
How Fast Do Algorithms
Improve?
By YASH SHERRY
MIT Computer Science & Artificial Intelligence Laboratory, Cambridge, MA 02139 USA

NEIL C. THOMPSON
MIT Computer Science & Artificial Intelligence Laboratory, Cambridge, MA 02139 USA
MIT Initiative on the Digital Economy, Cambridge, MA 02142 USA

A lgorithms determine which calculations computers use to solve
problems and are one of the central pillars of computer science.
As algorithms improve, they enable scientists to tackle larger
problems and explore new domains and new scientific tech-

niques [1], [2]. Bold claims have been made about the pace of algorithmic
progress. For example, the President’s Council of Advisors on Science and
Technology (PCAST), a body of senior scientists that advise the U.S. President,
wrote in 2010 that “in many areas, performance gains due to improvements in
algorithms have vastly exceeded even the dramatic performance gains due to
increased processor speed” [3]. However, this conclusion was supported based
on data from progress in linear solvers [4], which is just a single example. With
no guarantee that linear solvers are representative of algorithms in general,
it is unclear how broadly conclusions, such as PCAST’s, should be interpreted.

Date of publication September 20, 2021; date of current version November 1, 2021.

This article has supplementary downloadable material available at https://doi.org/10.1109/JPROC.2021.

3107219, provided by the authors.

Digital Object Identifier 10.1109/JPROC.2021.3107219

Is progress faster in most algo-
rithms? Just some? How much
on average?

A variety of research has
quantified progress for partic-
ular algorithms, including for
maximum flow [5], Boolean
satisfiability and factoring [6],
and (many times) for linear
solvers [4], [6], [7]. Others in
academia [6], [8]–[10] and the
private sector [11], [12] have
looked at progress on bench-
marks, such as computer chess
ratings or weather prediction,
that is not strictly comparable to
algorithms since they lack either
mathematically defined problem
statements or verifiably optimal
answers. Thus, despite substan-
tial interest in the question,
existing research provides only
a limited, fragmentary view of
algorithm progress.

In this article, we provide the
first comprehensive analysis of
algorithm progress ever assem-
bled. This allows us to look sys-
tematically at when algorithms
were discovered, how they have
improved, and how the scale
of these improvements com-
pares to other sources of inno-
vation. Analyzing data from 57
textbooks and more than 1137
research papers reveals enor-
mous variation. Around half of
all algorithm families experience
little or no improvement. At the

1768 PROCEEDINGS OF THE IEEE | Vol. 109, No. 11, November 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9888-573X

Point of View

other extreme, 14% experience
transformative improvements, rad-
ically changing how and where
they can be used. Overall, we find
that, for moderate-sized problems,
30%–43% of algorithmic families had
improvements comparable or greater
than those that users experienced
from Moore’s Law and other hardware
advances. Thus, this article presents
the first systematic, quantitative
evidence that algorithms are one
of the most important sources of
improvement in computing.

I. R E S U L T S
In the following analysis, we focus on
exact algorithms with exact solutions.
That is, cases where a problem state-
ment can be met exactly (e.g., find the
shortest path between two nodes on a
graph) and where there is a guarantee
that the optimal solution will be found
(e.g., that the shortest path has been
identified).

We categorize algorithms into
algorithm families, by which we
mean that they solve the same under-
lying problem. For example, Merge
Sort and Bubble Sort are two of the
18 algorithms in the “comparison sort-
ing” family. In theory, an infinite num-
ber of such families could be created,
for example, by subdividing existing
domains so that special cases can
be addressed separately (e.g., matrix
multiplication with a sparseness guar-
antee). In general, we exclude such
special cases from our analysis since
they do not represent an asymptotic
improvement for the full problem.1

To focus on consequential algo-
rithms, we limit our consideration to
those families where the authors of a
textbook, one of 57 that we examined,
considered that family important

1The only exception that we make to this
rule is if the authors of our source text-
books deemed these special cases important
enough to discuss separately, e.g., the distinc-
tion between comparison and noncomparison
sorting. In these cases, we consider each as its
own algorithm family.

enough to discuss. Based on these
inclusion criteria, there are 113 algo-
rithm families. On average, there are
eight algorithms per family. We con-
sider an algorithm as an improvement
if it reduces the worst case asymp-
totic time complexity of its algorithm
family. Based on this criterion, there
are 276 initial algorithms and sub-
sequent improvements, an average
of 1.44 improvements after the initial
algorithm in each algorithm family.

