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ABSTRACT | The two fields of machine learning and graphical
causality arose and are developed separately. However, there
is, now, cross-pollination and increasing interest in both fields
to benefit from the advances of the other. In this article,
we review fundamental concepts of causal inference and relate
them to crucial open problems of machine learning, including
transfer and generalization, thereby assaying how causality
can contribute to modern machine learning research. This also
applies in the opposite direction: we note that most work in
causality starts from the premise that the causal variables
are given. A central problem for Al and causality is, thus,
causal representation learning, that is, the discovery of high-
level causal variables from low-level observations. Finally,
we delineate some implications of causality for machine learn-
ing and propose key research areas at the intersection of both
communities.
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. INTRODUCTION
If we compare what machine learning can do to what
animals accomplish, we observe that the former is rather
limited at some crucial feats where natural intelligence
excels. These include transfer to new problems and any
form of generalization that is not from one data point
to the next (sampled from the same distribution), but
rather from one problem to the next—both have been
termed generalization, but the latter is a much harder form
thereof, sometimes referred to as horizontal, strong, or out-
of-distribution generalization. This shortcoming is not too
surprising, given that machine learning often disregards
information that animals use heavily: interventions in the
world, domain shifts, and temporal structure—by and
large, we consider these factors a nuisance and try to engi-
neer them away. In accordance with this, the majority of
current successes of machine learning boil down to large-
scale pattern recognition on suitably collected independent
and identically distributed (i.i.d.) data.

To illustrate the implications of this choice and its rela-
tion to causal models, we start by highlighting key research
challenges.

A. Issue 1—Robustness

With the widespread adoption of deep learning
approaches in computer vision [103], [140], natural lan-
guage processing [55], and speech recognition [86], a sub-
stantial body of literature explored the robustness of the
prediction of state-of-the-art deep neural network archi-
tectures. The underlying motivation originates from the
fact that, in the real world, there is often little control
over the distribution from which the data come from.
In computer vision [76], [228], changes in the test dis-
tribution may, for instance, come from aberrations, such as
camera blur, noise, or compression quality [107], [129],
[170], [206], or from shifts, rotations, or viewpoints [7],
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[12], [64], [282]. Motivated by this, new benchmarks
were proposed to specifically test a generalization of clas-
sification and detection methods with respect to simple
algorithmically generated interventions, such as spatial
shifts, blur, changes in brightness or contrast [107], [170],
time consistency [95], [227], control over background and
rotation [12], as well as images collected in multiple envi-
ronments [20]. Studying the failure modes of deep neural
networks from simple interventions has the potential to
lead to insights into the inductive biases of state-of-the-
art architectures. So far, there has been no definitive con-
sensus on how to solve these problems, although progress
has been made using data augmentation, pretraining,
self-supervision, and architectures with suitable inductive
biases with respect to a perturbation of interest [60], [64],
[137], [170], [206], [233]. It has been argued [188] that
such fixes may not be sufficient, and generalizing well out-
side the i.i.d. setting requires learning not mere statistical
associations between variables, but an underlying causal
model. The latter contains the mechanisms giving rise to
the observed statistical dependences and allows to model
distribution shifts through the notion of interventions [35],
[180], [183], [188], [220], [237].

B. Issue 2—Learning Reusable Mechanisms

Infants’ understanding of physics relies upon objects that
can be tracked over time and behave consistently [53],
[236]. Such a representation allows children to quickly
learn new tasks as their knowledge and intuitive under-
standing of physics can be reused [17], [53], [144], [250].
Similarly, intelligent agents that robustly solve real-world
tasks need to reuse and repurpose their knowledge and
skills in novel scenarios. Machine learning models that
incorporate or learn structural knowledge of an environ-
ment have been shown to be more efficient and generalize
better [9], [111, [151, [16], [27], [58], [77], [84], [85],
[141], [1571, [177]1, [181], [197], [211], [212], [244],
[258], [272], [274]. In a modular representation of the
world where the modules correspond to physical causal
mechanisms, many modules can be expected to behave
similarly across different tasks and environments. An agent
facing a new environment or task may thus only need to
adapt a few modules in its internal representation of the
world [85], [219]. When learning a causal model, one
should, thus, require fewer examples to adapt as most
knowledge, that is, modules, can be reused without further
training.

C. Causality Perspective

Causation is a subtle concept that cannot be fully
described using the language of Boolean logic [151] or that
of probabilistic inference; it requires the additional
notion of intervention [183], [237]. The manipulative
definition of causation [118], [183], [237] focuses on the
fact that conditional probabilities (“seeing people with
open umbrellas suggests that it is raining”) cannot reliably
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predict the outcome of active intervention (“closing
umbrellas does not stop the rain”). Causal relations
can also be viewed as the components of reasoning
chains [151] that provide predictions for situations that
are very far from the observed distribution and may
even remain purely hypothetical [163], [183] or require
conscious deliberation [128]. In that sense, discovering
causal relations means acquiring robust knowledge that
holds beyond the support of observed data distribution
and a set of training tasks, and it extends to situations
involving forms of reasoning.

Our contributions: In this article, we argue that causal-
ity, with its focus on representing structural knowledge
about the data generating process that allows interventions
and changes, can contribute toward understanding and
resolving some limitations of current machine learning
methods. This would take the field a step closer to a form of
artificial intelligence that involves thinking in the sense of
Konrad Lorenz, that is, acting in an imagined space [163].
Despite its success, statistical learning provides a rather
superficial description of reality that only holds when the
experimental conditions are fixed. Instead, the field of
causal learning seeks to model the effect of interventions
and distribution changes with a combination of data-
driven learning and assumptions not already included in
the statistical description of a system. This work reviews
and synthesizes key contributions that have been made to
this end.!

1) We describe different levels of modeling in physical
systems in Section II and present the differences
between causal and statistical models in Section III.
We do so not only in terms of modeling abilities, but
also discuss the assumptions and challenges involved.

2) We expand on the independent causal mechanism
(ICM) principle as a key component that enables the
estimation of causal relations from data in Section IV.
In particular, we state the sparse mechanism shift
(SMS) hypothesis as a consequence of the ICM prin-
ciple and discuss its implications for learning causal
models.

3) We review existing approaches to learn causal rela-
tions from appropriate descriptors (or features) in
Section V. We cover both classical approaches and
modern reinterpretations based on deep neural net-
works, with a focus on the underlying principles that
enable causal discovery.

4) We discuss how useful models of reality may be
learned from data in the form of causal representa-
tions and discuss several current problems of machine
learning from a causal point of view in Section VI.

5) We assay the implications of causality for practi-
cal machine learning in Section VII. Using causal
language, we revisit robustness and generalization,
as well as existing common practices, such as semi-
supervised learning (SSL), self-supervised learning,

IThe present paper expands [221], leading to partial text overlap.
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Table 1 Simple Taxonomy of Models. The Most Detailed Model (Top) Is a Mechanistic or Physical One, Usually in Terms of Differential Equations.
At the Other End of the Spectrum (Bottom), We Have a Purely Statistical Model; This Can Be Learned From Data, but It Often Provides Little Insight
Beyond Modeling Associations Between Epiphenomena. Causal Models Can Be Seen as Descriptions That Lie in Between, Abstracting Away From
Physical Realism While Retaining the Power to Answer Certain Interventional or Counterfactual Questions

Model Predict in i.i.d. | Predict under distr. | Answer counter- Obtain Learn from
setting shift/intervention factual questions | physical insight data
Mechanistic/physical yes yes yes yes ?
Structural causal yes yes yes ? ?
Causal graphical yes yes no ? ?
Statistical yes no no no yes

data augmentation, and pretraining. We discuss
examples at the intersection between causality and
machine learning in scientific applications and spec-
ulate on the advantages of combining the strengths of
both fields to build a more versatile Al.

II. LEVELS OF CAUSAL MODELING

The gold standard for modeling natural phenomena is
a set of coupled differential equations modeling physical
mechanisms responsible for time evolution. This allows us
to predict the future behavior of a physical system, reason
about the effect of interventions, and predict statistical
dependencies between variables that are generated by
coupled time evolution. It also offers physical insights,
explaining the functioning of the system, and lets us read
off its causal structure. To this end, consider the coupled
set of differential equations:

dx

= R? 1
7 X € (D

with initial value X(¢o) = Xo. The Picard-Lindel6f theorem
states that, at least locally, if f is Lipschitz, there exists a
unique solution x(¢). This implies, in particular, that the
immediate future of x is implied by its past values.

If we formally write this in terms of infinitesimal differ-
entials dt and dx = x(t + dt) — x(t), we get

X(t+dt) = x(t) +dt - f(x(t)). 2)

From this, we can ascertain which entries of the vector x(¢)
mathematically determine the future of others x(¢ + dt).
This tells us that if we have a physical system whose
physical mechanisms are correctly described using such an
ordinary differential equation (1), solved for (dx/dt) (i.e.,
the derivative only appears on the left-hand side), then its
causal structure can be directly read off.?

2Note that this requires that the differential equation system describes
the causal physical mechanisms. If, in contrast, we considered a set
of differential equations that phenomenologically correctly describe the
time evolution of a system without capturing the underlying mechanisms
(e.g., due to unobserved confounding or a form of course graining
that does not preserve the causal structure [208]), then (2) may not
be causally meaningful [186], [217].
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While a differential equation is a rather comprehensive
description of a system, a statistical model can be viewed
as a much more superficial one. It often does not refer
to dynamic processes; instead, it tells us how some of
the variables allow the prediction of others as long as
experimental conditions do not change. For example, if we
drive a differential equation system with certain types
of noise, or we average over time, then it may be the
case that statistical dependencies between components of
x emerge and those can then be exploited by machine
learning. Such a model does not allow us to predict the
effect of interventions; however, its strength is that it
can often be learned from observational data, while a
differential equation usually requires an intelligent human
to come up with it. Causal modeling lies in between these
two extremes. Like models in physics, it aims to provide
the understanding and predict the effect of interventions.
However, causal discovery and learning try to arrive at
such models in a data-driven way, replacing expert knowl-
edge with weak and generic assumptions. The overall situ-
ation is summarized in Table 1, adapted from [188]. In the
following, we address some of the tasks listed in Table 1 in
more detail.

