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ABSTRACT | The need to adaptively manage computer sys-

tems and networks so as to offer good Quality of Service

(QoS) and Quality of Experience (QoE) with secure operation

at relatively low levels of energy consumption is challenged

by their sheer complexity and the wide variability of the

workloads. A possible way forward is through self-awareness,

whereby self-measurement and self-observation, together with

on-line control mechanisms, operate adaptively to attain the

required performance and QoE. We survey the premises for

these ideas arising from cognitive science and active networks

and review recent work on self-aware computer systems and

networks, including those that propose the use of software-

defined networks as a means to implement these concepts.

Then we provide some examples from the literature on self-

aware systems to illustrate the performance gains that they

can provide. Finally, we detail an example system and its

working algorithms to allow the reader to understand how such

a system may be implemented. Measurements showing how

it can react rapidly to changing network conditions regarding

QoS and security are presented. Some conclusions and sug-

gestions for further work are listed.
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I. I N T R O D U C T I O N
In the past few years, the telecommunications industry
has woken up to the potential use of artificial intelligence
(AI) and machine learning to automate and simplify net-
work design, management, and operations. Thus, many
organizations in the telecommunications industry have
announced programs that aim at introducing machine
learning into the next generation of packet and mobile
networks. Recently, an industry publication [1] stated that
“Advances in AI are pushing ... an economically feasible
self-driving network ... that’s programmed to ... carry out
your intentions ... eliminates the complex programming
and management tasks ... self-configure, monitor, manage,
correct, defend ...with very little human intervention ...
predict performance issues ... eliminate burdensome oper-
ational tasks and free ... IT staff ... costs will drop. Security,
reliability, and resiliency will improve ... speed of business
will accelerate.”

Indeed, in the same line, a recent industry blog post [2]
asks the rhetorical question “So how does AI help? It starts
at the top, with codifying ... the intent of the network oper-
ator ... in human language or through a more traditional
interface ... translated into network and security policies
... It is often especially important to use machine reason-
ing ... domain-specific knowledge about networking to ...
realize the desired intent in the given network context ...
with a deep understanding of the network infrastructure
... automates the policies ... optimizing for performance,
reliability, and security.”
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In [3], mobile radio access networks (RANs), espe-
cially for 5G, are discussed, and it is suggested that AI
can streamline RANs for massive multiple-input–multiple-
output optimization with reinforcement learning (RL) [4]
so that each cell self-adapts to changing scenarios and traf-
fic, increasing throughput by 20% and optimizing speed
for users that have low throughput.

Back in the 1990s, the research community had devel-
oped similar ideas [5]–[7] that have now met the technolo-
gies that allow their practical implementation. Thus, this
article reviews the advances made since those early days
in support of the current vision to use data analytics and
machine learning to automate network operations through
self-aware networks.

A. Premise From Cognitive Science
and Philosophy

Self-awareness has been studied by cognitive scientists,
Duval and Wicklund [8], who have discussed “conscious
attention” as having two aspects: one being directed
“toward the self,” while the other is directed “toward the
environment.” This early conceptualization also empha-
sizes the importance of “discrepancies” between the inter-
nal model and the external reality. Discrepancies alert us
on the differences between what we had thought about
(from the internal model) and the reality we observe. Thus,
discrepancies can be exploited via some form of RL because
“the person will experience either negative or positive
affect depending on whether attention is directed toward
a negative or a positive discrepancy.” This takes us back to
Descartes’ [9] rationalism and his well-known affirmation
that “I think therefore I am,” since thought leads to self-
representation to the ability to link the internal model
to external cues and events and improve the internal
model.

On the other hand, similar insights into the notion
of “self-awareness” can be gained through an interesting
article by Brinck and Gärdenfors [10] that defines the
intentionality of an agent which may be “cued,” that is,
triggered for instance by some sensory event or obser-
vation, or via a “detached” internal representation that
models the world within which the agent exists. Links
between the cued and detached representations are then
based on experience. These links serve as a basis for action
and for the refinement of the internal or detached model.
This article argues about the importance of both the inter-
nal and detached representation that may include a self-
model of the agent, which allows the agent to determine
its capacity to have intentions and be able to act on these
intentions. Both of these works by Duval and Wicklund [8]
and Brinck and Gärdenfors [10] provide insights into the
way in which many “self-aware” computer networks and
computer systems have been designed with an internal
model that is updated and corrected using observations
based on measurement and RL to make corrections in the
internal model and take decisions.

Self-awareness is also often discussed through the devel-
opment of young animals and children [11], [12] who
go through self-awareness that change with age. Another
area that is often studied relates to anomalies in self-
awareness. Examples include the commonly known “self-
denial” which is viewed as a psychological protection
mechanism whereby individuals refuse to acknowledge
a weakness or an illness, and anosognosia [13] where
a neurological disorder (i.e., malfunctioning of brain
neural networks) can cause an individual’s lack of aware-
ness or denial of a well-identified physical incapacity or ill-
ness. Other work has considered the relation between
internal representation of self-awareness and the capacity
to take action [14].

B. Self-Aware Networks and Quality of
Experience (QoE)

In the context of packet networks, self-awareness should
include the ability of a network to pursue objectives or goal
functions. It should be able to observe itself—via data from
measurements that the network collects—and “criticize”
its own behavior, so as to meet the objectives that have
been set for it, and improve its behavior based on these
observations. The network’s primary goal should be to
convey traffic flows from source to destination nodes and
to retrieve and convey content to its users. However, this
cannot be done without consideration for the QoE [15] of
its “users,” which are not just the end users that convey
traffic or download content through the network but also
the network’s human operators and the people in charge
of troubleshooting the network.

At the speed with which the network operates for-
warding GBytes of data with hundreds of thousands of
simultaneous users, the analysis of QoE does not mean
that we can poll users about their satisfaction with the
network [16] in real time, though some of that may
happen at a slower pace by sampling some users. However,
early work has successfully linked network bandwidth and
perceived video quality, with the traffic characteristics and
network quality of service (QoS) [17].

At the high-end, one may monitor the end-users’ emo-
tions as they use the network [18] to evaluate QoE,
though the same emotions may be related to the content
they receive rather than the network’s own performance.
However, substantial work has been conducted on linking
the quality of the sound that the network users may
be hearing through their connections to the QoS that is
directly measured [19], [20]. A related strain of work has
linked the perceived quality of video that is downloaded
by the users to the usual traffic QoS measurements, such
as packet loss and delay [21].

Another major element that enters into QoE, from the
perspective of the network operator as a “user,” is the net-
work’s energy consumption, because energy may represent
close to 70% of a network’s operating costs [22], [23].
Thus, the minimization of energy consumption [24], [25]
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needs to be included in the “goal” or objective of a self-
aware network. Its measurement and evaluation is a key
issue [26], [27] and it should also include the Cloud
support that is indispensable for modern communication
networks [28].