A. Creating New Algorithms

Fig. 1 summarizes algorithm
discovery and improvement over
time. Fig. 1(a) shows the timing for
when the first algorithm in each fam-
ily appeared, often as a brute-force
implementation (straightforward,
but computationally inefficient),
and Fig. 1(b) shows the share of
algorithms in each decade where
asymptotic time complexity improved.
For example, in the 1970s, 23 new
algorithm families were discovered,
and 34% of all the previously
discovered algorithm families were
improved upon. In later decades,
these rates of discovery and improve-
ment fell, indicating a slowdown in
progress on these types of algorithms.
It is unclear exactly what caused
this. One possibility is that some
algorithms were already theoretically
optimal, so further progress was
impossible. Another possibility is that
there are decreasing marginal returns
to algorithmic innovation [5] because
the easy-to-catch innovations have
already been “fished-out” [13] and
what remains is more difficult to
find or provides smaller gains. The
increased importance of approximate
algorithms may also be an explanation
if approximate algorithms have
drawn away researcher attention
(although the causality could also
run in the opposite direction, with
slower algorithmic progress pushing
researchers into approximation) [14].

Fig. 1(c) and (d), respectively,
shows the distribution of “time com-
plexity classes” for algorithms when
they were first discovered, and the
probabilities that algorithms in one

class transition into another because
of an algorithmic improvement. Time
complexity classes, as defined in
algorithm theory, categorize algo-
rithms by the number of operations
that they require (typically expressed
as a function of input size) [15].
For example, a time complexity of
O(n2) indicates that, as the size of
the input n grows, there exists a
function Cn2 (for some value of C)
that upper bounds the number of
operations required.2 Asymptotic time
is a useful shorthand for discussing
algorithms because, for a sufficiently
large value of n, an algorithm with
a higher asymptotic complexity will
always require more steps to run.
Later, in this article, we show that,
in general, little information is lost by
our simplification to using asymptotic
complexity.

Fig. 1(c) shows that, at discovery,
31% of algorithm families belong
to the exponential complexity
category (denoted n!|cn)—meaning
that they take at least exponentially
more operations as input size grows.
For these algorithms, including
the famous “Traveling Salesman”
problem, the amount of computation
grows so fast that it is often infeasible
(even on a modern computer) to
compute problems of size n = 100.
Another 50% of algorithm families
begin with polynomial time that is
quadratic or higher, while 19% have
asymptotic complexities of n log n or
better.

Fig. 1(d) shows that there is con-
siderable movement of algorithms
between complexity classes as algo-
rithm designers find more efficient
ways of implementing them. For
example, on average from 1940 to
2019, algorithms with complexity
O(n2) transitioned to complexity O(n)

with a probability of 0.5% per year,
as calculated using (3). Of particular
note in Fig. 1(d) are the transitions

2For example, the number of operations
needed to alphabetically sort a list of 1000 file-
names in a computer directory might be
0.5(n2 + n), where n is the number of file-
names. For simplicity, algorithm designers typ-
ically drop the leading constant and any smaller
terms to write this as O(n2).

Vol. 109, No. 11, November 2021 | PROCEEDINGS OF THE IEEE 1769

Point of View

Fig. 1. Algorithm discovery and improvement. (a) Number of new algorithm families discovered each decade. (b) Share of known algorithm

families improved each decade. (c) Asymptotic time complexity class of algorithm families at first discovery. (d) Average yearly probability

that an algorithm in one time complexity class transitions to another (average family complexity improvement). In (c) and (d) “>n3” includes

time complexities that are superpolynomial but subexponential.

from factorial or exponential time
(n! | cn) to polynomial times. These
improvements can have profound
effects, making algorithms that
were previously infeasible for any
significant-sized problem possible for
large datasets.

One algorithm family that has
undergone transformative improve-
ment is generating optimal binary
search trees. Naively, this problem
takes exponential time, but, in 1971,
Knuth [16] introduced a dynamic
programming solution using the

properties of weighted edges to
bring the time complexity to cubic.
Hu and Tucker [17], in the same year,
improved on this performance with a
quasi-linear [O(n log n)] time solution
using minimum weighted path length,
which remains the best asymptotic

1770 PROCEEDINGS OF THE IEEE | Vol. 109, No. 11, November 2021

Point of View

time complexity achieved for this
family.3

B. Measuring
Algorithm Improvement

Over time, the performance of
an algorithm family improves as
new algorithms are discovered that
solve the same problem with fewer
operations. To measure progress,
we focus on discoveries that improve
asymptotic complexity—for example,
moving from O(n2) to O(n log n),
or from O(n2.9) to O(n2.8).