A. Predicting in the i.i.d. Setting

Statistical models are a superficial description of real-
ity as they are only required to model associations. For
a given set of input examples X and target labels Y,
we may be interested in approximating P(Y|X) to answer
questions, such as “what is the probability that this par-
ticular image contains a dog?” or “what is the probability
of heart failure given certain diagnostic measurements
(e.g., blood pressure) carried out on a patient?” Subject
to suitable assumptions, these questions can be provably
answered by observing a sufficiently large amount of i.i.d.
data from P(X,Y’) [257]. Despite the impressive advances
of machine learning, causality offers an underexplored
complement: accurate predictions may not be sufficient
to inform decision-making. For example, the frequency
of storks is a reasonable predictor for human birth rates
in Europe [168]. However, as there is no direct causal
link between these two variables, a change to the stork
population would not affect the birth rates, even though a
statistical model may predict so. The predictions of a statis-
tical model are only accurate within identical experimental



conditions. Performing an intervention changes the data
distribution, which may lead to (arbitrarily) inaccurate
predictions [183], [188], [220], [237].

B. Predicting Under Distribution Shifts

Interventional questions are more challenging than pre-
dictions as they involve actions that take us out of the usual
i.i.d. setting of statistical learning. Interventions may affect
both the value of a subset of causal variables and their
relations. For example, “is increasing the number of storks
in a country going to boost its human birth rate?” and
“would fewer people smoke if cigarettes were more socially
stigmatized?” As interventions change the joint distribu-
tion of the variables of interest, classical statistical learning
guarantees [257] no longer apply. On the other hand,
learning about interventions may allow training predictive
models that are robust against the changes in distribution
that naturally happen in the real world. Here, interventions
do not need to be deliberate actions to achieve a goal.
Statistical relations may change dynamically over time
(e.g., people’s preferences and tastes), or there may simply
be a mismatch between a carefully controlled training
distribution and the test distribution of a model deployed
in production. The robustness of deep neural networks has
recently been scrutinized and become an active research
topic related to causal inference. We argue that predicting
under distribution shift should not be reduced to just the
accuracy on a test set. If we wish to incorporate learning
algorithms into human decision-making, we need to trust
that the predictions of the algorithm will remain valid if
the experimental conditions are changed.

C. Answering Counterfactual Questions

Counterfactual problems involve reasoning about why
things happened, imagining the consequences of different
actions in hindsight, and determining which actions would
have achieved the desired outcome. Answering counterfac-
tual questions can be more difficult than answering inter-
ventional questions. However, this may be a key challenge
for Al, as an intelligent agent may benefit from imag-
ining the consequences of its actions and understanding
in retrospect what led to certain outcomes, at least to
some degree of approximation.® We have mentioned the
example of statistical predictions of heart failure above.
An interventional question would be “how does the prob-
ability of heart failure change if we convince a patient to
exercise regularly?” A counterfactual one would be “would

3Note that two types of questions occupy a continuum: to this
end, consider a probability that is both conditional and interventional
P(A|B,do(C)). If B is an empty set, we have a classical intervention;
if B contained all (unobserved) noise terms, we have a counterfactual.
If B is not identical to the noise terms, but, nevertheless, informative
about them, we get something in between. For instance, reinforcement
learning (RL) practitioners may call @) functions as providing counter-
factuals even though they model P [return from ¢| agent state at time
t, do (action at time t)] and, therefore, closer to an intervention (which
is why they can be estimated from data).
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a given patient have suffered heart failure if they had
started exercising a year earlier?” As we shall discuss in
the following, counterfactuals, or approximations thereof,
are especially critical in RL. They can enable agents to
reflect on their decisions and formulate hypotheses that
can be empirically verified in a process akin to the scientific
method.

D. Nature of Data: Observational, Interventional,
and (Un)structured

The data format plays a substantial role in which type
of relation can be inferred. We can distinguish two axes
of data modalities: observational versus interventional,
and hand-engineered versus raw (unstructured) percep-
tual input.

1) Observational and Interventional Data: An extreme
form of data which is often assumed but seldom strictly
available is observational i.i.d. data, where each data
point is independently sampled from the same distribution.
Another extreme is interventional data with known inter-
ventions, where we observe data sets sampled from mul-
tiple distributions each of which is the result of a known
intervention. In between, we have data with (domain)
shifts or unknown interventions. This is observational in
the sense that the data is only observed passively, but
it is interventional in the sense that there are interven-
tions/shifts, but unknown to us.

2) Hand-Engineered Data Versus Raw Data: Especially,
in classical AI, data are often assumed to be structured into
high level and semantically meaningful variables, which
may partially (modulo some variables being unobserved)
correspond to the causal variables of the underlying graph.
Raw data, in contrast, are unstructured and do not expose
any direct information about causality.

While statistical models are weaker than causal models,
they can be efficiently learned from observational data
alone on both hand-engineered features and raw percep-
tual input, such as images, videos, and speech. On the
other hand, although methods for learning causal structure
from observations exist [18], [37], [83], [113], [123],
[139], [161], [174]-[176], [188]-[190]1, [229], [237],
[246], [279], learning causal relations frequently requires
collecting data from multiple environments or the abil-
ity to perform interventions [251]. In some cases, it is
assumed that all common causes of measured variables
are also observed (causal sufﬁcien(:y).4 Overall, a signif-
icant amount of prior knowledge is encoded in which
variables are measured. Moving forward, one would hope
to develop methods that replace expert data collection with
suitable inductive biases and learning paradigms, such as
metalearning and self-supervision. If we wish to learn a
causal model that is useful for a particular set of tasks and
environments, the appropriate granularity of the high-level

4There are also algorithms that do not require causal suffi-
ciency [237].
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variables depends on the tasks of interest and on the type
of data that we have at our disposal, for example, which
interventions can be performed and what is known about
the domain.

III. CAUSAL MODELS AND INFERENCE
As discussed, reality can be modeled at different levels,
from the physical one to statistical associations between
epiphenomena. In this section, we expand on the differ-
ence between statistical and causal modeling and review a
formal language to talk about interventions and distribu-
tion changes.

A. Methods Driven by i.i.d. Data

The machine learning community has produced impres-
sive successes with machine learning applications to
big data problems [54], [148], [171], [223], [232].
In these successes, there are several trends at work [215]:
1) we have massive amounts of data, often from simu-
lations or large-scale human labeling; 2) we use high-
capacity machine learning systems (i.e., complex function
classes with many adjustable parameters); 3) we employ
high-performance computing systems; and (often ignored,
but crucial when it comes to causality) 4) the problems are
ii.d. The latter can be guaranteed by the construction of
a task, including training and test set (e.g., image recog-
nition using benchmark data sets). Alternatively, problems
can be made approximately i.i.d., for example, by carefully
collecting the right training set for a given application
problem, or by methods, such as “experience replay” [171]
where an RL agent stores observations in order to later
permute them for the purpose of retraining.

For i.i.d. data, strong universal consistency results from
statistical learning theory apply, guaranteeing convergence
of a learning algorithm to the lowest achievable risk. Such
algorithms do exist, for instance, nearest neighbor classi-
fiers, support vector machines, and neural networks [67],
[221], [239], [257]. Seen in this light, it is not surprising
that we can indeed match or surpass human performance
if given enough data. However, current machine learning
methods often perform poorly when faced with prob-
lems that violate the i.i.d. assumption, yet seem trivial to
humans. Vision systems can be grossly misled if an object
that is normally recognized with high accuracy is placed
in a context that in the training set may be negatively cor-
related with the presence of the object. Distribution shifts
may also arise from simple corruptions that are common
in real-world data collection pipelines [10], [107], [129],
[170], [206]. An example of this is the impact of socioe-
conomic factors in clinics in Thailand on the accuracy of a
detection system for diabetic retinopathy [19]. More dra-
matically, the phenomenon of “adversarial vulnerability”
[249] highlights how even tiny but targeted violations of
the i.i.d. assumption, generated by adding suitably chosen
perturbations to images, imperceptible to humans, can
lead to dangerous errors, such as confusion of traffic signs.
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Overall, it is fair to say that much of the current practice (of
solving i.i.d. benchmark problems) and most theoretical
results (about generalization in i.i.d. settings) fail to tackle
the hard open challenge of generalization across problems.

To further understand how the i.i.d. assumption is prob-
lematic, let us consider a shopping example. Suppose that
Alice is looking for a laptop rucksack on the Internet (i.e.,
a rucksack with a padded compartment for a laptop).
The web shop’s recommendation system suggests that she
should buy a laptop to go along with the rucksack. This
seems odd because she probably already has a laptop;
otherwise, she would not be looking for the rucksack in
the first place. In a way, the laptop is the cause, and
the rucksack is an effect. Now, suppose that we are told
whether a customer has bought a laptop. This reduces our
uncertainty about whether she also bought a laptop ruck-
sack, and vice versa—and it does so by the same amount
(the mutual information), so the directionality of cause and
effect is lost. However, the directionality is present in the
physical mechanisms generating statistical dependence,
for instance, the mechanism that makes a customer want to
buy a rucksack once she owns a laptop.’ Recommending an
item to buy constitutes an intervention in a system, taking
us outside the i.i.d. setting. We no longer work with the
observational distribution but a distribution where certain
variables or mechanisms have changed.

