third, attack samples belonging to these types
were generated using state-of-the-art neural network or
waveform models, and replay attack samples resulted
from a better controlled process. Finally, ASVspoof’19
took tandem decision cost function (t-DCF) as the primary
new evaluation metric and used equal error rate (EER)
as the secondary one. EER refers to the CM operating
point where the CM miss and false acceptance rates are
equivalent. t-DCF aims to assess the pooled performance
of the tandem system consisting of CM and ASV.

The new metric mechanism ensured that the evalua-
tion scores did not only appraise how well the spoofing
attack detection was but also the impact of spoofing and
countermeasure on the ASV system. There were 63 teams
in ASVspoof’19, and more than half of them reported a
spoofing detection system better than the two provided
baseline systems. In the LA scenario, the best result of
t-DCF of 0.0069 and EER of 0.22% is achieved by one of
the teams. In the PA scenario, the best system achieves a
t-DCF of 0.0096 and EER of 0.39%. For example, an EER
of 0.39% means that in 0.39% of cases, the system rejects
a genuine command as it falsely assumes it is spoofed. At
the same time, 0.39% of spoofed commands are accepted
as they are not recognized as spoofed.

The most recent ASVspoof’21 [65] has just been held.
It uses more challenging data and introduces a new task
involving deepfake (DF) speech detection. Results for
the LA are slightly worse than results from the previous
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ASVspoof edition. The best performance in the DF task
is an EER of 15.64%. Finally, the results for PA show the
difficulty in detecting those attacks in real and variable
physical environments.

As mentioned, ASVspoof does not directly consider the
PVA application context. Next, we describe the specific
work of VMask’20 [38] as it represents the first practical
attack targeting a PVA environment.

VMask’20 [38]: It adds perturbations to speech samples
such that they are verified as belonging to a target speaker
(the victim). The altered speech samples still sound as if
they are spoken by the original speaker. VMask restricts
the magnitude of perturbations and applies psychoacoustic
masking (see also [9]). This work starts with a gray-box
attack to prove the efficacy of the proposed approach
and then presents a black-box attack attempt where the
internal ASV structure is unknown and confidence scores
cannot be obtained. This work demonstrates that ASV as a
method of access control for a PVA can be circumvented.

2) Spoofing Detection via Second Factor: A second data
source can be used to detect spoofing. In many cases, the
extra information is not obtained from the acoustic channel
(i.e., a camera or RF transceiver might be used). However,
to avoid an additional sensor, the acoustic channel may
also be used to provide this secondary source of informa-
tion. Work that relies on additional data obtained from out-
side of the acoustic includes Chen’17 [66], Feng’17 [67],
Wang’19 [68], and Pradhan’19 [69]. Works that are
entirely based on data from the acoustic domain include
VoiceLive’16 [70], VoiceGesture’17 [47], Blue’18 [71], and
Lee’20 [72].

VoiceLive’16 [70]: It introduces a liveness detection
method to defend against replay attacks targeting VA on
smartphones. VoiceLive’16 is based on a user’s unique
vocal system and the stereo recording capabilities of a
smartphone for capturing the time difference of arrival
(TDoA) of phonemes. It captures TDoA changes of a
sequence of phoneme sounds to the two microphones of
a smartphone and calculates the TDoA similarity between
the captured samples and that of the stored ones to detect
whether a replay attack is in progress. This method is sup-
posed to work as the TDoA difference between phonemes
is not observed in replay attacks. The VoiceLive approach
is limited to close range and a speaker’s mouth must be in
front of the microphone.

VoiceGesture’17 [47]: It uses the smartphone audio
system (speaker and microphone) as a sonar to detect the
unique articulatory gestures of a user when they speak a
passphrase. VoiceGesture is a better liveliness detection
system than VoiceLive’16 in regard to usability for users
because VoiceGesture not only supports holding the phone
in front of the mouth but also works when users hold
the phone at their ears. VoiceGesture is also less suscep-
tible to environmental noises. When a person speaks a
phoneme, multidimensional articulatory movements called
articulatory gestures are involved. Even if the same type

Fig. 4. Key idea in Blue’18: audio played by COTS speakers show

distinctive energy within the subbase frequency range, while there

is no such phenomenon for voice of human speakers.

of articulatory gesture is used, the movement speed
and intensity may be different for different phonemes.
VoiceGesture emits a 20-kHz sound wave and records
all of the reflections from articulators using the built-
in speaker and microphone of the phone. Analyzing the
spectrogram of the recording, the movement of articulators
can be revealed. Loudspeakers rely on a diaphragm that
only moves in one dimension. Thus, slight differences in
articulatory gestures can be used as a VA system, which is
robust against replay attacks. The VoiceGesture approach
is designed for the mobile phone context. However, it
should be possible to use this technology in a generic
PVA environment. We list this work here in Category
C2.1.2—second factor authentication—as this is the main
objective of this work. However, the work is also related to
C4.2—active sensing as an active acoustic sensing signal is
used.

Blue’18 [71]: It introduces a detection method to dif-
ferentiate genuine spoken commands from replay attacks.
This method explores the fact that overexcitation exists in
the subbase frequency range (20–80 Hz) of audio signals
generated by off-the-shelf speakers, which does not apply
to a human voice (shown in Fig. 4). By identifying the
rather significant energy in the subbase area, commands
injected via electronic speakers can be detected. The sub-
base overexcitation is caused by the resonance of the
enclosure material or case of the speaker. This method of
spoofing detection is a useful approach for the PVA context
and has less limitations regarding usability compared to
VoiceLive’16 and VoiceGesture’17. However, the defense
cannot work if the adversary alters the physical design
of the speaker used for attack rather than just using
a COTS.

Lee’20 [72]: It proposes a sonar-based framework to
defend against remote attacks targeting PVAs. Remote
attacks here mean that adversaries hack a network-
connected smart device (such as a TV or radio) equipped

Vol. 110, No. 4, April 2022 | PROCEEDINGS OF THE IEEE 485



with speakers to play malicious voice commands (audible
or hidden commands as introduced in Section IV-B). The
core idea is to transmit an inaudible ultrasonic sound and
using the Doppler shift to check the movement direction of
the user while using TDoA to obtain the voice command
direction. A consistency checker module compares the two
directions and decides whether to accept or reject the
commands. This work shows a general defense mechanism
for most attacks described in Section IV. The limitations
are that a hardware modification is needed and that the
user needs to stay close to the PVA. Again, the work is
also related to C4.2—active sensing as an active acoustic
sensing signal is used.

B. Hidden Voice Commands

Work in this category investigates how to inject voice
commands into a PVA without users noticing this injection,
and the injected command is hidden from users in the
vicinity of the PVA. The attacker aims to trigger actions
without legitimate users noticing the interaction of the
attacker with the PVA. In order to conceal this interaction,
existing work has looked at various techniques ensuring
that a person is unable to hear the submitted command,
while the PVA’s ASR is able to understand it. While these
techniques are the essential component to enable hid-
den voice commands, it is also often necessary for an
attacker to modify other elements of PVA interaction. After
submitting a command, the PVA usually responds with
a confirmation via its speakers. For example, the voice
command for a home automation system ”Alexa, open the
front door” would result in a response ”Front door opened”
which an attacker would need to suppress too in order to
achieve a fully hidden interaction. Research has focused
on achieving hidden command injection, which we discuss
here, and less work has considered how to conceal all PVA
interaction.

It has to be noted that there is also work (such as by
Diao et al. [7]), which aims to hide interaction with a
PVA by carefully choosing times of command injection and
volume level. Although such work can conceal interaction,
these techniques do not aim to modify speech signals and
are therefore not outlined in detail in this survey.

We distinguish in this survey three categories of work:
C1.2.1—hardware nonlinearity, C1.2.2—obfuscated com-
mands, and C1.2.3—adversarial commands.

Work in the first category targets the analog signal
processing path of a PVA and makes use of the fact that
humans are unable to hear in the high-frequency range
(typically above 18 kHz). The voice command is submitted
in the high-frequency space unnoticeable to users, while
the nonlinear behavior of the analog signal processing path
ensures that the signal is processed by the ASR.

This nonlinearity exists in the preamplifier and the
microphone itself and the effect can be described similarly
for both components. For example, the ideal function of
an amplifier can be described as: Sout = A1Sin. The input

signal Sin produces the linear amplified signal Sout. How-
ever, the nonlinearity of the amplifier will also introduce
higher order signal components: Sout = A1Sin + A2Sin

2 +

A3Sin
3 + · · · Signal components above second order can

usually be neglected as they are too weak. However,
the second-order component must be considered as an
attacker can exploit this feature to demodulate a high-
frequency inaudible attack signal to the baseband. After
demodulation, this attack signal is then processed by the
PVA.

Specifically, the works, BackDoor’17 [29], DolphinAt-
tack’17 [8], Roy’18 [73], and He’19 [74], have used this
approach to exploit hardware nonlinearity.

The second class of work aims at submission of an audio
signal that humans perceive as noise, and the command
is understood by PVAs but not by humans. For this pur-
pose, the attacker starts with the target command, and
this audio signal is gradually changed until it becomes
unintelligible for a human but the PVA still decodes the
command.

The purpose of ASR is to transcribe speech to corre-
sponding text. This process can be defined as

y = argmax
�y

p(�y|x) (2)

where x is the audio input and ỹ are all possible tran-
scription candidates. The ASR aims to find the most likely
transcription y given the audio input x. Once the ASR has
been trained, its function is y = f(x).

A human listening to the audio signal x also inter-
prets the signal and normally would conclude that the
same transcription y recognized by the ASR is the mean-
ing of the command. This process can be described as
y = fH(x) with fH describing the human’s processing
capability.

An adversary can modify an input signal x by adding
perturbation δ, resulting in x′ = x + δ. The following
situation arises when an ASR decodes x′

y = f(x′) (3)

where y is the obfuscated command transcription, which
remains the same as the one decoded from unperturbed
input x. However, a human cannot perceive the same
transcription y this time from the audio signal x′ (it is
perceived as noise; fH(x′) = ∅ with means that the human
transcription is empty). The audio input x′ is called the
obfuscated command. We introduce later in detail Cocaine
Noodles’15 [75], Carlini’16 [45], and Abdullah’19 [76]
that belong to this category.

There is also another situation where y = fH(x′) and
∅ = f(x′). This means that the ASR is unable to transcribe
the input, while a human is understanding the command
well. There is work in this direction (such as work by
Abdullah et al. [77]), which aims to prevent machines
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listening into conversations. We report such work in Cat-
egory C2.1—privacy preservation.