Resilience [29] and security [30] are also key issues
for the network operator, who is the “user” that needs
to assure the seamless nonstop operation of the system.
Poor resilience and security are also directly felt by the
end user. Thus, substantial research has been conducted in
this area [31], while network software must be protected
with appropriate recovery techniques [32]. Although the
actions of the environment on a network arise mainly from
the legitimate “good” users, “malicious” users can launch
attacks or infiltrations which can have dramatic effects
on the QoS perceived by end users. Thus, cyber security
remains one of the core aspects of self-aware network
management with the help of appropriate attack detection
and mitigation techniques [33], [34].

Thus, in the sequel, when we express a self-aware net-
work’s goal or objective function, we will include both QoS,
security, and energy, to handle the different issues related
to QoE in a holistic manner.

C. Content of This Article

In Section II, we will consider the design of self-aware
networks and discuss the first systematic attempt to incor-
porate intelligence in networks, known as active networks,
which have provided many of the ideas that are still being
pursued today.

Next, we will examine how self-aware networks can be
built thanks to the rising technology of software-defined
networks (SDNs), and how machine learning techniques
such as RL can help implant self-awareness into such
systems. This will lead to some detailed examples that
will also quantitatively illustrate how they may be used
in network overlay routing to reduce end-to-end packet
delays in the global Internet or to reduce the average
execution time of jobs that are allocated to edge or fog
clusters, and in the Cloud.

Then we will go further into how SDN can incorporate
self-awareness using the cognitive packet protocol based
on smart packets (SPs) that gather measurements and
information in the network and using an RL-based decision
engine to modify the paths of flows dynamically to achieve
better QoS.

This discussion will lead directly to a detailed presenta-
tion of the working example of a networked system whose
aim is to provide QoS and energy aware network connec-
tivity with active protection from network attacks. A test
bed that embodies these concepts will be detailed, together
with several measurements that illustrate its ability to react
rapidly to QoS degradation and to security alarms.

This article ends with some conclusions and suggestions
for further research.

II. R E L AT E D W O R K
The first mention of a “self-aware network” appears
in 2003 [35], [36], while reference to an overlay network’s
“lower level network awareness” appears in [37], and
context-awareness in wireless ad hoc networks is pro-
posed in [38]. Another work has discussed “bodily self-
awareness” with regard to humans and machines [14].
Self-aware services that can detect anomalies in Internet-
based services are presented in [39] and web-aware tools
are proposed in [40].

Yet the earlier concepts of cognitive radio (CR) [41]
and cognitive packet networks (CPNs) from 1999 [7]
also describe networks which are self-aware. Indeed, in
CR [42], [43], the network’s packet forwarders (in this
case radio transmitters) directly sense the communica-
tion channel to enhance their awareness of the con-
ditions under which they are communicating, before
they transmit or forward packets. Their purpose is
to optimize both the utilization of the channels, and
the performance or QoS of the users’ communica-
tions by reducing possible interference between distinct
communications.

The work in [44] describes CPN [45] where “intelligent
capabilities for routing and flow control are concentrated
in the ... cognitive packets (which) route themselves. They
are assigned goals ... and pursue these goals adaptively
... learn from their own observations about the network
and from the experience of other packets with whom
they exchange information via mailboxes.” The analogy
between a network path and a sequence of “letters” in the
genetic code was also exploited in [46] to choose the best
paths in CPN with a genetic algorithm that uses QoS as the
fitness function.

Even earlier, the ALOHA network [47] was a pioneer-
ing initiative in self-aware “multiple access” networks to
connect terminal consoles to computer servers via space
satellite-based communications. Ideas from ALOHA were
rapidly incorporated into the widely used local area net-
work Ethernet [48], and also used in the first fiber-optics
random access network Xantos [49], as well as the well-
known space-satellite-based network Inmarsat for boats
and ships [50].

ALOHA could be “slotted” so that time was synchronized
throughout the network and all participants transmitted at
the beginning of a slot, so that they could not be aware
of each other prior to the transmission, but they could
optimize the network’s collisions by tracking the length
of the silent periods to estimate the network’s traffic rate
[51], [52]. ALOHA could also be “unslotted” and operated
in continuous time. In the latter case, the carrier sense
multiple access (CSMA-CD) protocol [53] required the
different users to sense the channel before transmitting,
and refrain from transmitting if they “heard” that there
were other ongoing transmissions on the channel, so as
to minimize the probability of interference and collisions
with other users [54].

1152 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020



Gelenbe et al.: Self-Aware Networks That Optimize Security, QoS, and Energy

A. Active Intelligent Networks

In the mid-1990s, the traditional role of Internet proto-
col (IP) networks that had emerged as the main follow-up
to wired telecommunications were being seriously chal-
lenged. Indeed, IP networks were limited to transporting
data passively and opaquely between systems, without tak-
ing advantage of the possibilities offered by the knowledge
acquired about users and their requirements, and about
the data content of packets. The capabilities offered by
technological improvements that had increased the com-
putational power of routers were not being exploited, and
the routers’ role was limited to managing packet headers
and to signaling functions needed to manage connections.

This tradition was broken by the novel concept of active
networking (AN) [6], [55] to perform useful tasks in a
network to improve the end users’ QoS and the network’s
performance, using software that is adaptively activated in
the network. Examples include compressing high through-
put packet flows (such as video) with knowledge of the
data content, grouping the routing of multiple flows that
carry identical media content into multicast trees to save
network bandwidth and reducing end-to-end delay, using
knowledge about a group of users in video-conferencing
to optimize network topologies and minimize delay, or
activating enhanced security and attack detection at nodes
when they carry sensitive traffic.

AN places active “capsules” into IP packets that are
either programs that can be run by routers, or data that
activate or instantiate a program that is already resident
at a node. It was suggested [56] that AN could enhance
security by activating packet filters dynamically to authen-
tify traffic flows. Capsules could also be used dynamically
activate data caches in the network nodes. One major
application of AN that was proposed was to deploy and
update IP networks based on policies and specific network
conditions [57], [58]. The worldwide interest it generated
resulted in a global network Planetlab network of servers
that survives till today [59].

Although AN initially encountered much enthusiasm,
the idea did not fully survive and certain aspects were
progressively incorporated into other technologies and
research areas. AN had presented several difficulties,
including the need to revisit the computing power and stor-
age space available at network nodes, especially in those
years when computing power was significantly lower than
today. The unlimited capabilities of AN implied that the
corresponding routers could find themselves overloaded
with tasks, turning themselves into network servers with
a role going way beyond routing, so that research had to
be conducted into the design of more powerful network
routers and corresponding test beds [60], [61]. In addi-
tion, AN could potentially create processing overload in the
network nodes that came in addition to the load caused by
the traffic itself, despite the fact that active routers could
also interoperate with legacy routers, which transparently
forward datagrams in a traditional manner [62].