B. Reichenbach Principle: From Statistics to
Causality

Reichenbach [198] clearly articulated the connection
between causality and statistical dependence. He postu-
lated the following:

Common cause principle: If two observables X and
Y are statistically dependent, then there exists
a variable Z that causally influences both and
explains all the dependence in the sense of making
them independent when conditioned on Z.

As a special case, this variable can coincide with X or Y.
Suppose that X is the frequency of storks and Y the human
birth rate. If storks bring the babies, then the correct causal
graph is X — Y. If babies attract storks, it is X «— Y.
If there is some other variable that causes both (such as
economic development), we have X «+ Z — Y.

Without additional assumptions, we cannot distinguish
these three cases using observational data. The class of
observational distributions over X and Y that can be
realized by these models is the same in all three cases.
A causal model, thus, contains genuinely more information
than a statistical one.

While causal structure discovery is hard if we have only
two observables [190], the case of more observables is
surprisingly easier, the reason being that, in that case, there
are nontrivial conditional independence properties [52],

SNote that the physical mechanisms take place in time, and if
available, time order may provide additional information about causality.



[75], [238] implied by causal structure. These generalize
the Reichenbach principle and can be described by using
the language of causal graphs or structural causal mod-
els (SCMs), merging probabilistic graphical models and
the notion of interventions [183], [237]. They are best
described using directed functional parent—child relation-
ships rather than conditionals. While conceptually simple
in hindsight, this constituted a major step in the under-
standing of causality.

C. Structural Causal Models

The SCM viewpoint considers a set of observables (or
variables) Xi,...,X, associated with the vertices of a
directed acyclic graph (DAG). We assume that each observ-
able is the result of an assignment

Xi:=f;(PA,U;) (i=1,...,n) 3)

using a deterministic function f; depending on X,’s parents
in the graph (denoted by PA;) and on an unexplained
random variable U;. Mathematically, the observables are,
thus, random variables, too. Directed edges in the graph
represent direct causation since the parents are connected
to X; by directed edges and, through (3), directly affect
the assignment of X;. The noise U; ensures that the overall
object (3) can represent a general conditional distribution
P(X;|PA;), and the set of noises Uy,...,U, is assumed
to be jointly independent. If they were not, then, by the
common cause principle, there should be another variable
that causes their dependence, and thus, our model would
not be causally sufficient.

If we specify the distributions of Uy, ..., U,, recursive
application of (3) allows us to compute the entailed obser-
vational joint distribution P(X1, ..., X,). This distribution
has structural properties inherited from the graph [147],
[183]: it satisfies the causal Markov condition stating that
conditioned on its parents, each X is independent of its
nondescendants.

Intuitively, we can think of the independent noises as
“information probes” that spread through the graph (much
like independent elements of gossip can spread through a
social network). Their information gets entangled, man-
ifesting itself in a footprint of conditional dependencies,
making it possible to infer aspects of the graph structure
from observational data using independence testing. Like
in the gossip analogy, the footprint may not be suffi-
ciently characteristic to pin down a unique causal struc-
ture. In particular, it certainly is not if there are only
two observables since any nontrivial conditional indepen-
dence statement requires at least three variables. The two-
variable problem can be addressed by making additional
assumptions, as not only the graph topology leaves a foot-
print in the observational distribution, but the functions
fi do, too. This point is interesting for machine learning,
where much attention is devoted to properties of function
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classes (e.g., priors or capacity measures), and we shall
return to it below.

1) Causal Graphical Models: The graph structure along
with the joint independence of the noises implies a canon-
ical factorization of the joint distribution entailed by (3)
into causal conditionals that we refer to as the causal (or
disentangled) factorization

n

LX) =[] P(Xi | PA). )

i=1

P(Xy,..

While many other entangled factorizations are possible, for
example,

P(X1,..., Xn) = [[ P(Xi | Xisa, ..

i=1

 Xn) ®)

the factorization (4) yields practical computational advan-
tages during inference, which is, in general, hard, even
when it comes to nontrivial approximations [210]. But
more interestingly, it is the only one that decomposes the
joint distribution into conditionals corresponding to the
structural assignments [see (3)]. We think of these as the
causal mechanisms that are responsible for all statistical
dependencies among the observables. Accordingly, in con-
trast to (5), the disentangled factorization represents the
joint distribution as a product of causal mechanisms.

2) Latent Variables and Confounders: Variables in a
causal graph may be unobserved, which can make causal
inference particularly challenging. Unobserved variables
may confound two observed variables so that they either
appear statistically related while not being causally related
(i.e., neither of the variables is an ancestor of the
other), or their statistical relation is altered by the presence
of the confounder (e.g., one variable is a causal ancestor
for the other, but the confounder is a causal ancestor of
both). Confounders may or may not be known or observed.

3) Interventions: The SCM language makes it straight-
forward to formalize interventions as operations that mod-
ify a subset of assignments (3), for example, changing U,
setting f; (and thus X;) to a constant, or changing the
functional form of f; (and, thus, the dependence of X; on
its parents) [183], [237].

Several types of interventions may be possible [63],
which can be categorized as follows.

1) No intervention: Only observational data are obtained

from the causal model.

2) Hard/perfect: The function in the structural assign-
ment [see (3)] of a variable (or, analogously, of mul-
tiple variables) is set to a constant (implying that the
value of the variable is fixed), and then, the entailed
distribution for the modified SCM is computed.

3) Soft/imperfect: The structural assignment (3) for a
variable is modified by changing the function or the
noise term (this corresponds to changing the condi-
tional distribution given its parents).
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Fig. 1.
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Difference between statistical (left) and causal models (right) on a given set of three variables. While a statistical model specifies a

single probability distribution, a causal model represents a set of distributions, one for each possible intervention (indicated with a R).

4) Uncertain: The learner is not sure which mecha-
nism/variable is affected by the intervention.

One could argue that stating the structural assignments
as in (3) is not yet sufficient to formulate a causal model.
In addition, one should specify the set of possible inter-
ventions on the SCM. This may be done implicitly via
the functional form of structural equations by allowing
any intervention over the domain of the mechanisms. This
becomes relevant when learning a causal model from data,
as the SCM depends on the interventions. Pragmatically,
we should aim at learning causal models that are useful
for specific sets of tasks of interest [208], [266] on appro-
priate descriptors (in terms of which causal statements
they support) that must either be provided or learned.
We will return to the assumptions that allow learning
causal models and features in Section IV.

D. Difference Between Statistical Models, Causal
Graphical Models, and SCMs

An example of the difference between a statistical and a
causal model is depicted in Fig. 1. A statistical model may
be defined, for instance, through a graphical model, that is,
a probability distribution along with a graph such that the
former is Markovian with respect to the latter [in which
case it can be factorized as (4)]. However, the edges in a
(generic) graphical model do not need to be causal [98].
For instance, the two graphs X; — X3 — X3 and X; «
X5 « X3 imply the same conditional independence(s) (X1
and X3 are independent given X»). They are, thus, in the
same Markov equivalence class, that is, if a distribution is
Markovian with respect to one of the graphs, then it also is
with respect to the other graph. Note that the above serves
as an example that the Markov condition is not sufficient
for causal discovery. Further assumptions are needed (see
below and [183], [188], and [237]).

A graphical model becomes causal if the edges of its
graph are causal (in which case the graph is referred to
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as a “causal graph”) [see (3)]. This allows us to compute
interventional distributions, as depicted in Fig. 1. When
a variable is intervened upon, we disconnect it from its
parents, fix its value, and perform ancestral sampling on
its children.

An SCM is composed of: 1) a set of causal variables and
2) a set of structural equations with a distribution over the
noise variables U; (or a set of causal conditionals). While
both causal graphical models and SCMs allow computing
interventional distributions, only the SCMs allow comput-
ing counterfactuals. To compute counterfactuals, we need
to fix the value of the noise variables. Moreover, there
are many ways to represent a conditional as a structural
assignment (by picking different combinations of functions
and noise variables).

Causal learning and reasoning: The conceptual basis of
statistical learning is a joint distribution P(Xi,...,X,)
(where, often, one of the X; is a response variable denoted
as Y), and we make assumptions about function classes
used to approximate, say, a regression E[Y|X]. Causal
learning considers a richer class of assumptions and seeks
to exploit the fact that the joint distribution possesses a
causal factorization [see (4)]. It involves the causal condi-
tionals P(X; | PA;) [e.g., represented by the functions f;
and the distribution of U; in (3)], how these conditionals
relate to each other, and interventions or changes that they
admit. Once a causal model is available, either by external
human knowledge or a learning process, causal reasoning
allows drawing conclusions on the effect of interventions,
counterfactuals, and potential outcomes. In contrast, sta-
tistical models only allow reasoning about the outcome of
i.i.d. experiments.

IV.INDEPENDENT CAUSAL
MECHANISMS

We now return to the disentangled factorization [see (4)]
of the joint distribution P(Xy,...,Xy,). This factorization
according to the causal graph is always possible when U;



is independent, but we will now consider an additional
notion of independence relating the factors in (4) to one
another.

Whenever we perceive an object, our brain assumes that
the object and the mechanism by which the information
contained in its light reaches our brain are independent.
We can violate this by looking at the object from an
accidental viewpoint, which can give rise to optical illu-
sions [188]. The above independence assumption is useful
because, in practice, it holds most of the time, and our
brain, thus, relies on objects being independent of our
vantage point and the illumination. Likewise, there should
not be accidental coincidences, such as 3-D structures
lining up in 2-D, or shadow boundaries coinciding with
texture boundaries. In vision research, this is called the
generic viewpoint assumption.