The last scenario is where y = fH(x′) and y′ =

f(x′). This means that the ASR transcription and human
transcription are different. This is the third class of hid-
den commands, the adversarial command. There have
been extensive studies in the speech adversarial com-
mands domain and we review representative works,
including Iter’17 [35], Alzantot’18 [78], Carlini’18 [36],
CommanderSong’18 [37], Taori’18 [79], Khare’19 [80],
Schönherr’19 [9], Yakura’19 [81], Qin’19 [82], Szur-
ley’19 [83], Imperio’19 [84], Yang’19 [85], Meta-
morph’20 [86], and AdvPulse’20 [87].

1) Hardware Nonlinearity: The aim is to submit a voice
command in the high-frequency space unnoticeable to
users, while the nonlinear behavior of the analog signal
processing path ensures that the signal is processed.

BackDoor’17 [29]: has three aims: 1) to provide an
acoustic but inaudible channel to a microphone; 2) to
achieve high data rate inaudible acoustic communica-
tion; and 3) to provide room-level privacy protection
via jamming. Although the work has a strong focus on
jamming, we report the work here and not in Category
C3.2—jamming as it also is the first work describing the
use of the aforementioned audio nonlinearity property. The
work considers frequency modulation to modulate attack
signals onto a high-frequency carrier signal. For jamming, a
high-frequency noise signal is used, which is demodulated
due to the nonlinearity to the audible sound range and
causes the ASR to fail. (The work also considers jamming
that targets the Automatic Gain Control (AGC), but this
method does not rely on nonlinearity effects.) The work
also describes how nonlinearity features can be exploited
for inaudible communication. It has to be noted that this
work requires specialized transmitters and software on
receiver side; thus, the work cannot be directly applied to
a PVA.

The work DolphinAttack’17 [8] is similar to Back-
Door’17 and advances the field in two ways. First, the
messages modulated to the carrier are audio commands
(not just simple signaling tones or noise). Second, Dolphi-
nAttack applies only amplitude modulation (AM) to mod-
ulate the baseband attack commands on the ultrasound
carrier signal. The attack message can be demodulated
to the baseband and recovered just by the nonlinearity
feature of the microphones. As no additional demodulating
software is needed, the attacker is capable of achieving
a hidden attack on an off-the-shelf PVA. The work also
investigates both hardware and software defense solutions.
The former includes suppressing the ultrasound frequency
sensitivity of COTS microphones and an extra module to
detect the modulated attack signal for canceling the attack
messages. The latter defense utilizes machine learning to
classify DolphinAttack and benign audio samples based on
the differences in their frequency-domain characteristics.
The main limitation of this work is the requirement for very

high-end equipment. Also, the attack distance is not very
large (about 175 cm).

Roy’18 [73]: It builds on DolphinAttack’17 and aims
at injecting commands into PVAs. DolphinAttack’17 has a
limited attack range of 5 ft (175 cm, roughly 5 ft). This
work introduces methods to increase the attack range to
25 ft while maintaining inaudibility of commands. Also,
this work proposes a first step toward defense by proposing
methods to detect nonlinearity traces. To increase the
attack range, this work increases the power of speakers
and addresses the accompanying audibility issue via sep-
arating parts of the AM attack signal to multiple speakers.
A psychoacoustic model is also used to control the sound
intensity. For defense, this work exploits the correlation
between the spectrum of the sub-50-Hz band and above
50 Hz to detect the occurrence of inaudible commands
injection. However, specific transmitter hardware and soft-
ware are still required.

The aforementioned studies focus on the attack, while
He’19 [74] focuses on defense. This work discusses lim-
itations in the defense mechanisms proposed by Dolphi-
nAttack’17 and Roy’18 and it is shown how these methods
can be bypassed. A method called active inaudible-voice-
command cancellation (AIC), which detects and cancels
out attack signals while retaining the legitimate command,
is presented. Fig. 5 shows the defense mechanism. An
attack signal is modulated to 40 kHz to attack a PVA.
A guard signal is introduced, which is designed as a
multitone signal with a 20-kHz interval, placing bins at
W1:22 kHz, W2:42 kHz, and W3:62 kHz to frame the
attack signal copy lying within 10–20 kHz (referred to as
Signal 3). This will be used as a reference signal to cancel
the recovered attack command (Signal 1) and Signal 2,
which is an accompanying result due to the design of the
guard signal. The main disadvantage of this protection
approach is that this defense needs a specific speaker array
for emitting the guard signal.

Comparison: A comparison between these studies on
hardware nonlinearity is shown in Table 1. Modulation
indicates the modulation technique used to modulate the
attack commands to the high-frequency carrier signal.
Demodulation describes if additional software is needed at
the receiver end to recover the attack commands. Distance
shows the furthest attack distance achieved. Evaluation
metrics shows the main metrics used to evaluate the
proposed method in the surveyed work. Defense shows
if defenses against the proposed attack have been dis-
cussed. If so, are these potential defenses implemented on
software or hardware level? Note that He’19 is a work
that is fully focusing on defense and it is therefore not
included in the table; this work requires an additional
transmitter and software update on the PVA to achieve
protection.

2) Obfuscated Commands: The aim of obfuscated com-
mands is the creation of an audio signal that humans
perceive as noise while the PVA interprets a command.
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Table 1 Comparison of Hardware Nonlinearity Work (Category C1.2.1)

The work Cocaine Noodles’15 [75] describes how to
craft speech signals that are recognized by an ASR but
are unintelligible to humans. The authors obtain different
mel-frequency cepstral coefficients (MFCCs) of the original
signal and convert these back to audio signals. This conver-
sion results in mangled audio signals that are unintelligible
to humans but sufficient for the ASR to transcribe.

The work Carlini’16 [45] builds on Cocaine Noodles’15
using more practical setups (i.e., greater attack distance,
background noise, and newer ASR). Furthermore, the
work describes a white-box attack showing that by know-
ing the parameters of the system, commands that are
better hidden from human ears can be crafted. An attack
utilizing a gradient descent (GD) approach to find optimal
perturbations on the input waveform to generate the target
MFCCs is used. Finally, defense mechanisms are evaluated
and two defenses based on filtering and machine learning
are proposed.

Abdullah’19 [76]: It proposes a methodology for
generating hidden voice commands attacking multiple

state-of-the-art ASR and speaker recognition systems with-
out knowledge of the underlying systems. To make attack
samples applicable for different ASRs, the work focuses on
the signal processing phase almost every ASR needs. Signal
features are perturbed that are important for the human
auditory system but not for ASR recognition. This results
in obfuscated commands that can still be transcribed cor-
rectly but are not understandable by humans. Over-the-
line attacks (i.e., directly feeding the attack example to the
ASR modules) and over-the-air attacks (i.e., playing the
audio via loudspeakers) are tried.

Comparison: A comparison of these studies on obfus-
cated commands is shown in Table 2. Note that there
are some common features of these works, so we do not
include them in the table. These features are as follows:
the obfuscated commands are all full sentences and their
attacks have all been tested over the air in a room with
echoes.

The first part of the table is the ASR column, including
subcolumns type and model. Type indicates the essential

Fig. 5. Mix-frequent signals generated due to nonlinearity effect on the attack and the guard signal that are utilized for later attack signal

cancellation in He’19.
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Table 2 Comparison ASR Obfuscated Commands Work (Category 1.2.2)

technique the ASR utilizes. Model shows the name of the
targeted ASR. Abdullah’19 tests their work with various
proprietary ASRs online through API and locally. Context
points out whether black-box or white-box attacks are
used in the study. Generation tech indicates what core
techniques are used to generate the obfuscated commands
and what the objective is during generation. If only exper-
imentally adjustment is used, information is not displayed
in the table. This is the case for Cocaine Noodles’15
and Abdullah’19. Perception measurement describes how
the obfuscation distortion is measured. Evaluation metrics
describe the metrics used in the evaluation of the proposed
method. Phoneme-level edit distance is the Levenshtein
edit distance between two sequences of phonemes of two
transcriptions. It is used to quantifiable measure how
well a human listener understands obfuscated commands.
Recognition rate is the percentage of commands that are
correctly interpreted.

3) Adversarial Commands: The aim is to create a signal
a human perceives as an original benign command, while
an ASR produces a very different transcription.

Iter’17 [35]: It is one of the earliest works in this
area. The attack assumes the ASR to be a white box and
targeted and nontargeted attacks are considered. Fast Gra-
dient Sign Method (FGSM) and fooling gradient method
(FGM) algorithms for producing adversarial commands
are proposed. FGSM is a linear perturbation algorithm,
which adds imperceptible small vectors whose elements
are equal to the sign of the gradients of the cost function
with respect to the input [88]. It is used to achieve an
aimless adversarial attack, which results in misspellings to
entire different transcriptions y′ compared to the original
transcription result y. Targeted adversarial commands T

are generated by adding perturbations to the original input
x following the guidance of the gradients of the loss
function comparing target T and the temporary prediction
results, which is the original prediction y gradually moving
toward the target T due to the added perturbations. The
perturbations are small to ensure that they are impercep-
tible. A gradient method is usually used to train a neural
network. However, in this case, the updated objectives are

no longer the parameters of the network but the inputs of
the network. Hence, this method is named FGM. A user
study or any metric to measure the perception distortion is
missing from this study. Thus, it is not entirely understood
how “hidden” the produced adversarial commands are.

Alzantot’18 [78]: It introduces a method for generating
one-word targeted adversarial examples assuming a gray-
box ASR. The proposed algorithm is a gradient-free genetic
algorithm without knowledge of the target ASR structure
and parameters. The algorithm proposed in this work takes
an original audio sample x and the target command y′

as inputs and then adds perturbations to x to generate a
population of intermediate adversarial commands. Based
on the prediction scores of the ASR for these intermediate
commands, the algorithm picks candidates that fit best
the target command as the base of the next generation
round. The selected intermediate adversarial commands
are mixed to generate a new child. The process then starts
again using this child as new input. This process repeats
for a predefined number of rounds or until the attack is
successful; 89% of the participants in the user study cannot
differentiate the adversarial command from the original.

Carlini’18 [36]: It successfully constructs white-box tar-
geted adversarial commands for the DeepSpeech ASR [89].
A small perturbation is added to the audio input, resulting
in an audio signal that is over 99.9% similar to the input.
This is the first robust targeted adversarial attack study,
resulting in audio output that can be influenced such
that theoretically any chosen phrase can be transcribed.
This work formulates the generation of the adversarial
commands as an optimization problem in order to find the
minimum necessary perturbations.