Another major issue concerned security [63]. Indeed,
the fact that AN proposed to use packets to inject programs
into the network, with these programs being possibly
specific to various users, could create tremendous secu-
rity risks. Thus, each entering “caplet” would have to be
monitored, either with regard to its provenance, with some
form of admission control, or would have to be verified
with some form of deep packet inspection. Both of these
functions are not available in the IP, so that AN required
a comprehensive review of IP. Thus, AN was raising even
more questions regarding the means to mitigate the threats
that it itself created, even though it could offer certain
security services [64].

However, many good ideas that AN developed have been
incorporated into current research. For instance, the cogni-
tive or SPs in CPN [65] do not carry code but do carry data
to instantiate programs that are already resident in the
network nodes. The idea about caching data or creating
services in routers or nodes has also been incorporated
in many systems, and fog and edge computing carry
some of the functions that were initially proposed for AN
routers [66].

1) Self-Aware Networks That Use SDN: The rise of SDNs
[67], [68] has provided a practical opportunity to exper-
iment with networks that have some of the features that
were suggested by AN. SDN can operate across various
technologies including fiber-optic networks [69] and a
combination of WiFi and wired connections [70].

In [71], an SDN controller incorporates machine
learning-based decisions for routing so as to optimize QoS
and tested to dynamically route flows between two fixed
end servers in a small network with regard to its reac-
tions to sudden changes of delay between nodes. A sim-
ilar approach whose objective is to minimize energy was
reported in [25]. However, the measurements show that
an SDN controller operating with the CPN algorithm [65]
switches paths rapidly and allows the test bed to reach its
new performance level, within a few percent of the opti-
mum end-to-end delay, in a few seconds. Such transients
can be long in terms of the characteristic time constants of
networks which operate at the millisecond level [72], and
they should be studied further to determine their impact on
the overall system optimization and the system’s reaction
delays.

There are several differences between the results in [71]
and [73] which implement an RL-based SDN controller
and measure its performance, and the interesting work
by Lin et al. [74] presents numerical results concerning
an RL algorithm’s internal numerical values but not the
system’s resulting performance. Lin et al. [74] discussed a
hierarchical structure, but then shows internal numerical
values for the algorithm within a single controller so that
the behavior of the system as a whole is not evaluated.
The “single tree” in [71] can be used for one instance of a
subtree in [74]. From an algorithmic perspective, in [74]
only QoS is considered (and not security or energy), and it
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uses Markov decision processes with a soft-max decision
rule, while in [73], a goal function is used, and direct
system measurements are carried out on a test bed.

The research in [75] suggests the use of RL for load
balancing in an IP network that is used to control the
smart grid. It proposes to use an SDN controller for the
network with two classes of data packets: those that carry
monitoring traffic for the smart grid, and those that carry
control commands which have a higher priority. A policy
iteration approach based on Markov decision processes is
proposed for the RL algorithm. The authors present dis-
crete event simulations with Poisson traffic for a three node
network to show the improvements that can be obtained
regarding the network’s QoS. Thus, although the work in
this article presents an actual network implementation on
a multiple node test bed with real traffic and experimental
results both for QoS and security, the presentation in [75]
covers QoS only, and it is illustrated with a discrete event
simulation of three network nodes with idealized Poisson
traffic.

Gelenbe et al. [76] and Nowak et al. [77] proposed an
approach that combines SDN using CPN [65] and outlined
a hierarchical vision of SDN similar to [74], without the
algorithmic aspects and results of this article. In [78],
a steady-state analysis of the radio transport layer for 5G is
presented, based on prior mathematical work on signal to
noise plus interference ratio calculations. An SDN configu-
ration is then suggested to support base stations in order
to maximize steady-state throughput at the radio level.
This article differs from the problem we deal in this article
which mainly focuses on an experimental investigation of
wired networks and their dynamic real-time operation.

III. E X A M P L E S O F S E L F - A W A R E
S Y S T E M S A N D N E T W O R K S
The global Internet and the resulting possibility to create
large-scale services with the help of the web, encouraged
early work [79] on the design of systems that could dynam-
ically monitor and improve QoS experienced by services for
a large number of users, and examples were developed in
web services for managing map data [40] and in detect-
ing QoS and other anomalies in Internet services [39].
The latter example illustrates the inconsistency discussed
earlier between what is expected based on an internal
model, and the observations obtained from attention that
is directed toward reality [8]. Early work [37] also focused
on building network middleware without changes in the
existing Internet substrate.

Another strain of work that has given impetus to the use
of self-awareness in networks for various purposes is the
field of “ad hoc networks” [80], [81] based on wireless
nodes that are geographically distributed, yet relatively
close to each other, and which dynamically create tempo-
rary links and network graph topologies with other nodes
[38], [82]. Here, the nodes are often battery powered and
mobile [83]. Since their energy consumption is of concern,
if one wishes to maximize the failsafe operation of the

network links [84], and neural network-based methods
were implemented and tested to create self-aware methods
to dynamically manage routes and maximize the energy
life-time of the network [44].

A. Self-Aware Self-Managing Routing (SMART)
Overlay Routing

In this section, we review results that were obtained
when self-aware QoS oriented routing using RL was used
with network overlays [85] motivated by the fact that
many measurements have shown that the IP typically
yields suboptimal network paths for QoS metrics [86].

The idea of overlay networks that use software installed
in servers, or in machines that are connected to routers,
so as to take routing decisions that supercede the ones
taken by the routers themselves, has been around for some
time [31]. One simple approach is to capture the packets
coming from a given router, and then forward them to an
IP address via the IP protocol that is not the “natural”
next hop of the given packet, had it stayed within the
given router. This decision can be taken based on prior
knowledge that the modified next hop can provide better
QoS for the packet toward the final destination. Various
proposals and experiments are available in the literature
regarding this idea [87], [88]. A simple approach would
be to exploit “next hops” that are known to offer some QoS
guarantee based on admission control schemes that were
popular in earlier generation networks [89]. However, the
approach taken here is based on self-awareness and online
measurement.

Routing overlays have a long history and have also been
suggested to improve the reliability and resilience of the
network in the case of path outages or network attacks.
However, they have the main advantage of overriding
those routes that are selected by IP and route traffic based
on the QoS considerations of the applications that are gen-
erating and utilizing the network connections. Potentially,
many different applications may use overlays differently
with different QoS considerations. The resilient overlay
network (RON) [31] was the first such overlay for wide-
area networks that demonstrated this advantage. However,
RON had the disadvantage of having to monitor O(M2)

connections for M overlay nodes and is thus was limited by
the amount of overhead it imposed on each overlay node.