If we move around the object, our vantage point
changes, but we assume that the other variables of the
overall generative process (e.g., lighting, object position,
and structure) are unaffected by that. This is an invariance
implied by the above independence, allowing us to infer
3-D information even without stereo vision (“structure
from motion”).

For another example, consider a data set that consists of
altitude A and average annual temperature 7' of weather
stations [188]. A and T are correlated, which we believe
is due to the fact that altitude has a causal effect on
temperature. Suppose that we had two such data sets:
one for Austria and one for Switzerland. The two joint
distributions P(A,T) may be rather different since the
marginal distributions P(A) over altitudes will differ. The
conditionals P(T'|A), however, may be (close to) invari-
ant since they characterize the physical mechanisms that
generate temperature from altitude. This similarity is lost
upon us if we only look at the overall joint distribution,
without information about the causal structure A — T.
The causal factorization P(A)P(T|A) will contain a com-
ponent P(T|A) that generalizes across countries, while the
entangled factorization P(T)P(A|T") will exhibit no such
robustness. Cum grano salis, the same applies when we
consider interventions in a system. For a model to correctly
predict the effect of interventions, it needs to be robust to
generalizing from an observational distribution to certain
interventional distributions.

One can express the above
[188], [220]:

ICM principle: The causal generative process of a sys-
tem’s variables is composed of autonomous modules
that do not inform or influence each other. In the
probabilistic case, this means that the conditional
distribution of each variable given its causes (i.e., its
mechanism) does not inform or influence the other
mechanisms.

insights as follows

This principle entails several notions important to
causality, including separate intervenability of causal vari-
ables, modularity and autonomy of subsystems, and
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invariance [183], [188]. If we have only two variables,
it reduces to independence between the cause distribution
and the mechanism producing the effect distribution.

Applied to the causal factorization [see (4)], the princi-
ple tells us that the factors should be independent in the
sense that the following holds.

1) Changing (or performing an intervention upon) one
mechanism P(X;|PA;) does not change any of the
other mechanisms P(X;|PA;) (i # j) [220].

2) Knowing some other mechanisms P(X;|PA;) (¢ # j)
does not give us information about a mechanism
P(X;|PA;) [124].

This notion of independence, thus, subsumes two aspects:
the former pertaining to influence and the latter to infor-
mation.

The notion of invariant, autonomous, and independent
mechanisms has appeared in various guises throughout the
history of causality research [72], [100], [111], [124],
[183], [188], [240]. Early work on this was done by
Haavelmo [100], stating the assumption that changing one
of the structural assignments leaves the other ones invari-
ant. Hoover [111] attributed to Herb Simon the invariance
criterion: the true causal order is the one that is invariant
under the right sort of intervention. Aldrich [4] discussed
the historical development of these ideas in economics. He
argued that the “most basic question one can ask about a
relation should be: how autonomous is it?” [72, preface].
Pearl [183] discussed autonomy in detail, arguing that a
causal mechanism remains invariant when other mecha-
nisms are subjected to external influences. He pointed out
that causal discovery methods may best work “in longitu-
dinal studies conducted under slightly varying conditions,
where accidental independencies are destroyed and only
structural independencies are preserved.” Overviews are
provided by Aldrich [4], Hoover [111], Pearl [183], and
Peters et al. [188, Section 2.2]. These seemingly different
notions can be unified [124], [240].

We view any real-world distribution as a product of
causal mechanisms. A change in such a distribution (e.g.,
when moving from one setting/domain to a related one)
will always be due to changes in at least one of those
mechanisms. Consistent with the implication 1) of the ICM
Principle, we state the following hypothesis:

SMS: Small distribution changes tend to mani-
fest themselves in a sparse or local way in the
causal/disentangled factorization [see (4)], that
is, they should usually not affect all factors
simultaneously.

In contrast, if we consider a noncausal factorization,
for example, (5), then many, if not all, terms will be
affected simultaneously as we change one of the physical
mechanisms responsible for a system’s statistical depen-
dencies. Such a factorization may, thus, be called entan-
gled, a term that has gained popularity in machine learning
[24], [110], [158], [247].
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The SMS hypothesis was stated in [25], [114], [180],
and [217] and in earlier form in [219], [220], and [281].
An intellectual ancestor is Simon’s invariance criterion,
that is, that the causal structure remains invariant across
changing background conditions [235]. The hypothesis
is also related to ideas of looking for features that vary
slowly [70], [270]. It has recently been used for learning
causal models [131], modular architectures [29], [85],
and disentangled representations [159].

We have informally talked about the dependence of two
mechanisms P(X;|PA;) and P(X;|PA;) when discussing
the ICM principle and the disentangled factorization
[see (4)]. Note that the dependence of two such mecha-
nisms does not coincide with the statistical dependence of
the random variables X; and X ;. Indeed, in a causal graph,
many of the random variables will be dependent even if
all mechanisms are independent. Also, the independence
of the noise terms U; does not translate into the inde-
pendence of the X;. Intuitively speaking, the independent
noise terms U, provide and parameterize the uncertainty
contained in the fact that a mechanism P(X;|PA;) is
nondeterministic® and, thus, ensure that each mechanism
adds an independent element of uncertainty. In this sense,
the ICM principle contains the independence of the unex-
plained noise terms in an SCM [see (3)] as a special case.

In the ICM principle, we have stated that independence
of two mechanisms (formalized as conditional distribu-
tions) should mean that the two conditional distributions
do not inform or influence each other. The latter can be
thought of as requiring that independent interventions are
possible. To better understand the former, we next discuss
a formalization in terms of algorithmic independence. In a
nutshell, we encode each mechanism as a bit string and
require that joint compression of these strings does not
save space relative to independent compressions.

To this end, first recall that we have, so far, discussed
links between causal and statistical structures. Of the
two, the more fundamental one is the causal structure
since it captures the physical mechanisms that generate
statistical dependencies in the first place. The statistical
structure is an epiphenomenon that follows if we make the
unexplained variables random. It is awkward to talk about
statistical information contained in a mechanism since
deterministic functions in the generic case neither generate
nor destroy information. This serves as a motivation to
devise an alternative model of causal structures in terms
of the Kolmogorov complexity [124]. The Kolmogorov
complexity (or algorithmic information) of a bit string
is essentially the length of its shortest compression on a
Turing machine and, thus, a measure of its information
content. Independence of mechanisms can be defined as
vanishing mutual algorithmic information, that is, two
conditionals are considered independent if knowing (the

®In the sense that the mapping from PA; to X is described by a
nontrivial conditional distribution, rather than by a function.
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shortest compression of) one does not help us achieve a
shorter compression of the other.

The algorithmic information theory provides a nat-
ural framework for nonstatistical graphical models
[120], [124]. Just like that the latter is obtained from
SCMs by making the unexplained variables U; random,
we obtain algorithmic graphical models by making the U;
bit strings, jointly independent across nodes, and viewing
X, as the output of a fixed Turing machine running the
program U; on the input PA,. Similar to the statistical case,
one can define a local causal Markov condition, a global
one in terms of d-separation, and an additive decom-
position of the joint Kolmogorov complexity in analogy
to (4), and prove that they are implied by the SCM [124].
Interestingly, in this case, independence of noises and inde-
pendence of mechanisms coincide since the independent
programs play the role of the unexplained noise terms. This
approach shows that causality is not intrinsically bound to
statistics.

V. CAUSAL DISCOVERY AND

MACHINE LEARNING

Let us turn to the problem of causal discovery from data.
Subject to suitable assumptions, such as faithfulness [2371],
one can sometimes recover aspects of the underlying
graph’ from observational data by performing conditional
independence tests. However, there are several problems
with this approach. One is that our data sets are always
finite in practice, and conditional independence testing is
a notoriously difficult problem, especially if conditioning
sets are continuous and multidimensional. Thus, while,
in principle, the conditional independencies implied by
the causal Markov condition hold irrespective of the com-
plexity of the functions appearing in an SCM, for finite
data sets, conditional independence testing is hard without
additional assumptions [225]. Recent progress in (con-
ditional) independence testing heavily relies on kernel
function classes to represent probability distributions in
reproducing kernel Hilbert spaces [43], [61], [74], [91],
[92], [193], [280]. The other problem is that, in the case
of only two variables, the ternary concept of conditional
independence collapses and the Markov condition, thus,
has no nontrivial implications.

It turns out that both problems can be addressed by
making assumptions on function classes. This is typical for
machine learning, where it is well known that finite-sample
generalization without assumptions on function classes is
impossible. Specifically, although there are universally con-
sistent learning algorithms, that is, approaching minimal
expected error in the infinite sample limit, there are always
cases where this convergence is arbitrarily slow. Thus, for
given sample size, it will depend on the problem being
learned whether we achieve low expected error, and the
statistical learning theory provides probabilistic guarantees

7One can recover the causal structure up to a Markov equivalence
class, where DAGs have the same undirected skeleton and “immorali-
ties” (X; — X]‘ — Xp).



in terms of measures of complexity of function classes
[561, [257].

Returning to causality, we provide an intuition why
assumptions on the functions in an SCM should be nec-
essary to learn about them from data. Consider a toy SCM
with only two observables X — Y. In this case, (3) turns
into

X=U ©)
Y = (X, V) (7)

with U 1L V. Now, think of V' acting as a random selector
variable choosing from among a set of functions F§ =
{fo(z) = f(z,v) | v € supp(V)}. If f(x,v) depends on v in
a nonsmooth way, it should be hard to glean information
about the SCM from a finite data set, given that V' is not
observed and its value randomly selects among arbitrarily
different f,.