CommanderSong’18 [37]: It achieves an adversarial
white-box attack against the Kaldi ASR by creating mod-
ified songs that are perceived by listeners as songs but
recognized by the ASR as commands. Robust adversarial
examples are created that can be played over the air
using the gradient method but with an additional noise
factor added to the song together with the perturbation.
In this way, the loss optimization process can ensure that
commander song can still be recognized by the ASR as
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the noise in the environment has been considered during
signal generation. A user study finds that none of the
commands embedded in a song can be recognized by
humans. Transferrability of the adversarial samples to a
black-box ASR iFLYTEK is demonstrated. After using the
algorithm of Carlini’18 to further modify the generated
adversarial examples, they can be successfully decoded
by both DeepSpeech and Kaldi. Two defense mechanisms,
adding noise and downsampling, are proposed. The former
lowers the signal-to-noise ratio (SNR) and is not effective
for robust over-the-air examples. The latter significantly
lowers the success rate of the attacks, while benign com-
mands can still survive.

Taori’18 [79]: It introduces a new generation method for
targeted adversarial commands assuming a gray-box ASR
system. The work improves on Alzantot’18 as a more com-
plex ASR system (i.e., DeepSpeech) is targeted. This work
generates adversarial commands from normal samples of
the Common Voice dataset such that these are interpreted
as two words from the 1000 most common English words.
Their algorithm combines the genetic methodology of
Alzantot’18 and gradient estimation techniques.

Khare’19 [80]: It proposes a new framework using mul-
tiobjective evolutionary optimization to generate adversar-
ial commands for both nontargeted and targeted attacks
on black-box ASRs. For the generation process, a set of
original audio inputs is selected and random uniform noise
is added to them as the initialization. A genetic algorithm
is applied to pick good genes (fitness scores are used) from
candidate parent’s examples to generate child examples
in each iteration. The top N# candidates are selected for
the next iteration. This process repeats until the fitness
goal is achieved or the maximum number of iterations is
reached. Compared with Taori’18, the resulting command
is closer to the target phrase while maintaining comparable
acoustic similarity with the original sample.

Schönherr’19 [9]: It proposes a targeted adversarial
attack, tricking human perception based on the psychoa-
coustic model of the human auditory system. Targeting a
trained white-box ASR Kaldi model, the adversarial com-
mand generation method first applies forced alignment
between the original input and the target transcription to
calculate the best possible temporal alignment between the
original audio and the target transcription. Then, back-
propagation is used to calculate the perturbations required
to force the ASR to transcribe the target output. Two
critical points of this work rely on this backpropagation
process: 1) hearing threshold based on the original audio is
calculated and applied in the backpropagation to limit the
modifications, which results in changes hardly perceptible
by the human auditory system, and 2) the preprocessing
step is integrated with the DNN into a joint network
for the backpropagation. Compared to previous targeted
adversarial commands, the perturbation noise is signifi-
cantly reduced as the human auditory system is considered
properly. This is confirmed using a two-part audibility
study consisting of a user study and a MUSHRA [90] test.

Yakura’19 [81]: It proposes a method for the genera-
tion of targeted adversarial commands against the ASR
DeepSpeech. The described attack is the first over-the-
air work against this type of ASR; previously described
works usually feed adversarial commands directly to the
ASR algorithms without taking speaker, room, and micro-
phone characteristics into account. The method is based
on a white-box assumption and incorporates transforms
introduced due to playback, reverberation, and recording
distortions acting on the audio signals when the attack is
launched over the air. The results are compared with over-
the-air results of CommanderSong’18, and the proposed
method can generate samples with less perturbation while
targeting a different ASR model. A user study on Amazon
Turk also proves that attacks are hardly noticeable. How-
ever, as signal generation is complex and time-consuming,
only a few samples are tested. This also means that the
practicality of the attack is limited to situations where the
attacker has sufficient time to generate the signal.

Qin’19 [82]: It improves on Carlini’18 by using psychoa-
coustic principles to reduce the perceptibility of adversarial
commands. A white-box over-the-air attack is considered.
The aim is to generate an adversarial command from an
arbitrary input audio example (the two should have similar
length) and to reduce the level of distortion noticeable by
humans by making use of the masking threshold theory.
The generation process is split into two steps. First, similar
to Carlini’18, GD is used to find a relatively small perturba-
tion, which causes the perturbed result being transcribed
as the target phrase. Then, the second step is applied
to make the command imperceptible. The second step
also uses GD but with a different function, combining the
network loss (cross-entropy loss function) and impercepti-
bility loss (using the masking threshold knowledge). The
work is compared with Carlini’18 and it is shown that the
resulting commands are better hidden. The attack is also
somewhat more practical as realistic reverberation distor-
tion is simulated. However, the attack is not trialed by
playing the adversarial commands through a loudspeaker
toward an ASR (an over-the-air attack).

Szurley’19 [83]: It also proposes a method to gener-
ate white-box over-the-air targeted adversarial commands
based on psychoacoustic properties. To generate com-
mands, the global masking threshold per frame using a
psychoacoustic model based on the MPEG-ISO standard is
calculated. The distortion level of the perturbation added
following the guidance of the psychoacoustic model is
measured in the time domain. This results in less compu-
tation in each iteration when generating adversarial exam-
ples as the calculation can be performed solely in the time
domain. Also, this improvement solves the instability issue
during backpropagation encountered by Schönherr’19
and Qin’19. The attack signal is also improved for over-
the-air attacks by incorporating various room impulse
responses (RIRs) generated by a room simulator. The
over-the-air evaluation is performed in an anechoic
chamber.
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Imperio’19 [84]: It describes the first general algorithm
to produce robust targeted adversarial commands against
the Kaldi ASR assuming a white-box scenario. The adver-
sarial commands generated can be played over the air, and
it is reasonably robust even when played in a case where
the room characteristics are different than the one used
in the signal generation process. This work builds on the
implementation of Schönherr’19 by adding another layer
simulating the effect of sound being transmitted over the
air. This approach maximizes the probability of adversarial
examples being transcribed as the target phrase when
varying RIR and recording conditions are encountered.
The experiments conducted show that more noise has
to be added to make the example robust when played
over-the-air. In most cases, the attack samples cannot be
perfectly transcribed as the target commands. However, it
is argued that only one success is required from the attack
perspective.

Yang’19 [85]: It proposes a defense method against
adversarial commands. This work first evaluates the
robustness of input transformation and subsequently
temporal dependency-based methods against adversarial
commands. Considered state-of-the-art attacks are based
on Alzontot’18, CommanderSong’18, and Carlini’18. The
experiments show that in general, input transformation
methods except autoencoder are effective in defending
against Alzontot’18, CommanderSong’18, and Carlini’18
attacks. The work also explores how well a temporal
dependency-based defense method works. The principle
of such method is: the decoding result when using a
portion of an audio signal as input should be similar to
the same portion of the decoding result when using the
entire audio signal as input. This is due to the temporal
dependency (i.e., correlations in consecutive waveform
segments). However, perturbation is added to the original
audio signal to push the ASR output toward the target con-
tent, and thus, the temporal information is lost. The evalu-
ation shows that the temporal dependency method is able
to discriminating attacks and benign input generated with
methods described in Alzontot’18, CommanderSong’18,
and Carlini’18. In an additional step, the work evaluates
the two defense methods against adaptive attacks where
attackers are aware of the defense mechanisms. The attack
by Carlini’18 is used and the results show that input trans-
formation methods fail, while the temporal dependency
method represents a successful defense mechanism.

Metamorph’20 [86]: It presents a system called
Metamorph that generates robust over-the-air adversarial
commands. Like most of the previous over-the-air attack
studies such as Yakura’19, Qin’19, Szurley’19, and Impe-
rio’19, this work also incorporates the RIR. In addition, this
work uses empirical experiments to analyze how frequency
selectivity, which is caused by device distortion, channel
effects, and background noise, impacts the attack success
rate. The key finding is that the channel effects are the
most significant obstacle. When the distance between the
speaker and the receiver is long (i.e., >8 m), the chan-

nel frequency selectivity effect is dominating and unpre-
dictable. Even though channel and device effects have
been considered using RIR, the adversarial examples are
not generic enough and cannot adapt to new over-the-air
environments. To solve this issue, the generation process is
optimized to consider these features. A high attack success
rate of over 90% is achieved with a distance of up to 6 m.

AdvPulse’20 [87]: It describes AdvPulse, a practical
adversarial audio attack aiming at both speaker recogni-
tion and SR systems, altering the recognition results of a
streaming audio input in a targeted, synchronization-free
and over-the-air manner. In contrast to previous scenarios,
this work aims at attacking live-streamed speech. This
scenario poses a significant challenge for the attacker as
the attack must succeed, while the attacker does not have
prior knowledge on the audio input. Almost all existing
studies collect an audio clip first and then compute per-
turbation for the entire clip. However, this work aims at
a relatively simple ASR model dedicated to recognizing
single-word commands, which makes it easier to overcome
the aforementioned obstacle. Targeting this simple model,
a 90% success rate in indoor environments and a 70%
success rate in an in-vehicle scenario are achieved.

Comparison: A comparison among these studies on
adversarial commands (or adversarial examples) is shown
in Table 3. The first field is related to the threat and
describes the length of the adversarial command being
considered in the study. Length describes if the command
considered contains only a few words or if it is a long
sentence. Practicality captures relevant aspects to be con-
sidered when attempting to use the described method in
a practical setting. Test method describes how the adver-
sarial command generation method was tested, i.e., was
the command submitted over-the-air using a speaker and
microphone or was a generated audio file directly fed
into an ASR. Room gives a description of the environment
in which such over-the-air evaluation was carried out.
Distance shows the longest distance between the speaker
and the microphone that was considered in case of an
over-the-air evaluation scenario. ASR gives details on the
used ASR, specifically type, and model. Type shows the key
components of the ASR framework used in the study, and
model shows the name of the specific ASR used. Context
tells if the ASR framework and parameters are known
when generating the adversarial commands (referred to as
white or black box). Technique shows the key algorithms
used in the study to generate the adversarial commands.
Perception metrics details the metric used to measure
the noise introduced to the original sound sample by the
added perturbation. Studies tend to use objective metrics
such as SNR as well as launching a user study to test
human participants’ perception of these adversarial exam-
ples. Evaluation metrics name the overall evaluation met-
rics, describing how well ASRs transcribe the adversarial
examples generated with the proposed method. Column
perception metrics and evaluation metrics illustrate how
an adversarial example is perceived by a human listener
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Table 3 Comparison of ASR Adversarial Examples Work (Category 1.2.3)

(should be similar to the original benign command) and
is interpreted by an ASR (should be very different from
the original transcription or should be the same as the
target command). Most research on targeted adversarial
examples utilizes success rate (introduced in Section II-D.)
Specifically, for Metamorph’20, the transcript success rate
equals the success rate used in this survey, while character
success rate is the concept applied on a character level.