The SMART overlay overcomes this difficulty for an
M node overlay network by limiting to four or another
relatively small number of overlay neighbor nodes that
a single overlay node can use as a next hop. Because of
the use of self-awareness gained through the use of SPs
and the RL algorithm described previously, SMART has
demonstrated substantial improvements over IP in terms
of both delay and throughput, while being very scalable.

The software overlay used by SMART is shown in Fig. 2,
where we show various neighboring overlay nodes that
are communicating with each other. The transmission
agent intercepts packets entering the node and forwards
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Fig. 1. Schematic representation of an overlay network.

them to the proxy to be forwarded according to the
SMART algorithm. The reception agent receives packets
from the proxy, and if they are to be received locally,
they are forwarded to the local application. Otherwise,
the proxy forwards them one more hop according to the
SMART algorithm. The proxy generates SPs that are used
to monitor the network paths and forwards them, as well
as other passing SPs toward the relevant neighboring node
proxy. The proxy also operates the random neural network
(RNN)-based [90] RL algorithm, with the data that are
brought by the SPs.

SMART’s data-driven intercontinental packet routing
scheme regularly over time, say every 2 min, collects
round-trip delay data between each overlay node and the
other nodes to which it forwards packets. Each overlay
node updates the RL algorithm’s state and then updates the
state of corresponding RNN [91] whose number of neurons
is limited to the number of allowable neighboring overlay
nodes. When it needs to send a packet to a given destina-
tion, the PROXY computes the activation probabilities of
the corresponding RNN and selects the next neighboring
overlay node to be used by the packet based on the neuron
with highest probability, as described in Section III-C.

Fig. 2. Software architecture of the SMART overlay node.

Fig. 3. Average round-trip delay measured during a one-week

experiment that compared the use of the IP protocol with SMART for

several intercontinentally distributed overlay nodes. The data show

a distinct reduction of delay when SMART is used.

Experiments that were run by installing 20 overlay
nodes in a large network offered by the NLNOG Ring
test bed [92] are reported in [85]. Measurement results
obtained with a fairly long one week experiment are shown
in Fig. 3, and they exhibit a substantial reduction of round-
trip packet delay as compared to the IP protocol, showing
the advantage of a measurement-based self-aware scheme
over a standard commonly used approach. More results
related to these experiments can be found in [85] where
results are also reported using overlays on the Amazon
Cloud [93]. They all confirm the superiority of the self-
aware approach for improving both delay and throughput
in the network.

B. Self-Aware Scheduling of Tasks in the Cloud

Static algorithms for task allocation [94], [95] have
long been preferred due to their low overhead and sim-
plicity. However, they are only suitable for stable envi-
ronments and cannot easily adapt to dynamic changes
in the Cloud [96]. Dynamic algorithms [97], which can
sometimes be quite complex, use the applications’ charac-
teristics prior to, and at, runtime, but often result in over-
heads that also cause performance degradations. Thus,
typically dynamic adaptive schemes are evaluated through
simulations [98] rather than in practical experiments.
An example of such a fairly complex, nature-inspired task
assignment, and load balancing algorithm can be found
in [99]. Complex scheduling schemes that also use mul-
tiple hosts or servers must often be avoided because of
the synchronization issues that can result in significant
slowdowns [100].

Thus, in this section, we turn to the exploration of how
self-awareness can be applied to the design of adaptive
schemes that exploit online measurement and take deci-
sions with low computational overhead to assign tasks to
Cloud services [101], [102].

The experimental results that are reviewed in this are
based on the work in [103] and [104] that develops a
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Fig. 4. Overall architecture and operation of the TAP which

distributes tasks locally to a cloud server or distributes jobs

remotely via the Internet to other fog and edge servers. On the

tight-hand-side of the figure, we see that tasks may be of different

types and may have wide ranging requirements in terms of memory

occupancy and task execution time, while their QoS requirements

may also vary widely.

self-aware task allocation platform (TAP), implemented as
a portable Linux-based system that dynamically allocates
user tasks to available servers, exploiting online perfor-
mance measurements of task and system performance.
TAP attempts to meet the workload’s service level agree-
ments (SLAs), and it can support both static and dynamic
allocation and load balancing schemes [105]. It collects
measurements to provide performance reports and exploits
these measurement results to take adaptive decisions.

TAP is used to allocate tasks to a collection of host
servers, some of which may be distant from the others
and remotely accessible through the Internet, while others
may be collectively accessible as a Cloud server, as shown
in Fig. 4. It runs on a host server and embeds measure-
ment agents into each host server that it uses, either in
a cloud, or at individual servers, to observe the system’s
state. The great variety of short, medium, and long tasks,
and their different measured resource requirements are
shown on the left-hand side of Fig. 5, while on the right-
hand side of the same figure we show how different
applications may have distinct service-level or QoS require-
ments that need to be respected, as discussed in [104].

These observations are then collected by SPs,
as described in Section III-C. The SPs are forwarded
by TAP at regular intervals to identify the subsystems
which provide better performance, and each SP generates
an acknowledgment (ACK) packet that comes back to TAP
and carries the required measurement data. This provides
TAP with a constant flow of information that TAP can use
in its decision making.

The same TAP platform has been used to compare
different task scheduling schemes, in order to see whether
a self-aware approach would have distinct performance
advantages. Although the work in [104] considers a larger

set of task scheduling algorithms, including some that are
based on a queuing analysis of the expected response
times, here we will summarize results obtained with three
schemes.

1) A round-robin allocation of incoming tasks to dis-
tinct hosts, so that irrespective of their size or of the
host servers’ workload, the tasks are shared equally
among the servers. Round-robin provides a simple
and practical baseline for comparison.

2) A “sensible” scheme [106] that allocates tasks to
server i among a set of S servers, with a probability
pi that is inversely proportional to the measured
average response time Ri, which includes the queu-
ing and service delays at the server i

pi =

1
Ri�S

j=1
1

Rj

. (1)

So that the system tends to load more those servers
that provide better service. The assignments are ran-
domized using a random number generator with the
probability (1) for server i. Note that this algorithm
will yield an average response time of

R =

S�
j=1

pi.Ri =

�
S�

j=1

1

Rj

�−1

. (2)

This algorithm also exploits the self-aware capabil-
ities of TAP because it assigns load to a particular
server as a function of all of the servers’ ongoing
measured performance.