Fig. 2(a) shows the progress over
time for four different algorithm
families, each shown in one color.
In each case, performance is normal-
ized to 1 for the first algorithm in
that family. Whenever an algorithm
is discovered with better asymptotic
complexity, it is represented by
a vertical step up. Inspired by
Leiserson et al. [5], the height of each
step is calculated using (1), repre-
senting the number of problems that
the new algorithm could solve
in the same amount of time as the
first algorithm took to solve a single
problem (in this case, for a problem
of size n = 1 million).4 For example,
Grenander’s algorithm for the max-
imum subarray problem, which is
used in genetics (and elsewhere),
is an improvement of one million ×
over the brute force algorithm.

To provide a reference point for
the magnitude of these rates, the fig-
ure also shows the SPECInt bench-
mark progress time series compiled
in [20], which encapsulates the effects
that Moore’s law, Dennard scaling,
and other hardware improvements
had on chip performance. Throughout
this article, we use this measure as the
hardware progress baseline. Fig. 2(a)
shows that, for problem sizes of n =
1 million, some algorithms, such as
maximum subarray, have improved

3There are faster algorithms for solving
this problem, for example, Levcopoulos’s lin-
ear solution [18] in 1989 and another linear
solution by Klawe and Mumey [19], but these
are approximate and do not guarantee that they
will deliver the exact right answer and, thus,
are not included in this analysis.

much more rapidly than hard-
ware/Moore’s law, while others, such
as self-balancing tree creation, have
not. The orders of magnitude of
variation shown in just these four
of our 113 families make it clear
why overall algorithm improvement
estimates based on small numbers
of case studies are unlikely to be
representative of the field as a whole.

An important contrast between
algorithm and hardware improve-
ment comes in the predictability of
improvements. While Moore’s law led
to hardware improvements happening
smoothly over time, Fig. 2 shows that
algorithms experience large, but infre-
quent improvements (as discussed in
more detail in [5]).

The asymptotic performance of an
algorithm is a function of input size
for the problem. As the input grows,
so does the scale of improvement from
moving from one complexity class to
the next. For example, for a problem
with n = 4, an algorithmic change
from O(n) to O(log n) only repre-
sents an improvement of 2 (=4/2),
whereas, for n = 16, it is an improve-
ment of 4 (=16/4). That is, algorith-
mic improvement is more valuable for
larger data. Fig. 2(b) demonstrates
this effect for the “nearest-neighbor
search” family, showing that improve-
ment size varies from 15× to ≈4
million× when the input size grows
from 102 to 108.

While Fig. 2 shows the impact of
algorithmic improvement for four
algorithm families, Fig. 3 extends
this analysis to 110 families.5 Instead
of showing the historical plot of
improvement for each family, Fig. 3
presents the average annualized
improvement rate for problem sizes
of one thousand, one million, and
one billion and contrasts them with
the average improvement rate in
hardware as measured by the SPECInt
benchmark [20].

4For this analysis, we assume that the lead-
ing constants are not changing from one algo-
rithm to another. We test this hypothesis later
in this article.

5Three of the 113 families are excluded
from this analysis because the functional forms
of improvements are not comparable.

As these graphs show, there are two
large clusters of algorithm families
and then some intermediate values.
The first cluster, representing just
under half the families, shows little
to no improvement even for large
problem sizes. These algorithm fam-
ilies may be ones that have received
little attention, ones that have already
achieved the mathematically optimal
implementations (and, thus, are
unable to further improve), those that
remain intractable for problems of this
size, or something else. In any case,
these problems have experienced
little algorithmic speedup, and
thus, improvements, perhaps from
hardware or approximate/heuristic
approaches, would be the most
important sources of progress for
these algorithms.

The second cluster of algorithms,
consisting of 14% of the families, has
yearly improvement rates greater than
1000% per year. These are algorithms
that are benefited from an expo-
nential speed-up, for example, when
the initial algorithm had exponential
time complexity, but later improve-
ments made the problem solvable
in polynomial time.6 As this high
improvement rate makes clear, early
implementations of these algorithms
would have been impossibly slow for
even moderate size problems, but the
algorithmic improvement has made
larger data feasible. For these families,
algorithm improvement has far out-
stripped improvements in computer
hardware.