C. Summary

Access control can be achieved by using VA methods
and to some degree by checking the semantics of a
voice command. Most PVAs only check simple semantics
(e.g., does the command contain “Alexa” in case of the
Amazon Echo) and some few PVA use VA (e.g., Siri).
However, even in the few cases where VA is used, potential
attacks, such as replay or spoofing on this mechanism, are
usually ignored. It is also assumed that users would realize

if someone is interacting unauthorized with their PVA. In
normal circumstances, a user can hear voice commands
spoken by an adversary or played by a speaker used by
the adversary.

There is a large body of existing work looking at VA,
how to attack VA, and methods to detect and prevent
such attacks. The main threat to VA is spoofing and the
results of the ASVspoof challenge summarize the state of
the art on spoofing detection in the general SR context.
VMask’20 is the first practical black-box attack targeting
an ASV system with a spoofing attack and not a gen-
eral ASR environment (C1.2.1—acoustic characteristics).
Spoofing can also be detected using a second data source
(C1.2.2—second factor authentication) either by detect-
ing human vocal system features (VoiceLive’16) or traces
unique to COTS speakers (Blue’18). While a lot of works
exist in the VA space, more studies are required specifically
considering the PVAs context.
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The area of C1.2—hidden voice commands is a spe-
cific domain attracting a lot of works in the research
community.

The work described in C1.2.1—hardware nonlinearity
requires high-end or highly customized acoustic signal
emitters and reported defense work also requires specifi-
cally designed speaker arrays. The very recent work Ear-
Array’21 uses a microphone array containing at least three
microphones to detect DolphinAttacks relying on the fast
attenuation feature of ultrasound [91].

There is not much work on obfuscated commands
(C.1.2.2—obfuscated commands) and most of it is early
work (before 2017). The reason might be that hid-
ing the malicious voice commands within noise is not
covert enough and the research community has shifted to
C.1.2.3—adversarial commands.

From Table 3, it can be seen that there is a trend toward
generation of adversarial sentences, departing from early
work focusing only on words. Also, work is moving on from
simple simulation to evaluation of full systems (over-the-
air attack on of the shelf PVA). The subject ASRs used are
mainly classic DNN-HMM (Kaldi) and end-to-end solutions
using RNN-CTC (DeepSpeech). Most of the works are still
considering white-box settings where the ASR internals
are known to the attacker. Perturbations are generated
mainly based on GD optimization. Psychoacoustic masking
is increasingly used to optimize addition of perturbations.
However, the details on how best to add perturbations
are the subject of current work. Most works make use of
user studies to evaluate how well adversarial examples
are constructed.

More practical and robust adversarial command studies
are required, considering evaluation in different reverbera-
tion (various rooms or one room but various settings) sce-
narios. So far, Imperio’19, Metamorph’20, and AdvPulse’20
are three practical works considering this.

Current work lacks practical black-box assumptions; it
is always assumed that the internals of an ASR are fully
known. However, it might be possible that a variety of
systems can be attacked using a common adversarial com-
mand. CommanderSong’18 investigated this transferability
and a very recent work called Devil’s Whisper’21 [92]
proposes to use a local white-box model that roughly
approximates the target black-box ASR.

There is also a lack of adversarial command research
targeting the latest attention/transformer-based end-to-
end ASR introduced in Section II-C with Qin’19 [82] being
a notable exception. Considering new ASR systems may
enable new attack and defense methods.

Currently, there is a lack of metrics for measuring the
perceptual distortion of adversarial commands. Research
in this area could help building more effective adversarial
example studies. We notice that there is a recent work [93]
developing this area.

V. C 2—A C O U S T I C D E N I A L O F S E R V I C E
The acoustic channel can be subject to a DoS attack. This
form of attack on a PVA has attracted little research so

Fig. 6. Illustration of how a malicious skill created by an adversary

launches a skill squatting attack. Steps labeled with black numbers

are the normal procedures, while steps labeled with red especially

Steps 3, 4, and 6 would replace the original ones when the attack

happens.

far. However, given that we are increasingly depending on
PVAs in our daily interaction with (also critical) computer
systems, these need to be considered.

Two categories of DoS attacks have been considered:
C2.1—skill market and C2.2—jamming. Attacks in C2.1
aim to manipulate the back-end processing (often referred
to as the skill market). Jamming attacks (C2.2) target the
audio channel directly, interrupting wake word recognition
or SR in general.

A. Skill Market

PVA service and product providers, such as Amazon
and Google, provide skills to enrich the capability of
PVAs. Users (and service providers) can deploy code to
the processing back end, which is activated by a voice
command. Skills are a feature that can provide an entry
point for an attacker.

Kumar’18 [14]: It presents an empirical study of the
misinterpretation error of the Amazon voice recognition
service Alexa. Skills are invoked by the back-end infrastruc-
ture depending on the transcribed text. Every ASR is
subject to interpretation errors and these errors can be
exploited to design a skill that is activated by accident
when spoken user commands are incorrectly interpreted.
Some phrases are likely to be misinterpreted consistently,
which can then be exploited to craft a skill that is activated
on misinterpretation. This form of attack is called skill
squatting (or squatting attack). Fig. 6 shows an example of
a malicious skill taking advantage of the misinterpretation
to squat attack the legitimate “Cat Fact” skill. The study
finds 381 unique instances in which skills invoked by a
user might accidentally trigger an already existing different
skill. The work also shows the feasibility of squatting
attacks toward certain groups of individuals and label this
technique spear skill squatting.

Dangerous Skills’19 [94]: It also looks at skill squatting
attacks. However, in addition to these attacks based on mis-
interpretation errors, referred to as voice squatting in this
work, additional word squatting and voice masquerading
attacks are investigated.
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Systems today apply a longest string matching strategy
to identify which skills are being called by the users. Thus,
word squatting is possible by registering an attack skill
with the name of a legitimate skill together with an addi-
tional utterance such as “please.” For example, it is possible
to register an attack skill invoked by the sentence “Cat Fact
Service Please” in parallel to a legitimate service invoked
by the phrase “Cat Fact Service.” Due to the longest string
match, the attack skill instead of the legitimate skill may
be invoked by simply adding the word “please” to the
command, which is quite natural.

Voice masquerading attacks are exemplified in two
scenarios. Both Google Home and Amazon Echo allow
only one active skill and it needs to be terminated before
another one can execute. However, users may naively
believe that a PVA supports skill switch. Users would ask
to activate another skill while interacting with the current
one. This opens a gate for a malicious skill to impersonate
the desired one and to obtain sensitive information
supposed to only be shared with the target skill. Users also
depend on responses from a skill to tell them when it has
terminated. A malicious skill could fake the termination
by playing the audio response but keeps running. Even
if the user uses commands such as “stop” or “cancel” to
terminate a skill, a malicious skill can ignore these. If a
user does not interact with the PVA for a period of time
after one round of inquiry and response, a PVA would
reprompt the user with an audio signal before terminating
it. However, a malicious skill could create an inaudible
audio reprompt and try to stay active with the aim of
stealing information from the user.

The evaluation presented in this work shows that the
different voice squatting attacks are feasible. As counter-
measures, the work proposes a skill scanner to inspect
skills before publication and a context-sensitive detector
to detect the intent of switching skills and faking skill
termination.

B. Jamming

The acoustic channel can be subjected to noise, which
prevents ASR from functioning correctly. Jamming signals
can either be applied continuously or be targeted more
selectively to specific parts of an audio signal. For example,
it is possible to target jamming toward wake word recog-
nition to prevent a PVA from processing speech. Jamming
is often applied for the purpose of privacy management
and the work reviewed here could also be classed in
Category C3. However, as these works mainly focus on the
jamming component and not on privacy management, we
have decided to outline this work here.

Cheng’18 [13]: It proposes a reactive DoS jamming
method to prevent people’s voice contents being recorded
and uploaded to the back-end server by PVAs. This solution
gives people the capability to stop nearby PVAs owned by
others being activated and recording their conversation.
A protection jamming device (PJD) device is proposed,

Fig. 7. PJD recognizes the keyword faster and emits the jamming

signal (Step 2) to overlap the rest part of the spoken keyword, and

thus, the PVA would not be activated (Step 3) and the following

voice commands would not be recorded and processed (Step 4).

which listens to the same wake word as the PVA (e.g., “Hey
Google” for Google Home and “Alexa” for Amazon Echo)
recognizes it faster than the PVA and emits a jamming
signal to interfere with the wake word acquisition process
on the PVA (see Fig. 7). The method is intended to be used
as a privacy management, but it is possible to simply use it
for DoS purposes.

The work evaluates the impact of key factors of jam-
ming, such as overlap between jamming signal and original
audio signal, SNR, and jamming signal types. The experi-
mental evaluation shows that a 100% jamming success and
negligible false positive rate (FPR) of wake word recogni-
tion can be achieved with an overlap between jamming
and audio signal of at least 60%. As it is sufficient to apply
a jamming signal only to the latter part of the wake word,
it is possible to build a jamming device that emits a signal
only after the start of the wake word has been recognized.
Such selective jamming devices are hard to detect making
the development of countermeasures challenging.

The work Gao’18 [95] differs from Cheng’18 as instead
of applying a jamming signal when needed, the chan-
nel is continuously jammed, and only when required,
the jamming is stopped. The work proposes an external
obfuscator, which continuously carries out jamming to pre-
vent conversation recording. Inaudible jamming exploiting
the nonlinear property of microphones is used to make
jamming user friendly (see also Section IV-B where this
technique is used to construct inaudible commands for
command injection). An ultrasound microphone installed
on the obfuscator is used to listen to wake words. As
this microphone type has a linear property within the
very high-frequency range, the ultrasound jamming signal
sent by the speaker of the obfuscator does not create a
shadow in the voice frequency range. In this case, the
microphone can capture the wake word and the obfuscator
can perform wake word recognition. If the wake word is
detected and a challenge–response authentication with the
legitimate user’s smartphone using a secure out-of-band
(OOB) channel such as Bluetooth has been carried out,
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jamming stops. Then, the obfuscator communicates the
wake word to the PVA via ultrasound injection. Subsequent
voice commands will be relayed to the PVA.

MicShield’20 [96]: It is similar to the aforemen-
tioned work Gao’18. The main difference is that this
work describes a full implementation, while Gao’18 only
describes the approach. The OOB channel between the
user’s smartphone and PVA is omitted; once the wake word
is recognized, jamming stops, and the PVA is still able to
process the audio signal.

The documented experiments show that the wake word
is still recognized if only a few milliseconds at the start
of the wake word are subject to jamming. For example, if
the first 60 ms of the wake word are jammed, it can still
activate an Echo Dot with 95% accuracy, the same as it is
the case without jamming.