3) Finally, a self-aware scheme that runs the RL algo-
rithm in Section III-C, based on the observed task
total execution times, including any wait time mea-
sured at the different servers.

Fig. 5. Tasks may be of different types and their resource

requirements may vary in terms of memory occupancy and task

execution time. Their QoS requirements and SLAs may also vary

widely.
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Fig. 6. Average response time for tasks that allocated to servers

using RL and the RNN-based algorithm (marked RNN) as compared

to the average response time observed by using round-robin

scheduling and the sensible algorithm. The x-axis indicates

increasing load levels in number of tasks arriving to TAP per unit

time. For all load levels, the self-aware system that uses the CPN

based on average response time provides the best performance. The

“sensible” scheduler is the second best, while the round-robin

heuristic offers the worst performance.

This last approach differs from the “sensible” scheme in
several ways. While the sensible scheme tends to spread
the load over all of the servers but varies the fraction of
tasks being assigned as a function of measured QoS, even
if some of the servers provide poor performance, the last
approach focuses at any time on a small set of the “best
ones,” and can stick to one “best” host server for some
time, until that host server may become itself overloaded
and provide poor performance. Furthermore, the use of (5)
to update the RL scheme offers an in-built technique to
encourage changes in decision making by “forgetfulness.”
This makes the self-aware scheme (c) more responsive to
new data and more reactive with its ability to focus on
the current small number of host servers that are able to
provide the best performance.

Experimental data from [104] summarized in Fig. 6
shows that the RL-based task assignment scheme (c)
results in significantly lower average response time
(y-axis) for tasks at different levels of load, represented
by the task arrival rates in the x-axis.

C. SDN With the CPN

The CPN protocol has been incorporated into SDN [71]
for QoS-driven routing. It uses SPs which are sent out by
each node e to the destination to measure the round-trip
delay D(f, e) from e to the destination node of the flow f .
The packet loss rate L(f, e) is measured by comparing the
rate at which packets are forwarded for f and the rate at
which ACK packets return. Similarly, at any node u of the
network, it is possible to measure the power consumption
in watts πu, as well as the total traffic rate at the node λu,
in packets/second, so that the average energy consumption
per packet at the node is Eu = (πu/λu). These data are also
collected by SPs.

E(f, e), the total average energy consumed by a packet
of flow f from node e until the destination, is then the
sum of the energy consumed at each node from e to the
destination.

The CPN approach uses a goal function, which describes
the objective that the self-aware system is trying to min-
imize and whose value can be measured. At any node e,
for any flow f traveling through it, the goal function
G(f, e) can include both the effect of delay D(f, e), energy
consumption E(f, e), and packet loss rate L(f, e)

G(f, e) = [b.D(f, e) + (1− b).E(f, e)][1− L(f, e)]

+ L(f, e)[bD(f, e) + (1− b)E(f, e) (3)

=
bD(f, e) + (1− b)E(f, e)

1− L(f, e)
(4)

where 0 ≤ b ≤ 1 and (1 − b) provide a relative weight to
the importance given to delay and energy. Thus, G(f, e) is
a composite goal function that the CPN tries to minimize
as it decides how to forward packets.

From G(f, e), the RL algorithm used by CPN computes
the “reward” R(f, e) = [G(f, e)]−1 at each node e using
only locally available information that is collected by SPs
and carried back by the ACK packet that corresponds to
each SP. Each time such an ACK arrives at e a new value
Rl(f, e) becomes available at e, where l is the integer
describing the successive values of the reward. The RL
algorithm will first update the quantity

θl = αθl−1 + (1− α)Rl, 0 ≤ α < 1. (5)

So that θl describes the historical behavior of the reward,
and tells how well the network has been doing, and a large
value of θl represents “good” behavior.

The core decision element is the RNN [107], where each
neuron corresponds to a distinct outgoing link of a router.
Note that hardware implementations of the RNN have
also been suggested [108], [109], and such additional
hardware can potentially be installed in a routing engine.

For the case of task allocation discussed in Section III-B,
each neuron corresponds to a distinct server that may be
assigned to a task. The RNN has three useful properties.

1) It is a “recurrent” model, so that each neuron is
interconnected with all other neurons, and allowing
the RNN to represent the competition between neu-
rons which recommend the choice of using different
outgoing links of the network.

2) For a given numerical input and a given set of
weights, the RNN state exists and is unique [110],
that is, we are guaranteed to find a single solution
to the state equations, which will be identical if the
initial data are the same. This characteristic is very
important for the reproducibility of the results and
for the explainability of experimental outcomes.

3) The RNN state is easily computed from a nonlinear
fixed-point computation.
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The RL algorithm will then compute a set of RNN [110]
connection weights as follows.

An N neuron RNN will be used, where N is the number
of outgoing links for node e. With each outgoing link i

from the node we associate the neuron i whose state is
the “excitation probability” qi. Let the RNN weights be
the nonnegative real numbers W +

ij , W−
ij ≤ 0 for i, j ∈

{1, . . . , N}. From RNN theory [110], we know that

qi =
λ+

i +
�N

j=1 qjW
+
ji

ri + λ−
i +

�N
j=1 qjW

−
ji

(6)

where ri =
�N

j=1[W
+
ij + W−

ij ] is the “total firing rate” of
the neuron i, and λ+

i , λ−
i are, respectively, the arrival rate

of excitatory and inhibitory spikes to neuron i from outside
the neuron i. These rate parameters are set so that when
all connection weights are of equal value, all the neurons
in the RNN have an excitation probability of qi = 0.5

representing an equal choice among all outgoing links.
The RNN’s weights are updated as follows:

If Rl ≥ Tl−1, then for j �= k

∀i �= k, W +
ik ←W +

ik + Rl, W−
ij ←W−

ij +
Rl

N − 2

If Rl < Tl−1, then j �= k

∀i �= k, W−
ik ←W−

ik + Rl, W +
ij ←W +

ij +
Rl

N − 2

where the division by N − 2 is due to the fact that we
are excluding the node I from which the SP initially
arrived since we will not send the SP back and also not
increasing the inhibitory weights of the winner nodes when
Rl ≥ θl−1, nor will we increase the excitatory weights of
the loser nodes when Rl < θl−1.

Then we also renormalize the weights to avoid having
weights that indefinitely increase or decrease

r∗i ←
N�

j=1

[W +
ij + W−

ij ] (7)

W +
ij ← W +

ij

ri

r∗i
, W−

ij ←W−
ij

ri

r∗i
. (8)

Finally, we calculate all the qi from (6), select the new
output link for flow f at node e by selecting the new output
link k∗. Note that the node from which an SP entered the
current node (where the next-hop decision is being taken)
will not be used as the next hop since an SP is not allowed
to head backwards along its path, so that the decision at a
given node will only cover N − 1 other nodes. Thus, if I

is the incoming link of a packet to be forwarded, we will
choose the new outgoing link (or next hop) as being k∗ as
follows:

k∗ = argmax{qi : i �= I, 1 ≤ i ≤ N}. (9)

Fig. 7. Overview of the networked architecture.