Fig. 3 also shows how large
an effect problem size has on
the improvement rate, calculated
using (2). In particular, for n = 1
thousand, only 18% of families
had improvement rates faster than
hardware, whereas 82% had slower
rates. However, for n = 1 million and
n = 1 billion, 30% and 43% improved
faster than hardware. Correspond-
ingly, the median algorithm family
improved 6% per year for n = 1
thousand but 15% per year for n = 1

6One example of this is the matrix chain
multiplication algorithm family.

Vol. 109, No. 11, November 2021 | PROCEEDINGS OF THE IEEE 1771

Point of View

Fig. 2. Relative performance improvement for algorithm families, as calculated using changes in asymptotic time complexity. The

comparison line is the SPECInt benchmark performance [20]. (a) Historical improvements for four algorithm families compared with the first

algorithm in that family (n = 1 million). (b) Sensitivity of algorithm improvement measures to input size (n) for the “nearest-neighbor

search” algorithm family. To ease comparison of improvement rates over time, in (b) we align the starting periods for the algorithm family

and the hardware benchmark.

million and 28% per year for n = 1 bil-
lion. At a problem size of n = 1.06 tril-
lion, the median algorithm improved
faster than hardware performance.

Our results quantify two impor-
tant lessons about how algorithm

improvement affects computer
science. First, when an algorithm
family transitions from exponential to
polynomial complexity, it transforms
the tractability of that problem in
a way that no amount of hardware

improvement can. Second, as prob-
lems increase to billions or trillions of
data points, algorithmic improvement
becomes substantially more important
than hardware improvement/Moore’s
law in terms of average yearly

1772 PROCEEDINGS OF THE IEEE | Vol. 109, No. 11, November 2021

Point of View

Fig. 3. Distribution of average yearly improvement rates for 110 algorithm families, as calculated based on asymptotic time complexity,

for problems of size: (a) n = 1 thousand, (b) n = 1 million, and (c) n = 1 billion. The hardware improvement line shows the average yearly

growth rate in SPECInt benchmark performance from 1978 to 2017, as assembled by Hennessy and Patterson [20].

improvement rate. These findings
suggest that algorithmic improvement

has been particularly important in
areas, such as data analytics and

machine learning, which have large
datasets.

Vol. 109, No. 11, November 2021 | PROCEEDINGS OF THE IEEE 1773

Point of View

Fig. 4. Evaluation of the importance of leading constants in algorithm performance improvement. Two measures of the performance

improvement for algorithm families (first versus last algorithm in each family) for n = 1 million. Algorithmic steps include leading constants

in the analysis, whereas asymptotic performance drops them.

C. Algorithmic Step Analysis

Throughout this article, we have
approximated the number of steps
that an algorithm needs to perform
by looking at its asymptotic complex-
ity, which drops any leading constants
or smaller-order terms, for example,
simplifying 0.5(n2 + n) to n2. For any
reasonable problem sizes, simplifying
to the highest order term is likely
to be a good approximation. How-
ever, dropping the leading constant
may be worrisome if complexity class
improvements come with inflation in
the size of the leading constant. One
particularly important example of this
is the 1990 Coppersmith–Winograd
algorithm and its successors, which,
to the best of our knowledge, have
no actual implementations because
“the huge constants involved in the
complexity of fast matrix multiplica-
tion usually make these algorithms
impractical” [21]. If inflation of lead-
ing constants is typical, it would
mean that our results overestimate
the scale of algorithm improvement.
On the other hand, if leading con-
stants neither increase nor decrease,
on average, then it is safe to ana-
lyze algorithms without them since
they will, on average, cancel out when
ratios of algorithms are taken.

To estimate the fidelity of our
asymptotic complexity approxi-
mation, we reanalyze algorithmic
improvement, including the leading
constants (and call this latter to
construct the algorithmic steps of
that algorithm). Since only 11% of
the papers in our database directly
report the number of algorithmic
steps that their algorithms require,
whenever possible, we manually
reconstruct the number of steps based
on the pseudocode descriptions in
the original papers. For example,
Counting Sort [14] has an asymptotic
time complexity of O(n), but the
pseudocode has four linear for-
loops, yielding 4n algorithmic steps
in total. Using this method, we are
able to reconstruct the number of
algorithmic steps needed for the
first and last algorithms in 65% of
our algorithm families. Fig. 4 shows
the comparison between algorithm
step improvement and asymptotic
complexity improvement. In each
case, we show the net effect across
improvements in the family by taking
the ratio of the performances of the
first and final algorithms (kth) in the
family (steps1)/(stepsk).