An implementation of MicShield comprising one ultra-
sonic transducer, one microphone, and one Raspberry
pi [97] is evaluated. The transducer emitting the jamming
signal is relatively close to the PVA microphone (14 cm).
In a real-world setting, MicShield is able to achieve 90.4%
mute rate (duration of the jamming signal is applied to
private speech) and 0.02% SR rate for private speech,
without affecting the PVA’s ability to detect wake words
even in noisy environments across different PVA locations.

C. Summary

Kumar’18 and Dangerous Skills’19 focus on security
vulnerabilities in the PVA back-end skill working mecha-
nism. Cheng’18 and Gao’18 focus on front-end PVA devices
preventing user privacy violation and unauthorized com-
mands via DoS. Kumar’18 studies the interpretation error
of the back-end ASR system systematically and discovers
the error pattern. Dangerous Skills’19 discovers the same
interpretation error, also a skill search issue, and malicious
skill impersonation attack. Kumar’18 studies interpretation
attacks more deeply, which could be used as an instruction
to improve the back-end system, while Dangerous Skills’19
covers wider potential skill-related problems revealing that
back-end skill management needs more attention and
study. Cheng’18 proposes protecting user privacy using
DoS attack targeting wake word of a PVA. It is carried out
some early trial to test the feasibility. More comprehen-
sive and systematic implementation of this idea in COTS
devices scenario would be of interest. Gao’18 proposes a
framework achieving a similar jamming idea as Cheng’18,
and they also propose using a user’s smartphone together
with their obfuscator to achieve legitimate user authen-
tication. This work is only a theoretical framework that
is technically complex and it is not sure how practically
feasible it is. MicShield’20 is very similar to Gao’18 and
provides full implementation and evaluation.

Overall, the potential of applying DoS techniques on
the back-end PVA system and the front-end PVA devices
has not been fully explored. In particular, DoS attacks on
the front end have been used to implement some form

of privacy control; a proper analysis of DoS capabilities
and potential defense methods is missing. More studies of
utilizing DoS for both attack or defense purposes would be
valuable.

VI. C 3—V O I C E P R I V A C Y
In this category, we summarize work concerned with pro-
tecting the privacy of users’ voice data. Privacy preserva-
tion (Category C3.1—privacy preservation) is a growing
research area, in part motivated by the growing popularity
of PVAs. Work described here aims to prevent speaker
recognition and/or the extraction of paralinguistic infor-
mation (e.g., features such as emotion, gender, or age)
from voice. Some work in Category C3.1 is therefore com-
plementary to the work described in C1.1—VA; here, the
focus is on preventing speaker recognition, while in C1.1,
speaker recognition is used for authentication. Similar to
work presented in C1.1, work on privacy preservation
(C3.1) has broad relevance and is only applicable to the
PVA context.

We also include consent management (Category
C3.2—consent management) as a topic parallel to privacy
preservation. This is a new strand of work emerging in the
PVA domain. As mentioned before, this work is related
to C2.2—jamming as often jamming is employed as a
technique to implement consent management; however,
additional mechanisms are proposed, which are discussed
here.

A. Privacy Preservation

To provide good user experience, PVAs are “always lis-
tening,” which unfortunately raises privacy concerns. It has
been found that voice data also contain rich information
about the speaker, including information on gender, age,
health, and ethnicity. Voice data can be used for identifica-
tion (voice biometrics) as discussed in Section IV-A. Voice
data are considered sensitive data and legal frameworks,
such as the EU GDPR [24], must be considered. For exam-
ple, GDPR requires that a user gives explicit consent (we
discuss this issue in more detail in Section VI-B) and that
systems incorporate privacy by design approach. According
to GDPR, data controllers should protect users’ rights and
freedoms in relation to the processing of their personal
data; there is an obligation of data protection by design
and by default.

Speaker identity (voice biometrics) is usually considered
the utmost private information in voice data; however,
nonbiometric data also contain a wealth of sensitive and
private information that requires protection. A user would
like to have assurances (and control) over which elements
of biometric and nonbiometric information are processed
and shared. In this section, we discuss the work that
provides mechanisms designed to limit private information
shared via voice data.

If SR would only be performed on the local PVA device,
privacy could be preserved to a certain extent. However,
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due to resource limitations of these devices, on-device SR
is limited. Also, PVA vendors favor a centralized setup
where ASR is executed in the back-end infrastructure.
Manufacturers are advancing relevant developments [98]
and it may be that ASR will be executed completely offline
on local devices in the near future. This will give a user
potentially more control over private elements of voice
data. However, the transcribed text (or other extracted
features, depending on the application) will still be passed
on to the back-end infrastructure for further processing.
A complete local execution of ASR and the following
service processing chain is not yet feasible.

Hardware-assisted security for private speech processing
has also been explored. An architecture using Intel’s SGX
architecture called VoiceGuard’18 [99] has been proposed.
SGX allows code to define private regions of memory,
called enclaves, whose contents are protected and cannot
be accessed by any process outside the enclave itself. In
VoiceGuard’18, speech characterization is carried out in an
SGX enclave and voice data provided by the user are not
accessible to the back end, while the back-end models are
not accessible to the user. Solutions such as VoiceGuard’18
have limitations; hardware support is required, and in case
of SGX, the size of an enclave is limited, which prevents
execution of complex tasks (speaker recognition is possible
but full ASR is challenging).

The recently initiated Voice Privacy Challenge’20 [100]
defines four categories in which voice privacy preservation
solutions fall into: deletion, encryption, distributed learn-
ing, and anonymization.

Deletion techniques aim at ambient sound analysis.
When recording sound in public places, speech is obfus-
cated such that no information can be recovered [101].
This can be seen as a similar technique to blurring all faces
in video surveillance in public places. The work described
in C2—acoustic DoS can be seen as another technique to
achieve this goal.

Encryption schemes such as homomorphic encryp-
tion [102] or secure multiparty computation [99] can be
used to process data in encrypted form. Such methods can
be transferred into the speaker/speech processing domain
to solve some of the outlined privacy challenges.

Cryptographic approaches are surveyed by
Nautsch’19 [103]. The work distinguishes between
privacy preservation of biometric and nonbiometric data.

Biometric systems use separate enrollment and verifica-
tion phases. During enrollment, biometric references are
collected and features and their representations (templates
or models) are extracted and stored. During verification, a
probe is captured and compared with the stored represen-
tation. It is not desirable to leave enrollment data (speaker
models) unprotected as this would allow an attacker to
generate speech representative of the speaker. Similarly,
probes used during verification should also be protected.
Methods exist to provide protection for biometric infor-
mation, which can be adapted for speaker characteriza-
tion. Voice representations during enrollment are stored in

encrypted form, which still allows comparison with probes
collected during verification in the encrypted domain.
Possible solutions are based on homomorphic encryption,
secure two-party computation, string representation com-
parisons, and template/model binarization techniques (see
[100] and [103]–[105] for examples).

Cryptographic approaches can also reserve privacy in
nonbiometric speech characterization applications. For this
purpose, similar methods as used for the protection of
biometric data can be employed. A user may not want to
share an unencrypted speech signal with a back end, while
the back end does not want to share a trained model with
the user. Methods exist that are based on homomorphic
encryption and secure two-party computation [105], [106]
or modular hashing [107] to achieve privacy preservation
for paralinguistic tasks, such as emotion recognition [107]
or detection of voice-affecting diseases [108].

Cryptographic solutions are not yet fully practical for
PVA devices. Homomorphic encryption and secure two-
party computation schemes are currently limited in the
number and size of layers and further improvements are
required before these cryptographic schemes can be used
to augment existing ASR while achieving the same classi-
fication performance. Therefore, cryptographic approaches
for privacy preservation in the PVA context are a promising
research direction, but they are not yet a practical choice.

Distributed (sometimes referred to as federated) learn-
ing methods aim to train models from distributed data
without directly accessing it [109]. A decentralized opti-
mization procedure is used to train a central model on
local data of many users without the need to upload
this data to a central server. As central data collection
for training purposes is avoided, some privacy issues
can be avoided. However, federated systems still leak
information via model updates [110]. Recent work by
Granqvist et al. [111] therefore combine federated learn-
ing with differential privacy. With differential privacy, noise
is added to model updates to provide a guaranteed upper
bound on the amount of information that can be leaked.
Distributed learning technologies improve user privacy, but
this approach is focused on the model. It does not change
the operation of a system once it is built. In addition,
model updating can still leak information of user’s private
data [110], which indicates that more research in the
context of federated learning is necessary.

Anonymization refers to the goal of suppressing (some)
personally identifiable attributes of the speech signal
while leaving other attributes intact [100]. This approach
has attracted the most research effort so far. Exist-
ing work includes Hidebehind’18 [112], Gong’18 [113],
Abdullah’19-2 [77], Nelus’19 [114], Emotionless’19 [115],
and Smart2 Speaker Blocker’19 [116], which we will dis-
cuss in this section.

A common problem for these anonymization solutions is
that there is a lack of a formal definition of anonymization
and attacks against it. In addition, similar to the case
of spoofing detection introduced in Section IV-A1, it is
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difficult to compare the proposed solutions due to the lack
of common datasets, protocols, and metrics. To address
these limitations, the Voice Privacy Challenge’20 [100] was
founded in 2020.

The challenge formulates the privacy preservation prob-
lem as a game between users and attackers in which users
publish data which the attacker can access and attempts
to infer personal information about the user from it. For
privacy protection, the user publishes as little personal
information as possible while allowing one or more desired
goals to be fulfilled. The challenge defines the specific task
of hiding speaker identities while allowing any other goal
(such as SR) to be achieved.

To hide the identity, a user passes utterances through an
anonymization system before publication. The anonymized
utterances sound as if spoken by another person, which
may be an artificial voice not corresponding to any real
speaker (pseudo-speaker). The output of the anonymiza-
tion system is required to be a speech waveform, should
hide the speaker identity, should not distort other speech
characteristics, and should ensure that all trial utterances
from a given speaker appear to be uttered by the same
pseudo-speaker.

The attacker has access to anonymized trial utterances
and anonymized or original enrollment utterances for each
speaker. The anonymization system is a black box for
the attacker. The protection performance is assessed via
objective speaker verifiability metrics, subjective speaker
verifiability metrics, and linkability metrics.