IV. S E L F - A W A R E N E T W O R K F O R
Q O S , S E C U R I T Y, A N D E N E R G Y
C O N S U M P T I O N
In this section, we describe the example of a practical
working system that embodies many of the concepts and
techniques that were described in Sections III-A–III-C, with
the objective of showing how they can be used in a self-
aware network, to optimize the QoE which was discussed
in Section I-B, and combines in the same common a goal
function three key components of QoE which are security,
QoS, and energy consumption.

Many networks use low-end devices which may be bat-
tery operated. Some of them rely on sources of intermit-
tent harvested energy. Thus, low energy consumption is a
significant issue [111]. Furthermore some attacks, such as
“denial of sleep” and battery attacks, directly aim at deplet-
ing rapidly the energy stored in battery-operated devices
to disable the sensors and their networks [112], [113].
In addition, the overall energy consumption load due to
networks, routers [114], and clouds [28] are also a critical
issues.

A. System Architecture

The system architecture that we consider is shown
in Fig. 7, where we show several smart forwarding ele-
ments (SFEs) or routers connected to each other. Each SFE
can be connected to several fixed or mobile devices, or to
gateways that themselves are connected to several devices
(as at the bottom of the figure). Some of the SFEs will
typically be connected to cloud servers (as at the top
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right-hand side of the figure) which may also consist of
one or more fog servers. Some SFEs can be connected to an
Internet of Things (IoT) or other device which comes under
attack (as at the bottom right-hand side of the figure),
and some SFEs may be connected to Honeypots (H in the
middle of the figure) which collect and analyze attack data.
Attacks are also detected by software at the SFEs and IoT
gateways that carry out attack detection schemes similar
to the work presented in [115].

The QoS, energy, and security data are being constantly
collected throughout the network about the gateways and
SFEs via SPs and is provided to the “Controller and routing
engine” (top of the figure), operating as a standard Open-
Flow SDN Controller to compute paths for the active, using
the CPN algorithm. We call it the smart routing engine
(SRE) whose is to update paths for the flows that are being
carried in the network from source–destination pairs so
as to minimize the goal function, and then communicate
these paths to the SFEs using OpenFlow [116], [117].

Our SDN controller uses CPN routing [65] described in
Section III-C, which is implemented with the RNN [107]
and RL. Though such techniques appeared to be exces-
sively advanced in the past, they are now attracting serious
attention from the industry [118]. The SDN controller is
an extension of a standard SDN network, whose principal
components are as follows.

1) The SFEs, extending the concept of an SDN for-
warder (or switch).

2) The smart controller(s) or routing elements built
upon a standard SDN controller which is an open-
source, professional grade SDN controller Open
Network Operating System (ONOS) [67] is shown
in Fig. 8.

3) Attack detectors [119]–[122] that are designed to
detect attacks at edge devices and SFEs, and Honey-
pots [123] that are also installed at SFEs, or edge
devices and servers, and used to attract potential
attacks and to inform the controller by sending SPs
to the SRE. The SPs will contain an attack detection
probability that is included in the goal function that
the SRE uses for routing control.

The heart of SRE shown in Fig. 8 is the cognitive routing
module (CRM) which implements the decision making by
RNNs [110], [124], responsible for path selection accord-
ing to the current QoS, security, and energy consumption
conditions in the network. The algorithm used by the CRM
was described in Section III-C. The SPs, traveling from
SFE to SFE, gather timestamps used for QoS evaluation,
the current energy consumption at the SFEs (and possi-
bly at edge devices when this information is available),
and security data. The network state DB combines trust
obtained from anomaly detection and forwarded in SPs
to the SRE by SFEs, delays obtained via SPs, and energy
per packet coming from energy consumption and traf-
fic data also carried by SPs. The path translation (PT)
module of the SRE translates the RNN decisions into

Fig. 8. SRE acting as an SDN controller that takes decisions for

goal-based routing using the RNN and RL.

path configuration commands, which are subsequently
processed by the SRE and sent to specific SFEs using
OpenFlow commands.

Each of SFE forwards the network’s flows according
to OpenFlow instructions that are sent to it by the SRE.
SFEs are also able to collect data in the network with SPs
which gather security, QoS, and energy usage data. On the
other hand, SPs are routed by each SFE’s internal cognitive
packet agent (CPA). The agent unpacks the SP, adds its
own data to the list stored inside it, packs it again, and
forwards it to the next node based on the path set up
by the SRE. After the SP has traveled a complete path,
it carries the information given to it by all SFEs along
the path. When a CPA recognizes that the SP it receives
has reached the end of its path, it encapsulates the SP
and sends it up to a specific data module, the Network
State Database (NetStatDB) in the SRE. On the other hand,
payload packets travel from SFE to adjacent SFE following
a path that was set up by the SRE according to the SDN
rules. Thus, SFEs handle both user packets and SPs.

Each SFE also sends standard network monitoring data
(packet counters, byte counters) to the SRE, and an edge
SFE will have client devices connected to it, such as IoT
devices or edge servers.

B. Incorporating Security in the Goal Function

To show how new self-aware functionalities can be
introduced into the system we have described, we illustrate
the case of being able to recognize security issues and
react to them in a timely manner. So, suppose that attack
detectors placed at SFE’s or at edge devices can generate
security alerts that are then conveyed by SPs to the SRE.
In that case, the SRE needs to be able to act upon these
alerts. Thus, the goal function G(f, e) must be extended
and the expression in (3) should be modified to include
security issues.

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1159



Gelenbe et al.: Self-Aware Networks That Optimize Security, QoS, and Energy

For some SFE or node e, and flow f , we define the Trust
level T (f, e), as a nonnegative number that says how much
we can trust f when it flows through e, or reciprocally, how
much f itself can trust e. This quantity can be provided
either by the attack detector or by a Honeypot, or it can be
based on some a priori knowledge concerning the flow f ,
for instance related to its source and destination nodes.
Note that even when a flow is in one direction from source
to destination, the source node can still be compromised by
the flow via acknowledgment or other control packets that
move back from intermediate or destination nodes toward
the source or by other flows that pass enter that node.

Similarly, we define S(f, e) the sensitivity of e when it
is carrying f . This is a metric which says how tolerant the
node e may be to events that are interpreted as a sign of
insecurity in f , and S(f, e) is again a nonnegative number.