Fig. 4 shows that, for the cases
where the data are available, the size

of improvements to the number of
algorithmic steps and asymptotic
performance is nearly identical.7

Thus, for the majority of algorithms,
there is virtually no systematic infla-
tion of leading constants. We cannot
assume that this necessarily extrapo-
lates to unmeasured algorithms since
higher complexity may lead to both
higher leading constants and a lower
likelihood of quantifying them (e.g.,
matrix multiplication). However, this
analysis reveals that these are the
exception, rather than the rule. Thus,
asymptotic complexity is an excellent
approximation for understanding how
most algorithms improve.

II. C O N C L U S I O N
Our results provide the first systematic
review of progress in algorithms—
one of the pillars underpinning com-
puting in science and society more
broadly.

7Cases where algorithms transitioned from
exponential to polynomial time (7%) cannot be
shown on this graph because the change is too
large. However, an analysis of the change in
their leading constants shows that, on average,
there is a 28% leading constant deflation. That
said, this effect is so small compared to the
asymptotic gains that it has no effect on our
other estimates.

1774 PROCEEDINGS OF THE IEEE | Vol. 109, No. 11, November 2021

Point of View

We find enormous heterogene-
ity in algorithmic progress, with
nearly half of algorithm families
experiencing virtually no progress,
while 14% experienced improvements
orders of magnitude larger than hard-
ware improvement (including Moore’s
law). Overall, we find that algorith-
mic progress for the median algo-
rithm family increased substantially
but by less than Moore’s law for
moderate-sized problems and by more
than Moore’s law for big data prob-
lems. Collectively, our results high-
light the importance of algorithms as
an important, and previously largely
undocumented, source of computing
improvement.

III. M E T H O D S
A full list of the algorithm textbooks,
course syllabi, and reference papers
used in our analysis can be found
in the Extended Data and Supple-
mentary Material, as a list of the
algorithms in each family.

A. Algorithms and
Algorithm Families

To generate a list of algorithms and
their groupings into algorithmic fami-
lies, we use course syllabi, textbooks,
and research papers. We gather a list
of major subdomains of computer
science by analyzing the coursework
from 20 top computer science univer-
sity programs, as measured by the QS
World Rankings in 2018 [22]. We then
shortlist those with maximum overlap
amongst the syllabi, yielding the
following 11 algorithm subdomains:
combinatorics, statistics/machine
learning, cryptography, numerical
analysis, databases, operating sys-
tems, computer networks, robot-
ics, signal processing, computer
graphics/image processing, and
bioinformatics.

From each of these subdomains,
we analyze algorithm textbooks—
one textbook from each subdomain
for each decade since the 1960s.
This totals 57 textbooks because not
all fields have textbooks in early
decades, e.g., bioinformatics. Text-
books were chosen based on being

cited frequently in algorithm research
papers, on Wikipedia pages, or in
other textbooks. For textbooks from
recent years, where such citations’
breadcrumbs are too scarce, we also
use reviews on Amazon, Google,
and others to source the most-used
textbooks.

From each of the 57 textbooks,
we used those authors’ categoriza-
tion of problems into chapters, sub-
headings, and book index divisions
to determine which algorithms fami-
lies were important to the field (e.g.,
“comparison sorting”) and which
algorithms corresponded to each fam-
ily (e.g., “Quicksort” in comparison
sorting). We also searched academic
journals, online course material, and
Wikipedia, and published theses to
find other algorithm improvements
for the families identified by the text-
books. To distinguish between serious
algorithm problems and pedagogical
exercises intended to help students
think algorithmically (e.g., Tower
of Hanoi problem), we limit our
analysis to families where at least
one research paper was written that
directly addresses the family’s prob-
lem statement.

In our analysis, we focus on exact
algorithms with exact solutions. That
is, cases where a problem statement
can be met exactly (e.g., find the
shortest path between two nodes on
a graph), and there is a guaran-
tee that an optimal solution will be
found (e.g., that the shortest path
has been identified). This “exact algo-
rithm, exact solution” criterion also
excludes, amongst others, algorithms
where solutions, and even in theory,
are imprecise (e.g., detect parts of an
image that might be edges) and algo-
rithms with precise definitions but
where proposed answers are approx-
imate. We also exclude quantum algo-
rithms from our analysis since such
hardware is not yet available.