Publicly available datasets, such as VoxCeleb, Lib-
riSpeech, and VCTK, are used for the training, devel-
opment, and evaluation of the anonymization system.
An ASV system and an ASR system are used to assess
speaker verifiability and ASR decoding error for objec-
tive evaluation. Listening tests with subjective metrics,
including speaker verifiability, speaker linkability, speech
intelligibility, and speech naturalness, are carried out by
the challenge organizers. The organizers also introduce
two baseline anonymization systems and their objective
evaluation results. Challenge participants can be inspired
by these two baselines to improve over them.

While the Voice Privacy Challenge’20 provides a good
contribution in terms of evaluation and comparison of
anonymization techniques, it has the drawback that it
limits the scope of possible solutions. Solutions under
this scheme must fit in the outlined framework of the
challenge.

In the following paragraphs, we detail existing contri-
butions to the domain of anonymization. Some of these
solutions could be evaluated under the scheme set out by
the Voice Privacy Challenge’20, while others do not fit in
this framework.

Hidebehind’18 [112]: It introduces VoiceMask (the work
is titled Hidebehind, while the solution is termed Voice-
Mask) as an intermediary between the PVAs and the cloud
used for SR to anonymize the voice before it reaches the
untrusted system, as shown in Fig. 8. In this work, two

Fig. 8. Illustration of the two application scenarios of VoiceMask

(Hidebehind’18). The first scenario is shown in the upper part.

VoiceMask can be embedded in the OS and only sanitizes the speech

sent to untrusted Apps that do not need to access the original voice

as shown in Route 2. Trusted Apps that must obtain the original

voice are granted Route 1. The second scenario is shown in the

lower part. VoiceMask is used as gateway between user speech and

Apps and cloud. VoiceMask masks the original speech and sends it

to an online ASR interface. After obtaining the transcript, they are

relayed to the Apps.

warping functions together with a differential privacy algo-
rithm are used to construct a robust conversion algorithm,
which reduces the success rate of speaker recognition.
The method provides resilience against deanonymization
attacks while ensuring that the resulting signal is still
recognizable.

Gong’18 [113]: It aims to distort a speech signal such
that paralinguistic feature detection fails, while the signal
distortion is difficult to recognize by a human. The work
proposes an end-to-end scheme to craft adversarial audio
signals starting with the original audio signal rather than
with already extracted acoustic features. These adversarial
signals result in a performance drop of state-of-the-art
NNs (specifically, Recurrent Neural Network (RNN) and
convolutional neural network (CNN)) used for speech
paralinguistic analysis. By adding perturbations directly to
the original audio signal instead of adding these to acoustic
features such as MFCC parameters, human noticeable
signal distortion is reduced. Although the authors did not
describe the method as a privacy-preserving mechanism,
we decided to place it in this category within this survey.
Similar to the previously described work Hidebehind’18,
this method could be used to hide voice features from a
PVA.

Abdullah’19-2 [77]: It uses obfuscation techniques as
also used in works described in Section IV-B2. However,
instead of modifying an audio signal such that a machine
is able to understand the command but a human is
not, the signal is modified such that an ASR is unable
to understand the command but a human is. Thus, the
method is an anonymization solution and can be used to
improve a user’s privacy. The audio signal is decomposed
and components for which the signal strength is below the
human perception thresholds are discarded. The reason
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Fig. 9. Illustration of acoustic tagging as described in Cheng’19. When a tag is found to be embedded, the PVA service provider can delete

a recording as consent was not given.

behind this approach is that low-intensity components
should not affect the audio quality perception of humans.
However, the performance of the ASR and automatic voice
identification (AVI) is affected given the assumption that
ASR and AVI depend on components of speech, which are
noncritical for human perception.

Nelus’19 [114]: It proposes a feature extraction scheme,
which selectively suppresses the biometric information
contained within the speech signal but tries to maintain a
good gender discriminating performance at the same time.
It is assumed that an attacker compromises this gender
discriminating system by intercepting the feature set and
then aims to perform speaker recognition. The feature
extraction process is modified such that a good gender
discrimination accuracy is achieved by minimizing the
cross entropy between the gender labels’ true probability
and the estimated probability distributions. In addition,
it ensures a bad classification accuracy for tasks such
as speaker recognition by minimizing the information in
the high-level feature set. The results show that biomet-
ric privacy risks can be significantly reduced with only
a slight decrease in gender discrimination performance
(utility).

Emotionless’19 [115]: It proposes a privacy-preserving
intermediate layer between users and cloud services to
sanitize the voice input. This work uses emotion states
as the example of the sensitive part of a speech signal
and aims to normalize it while preserving the signal utility
(e.g., speech content and identification information in the
voice input) before sending it to the cloud. cycle generative
adversarial network (CycleGAN) is used to transfer the
original voice input to an “emotionless” speech signal.
First, unsupervised learning is used to extract the represen-
tation from the speech. Then, a feature extraction model is
trained to identify the sensitive features from the speech
and convert them to nonsensitive features. A computed

feature is used to train a feature extraction model to
extract these specific features. Feature conversion is finally
applied to hide the sensitive part in the data. The resulting
nonsensitive features are synthesized to generate speech.

Smart2 Speaker Blocker’19 [116]: It proposes a physical
infrastructure to improve control over the signals reaching
the PVA. The PVA is placed in a soundproof enclosure
together with a speaker. The speaker is connected to a
protection device called the smart speaker blocker. The
smart speaker blocker is essentially a second PVA, which is
controlled by the user and is used to filter voice commands
before they reach the main PVA.

The smart speaker blocker uses its own voice recognition
system based on Sphinx4. Depending on filter rules set
on the smart speaker blocker, actions are taken. If a voice
command is accepted to be passed to the main PVA, a TTS
module is used to transfer the command to the PVA in the
enclosure.

As the original voice is not passed to the PVA in the
enclosure, it is ensured that speaker recognition cannot
be carried out. Also, other cues, such as emotions or
health information, cannot be extracted from the speech
signal. Furthermore, it can be tightly controlled in which
speech signals reach the PVA; accidental overhearing of
conversations can be prevented.

B. Consent Management

Users usually have little or no control over PVAs in their
vicinity. A user can prevent his own device from recording
but would not be able to stop other devices from recording
conversations.

A user can prevent a PVA from recording voice com-
pletely by simply disabling the device. Such methods have
been proposed and we discuss these in Section V-B as they
are effectively DoS attacks; DoS is employed as a method
of recording control.
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For more fine-grained control other methods than DoS
are required. Generally, methods to signal recording con-
sent of individuals require the cooperation of the back-end
infrastructure. Speaker recognition for access control pur-
poses might be usable for implementation of a recording
consent management system, but such options have not
yet been explored in the literature.

Legal frameworks, such as the EU GDPR [24], also
require that a legal basis exists for processing of per-
sonal data and this usually requires that users have given
explicit consent. It is also debated if consent management
is something that the device manufacturer has to solve
as the manufacturer is usually the data controller and
processor or if even the user operating a PVA at home is
considered a controller with respect to visitors to his home
[117]. The European Data Protection Supervisor (EDPS)
published a recent note (TechDispatch) [118] pointing out
that “speakers can mistakenly detect a spoken expression
as their wake-up expression and therefore process personal
data without user consent” and that there is “a lack of an
appropriate consent management mechanism.”

In the context of PVAs, compliance with legal require-
ments is currently difficult to implement as anyone in the
vicinity of a device will be recorded and the technical
means to request user consent are nonexistent.

Cheng’19 [46]: It explores acoustic tags as means of
recording consent management. Acoustic tags can be
embedded with audio signals to indicate to a cooperating
back-end infrastructure that a user does not give the con-
sent of recording their voice. In addition, the embedded tag
signal can carry information such as when and where the
conversation was recorded. Fig. 9 shows how the tagging
system works in a PVA usage scenario. It is shown that
the tag can also be placed in a frequency band outside of
the audible frequency range. The researchers experiment
with an off-the-shelf Google Home Mini to explore acoustic
recording characteristics (e.g., sampling frequency) of the
PVA and the back-end system. Based on the knowledge of
these characteristics, they customized a Raspberry pi [97]
to be a reactive tagging device, which listens to the wake
word and emits a tag signal once activated.

Sigg’20 [119]: It proposes to establish a trust zone
through audio fingerprinting, which is then used for con-
sent management. It is assumed that a user has an audio-
capable device such as a phone. An audio signal, such
as a voice command, is recorded by the PVA and by the
user’s personal device (PD). A shared master secret KMS

is derived from the recorded audio signal and a trust
zone is established. Only PVAs within “hearing distance”
can obtain the shared master secret KMS. Following this,
Diffie–Hellman authenticated key exchange is executed
between the PD and any PVA within the trust zone to
derive a public/private key pair (using other means than
the acoustic channel). KMS is used in this exchange to
validate the presence in the trust zone. The PVA now uses
the private key to sign the audio signal when it is shared
with other devices or the back-end infrastructure. KMS and

the public key are kept so that it is possible to later verify
that an audio recording was obtained from a trust zone
and was provided with consent.

The work requires collaboration of the PVA infrastruc-
ture. The work also does not elaborate in detail how key
material should be used in a large-scale infrastructure to
manage and verify consent. The PD requires interaction
with the acoustic channel and exchange of additional
information via the network, making this approach more
complex than the approach described in Cheng’19. This
work marks audio recordings as having explicit consent,
while Cheng’19 proposes to tag recordings for which no
consent was given.

C. Summary

Work aiming at privacy preservation (Category C3.1)
has considered hardware-assisted solutions, deletion tech-
niques, federated learning, cryptographic approaches, and
anonymization techniques. Hardware-assisted solutions
are possible, but this option has not been explored much.
Deletion techniques are not sufficiently selective as all
acoustic processing is blocked. Federated learning is an
option to prevent centralized data collection, but this
technique only addresses privacy aspects of models. Cryp-
tographic techniques are a promising avenue to address
many privacy issues in a PVA context. However, crypto-
graphic approaches for privacy preservation in the PVA
context are not yet a practical choice; performance and
usability of algorithms must be improved.

The vast majority of current solutions for privacy
preservation employ anonymization techniques. The goal
is to suppress some personally identifiable attributes of
the speech signal while leaving other attributes intact. The
recent creation of the Voice Privacy Challenge has defined
a standardized framework to evaluate works in this space.
While the framework makes solutions comparable, it
defines a narrow setting in which not all existing solutions
will fit.

Table 4 provides a comparison of anonymization solu-
tions detailed in this work. Aspects considered are: the tar-
get point in the PVA ecosystem (target), the purpose of the
protection method (purposes), and the main techniques
used for the approach (technology).

Hidebehind’18 uses VC techniques combining extra
safety measures to hide the voiceprint of users. It is a
promising research direction and there is room for effi-
ciency improvements as outlined in the work.