With these concepts in mind, we have to indicate, how
we take actions based on these metrics, and we define the
insecurity factor I(f, e) that “separates” e from f and vice
versa

I(f, e) =

�
0, if S(f, e) ≤ T (f, e)

S(f, e)− TF (f, e), S(f, e) > T (f, e)

and using the notation [X]+ = X if X > 0, and [X]+ = 0

if X < 0, we write

I(f, e) = 100 · [S(f, e)− T (f, e)]+ (10)

where the multiplicand 100 is a factor used to scale insecu-
rity in comparison to the values of the QoS and energy
consumption in the goal function. Clearly, if security is
a critical issue this scaling factor will be set to a much
larger value than the usually measured values of energy
consumption per packet, and of delay per packet.

The parameters S(f, e) and T (f, e) can be easily set by
the arrival to the SRE from a node e that is equipped
with an attack detection mechanism such as the ones
described in [122] and [125]. The SP will bring to the
SRE the probability of an attack on node e, P N

A (e). Sim-
ilarly, the flow attack probability P F

A (f) can be defined
for some flow f via the probabilities that the nodes u

which are on the path f , including the source and des-
tination, have been attacked or compromised, via the
expression

P F
A (f) = 1− Πu∈f [1− P N

A (u)]. (11)

Let us illustrate the manner in which this may be used with
two examples.

1) The flow f has a sensitivity to attacks of the order
of 20%, that is, if the probability of an attack being
detected is larger than 0.2, then the flow f feels
uncomfortable about using e. In this case, we set
S(f, e) = 20. Now suppose that the attack detector

Fig. 9. Topology of the test bed.

reports an attack probability P N
A (e) = 0.90—then we

set T (f, e) = 90, and this results in I(f, e) = 100.
2) The node e has a sensitivity to attacks of the order of

20%. Again, we set S(f, e) = 20, and if the attack
detection system provides a probability P F

A (f) =

0.5, then we obtain again I(f, e) = 100.

Thus, S(f, e) acts as a threshold above which an attack
becomes of concern. Note that the nonlinearity (10) can
be modified to offer a more graduated, rather than step-
function, response to security alarms. The goal function
that will be used in our RL-based [126] routing scheme is
extended from (3) to become

G(f, P ) =
bD(f, e) + cE(f, e) + (1− b− c)I(f, e)

1− L(f, e)
(12)

where 0 ≤ b + c < 1 are constants that allow us to weigh
the relative importance of QoS, energy, and security.

C. Experimental Setting

To illustrate these ideas, laboratory test bed was set
up with several SFEs that are implemented in lightweight
Linux boxes with a quad-core ARMv8 processor running
at 1 and 4 GHz, four Gigabit Ethernet interfaces and
2.4- and a 5-GHz 802.11 b/g/n/ac WiFi interface. SFEs
were configured to use Ethernet ports as data plane inter-
faces, and WiFi as a management, monitoring, and SRE
(controller) communication interface.

The data plane connections are represented schemati-
cally in Fig. 9 where

1) the symbols s1, s2, . . . , s7 denote SFEs;
2) the symbols h1, h2, h3, and h4 denote terminal

devices which are each emulated by 633-MHz MIPS
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processor, a 100-Mb/s Ethernet port, and a 2.4-MHz
WiFi connection that is used as a management port;

3) the controller (SRE) is installed on a separate work-
station that is connected to the test bed via WiFi.

We have run many experiments and can emulate a variety
of attacks, such as the effect of a worm which drops packets
at random from the queue of a given SFE, the effect
of distributed denial of service (DDoS) attacks, or the
detection of an intrusion which would result in an increase
of the numerical value of the trust metric TF (.), indicating
greater danger or mistrust, associated with a flow and a
node. We can also represent QoS degradation by sudden
increases in network traffic rates, or by introducing artifi-
cial delays or even complete stoppages (e.g., failures) of
the SFEs.

However, due to space limitations, we focus on exam-
ples of the self-aware SDN’s, that is, the SRE’s, adaptive
reactions to two types of effects: the degradation of QoS
due to a significant increase in source to destination packet
forwarding delay, and the degradation of security by an
increase in the trust metric associated with a given path.
The experiments we describe in this section are summa-
rized in the real trace of events shown in Fig. 13.

The traffic in the network during the experiments was
as follows.

1) Every distinct pair of clients from the set
{h1, h2, h3, h4} connected to the network generated
the same flow of 20 packets per second each, that is,
of the order of 20–40 kb/s. Thus, the network had 12
ongoing connections. Each individual flow’s packet
rate is compatible (and even quite high) with respect
to IoT connections that may be monitoring physical
conditions such as temperature of devices or rooms
and water flow in pipes.

2) Additional traffic came from SPs generated by every
edge node at ten packets per second, and the SRE’s
management traffic including OpenFlow commands,
link discovery, topology discovery, and traffic sta-
tistics. We observed that the number of manage-
ment packets passing through an SFE (router or
forwarder), as observed using the Wireshark packet
analyzer, was about four to five times higher than
the SP traffic.

3) The measurements we present only concern one of
the 12 end-user flows.

The experiments we report illustrate the ability of the
network to adapt as a self-aware system. In particular,

1) we evaluate the reaction time of the network as a
whole, to changes in the observed end-to-end delay
of flows, so as to measure the network’s reaction
delays to sudden deterioration of QoS;

2) we measure the reaction time of the SRE itself to
changes in the end-to-end delay of flows;

3) we track the changes to the important parameters
of the RL algorithm: Rl and θl−1 defined in (5),
measured at successive steps l = 1, 2, . . .;

4) we measure the reaction time of the SRE to changes
in the security conditions represented by the level of
trust;

5) we examine the behavior of the SRE in conditions
that combine both the changes in path delay and the
changes in the level of trust regarding the flows.

The SRE was programmed to update the network paths
every 5 s. On the other hand, the measured SRE response
times combine the delay related to the RL algorithm,
the delay related to the RNN’s computation, plus the
network delay to receive data via SPs, together with the
controller’s own decision cycle. The resulting measurement
does not give a clear picture of the speed at which the SRE
works, but it does provide a realistic view of the overall
reaction times perceived from the viewpoint of the network
user.

D. System Reaction Times

As indicated in the literature [127], SDN routers intro-
duce delays in decision making and network changes due
to the need for the collection of data from the base routers,
followed by the computation of a decision, followed in turn
by the transfer of the decision to the base routers using the
OpenFlow protocol. Thus, it was important in this article
to actually measure the resulting effect when we use the
self-aware routing algorithm.

We measured the packet round-trip time between hosts
h1 and h4 of Fig. 9. The best path found by the controller
was {s1, s4, s7}. After 5 s, the delay on link s4 → s7

was changed in three distinct sets of experiments to the
artificial values 100, 200, and 300 ms, and each trial was
repeated independently 20 times.