We assess that an algorithm has
improved if the work that needs to
be done to complete it is reduced,
asymptotically. This, for example,
means that a parallel implementa-
tion of an algorithm that spreads the
same amount of work across mul-

tiple processors or allows it to run
on a GPU would not count toward
our definition. Similarly, an algorithm
that reduced the amount of mem-
ory required, without changing the
total amount of work, would simi-
larly not be included in this analy-
sis. Finally, we focus on worst case
time complexity because it does not
require assumptions about the distri-
bution of inputs and it is the most
widely reported outcome in algorithm
improvement papers.

B. Historical Improvements

We calculate historical improve-
ment rates by examining the initial
algorithm in each family and all sub-
sequent algorithms that improve time
complexity. For example, as discussed
in [23], the “Maximum Subarray in
1D” problem was first proposed
in 1977 by Ulf Grenander with a
brute force solution of O(n3) but
was improved twice in the next two
years—first to O(n2) by Grenander
and then to O(n log n) by Shamos
using a Divide and Conquer strat-
egy. In 1982, Kadane came up with
an O(n) algorithm, and later that
year, Gries [24] devised another lin-
ear algorithm using Dijkstra’s stan-
dard strategy. There were no further
complexity improvements after 1982.
Of all these algorithms, only Gries’ is
excluded from our improvement list
since it did not have a better time
complexity than Kadane’s.

When computing the number of
operations needed asymptotically,
we drop leading constants and smaller
order terms. Hence, an algorithm
with time complexity 0.5(n2 + n)

is approximated as n2. As we
show in Fig. 4, this is an excellent
approximation to the improvement
in the actual number of algorithmic
steps for the vast majority of
algorithms.

To be consistent in our notation,
we convert the time complexity for
algorithms with matrices, which are
typically parameterized in terms of
the dimensions of the matrix, to being
parameterized as a function of the
input size. For example, this means

Vol. 109, No. 11, November 2021 | PROCEEDINGS OF THE IEEE 1775

Point of View

that the standard form for writing the
time complexity of naive matrix multi-
plication goes from N3, where N × N
is the dimension of the matrix, to an
n1.5

input algorithm when n is the size of
the input and n = N × N .

In the presentations of our results
in Fig. 1(d), we “round-up”—meaning
that results between complexity
classes round up to the next highest
category. For example, an algorithm
that scales as n2.7 would be between
n3 and n2 and so would get rounded
up to n3.8 Algorithms with subex-
ponential but superpolynomial time
complexity are included in the >n3

category.

C. Calculating Improvement
Rates and Transition Values

In general, we calculate the
improvement from one algorithm,
i , to another j as

Improvementi→ j = Operationsi (n)

Operations j (n)
(1)

where n is the problem size and the
number of operations is calculated
either using the asymptotic complex-
ity or algorithmic step techniques.
One challenge of this calculation
is that there are some improve-
ments, which would be mathemati-
cally impressive but not realizable, for
example, an improvement from 22n to
2n , when n = 1 billion is an improve-
ment ratio of 21 000 000 000. However,
the improved algorithm, even after
such an astronomical improvement,
remains completely beyond the abil-
ity of any computer to actually calcu-
late. In such cases, we deem that the
“effective” performance improvement
is zero since it went from “too large
to do” to “too large to do.” In practice,
this means that we deem all algorithm
families that transition from one fac-
torial/exponential implementation to
another has no effective improvement
for Figs. 3 and 4.

8For ambiguous cases, we round based on
the values for an input size of n = 1 000 000.

We calculate the average per-year
percentage improvement rate over t
years as

YearlyImprovementi→ j

=
(

Operationsi (n)

Operations j (n)

)1/t

− 1. (2)

We only consider years since
1940 to be those where an algorithm
was eligible for improvement. This
avoids biasing very early algorithms,
e.g., those discovered in Greek times,
toward an average improvement
rate of zero.

Both of these measures are inten-
sive, rather than extensive, in which
they measure how many more prob-
lems (of the same size) could be
solved with a given number of oper-
ations. Another potential measure
would be to look at the increase in the
problem size that could be achieved,
i.e., (nnew/nold), but this requires
assumptions about the computing
power being used, which would
introduce significant extra complex-
ity into our analysis without compen-
satory benefits.