Gong’18 aims to protect paralinguistic information by
adding unnoticeable adversarial examples to the speech
signal. Utilizing adversarial examples for protecting pri-
vacy of both paralinguistic and identity (biometrics) infor-
mation in speech is an emerging study area. A common
weakness of this technology is the practicality, and this
work is no exception.

Abdullah’19-2 shows how to modify a speech signal such
that an ASR is unable to understand the command but a
human is. Although the application scenario of this article
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Table 4 Comparison of Privacy Preservation Work Using Anonymization. In the Target Column, We Use the Term “Presumably” If This Is Not Explicitly

Mentioned in the Work but It Can Be Inferred

is antisurveillance in telephony networks, the work should
not only be limited to this case.

Nelus’19 designs a feature extraction scheme to suppress
the speech identity information but maintain a good gen-
der discriminating performance. The idea of designing a
specific feature extractor, which satisfies certain purpose,
suppressing unnecessary but sensitive elements in speech
signal, is interesting. This idea could really shine if the
proposed system can be deployed on users’ devices, giv-
ing users the capability of controlling their own privacy.
This approach is potentially more lightweight compared to
cryptography-based solutions. Unfortunately, the practical-
ity of the proposed framework is not discussed in this work.

Emotionless’19 captures the key features representing
emotion states and then converts the signal to be emotion-
less using CycleGAN while aiming to maintain speaker and
SR. However, a 35% accuracy drop is high and improve-
ments are necessary. The work considers deployment on
user end devices, and however, there is no evaluation on
the practicality of this approach.

Smart2 Speaker Blocker’19 is effective in protecting
biometric and nonbiometric information but is sacrificing
usability due to the inclusion of an additional PVA, TTS
module, and customized hardware.

There is little work in the consent management Cate-
gory C3.2. As discussed, DoS methods can be employed
to implement a simple form of consent management by
blocking all PVA activity (see also Category C2). We only
found two works (Cheng’19 and Sigg’20) that specifi-
cally address this privacy aspect. Given that many legal
frameworks such as the EU GDPR require explicit con-
sent of users, it is surprising to find how little research
effort is directed toward technical solutions for consent
management.

VII. C 4—A C O U S T I C S E N S I N G
In this category, we describe work that uses an acoustic
channel to perform sensing. We distinguish C4.1—passive
sensing and C4.2—active sensing. For active sensing, the
PVA can be used to emit a sound signal and reflections
are analyzed for sensing purposes. Passive sensing relies
on analysis of sound not specifically emitted for the sensing
task itself.

Work in this category uses sound for sensing but in
most cases not in the context of a PVA. In many cases, a
mobile phone, which may include PVA components, is con-
sidered. However, dedicated smart speaker devices have
not yet been investigated. A number of works here aim
to infer user interactions with a phone/tablet using sound
(e.g., revealing user input). Nevertheless, the approaches
discussed here can be applied to the PVA domain and
they provide valuable insight into security and privacy
of PVAs.

A. Passive Sensing

Sound signals can be analyzed to obtain information
about the environment. Any object, machine, or person in
the vicinity of a microphone that emits sound can be used
to reveal information about this entity. In the context of
this work, we are interested in the extraction of security
and privacy-relevant information using this approach.

Existing work in this category has a strong focus on
analyzing sound cues to infer user movement and actions.
A large body of work aims at inferring user interaction
with (virtual) keyboards using sound to reveal personal
identification number (PIN) numbers. The works Sound-
comber’11 [120], Narain’14 [121], Liu’15 [122], and Hear-
ing Your Touch’19 [123] are examples here. Other works
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aim at revealing user movement more generally, such as
location of people or the presence of a specific person
(Shen’20 [124] and Diapoulis’18 [125]).

A smaller body of work aims at using sound to obtain
information about the state of machines. For exam-
ple, sound emitted from computers has been used by
Genkin’14 [126] to reveal cryptographic keys. Synesthe-
sia’19 [127] uses emitted sound to reveal display content.

Speech analysis could also be classified as a form of
acoustic sensing. However, here, we include work that
looks at information included in a sound signal other
than voice.

Soundcomber’11 [120]: It proposes a covert smartphone
attack to steal information such as credit card numbers or
PIN numbers. The work assumes that malware components
are installed on the phone. Soundcomber has access to the
microphone during calls and has tone and SR components.
When keywords are recognized at the beginning of the
call, keyboard tone inputs and call segments are analyzed
to identify high-value elements such as credit card num-
bers. Narain’14 [121] studies the feasibility of inferring
keystrokes on virtual keyboards of an Android smartphone.
Information extracted from microphones and gyroscope of
the phone is analyzed; a model is built using training data.
Attack performance is best when combining data from
both sensor sources. Liu’15 [122] introduces a keyboard
keystroke snooping attack using the stereo recording from
two microphones of a single smartphone. This attack does
not require training as in Narain’14 to label keystrokes
and exploits TDoA and unique acoustic MFCC features
of keystroke sound to achieve millimeter accuracy. The
monitored keyboard is a real keyboard (not a virtual one
displayed on a screen) external to the phone. Hearing Your
Touch’19 [123] proposes the first acoustic side-channel
attack revealing the input typed on a virtual keyboard of
a touch screen on a smartphone. The sound waves from
the finger touching the virtual keyboard travel through
the screen surface and the air. This acoustic signal can be
captured by built-in microphones on devices (see Fig. 10).
The distortions of the sound wave are related to the tap
location on the screen and analyzing the recorded acoustic
signal can reveal the typed input. The work uses pre-
processed TDoA and the cepstrum of the first 128 samples
of the audio data acquired by microphones after a tap on
the virtual keyboard as main features. These features are
input to an linear discriminant analysis (LDA) classifier for
keystroke prediction.

Diapoulis’18 [125]: It describes how individuals can be
identified using sound recordings of people walking on
a wooden floor. The acoustic event (walking sound) is
detected by estimating the beginning of transient sound.
For each event (onset), features are extracted. Two syn-
thetic feature subspaces are created by applying principal
component analysis (PCA). Finally, LDA is performed to
classify which individual the event belongs to. The work
shows that a PVA can use sound cues in general to infer
user behavior in the vicinity of a device.

Shen’20 [124]: It shows how a speaker can be localized
using a voice signal and a standard PVA. Based on the
fact that a PVA is usually placed near a wall with power
outlet, this work develops a PVA-tailored angle of arrival
(AoA) algorithm. Both the AoAs and the parameters of
the wall are used to calculate the sound source location.
The algorithms are developed to achieve localization of
arbitrary sound signals and also to deal with the limited
acoustic capabilities of the PVA; the PVA used in this
work does not provide a sophisticated microphone array
normally necessary for accurate acoustic localization. The
system achieves 0.44-m accuracy in different settings. This
work demonstrates that a PVA is generally able to locate
sound sources within a room.

Genkin’14 [126]: It introduces a novel cryptanalysis
side-channel attack via acoustic emanations. In this work, a
full 4096-bit RSA decryption key is extracted from laptops,
using the noise generated by the electronic components of
the computer executing decryption of chosen ciphertexts.
The noise emitted from the voltage regulation circuits
is related to computing activities as the power draw of
the CPU varies dramatically depending on the execution
patterns of the running algorithms. Such acoustic sensing
task can be carried out by a PVA. This highlights the
sensing opportunities a PVA listening continuously with
high-quality microphones to the acoustic channel has.

Synesthesia’19 [127]: It introduces a novel side-channel
attack method to reveal display contents based on the
acoustic emanation from the electronic components of the
screen. It is found that the spectrogram of the acoustic
emanation is related to the pixel period, and the brightness
of pixel lines is inversely related to the amplitude of the
filtered acoustic signal. Signal processing algorithms are
designed based on these observations. The work show-
cases different attack scenarios with the help of applying
machine learning classifiers: detecting user input on the
virtual keyboard on the screen, detecting on-screen texts,
website fingerprinting attacks (detecting which website
is being shown), and voice over Internet protocol (VoIP)
attacks inferring if the user is watching the video call
window or browsing the web. This work shows that a PVA
can potentially use sound cues to sense how users interact
with electronic devices.

B. Active Sensing

Active sensing is generally used to obtain information
about the position of objects or people. The PVA is used to
emit a sound signal and reflections are analyzed for sens-
ing purposes. Active sensing enables to obtain information
with much greater detail than is possible with a passive
approach. For example, work has shown that it is not only
possible to locate people and objects, and it is also possible
to obtained details such as gestures and even breathing
patterns of a person.

PatternListener’18 [128]: It focuses on observing unlock
patterns used on Android phones. Imperceptible sound
is sent and recorded with a microphone. The work uses
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Fig. 10. Framework of Hearing Your Touch’19: stereo recording using two mics on the phone to record sound when tapping on the virtual

keyboard happens. TDoAs for each tapping are calculated. Also, the cepstrum of the signal recorded by either mic is calculated. These two

features are used to train an LDA classifier. This classifier is later used for prediction when features of the test data are fed into it.

a finger movement detection technique introduced by
Wang et al. [129], which detects phase changes in the
emitted sound signal. In addition, motion sensors on the
smartphone are used to detect click actions on the screen.
The work is similar to Narain’14 as sensing information
from the acoustic channel that is combined with addi-
tional sensor data. However, active sensing is used here
in the acoustic channel. SonarSnoop’18 [6] is similar to
PatternListener’18; however, only active acoustic sensing
is used. In addition, the used sensing signal is analyzed
differently, and instead of phase changes, several features
of the received echo profile are used. An inaudible acoustic
signal is transmitted through the built-in speakers once a
victim draws the unlock pattern. The recorded echoes are
used to profile the finger movement composing the unlock
pattern with the help of signal processing techniques, such
as correlation and Gabor filter and machine learning algo-
rithms. The workflow and additional details are shown in
Fig. 11. These works show that a PVA device can function
as a sonar system.

CovertBand’17 [130]: It examines the use of a covert
acoustic sensing method using music to track human pres-
ence and movements. Also, their method can differentiate
different types of motion such as pumping arms, jumping,
and supine pelvic tilts based on the various spectrograms
shown in the echoes. Correlation is used to construct the
echo profiles and differentiate moving objects from static
objects, and by doing so, it is possible to locate moving
individuals. Based on this and further analysis of location,
movement tracking and motion classification from multi-
ple targets are feasible. This work shows that normal PVA
operations, for example, playing music, can be used to
disguise an active sensing signal that collects fine-grained
environmental information.