This motivates restricting the complexity with which
f depends on V. A natural restriction is to assume an
additive noise model

X=U 3)
Y = f(X)+V. )

If fin (7) depends smoothly on V, and if V is relatively
well concentrated, this can be motivated by a local Tay-
lor expansion argument. It drastically reduces the effec-
tive size of the function class—without such assumptions,
the latter could depend exponentially on the cardinality of
the support of V. Restrictions of function classes not only
make it easier to learn functions from data but it turns out
that they can break the symmetry between cause and effect
in the two-variable case: one can show that, given a distrib-
ution over X, Y generated by an additive noise model, one
cannot fit an additive noise model in the opposite direction
(i.e., with the roles of X and Y interchanged) [18], [113],
[139], [175], [190] (see also [246]). This is subject to
certain genericity assumptions, and notable exceptions
include the case where U and V are Gaussian and f is
linear. It generalizes results of Shimizu et al. [229] for
linear functions, and it can be generalized to include non-
linear rescalings [279], loops [174], confounders [123],
and multivariable settings [189]. Empirically, there is a
number of methods that can detect causal direction better
than chance [176], some of the building on the above
Kolmogorov complexity model [37], some on generative
models [83], and some directly learning to classify bivari-
ate distributions into causal versus anticausal [161].
While restrictions of function classes are one possibility
to allow identifying the causal structure, other assump-
tions or scenarios are possible. So far, we have discussed
that causal models are expected to generalize under cer-
tain distribution shifts since they explicitly model inter-
ventions. By the SMS hypothesis, much of the causal
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structure is assumed to remain invariant. Hence, distri-
bution shifts, such as observing a system in different
“environments/contexts,” can significantly help to identify
causal structure [188], [251]. These contexts can come
from interventions [187], [191], [220], nonstationary
time series [101], [116], [192], or multiple views [90],
[114]. The contexts can likewise be interpreted as differ-
ent tasks, which provides a connection to metalearning
[23], [68], [213].

The work of Bengio et al. [25] ties the generalization
in metalearning to invariance properties of causal models,
using the idea that a causal model should adapt faster
to interventions than purely predictive models. This was
extended to multiple variables and unknown interventions
in [131], proposing a framework for causal discovery using
neural networks by turning the discrete graph search into a
continuous optimization problem. While Bengio et al. [25]
and Ke et al. [131] focused on learning a causal model
using neural networks with an unsupervised loss, the work
of Dasgupta et al. [51] explores learning a causal model
using an RL agent. These approaches have in common that
semantically meaningful abstract representations are given
and do not need to be learned from high-dimensional and
low-level (e.g., pixel) data.

VI. LEARNING CAUSAL VARIABLES
Traditional causal discovery and reasoning assume that the
units are random variables connected by a causal graph.
However, real-world observations are usually not struc-
tured into those units, to begin with, for example, objects
in images [162]. Hence, the emerging field of causal rep-
resentation learning strives to learn these variables from
data, much like machine learning went beyond symbolic Al
in not requiring that the symbols that algorithms manipu-
late be given a priori (see [34]). To this end, we could try
to connect causal variables Si, ..., S, to observations

X =G(S1,...,5) (10)

where G is a nonlinear function. An example can be seen
in Fig. 2, where high-dimensional observations are the
result of a view on the state of a causal system that is
then processed by a neural network to extract high-level
variables that are useful on a variety of tasks. Although
causal models in economics, medicine, or psychology
often use variables that are abstractions of underlying
quantities, it is challenging to state general conditions
under which coarse-grained variables admit causal mod-
els with well-defined interventions [42], [208]. Defining
objects or variables that can be causally related amounts
to coarse-graining of more detailed models of the world,
including microscopic structural equation models [208],
ordinary differential equations [173], [207], and tempo-
rally aggregated time series [79]. The task of identifying
suitable units that admit causal models is challenging for
both human and machine intelligence. Still, it aligns with
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llustration of the causal representation learning problem setting. Perceptual data, such as images or other high-dimensional
ts, can be thought of as entangled views of the state of an unknown causal system, as described in (10). With the

exception of possible task labels, none of the variables describing the causal variables generating the system may be known. The goal of

causal representation learning is to learn a representation (partially) exposing this unknown causal structure (e.g., which variables describe

the system, and their relations). As full recovery may often be unreasonable, neural networks may map the low-level features to some

high-level variables supporting causal statements relevant to a set of downstream tasks of interest. For example, if the task is to detect the

manipulable objects in a scene, the representation may separate intrinsic object properties from their pose and appearance to achieve

robustness to distribution shifts on the latter variables. Usually, we do not get labels for the high-level variables, but the properties of
causal models can serve as useful inductive biases for learning (e.g., the SMS hypothesis).

the general goal of modern machine learning to learn
meaningful representations of data, where meaningful can
include robust, explainable, or fair [130], [134], [142],
[259], [275].

To combine structural causal modeling [see (3)] and
representation learning, we should strive to embed an SCM
into larger machine learning models whose inputs and
outputs may be high-dimensional and unstructured, but
whose inner workings are at least partly governed by an
SCM (that can be parameterized with a neural network).
The result may be a modular architecture, where the differ-
ent modules can be individually fine-tuned and repurposed
for new tasks [85], [180], and the SMS hypothesis can
be used to enforce the appropriate structure. We visualize
an example in Fig. 3 where changes are sparse for the
appropriate causal variables (the position of the finger
and the cube changed as a result of moving the finger)
but dense in other representations, for example, in the
pixel space (as finger and cube move, many pixels change
their value). At the extreme, all pixels may change as a
result of a sparse intervention, for example, if the camera
view or the lighting changes.

We now discuss three problems of modern machine
learning in the light of causal representation learning.

A. Problem 1—Learning Disentangled
Representations

We have earlier discussed the ICM principle implying
both the independence of the SCM noise terms in (3) and,
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Fig. 3. Example of the SMS hypothesis where an intervention
(which may or may not be intentional/observed) changes the

position of one finger (R), and as a consequence, the object falls.
The change in pixel space is entangled (or distributed), in contrast
to the change in the causal model.

thus, the feasibility of the disentangled representation

n

,Sn) = P(Si | PAY)

i=1

P(Si,... (11)

as well as the property that the conditionals P(.S; | PA;) are
independently manipulable and largely invariant across
related problems. Suppose that we seek to reconstruct such
a disentangled representation using independent mechanisms
[see (11)] from data, but the causal variables S; are not
provided to us a priori. Rather, we are given (possibly high-
dimensional) X = (X, ..., Xq4) (in the following, we think
of X as an image with pixels X1, ..., X4), as in (10), from



which we should construct causal variables Si,...,S,
(n < d) as well as mechanisms [see (3)]
S; = fi(PA,U;) (i=1,...,n) (12)

modeling the causal relationships among S;. To this end,
as a first step, we can use an encoder ¢ : R? — R” taking
X to a latent “bottleneck” representation comprising the
unexplained noise variables U = (Ui, ...,U,). The next
step is the mapping f(U) determined by the structural
assignments f1,..., f,. Finally, we apply a decoder p

R™ — R<. For suitable n, the system can be trained using
reconstruction error to satisfy po f oq ~ id on the observed
images. If the causal graph is known, the topology of a
neural network implementing f can be fixed accordingly;
if not, the neural network decoder learns the composition
p = po f. In practice, one may not know f and, thus,
only learn an autoencoder p o q, where the causal graph
effectively becomes an unspecified part of the decoder p,
possibly aided by a suitable choice of architecture [149].

Much of the existing work on disentanglement [62],
[110], [135], [157]-[159], [202], [256] focuses on inde-
pendent factors of variation. This can be viewed as the
special case where the causal graph is trivial, that is,
Vi : PA; = 0 in (12). In this case, the factors are functions
of the independent exogenous noise variables and, thus,
independent themselves.® However, the ICM principle is
more general and contains statistical independence as a
special case.

Note that the problem of object-centric representation
learning [11], [40], [841, [871, [88], [138], [155], [160],
[255], [262] can also be considered a special case of
disentangled factorization as discussed here. Objects are
constituents of scenes that in principle permit separate
interventions. A disentangled representation of a scene
containing objects should probably use objects as some
of the building blocks of an overall causal factorization,’
complemented by mechanisms, such as orientation, view-
ing direction, and lighting.

The problem of recovering the exogenous noise vari-
ables is ill-defined in the i.i.d. case as there are infinitely
many equivalent solutions yielding the same observa-
tional distribution [117], [158], [188]. Additional assump-
tions or biases can help favoring certain solutions over
others [158], [205]. Leeb et al. [149] propose a structured
decoder that embeds an SCM and automatically learns a
hierarchy of disentangled factors.

To make (12) causal, we can use the ICM principle, that
is, we should make U; statistically independent, and we
should make the mechanisms independent. This could be

8For an example to see why this is often not desirable, note that the
presence of fork and knife may be statistically dependent, yet we might
want a disentangled representation to represent them as separate entities.

9Objects can be represented at different levels of granularity [208],
that is, as a single entity or as a composition of other causal variables
encoding parts, properties, and other factors of variation.
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done by ensuring that they are invariant across problems,
exhibit sparse changes to actions or that they can be inde-
pendently intervened upon [22], [30], [217]. Locatello
et al. [159] showed that the SMS hypothesis stated above
is theoretically sufficient when given suitable training
data. Furthermore, the SMS hypothesis can be used as
supervision signal, in practice, even if PA; # 0 [252].
However, which factors of variation can be disentangled
depend on which interventions can be observed [159],
[230]. As discussed by Scholkopf et al. [219] and Shu et al.
[230], different supervision signals may be used to identify
subsets of factors. Similarly, when learning causal variables
from data, which variables can be extracted and their
granularity depends on which distribution shifts, explicit
interventions, and other supervision signals are available.