Algorithms With Multiple Parame-
ters: While many algorithms only have
a single input parameter, others have
multiple. For example, graph algo-
rithms can depend on the number
of vertices, V and the number of
edges, E , and, thus, have input size
V + E . For these algorithms, increas-
ing input size could have various
effects on the number of operations
needed, depending on how much of
the increase in the input size was
assigned to each variable. To avoid
this ambiguity, we look to research
papers that have analyzed problems
of this type as an indication of the
ratios of these parameters that are of
interest to the community. For exam-
ple, if an average paper considers
graphs with E = 5 V, then we
will assume this for both our base
case and any scaling of input sizes.
In general, we source such ratios as
the geometric mean of at least three
studies. In a few cases, such as Con-
vex Hull, we have to make assump-

tions to calculate the improvement
because newer algorithms scale dif-
ferently because of output sensitiv-
ity and, thus, cannot be computed
directly with only the inputs parame-
ters. In three instances, the functional
forms of the early and later algorithms
are so incomparable that we do not
attempt to calculate rates of improve-
ment and instead omit them.

D. Transition Probabilities

The transition probability from
one complexity class to another is
calculated by counting the number of
transitions that did occur and divid-
ing by the number of transitions
that could have occurred. Specifically,
the probability of an algorithm tran-
sitioning from class a to b is given as
follows:

prob(a → b)

= 1

T

∑
t∈T

||a → b||t
||a||t−1 + ∑

c∈C ||c → a||t (3)

where t is a year from the set of possi-
ble years T and c is a time complexity
class from C , which includes the null
set (i.e., a new algorithm family).

For example, say we are interested
in looking at the number of transitions
from cubic to quadratic, i.e., a = n3

and b = n2. For each year, we cal-
culate the fraction of transitions that
did occur, which is just the number
of algorithm families that did improve
from n3 to n2 (i.e., ||a → b||t) divided
by all the transitions that could have
occurred. The latter includes to three
terms: all the algorithm families that
were in n3 in the previous year (i.e.,
||a||t−1), all the algorithm families
that move into n3 from another class
(c) in that year (i.e.,

∑
c∈C ||c →

a||t), and any new algorithm families
that are created and begin in n3 (i.e.,
||Ø → a||t). These latter two are
included because a family can make
multiple transitions within a single
year, and thus, “newly arrived” algo-
rithms are also eligible for asymptotic
improvement in that year. Averaging
across all the years in the sample pro-
vides the average transition probabil-
ity from n3 to n2, which is 1.55%.

1776 PROCEEDINGS OF THE IEEE | Vol. 109, No. 11, November 2021

Point of View

E. Deriving the Number of
Algorithmic Steps

In general, we use pseudocode from
the original papers to derive the
number of algorithmic steps needed
for an algorithm when the authors
have not done it. When that is not
available, we also use pseudocode
from textbooks or other sources.
Analogously to asymptotic complex-
ity calculations, we drop smaller
order terms and their constants
because they have a diminishing
impact as the size of the problem
increases.

A c k n o w l e d g m e n t
The authors would like to acknowl-
edge generous funding from the Tides
Foundation and the MIT Initiative
on the Digital Economy. They would
also like to thank Charles Leiserson,
the MIT Supertech Group, and Julian
Shun for valuable input.

A u t h o r C o n t r i b u t i o n s
S t a t e m e n t

Neil C. Thompson conceived the
project and directed the data gather-
ing and analysis. Yash Sherry gathered
the algorithm’s data and performed
the data analysis. Both authors wrote
this article.

D a t a A v a i l a b i l i t y a n d
C o d e A v a i l a b i l i t y

Data are being made public through
the online resource for algorithms
community at algorithm-wiki.org and
will launch at the time of this article’s
publication. Code will be available
at https://github.com/canuckneil/
IEEE_algorithm_paper.

A d d i t i o n a l I n f o r m a t i o n

The requests for materials should
be addressed to Neil C. Thompson
(neil_t@mit.edu).

R E F E R E N C E S
[1] Division of Computing and Communication

Foundations CCF: Algorithmic Foundations
(AF)—National Science Foundation, Nat. Sci.
Found., Alexandria, VA, USA. [Online]. Available:
https://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=503299

[2] Division of Physics Computational and Data-Enabled
Science and Engineering (CDS&E)—National Science
Foundation, Nat. Sci. Found., Alexandria, VA, USA.
[Online]. Available: https://www.nsf.gov/funding/
pgm_summ.jsp?pims_id=504813

[3] J. P. Holdren, E. Lander, and H. Varmus,
“President’s council of advisors on science and
technology,” Dec. 2010. [Online]. Available:
https://obamawhitehouse.archives.gov/sites/default/
files/microsites/ostp/pcast-nitrd-report-2010.pdf

[4] R. Bixby, “Solving real-world linear programs: A
decade and more of progress,” Oper. Res., vol. 50,
no. 1, pp. 3–15, 2002, doi: 10.1287/opre.50.1.3.
17780.