BreathListener’19 [131]: It applies active acoustic sens-
ing to detect driver breath pattern in a noisy car
environment. Energy spectrum density (ESD) is utilized
to capture all movements in the environment. Further

Fig. 11. Workflow in SonarSnoop’18: inaudible signals are emitted

and echoes are recorded, while the unlock pattern is drawn. Echo

profile matrix is calculated from the recording using digital signal

processing (DSP) techniques. Features including angles and range

are extracted from the signal after noise removal. Then, grouping

strokes using the angle features and strokes are further predicted

using both angle and range features, and thus, patterns are

identified.

interference (movements not related to breath) cancella-
tion is performed by background subtraction and ensemble
empirical mode decomposition (EEMD), resulting in ESD
signal mainly containing breathing information. It is then
transferred to the Hilbert spectrum format. A generative
adversarial network (GAN)-based deep learning architec-
ture is used to generate a breathing waveform. This active
sensing work showcases the richness of information extrac-
tion active acoustic sensing can achieve.

C. Summary

Acoustic sensing is an area of active research. However,
few works are directly dedicated to security and privacy in
the PVA context. Also, there is less work on active sensing
than passive sensing.

Inferring user interaction with a keyboard is one main
line of study in the security context as it relates to PIN
or password entry. For passive sensing, we include PIN
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Skimmer’13, Narain’14, Liu’15, and Hearing Your Touch’19
as representatives as they infer keystrokes on a real/virtual
keyboard utilizing microphone recordings on a smart-
phone, which fits our PVA definition. For active sensing,
PatternListener’18 and SonarSnoop’18 are included. They
both implement virtual keyboard active sensing using
smartphones and showcase stealing unlock patterns.

Apart from keystroke prediction, acoustic sensing using
PVA can reveal other information too as the acoustic
signal can not only carry verbal messages but also other
environmental information. In passive sensing, Sound-
comber’11 attacks credit card secrets using call recordings,
and Genkin’14 and Synesthesia’19 use sound recordings
on smartphones to reveal cryptographic keys and even
the monitor’s display content. Diapoulis’18 identifies indi-
viduals using walking sounds, and Shen’20 locates sound
sources using a PVA. In active sensing, CovertBand’17
shows that physical activities can be differentiated using
acoustic signals, and health data such as the breathing
pattern is extracted in BreathListener’19.

Work in this section showcases what information can be
extracted from the acoustic channel and to what extent it
can be used. As not many works are directly related to the
PVA context, we would like to see more studies making
use of PVA acoustic sensing. Acoustic sensing using a PVA
is of interest as modern PVA devices provide sophisticated
microphone and speaker arrays and additional hardware
does not have to be deployed for an attack. Furthermore,
PVAs provide sophisticated processing capabilities (on the
device and back end) an attacker could harness. Also,
devices are already deployed at a large scale and do not
raise suspicion. Finally, users expect sound to be emitted
from these devices enabling an attacker to conceal active
sensing more easily. Existing work on acoustic sensing and
security has not exploited these unique conditions to the
full. A wide range of interesting security and privacy issues
may not have been explored yet.

VIII. C O N C L U S I O N A N D D I S C U S S I O N
PVAs are now commonplace and are significantly chang-
ing the way users interact with computer systems. Users
increasingly depend on PVAs as main or even single inter-
face to computer systems and smart environments. Conse-
quently, security of these devices has become the focus of
public attention and research efforts. Likewise, privacy is a
concern for most users as PVAs record and observe speech,
the most fundamental form of human interaction.

A. Research Challenges

The survey points to a number of open (research) ques-
tions in the PVA domain. In the following, we outline what
we believe these open questions are and we order them
according to our perceived importance.

Access control has received considerable media atten-
tion. Users are aware that potentially any user may interact
with their PVA and that even commands embedded in
songs or adverts played over the radio may be used to

interact with their system. However, it seems that pressure
from the public is not yet forceful enough to encourage
PVA manufacturers to adopt elements of the large body
of research work. Therefore, we believe that it is just a
matter of time before existing VA techniques will become
commonplace. In this scenario, spoofing detection will
become important. While there is a long history of work,
which started well before the rise of PVAs, it is still essential
to adapt these techniques to a large-scale and distributed
PVA infrastructure. Thus, the following question should be
answered by the research community:

1) How Can Spoofing Detection Be Best Integrated in a
Practical PVA Deployment Context?: While command injec-
tion is well understood, appropriate defense mechanisms
against it require more research work. Current PVAs do not
provide any mechanism protecting against this powerful
form of attack. We believe therefore that the following
question deserves attention.

2) What Are Suitable Protection Methods Against Hidden
Commands?: Users also have privacy concerns and this
issue has attracted media attention. There is a large body
of work outlining methods for privacy preservation, and
however, these have not yet found their way into existing
PVA deployments. Therefore, we believe that the following
question should be answered:

3) How Can Privacy Preservation Methods Be Embedded
in a Practical PVA Deployment Context?: Another aspect of
voice privacy is consent management. Legal frameworks,
such as the EU GDPR and the United States CCPA, require,
among other elements, consent when voice is recorded.
However, very few works have provided (practical) tools
directly intended to implement such consent management.

4) What Are Appropriate Technical Means for the Imple-
mentation of Consent Management in the PVA Domain?: PVAs
are increasingly used as interfaces for critical systems. For
example, PVAs are considered to control equipment in an
operating theater or to be used to control features in a
car while driving. If used in critical settings, availability
must be ensured and it is vital to consider the threat
of DoS attacks. However, so far, this area of research is
underexplored. The scope of DoS attacks has not been fully
explored and appropriate countermeasures do not exist.

5) What Is the Scope of Acoustic DoS Attacks and What
Are Suitable Protection Methods Against These?: Users are
currently very conscious about cameras being used in pri-
vate spaces. It is common for users to employ a mechanical
cover on a laptop camera when not in use in order to
prevent a hacker taking control of the camera. However,
this public perception seems not, in general, to apply to
sound systems. Most PVAs do not provide a mechanical
switch to disconnect speaker or microphone and, where
present (as in the Google Home Mini), users rarely make
use of it. Users are aware that the device may listen into a
conversation, but they are unaware of the highly sophis-
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ticated acoustic sensing that is possible. There is a lack
of understanding of acoustic sensing in the PVA context
and possible defense methods are lacking. Therefore, we
believe that the following question should be answered.

6) What Are Security and Privacy Implications of Acoustic
Sensing and How Can Users Detect or Defend Against It?:

B. Specific Research Directions

In this section, we outline specific research questions
that we believe should be addressed in each of the cate-
gories we presented in this survey.

C1.1.1—Acoustic Characteristics: VA is a well-researched
area and it is possible to authenticate based on a voice
profile. However, as this survey has shown, it is necessary
to consider VA more specifically in the context of PVA
instead of a general speaker recognition system. Research
work needs to consider how to apply VA in current PVA
and how to protect specifically against spoofing attacks in
this context.

C1.1.2—Second Factor Authentication: We believe that
work using a second factor for authentication is promising,
in particular when this information can also be derived
from the acoustic channel. This approach makes such solu-
tions very practical. Although some works exist describing
second factor authentication, research has not looked into
bypassing such methods. This is a crucial step to ensure
that such methods are robust against attacks.

C1.2.1—Hardware Nonlinearity: Research has shown
that such attacks are very feasible. However, there has
not been much work on defense mechanisms against this
type of attack. Furthermore, attacks (and the few reported
defense mechanisms) rely on sophisticated hardware. We
would like to see whether the requirement for additional
equipment can be overcome.

C.1.2.2—Obfuscated Commands: Feasible attacks are
described. However, this form of attack is not very con-
vincing as noise will still be noted. For this line of work,
more detailed studies on perception of audio samples are
required to fully determine the feasibility of these attack
types.

C.1.2.3—Adversarial Commands: This line of work has
produced very sophisticated attacks. Complex sentences
can be embedded in audio samples, hidden from users.
Psychoacoustic masking is increasingly used and attacks
over the air considering room characteristics are feasible.
However, most attacks still consider white-box scenarios
where the internal structure of the ASR is known. Work
should consider black-box scenarios and investigate how
to craft hidden commands effective on different ASRs. This
field of work would benefit from a standardized evaluation
environment to make attacks comparable. Research here
should target the latest attention/transformer-based end-
to-end ASR. Some attacks require significant computation
and time to produce an attack signal; more efficient meth-
ods are necessary to create attack signals on the fly. Finally,

it is necessary for further research on defenses against such
powerful attacks.

C.2.1—Skill Market: Multiple works identified in this
survey show that the operation of the skill market rep-
resents an attack surface. The mapping between voice
commands and actions can be exploited by an attacker.
Transcriptions of speech are subject to errors, which can
be exploited. However, a full-scale systematic misinterpre-
tation analysis is yet to be completed followed by work
proposing suitable defense mechanisms.

C.2.2—Jamming: Jamming of PVAs via the acoustic
channel is feasible. Noise can be added to prevent a PVA
from functioning. Existing work does not use sophisti-
cated jamming methods (i.e., inaudible jamming, jamming
preventing detection, and localization). Also, jamming so
far had the aim to block a signal entirely; however, it
might also be possible to add very targeted interference
to introduce more subtle ASR transcription errors. Defense
methods to detect jamming or to design PVA resilient to
jamming are missing.

C.3.1—Privacy Preservation: There is a body of work
considering anonymization techniques. Recently, the Voice
Privacy Challenge has been set up to standardize
evaluation of this work. Although such methods are effec-
tive, it is not clear how they can be integrated with
existing systems and how a user would exercise control.
Cryptographic methods are promising to preserve privacy;
here, these techniques need to advance to make them a
feasible option for a practical PVA context.

C.3.2—Consent Management: Only a few works have so
far investigated how users can provide consent. Some work
on DoS has been carried out as mechanism of revoking
consent. We believe that this would be an important area
for users and that more research in this domain is required.

C.4.1—Passive Sensing: Works identified in this survey
show that the acoustic channel can provide a rich set
of information in addition to speech. The acoustic channel
has been extensively used to infer user interaction patterns
with devices (mainly interaction with phones). It has also
been shown that a wide variety of other user behavior, such
as laughter, crying, or eating, can be inferred [5]. However,
a detailed analysis of what information can be extracted
via a PVA is missing. Also, no defense mechanisms against
the use of a PVA as an acoustic sensor has been reported.

C.4.2—Active Sensing: The work in this category is sim-
ilar to the line of work on passive sensing. However, as
active signal generation is used, more detailed information
can be obtained. It has not yet been investigated in detail
how active sensing can be carried out on smart speaker
type PVA, work so far has focused on phone-based PVAs.
Specifically, how an active sensing signal can be hidden or
embedded in expected audio signals (hidden sensing) has
not attracted work. For example, sound (voice, music, and
so on) emitted from a smart speaker could be designed
such that it functions well as an active sensing signal too.
Work on how to detect or defend against an active acoustic
sensing signal has not yet been explored.
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