B. Problem 2—Learning Transferable Mechanisms

An artificial or natural agent in a complex world is faced
with limited resources. This concerns training data, that is,
we only have limited data for each task/domain, and, thus,
need to find ways of pooling/reusing data, in stark contrast
to the current industry practice of large-scale labeling work
done by humans. It also concerns computational resources:
animals have constraints on the size of their brains, and
evolutionary neuroscience knows many examples where
brain regions get repurposed. Similar constraints on size
and energy apply as ML methods get embedded in (small)
physical devices that may be battery-powered. Future Al
models that robustly solve a range of problems in the real
world will, thus, likely need to reuse components, which
requires them to be robust across tasks and environments
[219]. An elegant way to do this is to employ a modular
structure that mirrors corresponding modularity in the
world. In other words, if the world is indeed modular,
in the sense that components/mechanisms of the world
play roles across a range of environments, tasks, and
settings, then it would be prudent for a model to employ
corresponding modules [85]. For instance, if variations of
natural lighting (the position of the sun, clouds, and so on)
imply that the visual environment can appear in brightness
conditions spanning several orders of magnitude, then
visual processing algorithms in our nervous system should
employ methods that can factor out these variations, rather
than building separate sets of face recognizers, say, for
every lighting condition. If, for example, our nervous sys-
tem were to compensate for the lighting changes by a gain
control mechanism, then this mechanism in itself need not
have anything to do with the physical mechanisms bringing
about brightness differences. However, it would play a
role in a modular structure that corresponds to the role
that the physical mechanisms play in the world’s modular
structure. This could produce a bias toward models that
exhibit certain forms of structural homomorphism to a
world that we cannot directly recognize, which would
be rather intriguing, given that ultimately our brains do
nothing but turn neuronal signals into other neuronal
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signals. A sensible inductive bias to learn such models is
to look for ICMs [182], and competitive training can play
a role in this. For pattern recognition tasks, Parascandolo
et al. [180] and Goyal et al. [85] suggested that learning
causal models that contain independent mechanisms may
help in transferring modules across substantially different
domains.

C. Problem 3—Learning Interventional World
Models and Reasoning

Deep learning excels at learning representations of data
that preserve relevant statistical properties [24], [148].
However, it does so without taking into account the
causal properties of the variables, that is, it does not
care about the interventional properties of the variables
that it analyzes or reconstructs. Causal representation
learning should move beyond the representation of sta-
tistical dependence structures toward models that support
intervention, planning, and reasoning, realizing Konrad
Lorenz’ notion of thinking as acting in an imagined space
[163]. This ultimately requires the ability to reflect back on
one’s actions and envision alternative scenarios, possibly
necessitating (the illusion of) free will [184]. The biolog-
ical function of self-consciousness may be related to the
need for a variable representing oneself in one’s Lorenzian
imagined space, and free will may then be a means to
communicate about actions taken by that variable, crucial
for social and cultural learning, a topic that has not yet
entered the stage of machine learning research although it
is at the core of human intelligence [108].

VI. IMPLICATIONS FOR MACHINE
LEARNING

All these discussions call for a learning paradigm that does
not rest on the usual i.i.d. assumption. Instead, we wish
to make a weaker assumption that the data on which
the model will be applied comes from a possibly different
distribution but involving (mostly) the same causal mech-
anisms [188]. This raises serious challenges: 1) in many
cases, we need to infer abstract causal variables from the
available low-level input features; 2) there is no consensus
on which aspects of the data reveal causal relations; 3) the
usual experimental protocol of training and test set may
not be sufficient for inferring and evaluating causal rela-
tions on existing data sets, and we may need to create new
benchmarks, for example, with access to environmental
information and interventions; 4) even in the limited cases
that we understand, we often lack scalable and numerically
sound algorithms. Despite these challenges, we argue that
this endeavor has concrete implications for machine learn-
ing and may shed light on desiderata and current practices
alike.

A. Semisupervised Learning
Suppose that our underlying causal graph is X — Y,

and at the same time, we are trying to learn a mapping
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X — Y. The causal factorization (4) for this case is

P(X,Y) = P(X)P(Y|X). (13)

The ICM principle posits that the modules in a joint distri-
bution’s causal decomposition do not inform or influence
each other. This means that, in particular, P(X) should
contain no information about P(Y|X), which implies that
SSL should be futile, in as far as it is using additional infor-
mation about P(X) (from unlabelled data) to improve our
estimate of P(Y|X = z).

In the opposite (anticausal) direction (i.e., the direction
of prediction is opposite to the causal generative process),
however, SSL may be possible. To see this, we refer to
Daniusis et al. [50] who define a measure of dependence
between input P(X) and conditional P(Y]X).!” Assuming
that this measure is zero in the causal direction (applying
the ICM assumption described in Section IV to the two-
variable case), they show that it is strictly positive in the
anticausal direction. Applied to SSL in the anticausal direc-
tion, this implies that the distribution of the input (now:
effect) variable should contain information about the con-
ditional output (cause) given input, that is, the quantity
that machine learning is usually concerned with.

The study [220] empirically corroborated these pre-
dictions, thus establishing an intriguing bridge between
the structure of learning problems and certain physical
properties (cause—effect direction) of real-world data gen-
erating processes. It also led to a range of follow-up work
[321, [781, [97], [114], [115], [152], [153], [156], [167],
[195], [204], [243], [263], [267], [277], [278], [281],
complementing the studies of Bareinboim and Pearl [14],
[185], and it inspired a thread of work in the statistics
community exploiting invariance for causal discovery and
other tasks [105], [106], [114], [187], [191].

On the SSL side, subsequent developments include fur-
ther theoretical analyses [125], [188, Section 5.1.2] and
a form of conditional SSL [261]. The view of SSL as
exploiting dependencies between a marginal P(X) and
a noncausal conditional P(Y|X) is consistent with the
common assumptions employed to justify SSL [45]. The
cluster assumption asserts that the labeling function [which
is a property of P(Y'|X)] should not change within clusters
of P(X). The low-density separation assumption posits that
the area where P(Y'|X) takes the value of 0.5 should have
small P(X); the semisupervised smoothness assumption,
applicable also to continuous outputs, states that if two
points in a high-density region are close and so should
be the corresponding output values. Note, moreover, that
some of the theoretical results in the field use assump-
tions well-known from causal graphs (even if they do
not mention causality): the cotraining theorem [33] makes
a statement about learnability from unlabelled data and

100ther dependence measures have been proposed for high-
dimensional linear settings and time series [28], [119], [121], [122],
[126], [226].



relies on an assumption of predictors being conditionally
independent given the label, which we would normally
expect if the predictors are (only) caused by the label, that
is, an anticausal setting. This is nicely consistent with the
above findings.

B. Adversarial Vulnerability

One can hypothesize that the causal direction should
also have an influence on whether classifiers are vulner-
able to adversarial attacks. These attacks have recently
become popular and consist of minute changes to inputs,
invisible to a human observer yet changing a classifier’s
output [249]. This is related to causality in several ways.
First, these attacks clearly constitute violations of the i.i.d.
assumption that underlies statistical machine learning.
If all we want to do is a prediction in an i.i.d. setting,
then statistical learning is fine. In the adversarial setting,
however, the modified test examples are not drawn from
the same distribution as the training examples. The adver-
sarial phenomenon also shows that the kind of robustness
current classifiers exhibit is rather different from the one
a human exhibits. If we knew both robustness measures,
we could try to maximize one, while minimizing the other.
Current methods can be viewed as crude approximations
to this, effectively modeling the human’s robustness as
a mathematically simple set, say, an I, ball of radius
e > 0: they, often, try to find examples that lead to
maximal changes in the classifier’s output, subject to the
constraint that they lie in an [, ball in the pixel metric.
As we think of a classifier as the approximation of a
function, the large gradients exploited by these attacks
are either property of this function or a defect of the
approximation.

There are different ways of relating this to causal mod-
els. As described in [188, Section 1.4], different causal
models can generate the same statistical pattern recogni-
tion model. In one of those, we might provide a writer
with a sequence of class labels y, with the instruction to
produce a set of corresponding images x. It is clear that
intervening on y will impact x, but intervening on z will
not impact y, so this is an anticausal learning problem.
In another setting, we might ask the writer to decide
for herself which digits to write and to record the labels
alongside the digit (in this case, the classifier would try to
predict one effect from another one, a situation that we
might call a confounded one). In the last one, we might
provide images to a person and ask the person to generate
labels by classifying them.

Let us now assume that we are in the causal setting
where the causal generative model factorizes into inde-
pendent components, one of which is (essentially) the
classification function. As discussed in Section III, when
specifying a causal model, one needs to determine which
interventions are allowed, and a structural assignment
will then, by definition, be valid under every possible
(allowed) intervention. One may, thus, expect that if the
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predictor approximates the causal mechanism that is inher-
ently transferable and robust, adversarial examples should
be harder to find [133], [216].!' Recent work supports
this view: it was shown that a possible defense against
adversarial attacks is to solve the anticausal classifica-
tion problem by modeling the causal generative direc-
tion, a method that, in vision, is referred to as analysis
by synthesis [222]. A related defense method proceeds
by reconstructing the input using an autoencoder before
feeding it to a classifier [96].