[5] C. E. Leiserson et al., “There’s plenty of room at the
top: What will drive computer performance after
Moore’s law?” Science, vol. 368, no. 6495,
Jun. 2020, Art. no. eaam9744.

[6] K. Grace, “Algorithm progress in six domains,”
Mach. Intell. Res. Inst., Berkeley, CA, USA,
Tech. Rep., 2013.

[7] D. E. Womble, “Is there a Moore’s law for
algorithms,” Sandia Nat. Laboratories,
Albuquerque, NM, USA, Tech. Rep., 2004. [Online].

Available: https://www.lanl.gov/conferences/
salishan/salishan2004/womble.pdf

[8] N. Thompson, S. Ge, and G. Filipe, “The
importance of (exponentially more) computing,”
Tech. Rep., 2020.

[9] D. Hernandez and T. Brown, “A.I. and efficiency,”
OpenAI, San Francisco, CA, USA, Tech. Rep.
abs/2005.04305 Arxiv, 2020.

[10] N. Thompson, K. Greenewald, and K. Lee, “The
computation limits of deep learning,” 2020,
arXiv:2007.05558. [Online]. Available:
https://arxiv.org/abs/2007.05558

[11] M. Manohara, A. Moorthy, J. D. Cock, and
A. Aaron, Netflix Optimized Encodes. Los Gatos, CA,
USA: Netflix Tech Blog, 2018. [Online]. Available:
https://netflixtechblog.com/optimized-shot-based-
encodes-now-streaming-4b9464204830

[12] S. Ismail, Why Algorithms Are the Future of Business
Success. Austin, TX, USA: Growth Inst. [Online].
Available: https://blog.growthinstitute.com/
exo/algorithms

[13] S. S. Kortum, “Research, patenting, and
technological change,” Econometrica, vol. 65, no. 6,
p. 1389, Nov. 1997.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest,
and C. Stein, Introduction to Algorithms,
3rd ed. Cambridge, MA, USA: MIT Press,
2009.

[15] J. Bentley, Program. Pearls, 2nd ed. New York, NY,
USA: Association for Computing Machinery, 2006.

[16] D. E. Knuth, “Optimum binary search trees,” Acta
Inform., vol. 1, no. 1, pp. 14–25, 1971.

[17] T. C. Hu and A. C. Tucker, “Optimal computer
search trees and variable-length alphabetical
codes,” SIAM J. Appl. Math., vol. 21, no. 4,
pp. 514–532, 1971.

[18] C. Levcopoulos, A. Lingas, and J.-R. Sack,
“Heuristics for optimum binary search trees and
minimum weight triangulation problems,” Theor.
Comput. Sci., vol. 66, no. 2, pp. 181–203,
Aug. 1989.

[19] M. Klawe and B. Mumey, “Upper and lower bounds
on constructing alphabetic binary trees,” SIAM J.
Discrete Math., vol. 8, no. 4, pp. 638–651,
Nov. 1995.

[20] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, 5th ed.
San Mateo, CA, USA: Morgan Kaufmann, 2019.

[21] F. Le Gall, “Faster algorithms for rectangular matrix
multiplication,” Commun. ACM, vol. 62, no. 2,
pp. 48–60, 2012, doi: 10.1145/3282307.

[22] TopUniversities QS World Rankings, Quacquarelli
Symonds Ltd., London, U.K., 2018.

[23] J. Bentley, “Programming pearls: Algorithm design
techniques,” Commun. ACM, vol. 27, no. 9,
pp. 865–873, 1984, doi: 10.1145/358234.381162.

[24] D. Gries, “A note on a standard strategy for
developing loop invariants and loops,” Sci. Comput.
Program., vol. 2, no. 3, pp. 207–214, 1982, doi:
10.1016/0167-6423(83)90015-1.

Vol. 109, No. 11, November 2021 | PROCEEDINGS OF THE IEEE 1777

http://dx.doi.org/10.1145/3282307
http://dx.doi.org/10.1145/358234.381162
http://dx.doi.org/10.1016/0167-6423(83)90015-1
http://dx.doi.org/10.1287/opre.50.1.3.17780
http://dx.doi.org/10.1287/opre.50.1.3.17780

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