We measured the time between the change in the value
of the link delay (resulting immediately in an increase in
the packet round-trip delay), and the installation of a new
path, whose effect is observed by the return of the round
trip delay to a lower value, since the new path does not
use the link with the longer delay. The results are shown
in Fig. 10.

Fig. 10 summarizes the resulting distribution of the
network reaction time, measured with an accuracy of 1 s,
over 20 trials for each of the color-coded delay values (100,
200, and 300 ms). Very interestingly, and as expected,
we see that the reaction time is substantially better when
the link delay is higher. Since we are considering the
networked system as a whole, the reaction times are higher
than those observed in Fig. 11.

1) SRE’s Reaction Time to a Large Increase in Link Delay:
The next experiments show the performance of the RNN-
based algorithm in the routing engine (including the effect
of the SPs which convey the QoS information), measured
in a way that eliminates the impact of delays introduced
by the SRE. The reaction time here is measured from the
instant the link delay increases to the time when the RNN
decision is made within the SRE but excludes the SDN time
needed to change paths and inform the SFE. The relevant
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Fig. 10. Measured probability distribution of the reaction time of

the system as a whole, including the network and the SRE,

as viewed by the end user.

probability distributions, each resulting from 20 trials, and
for the three values of link delay (100, 200, and 300 ms)
are presented in Fig. 11. Again we see that the largest
change in link delay (dotted green) results in the fastest
reaction times, as would be expected. As expected, all
times are shorter than those seen in Fig. 11 for the routing
engine by itself.

E. Plotting the Values of the Reward

The values of Rl and θl are plotted versus the index
l of successive events in Fig. 12. We see that that after

Fig. 11. Distribution of the routing engine’s (SRE) reaction time,

including the arrival of SPs to the SRE, and the effect of the

RNN-based RL algorithm.

Fig. 12. Values of Rl and θl versus l the index of the sample.

each update of θl its value follows Rl, but the speed at
which θl follows Rl will be affected by α in (5). In the
present case, we used α = 0.4. The instants when the
two variables differ significantly is when the RNN-based
algorithm “recommends” a path change to the SRE, which
in turn will use the SDN protocol to forward the new paths
to the SFEs.

Note also from Fig. 12 that in these measurements the
system is starting from an empty state, hence the rise in
the values of θl and Rl, but we see that the increase levels
off at the right-hand side of the figure.

F. Reaction to Changes in Network Delay
and Trust Level

The impact of a change in the trust T (., .) level is
shown in Fig. 13, where we present the probability dis-
tribution of the time it takes the SRE to respond to a
large increase of 100 indicating some form of attack,
in the value of T (f, e) for a given e on the path being
currently used. We note the roughly one second average
delay showing the SRE’s capacity to react very rapidly to
attacks.

Finally, in Fig. 14, we show the observed delay across
the network’s response to changing delay (i.e., QoS in this
case) and security conditions. At the first change point
starting at the left of the figure, we see that when a very
high delay of 300 ms appeared on the link, the system as a
whole reacts in circa 2 s, finding a new path that does not
use the deteriorated link. Then, as the T (., .) value rises
significantly as an indication of the lack of security of the
path that is being used, the network reroutes the traffic via
a safe path, which includes a link with high delay. However,
a small change in delay, results in a rapid path change to an
insecure path with good QoS, and rapidly back. After circa
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Fig. 13. Distribution of routing engine reaction time to a sudden

substantial change in the trust metric T(., .).

Fig. 14. System reactions to changes in delay and security. Note

that the x-axis describes the course of real events in seconds, while

the y-axis plots the reaction times of the system as a whole,

in milliseconds, to the events that occur along the x-axis.

50 s, the system manages to find a longer path (in number
of nodes) which has a relatively low path delay and good
security metric.

V. C O N C L U S I O N A N D F U T U R E W O R K
The widely distributed and highly interconnected structure
of information processing systems, and the ever-changing
nature of the underlying infrastructures makes it very
difficult to control such systems in a top down hierarchical
way. Thus, it is important to investigate means to man-
age and run such systems autonomously, based on self-
measurement, local decisions, and self-optimization. The

need for scalability imposes additional constraints, and
the multiple of objectives of QoE, including QoS, energy
savings, and system security offer further challenges. This
took us to the concept of self-awareness, which allows
a system to monitor itself and take decisions based on
objectives that it pursues and observations regarding its
own state.

Thus, in this article, we have started with a survey
of approaches that incorporate self-awareness into net-
worked systems. We have discussed the premises from
cognitive science and also described early attempts related
to self-observation in packet networks which resulted in
widely used Ethernet-like systems. We have then discussed
an early attempt to bring intelligence and adaptation into
networks through the attractive concept of active networks
and discussed some of the ideas that have then carried over
into modern networking research.

Our focus has then turned to more recent work where
self-awareness has been implemented in overlay networks
and task management systems in the cloud for optimiz-
ing system performance. We have reviewed several pro-
posals regarding the combination of recent advances in
SDNs that create programmable controllers to dynami-
cally manage paths in the network to achieve signifi-
cant performance improvements. These discussions have
been completed with experimental results that show
the significant performance improvements that can be
obtained when real-time self-aware adaptive manage-
ment is implemented in an overlay network and in
a cloud.

Then, we have presented an approach to introducing
self-awareness into SDN through a CPN which has specific
performance goals it pursues, and which is implemented
through an RL algorithm that is incorporated into SDN
controllers. It was illustrated then via a specific imple-
mentation in a multihop network test bed where the SDN
controller aims at optimizing QoE including QoS, security,
and energy. Experimental results have been shown con-
cerning the responsiveness of the system, and its ability to
react rapidly to sudden degradation in network delay or in
security levels.

This broad panorama going from historical premises
all the way to a system demonstrator is meant to entice
the reader’s curiosity and encourage the reader to inves-
tigate this area further. Many things remain yet to
be done.

The integration of such techniques into hierarchical
structures is a worthwhile direction of research. We have
incorporated QoS, energy, and security together, and these
areas are not distinct since they strongly interact: cyber
attacks degrade QoS and increase energy consumption,
while the optimization of QoS will itself increase energy
consumption through additional computation and commu-
nication. Similarly, by reducing energy consumption we
may also slow down the system as a whole. Thus, all these
interactions are quite complex and will require further
work.
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Similarly, it will be useful to study the best possi-
ble machine learning techniques that may be used. For
instance, dynamic system management based, not just on
short-term observation through RL but also using long-
term experience and big data, may be an alternative way to
approach these interesting problems. Future work should
also make use of predictions from performance models

to improve and optimize the design of such networked
systems [128], [129].
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