C. Robustness and Strong Generalization

We can speculate that structures composed of
autonomous modules, such as given by a causal
factorization [see (4)], should be relatively robust to
swapping out or modifying individual components.
Robustness should also play a role when studying strategic
behavior, that is, decisions or actions that take into account
the actions of other agents (including Al agents). Consider
a system that tries to predict the probability of successfully
paying back a credit, based on a set of features. The set
could include, for instance, the current debt of a person,
as well as their address. To get a higher credit score,
people could, thus, change their current debt (by paying
it off), or they could change their address by moving
to a more affluent neighborhood. The former probably
has a positive causal impact on the probability of paying
back; for the latter, this is less likely. Thus, we could
build a scoring system that is more robust with respect to
such strategic behavior by only using causal features as
inputs [132].

To formalize this general intuition, one can consider
a form of out-of-distribution generalization, which can
be optimized by minimizing the empirical risk over a
class of distributions induced by a causal model of the
data [5], [169], [187], [204], [220]. To describe this
notion, we start by recalling the usual empirical risk mini-
mization setup. We have access to data from a distribution
P(X,Y) and train a predictor ¢ in a hypothesis space
H (e.g., a neural network with a certain architecture
predicting Y from X) to minimize the empirical risk R:

¢* = argmin RP(X’Y)(Q) (14)
geH
where
Rp(x,vy(9) = Epx,yy [loss(Y, g(X))]. (15)

Here, we denote by E p(x,v) the empirical mean computed
from a sample drawn from P(X,Y). When we refer to
“out-of-distribution generalization,” we mean having a

1 Adversarial attacks may still exploit the quality of the (parameter-
ized) approximation of a structural equation.
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small expected risk for a different distribution P'(X,Y):

OOD

RPT(X,Y)(g) = ]EPJF(X,Y) [IOSS(Y,Q(X))] (16)

It is clear that the gap between RP(X,y)(g) and
RYER v (9) will depend on how different the test distribu-
tion P is from the training distribution P. To quantify this
difference, we call environments the collection of different
circumstances that give rise to the distribution shifts, such
as locations, times, and experimental conditions. Environ-
ments can be modeled in a causal factorization [see (4)] as
they can be seen as interventions on one or several causal
variables or mechanisms. As a motivating example, one
environment may correspond to where a measurement is
taken (e.g., a certain room), and from each environment,
we obtain a collection of measurements (images of objects
in the same room). It is nontrivial (and, in some cases,
provably hard [21]) to learn statistical models that are sta-
ble across training environments and generalize to novel
testing environments [2], [5], [167], [187], [204] drawn
from the same environment distribution.

Using causal language, one could restrict Pf(X,Y) to
be the result of a certain set of interventions, that is,
PY(X,Y) € Pg, where Pg is a set of interventional dis-
tributions over a causal graph G. The worst case out-of-
distribution risk then becomes

RJ%)QOD(Q) = max EPT(X,Y) [loss(Y, g(X))]. (17)

PiePg

To learn a robust predictor, we should have available a
subset of environment distributions & C Pg and solve

g" = argmin max IAEPT(X’Y) [loss(Y,g(X))].  (18)

geH Preé

In practice, solving (18) requires specifying a causal model
with an associated set of interventions. If the set of
observed environments & does not coincide with the set
of possible environments Pg, we have an additional esti-
mation error that may be arbitrarily large in the worst
case [5], [21].

D. Pretraining, Data Augmentation, and
Self-Supervision

Learning predictive models solving the min-max opti-
mization problem of (18) is challenging. We now interpret
several common techniques in machine learning as means
of approximating (18).

The first approach is enriching the distribution of the
training set. This does not mean obtaining more examples
from P(X,Y) but training on a richer data set [54], [245],
for example, through pretraining on a huge and diverse
corpus [36], [46], [55], [60], [112], [137], [196], [253].
Since this strategy is based on standard empirical risk
minimization, it can achieve stronger generalization in
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practice only if the new training distribution is sufficiently
diverse to contain information about other distributions
in Pg .

The second approach, often coupled with the previous
one, is to rely on data augmentation to increase the
diversity of the data by “augmenting” it through a certain
type of artificially generated interventions [10], [140],
[234]. For the visual domain, common augmentations
include performing transformations, such as rotating the
image, translating the image by a few pixels, or flipping
the image horizontally. The high-level idea behind data
augmentation is to encourage a system to learn underly-
ing invariances or symmetries present in the augmented
data distribution. For example, in a classification task,
translating the image by a few pixels does not change
the class label. One may view it as specifying a set
of interventions & that the model should be robust to
(e.g., random crops/interpolations/translation/rotations).
Instead of computing the maximum over all distributions
in €, one can relax the problem by sampling from the
interventional distributions and optimize an expectation
over the different augmented images on a suitably cho-
sen subset [39], using a search algorithm, such as RL
[49] or an algorithm based on density matching [154].

The third approach is to rely on self-supervision to learn
about P(X). Certain pretraining methods [36], [46], [55],
[112], [196], [253] have shown that it is possible to
achieve good results using only very few class labels by first
pretraining on a large unlabeled data set and then fine-
tuning on few labeled examples. Similarly, pretraining on
large unlabeled image data sets can improve performance
by learning representations that can efficiently transfer to a
downstream task, as demonstrated by Bachman et al. [8],
Chen et al. [47], Grill et al. [93], He et al. [102], and Oord
et al. [179]. These methods fall under the umbrella of self-
supervised learning, a family of techniques for converting
an unsupervised learning problem into a supervised one
by using the so-called pretext tasks with artificially gen-
erated labels without human annotations. The basic idea
behind using pretext tasks is to force the learner to learn
representations that contain information about P(X) that
may be useful for (an unknown) downstream task. Much
of the work on methods that use self-supervision relies on
carefully constructing pretext tasks. A central challenge
here is to extract features that are indeed informative
about the data-generating distribution. Ideas from the ICM
principle could help develop methods that can automate
the process of constructing pretext tasks. Finally, one can
explicitly optimize (18), for example, through adversarial
training [80]. In that case, Pg would contain a set of
attacks that an adversary might perform, while, presently,
we consider a set of natural interventions.

An interesting research direction is the combination
of all these techniques, large-scale training, data aug-
mentation, self-supervision, and robust fine-tuning on
the available data from multiple, potentially simulated
environments.



E. Reinforcement Learning

RL is closer to causality research than the machine
learning mainstream in which it sometimes effectively
directly estimates do-probabilities. For example, on-policy
learning estimates do-probabilities for the interventions
specified by the policy (note that these may not be hard
interventions if the policy depends on other variables).
However, as soon as off-policy learning is considered,
in particular, in the batch (or observational) setting [146],
issues of causality become subtle [82], [165]. An emerging
line of work devoted to the intersection of RL and causality
includes [1], [13], [22], [38], [51], [165], [276]. Causal
learning applied to RL can be divided into two aspects:
causal induction and causal inference. Causal induction
(discovery) involves learning causal relations from data,
for example, an RL agent learning a causal model of the
environment. Causal inference learns to plan and act based
on a causal model. Causal induction in an RL setting
poses different challenges than the classic causal learn-
ing settings where the causal variables are often given.
However, there is accumulating evidence supporting the
usefulness of an appropriate structured representation of
the environment [2], [27], [258].

1) World Models: Model-based RL [68], [248] is related
to causality as it aims at modeling the effect of actions
(interventions) on the current state of the world. Partic-
ularly relevant for causal leaning are generative world
models that capture some of the causal relations under-
lying the environment and serve as Lorenzian imagined
spaces (see INTRODUCTION above) to train RL agents [48],
[991, [1271, [178], [214], [231], [248], [268], [271].
Structured generative approaches further aim at decom-
posing an environment into multiple entities with causally
correct relations among them, modulo the completeness
of the variables, and confounding [15], [44], [59], [136],
[264], [265]. However, many of the current approaches
(regardless of structure), only build partial models of the
environment [89]. Since they do not observe the environ-
ment at every time step, the environment may become an
unobserved confounder affecting both the agent’s actions
and the reward. To address this issue, a model can use the
backdoor criterion conditioning on its policy [200].

2) Generalization, Robustness, and Fast Transfer: While
RL has already achieved impressive results, the sample
complexity required to achieve consistently good perfor-
mance is often prohibitively high. Furthermore, RL agents
are often brittle (if data is limited) in the face of even tiny
changes to the environment (either visual or mechanistic
changes) unseen in the training phase. The question of
generalization in RL is essential to the field’s future both
in theory and practice. One proposed solution toward the
goal of designing machines that can extrapolate experience
across environments and tasks is to learn invariances in a
causal graph structure. A key requirement to learn invari-
ances from data may be the possibility to perform and learn
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from interventions. Work in developmental psychology
argues that there is a need to experiment in order to
discover causal relationships [81]. This can be modeled as
an RL environment, where the agent can discover causal
factors through interventions and observing their effects.
Furthermore, causal models may allow modeling the envi-
ronment as a set of underlying ICMs such that, if there
is a change in distribution, not all the mechanisms need
to be relearned. However, there are still open questions
about the right way to think about generalization in RL,
the right way to formalize the problem, and the most
relevant tasks.

3) Counterfactuals: Counterfactual reasoning has been
found to improve the data efficiency of RL algorithms
[38], [164] and improve performance [51], and it has
been applied to communicate about past experiences in
the multiagent setting [69], [241]. These findings are
consistent with work in cognitive psychology [65], argu-
ing that counterfactuals allow to reason about the use-
fulness of past actions and transfer these insights to
corresponding behavioral intentions in future scenarios
[145], [199], [203].

We argue that future work in RL should consider coun-
terfactual reasoning as a critical component to enable
acting in imagined spaces and formulating hypotheses
that can be subsequently tested with suitably chosen
interventions.

4) Off-Line RL: The success of deep learning methods in
the case of supervised learning can be largely attributed
to the availability of large data sets and methods that
can scale to large amounts of data. In the case of RL,
collecting large amounts of high-fidelity diverse data from
scratch can be expensive and, hence, becomes a bottle-
neck. Off-line RL [73], [150] tries to address this concern
by learning a policy from a fixed data set of trajecto-
ries, without requiring any experimental or interventional
data (i.e., without any interaction with the environment).
The effective use of observational data (or logged data)
may make real-world RL more practical by incorporating
diverse prior experiences. To succeed at it, an agent should
be able to infer the consequence of different sets of actions
compared to those seen during training (i.e., the actions
in the logged data), which essentially makes it a coun-
terfactual inference problem. The distribution mismatch
between the current policy and the policy that was used
to collect off-line data makes off-line RL challenging as
this requires us to move well beyond the assumption
of independently and identically distributed data. Incor-
porating invariances by factorizing knowledge in terms
of ICMs can help make progress toward the off-line RL
setting.

E Scientific Applications

A fundamental question in the application of machine
learning in natural sciences is to which extent we
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can complement our understanding of a physical sys-
tem with machine learning. One interesting aspect is
physics simulation with neural networks [94], which can
substantially increase the efficiency of hand-engineered
simulators [104], [143], [211], [265], [269]. Signifi-
cant out-of-distribution generalization of learned phys-
ical simulators may not be necessary if experimental
conditions are carefully controlled although the simu-
lator has to be completely retrained if the conditions
change.

On the other hand, the lack of systematic experimental
conditions may become problematic in other applications,
such as health care. One example is personalized medicine,
where we may wish to build a model of a patient health
state through a multitude of data sources, such as elec-
tronic health records and genetic information [66], [109].
However, if we train a clinical system on doctors’ actions
in controlled settings, the system will likely provide little
additional insight compared to the doctors’ knowledge and
may fail in surprising ways when deployed [19]. While it
may be useful to automate certain decisions, an under-
standing of causality may be necessary to recommend
treatment options that are personalized and reliable [3],
[6], [31], [164], [201], [224], [242], [273].

Causality also has significant potential in helping under-
stand medical phenomena, for example, in the current
COVID-19 pandemic, where causal mediation analysis
helps disentangle different effects contributing toward case
fatality rates when a textbook example of Simpson’s para-
dox was observed [260].

Another example of a scientific application is in astron-
omy, where causal models were used to identify exoplanets
under the confounding of the instrument. Exoplanets are
often detected as they partially occlude their host star
when they transit in front of it, causing a slight decrease in
brightness. Shared patterns in measurement noise across
stars light-years apart can be removed in order to reduce
the instrument’s influence on the measurement [218],
which is critical especially in the context of partial techni-
cal failures as experienced in the Kepler exoplanet search
mission. The application of [218] leads to the discovery
of 36 planet candidates [71], of which 21 were subse-
quently validated as bona fide exoplanets [172]. Four years
later, astronomers found traces of water in the atmosphere
of the exoplanet K2-18b—the first such discovery for an
exoplanet in the habitable zone, that is, allowing for liquid
water [26], [254]. This planet turned out to be one that
had first been detected in [71, exoplanet candidate EPIC
201912552].

G. Multitask Learning and Continual Learning

State-of-the-art Al is relatively narrow, that is, trained to
perform specific tasks, as opposed to the broad, versatile
intelligence allowing humans to adapt to a wide range
of environments and develop a rich set of skills. The
human ability to discover robust, invariant high-level con-
cepts and abstractions and to identify causal relationships
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from observations appears to be one of the key factors
allowing for a successful generalization from prior expe-
riences to new, often quite different, “out-of-distribution”
settings.

Multitask learning refers to building a system that
can solve multiple tasks across different environments
[41], [209]. These tasks usually share some common
traits. By learning similarities across tasks, a system could
utilize the knowledge acquired from previous tasks more
efficiently when encountering a new task. One possibility
of learning such similarities across tasks is to learn a shared
underlying data-generating process as a causal genera-
tive model whose components satisfy the SMS hypothesis
[219]. In certain cases, causal models adapt faster to
sparse interventions in distribution [131], [194].

At the same time, we have clearly come a long way
already without explicitly treating the multitask problem
as a causal one. Fuelled by abundant data and compute,
Al has made remarkable advances in a wide range of
applications, from image processing and natural language
processing [36] to beating human world champions in
games, such as chess, poker, and Go [223], improving med-
ical diagnoses [166], and generating music [57]. A critical
question thus arises: why cannot we just train a huge model
that learns environments’ dynamics (e.g., in an RL setting)
including all possible interventions? After all, distributed
representations can generalize to unseen examples, and if
we train over a large number of interventions, we may
expect that a big neural network will generalize across them.
To address this, we make several points. To begin with,
if data were not sufficiently diverse (which is an untestable
assumption a priori), the worst case error to unseen shifts
may still be arbitrarily high (see Section VII-C). While,
in the short term, we can often beat “out-of-distribution”
benchmarks by training bigger models on bigger data sets,
causality offers an important complement. The generaliza-
tion capabilities of a model are tied to its assumptions (e.g.,
how the model is structured and how it was trained). The
causal approach makes these assumptions more explicit
and aligned with our understanding of physics and human
cognition, for instance, by relying on the ICM principle.
When these assumptions are valid, a learner that does
not use them should fare worse than one that does. Fur-
thermore, if we had a model that was successful in all
interventions over a certain environment, we may want to
use it in different environments that share similar albeit
not necessarily identical dynamics. The causal approach
and, in particular, the ICM principle, point to the need
to decompose knowledge about the world into indepen-
dent and recomposable pieces (recomposable depending
on the interventions or changes in the environment),
which suggests more work on modular ML architectures
and other ways to enforce the ICM principle in future
ML approaches.

At its core, i.i.d. pattern recognition is but a mathemat-
ical abstraction, and causality may be essential to most
forms of animate learning. Up until now, machine learning



has neglected a full integration of causality, and this article
argues that it would indeed benefit from integrating causal
concepts. We argue that combining the strengths of both
fields, that is, current deep learning methods and tools and
ideas from causality, may be a necessary step on the path
toward versatile Al systems.

VIII. CONCLUSION
In this work, we discussed different levels of models,
including causal and statistical ones. We argued that this
spectrum builds upon a range of assumptions, both in
terms of modeling and data collection. In an effort to
bring together causality and machine learning research
programs, we first presented a discussion on the funda-
mentals of causal inference. Second, we discussed how the
independent mechanism assumptions and related notions,
such as invariance, offer a powerful bias for causal learn-
ing. Third, we discussed how causal relations might be
learned from observational and interventional data when
causal variables are observed. Fourth, we discussed the
open problem of causal representation learning, including
its relation to the recent interest in the concept of disentan-
gled representations in deep learning. Finally, we discussed
how some open research questions in the machine learning
community may be better understood and tackled within
the causal framework, including SSL, domain generaliza-
tion, and adversarial robustness.

Based on this discussion, we list some critical areas for
future research.

A. Learning Nonlinear Causal Relations at Scale

Not all real-world data are unstructured and the effect of
interventions can often be observed, for example, by strat-
ifying the data collection across multiple environments.
The approximation abilities of modern machine learning
methods may prove useful to model nonlinear causal
relations among large numbers of variables. For practi-
cal applications, classical tools are not only limited in
the linearity assumptions often made, but also in their
scalability. The paradigms of metalearning and multitask
learning are close to the assumptions and desiderata of
causal modeling, and future work should consider: 1)
understanding under which conditions nonlinear causal
relations can be learned; 2) which training frameworks
allow to best exploit the scalability of machine learning
approaches; and 3) providing compelling evidence on the
advantages over (noncausal) statistical representations in
terms of generalization, repurposing, and transfer of causal
modules on real-world tasks.

B. Learning Causal Variables

“Disentangled” representations learned by state-of-the-
art neural network methods are still distributed in the
sense that they are represented in a vector format with
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an arbitrary ordering in the dimensions. This fixed-format
implies that the representation size cannot be dynamically
changed; for example, we cannot change the number of
objects in a scene. Furthermore, structured and modular
representations should also arise when a network is trained
for (sets of) specific tasks, not only autoencoding. Different
high-level variables may be extracted depending on the
task and affordances at hand. Understanding under which
conditions causal variables can be recovered could provide
insights into which interventions are robust to predictive
tasks.

C. Understanding the Biases of Existing Deep
Learning Approaches

Scaling to massive data sets and relying on data aug-
mentation and self-supervision have all been successfully
explored to improve the robustness of the predictions of
deep learning models. It is nontrivial to disentangle the
benefits of the individual components, and it is often
unclear which “trick” should be used when dealing with
a new task, even if we have an intuition about useful
invariances. The notion of strong generalization over a
specific set of interventions may be used to probe existing
methods, training schemes, and data sets in order to build
a taxonomy of inductive biases. In particular, it is desirable
to understand how design choices in pretraining (e.g.,
which data sets/tasks) positively impact both transfer and
robustness downstream in a causal sense.

D. Learning Causally Correct Models of the World
and the Agent

In many real-world RL settings, abstract state repre-
sentations are not available. Hence, the ability to derive
abstract causal variables from high-dimensional, low-level
pixel representations and then recover causal graphs is
important for causal induction in real-world RL settings.
Moreover, building a causal description for both a model
of the agent and the environment (world models) should
be essential for robust and versatile model-based RL. W
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