
Verifiable Self-Aware
Agent-Based Autonomous
Systems
This article provides an overview not only of how one can construct self-aware
autonomous systems, but also of how one can potentially have verifiable, self-aware
behavior.
By LOUISE A. DENNIS AND MICHAEL FISHER

ABSTRACT | In this article, we describe an approach

to autonomous system construction that not only sup-

ports self-awareness but also formal verification. This is

based on modular construction where the key autonomous

decision making is captured within a symbolically described

“agent.” So, this article leads us from traditional systems

architectures, via agent-based computing, to explainability,

reconfigurability, and verifiability, and on to applications in

robotics, autonomous vehicles, and machine ethics. Funda-

mentally, we consider self-awareness from an agent-based

perspective. Agents are an important abstraction capturing

autonomy, and we are particularly concerned with inten-

tional, or rational, agents that expose the “intentions” of the

autonomous system. Beyond being a useful abstract con-

cept, agents also provide a practical engineering approach for

building the core software in autonomous systems such as

robots and vehicles. In a modular autonomous system archi-

tecture, agents of this form capture important decision making

elements. Furthermore, this ability to transparently capture

such decision making processes, and especially being able to

expose their intentions, within an agent allows us to apply

strong (formal) agent verification techniques to these systems.

KEYWORDS | Autonomous agents; autonomous systems; for-

mal verification; robot programming.

I. I N T R O D U C T I O N
Autonomous systems, ranging from robots, unmanned
vehicles, “smart” technologies, and on to autonomous soft-
ware, are increasingly popular. For example:

Manuscript received May 31, 2019; revised January 3, 2020 and April 8, 2020;
accepted April 20, 2020. Date of publication May 18, 2020; date of current
version June 18, 2020. This work was supported by the U.K. Royal Academy of
Engineering and through the UKRI/EPSRC Projects (Verifiable Autonomy,
FAIR-SPACE, ORCA, and RAIN) under Grant EP/L024845, Grant EP/R026092, Grant
EP/R026173, and Grant EP/R026084. (Corresponding author: Michael Fisher.)

The authors are with the Department of Computer Science, University of
Liverpool, Liverpool L69 3BX, U.K. (e-mail: mfisher@liverpool.ac.uk).

Digital Object Identifier 10.1109/JPROC.2020.2991262

1) “driverless cars” are being developed and even
deployed on standard highways [1], for example,
Fig. 1(a);

2) robots are being developed for domestic duties, not
just robotic vacuum cleaners [2] [see Fig. 1(b)]
but more complex robotic assistants [3], [4]
[see Fig. 1(c)];

3) unmanned air systems, or “drones,” are available with
varying degrees of autonomous capability not just to
large organizations and the military, but to the public
[see Fig. 1(d)];

4) autonomic systems [5], combining autonomy and
self-awareness in networks/communications struc-
tures, are common;

5) high-frequency or automated trading systems are
available for markets with online access [6], again
with varying degrees of autonomy.

There are many more examples, across industrial,
financial, healthcare, and domestic sectors. Yet most of
these, particularly in safety-critical areas, remain essen-
tially human-controlled: the responsibility for safety in a
“driverless car” remains with the driver; the responsibility
for safety in a remote-controlled “drone” remains with the
remote operator; and so on. Current regulations limit the
amount of true autonomy that such systems can exhibit.
For example, for air vehicles in the United Kingdom, there
are strict regulations [7] ensuring that drones of over
250-g weight must be registered and the operator of such
a drone must pass an appropriate test. Drones are also
restricted in where they can fly, again often relating to their
size. Similarly, there are a range of regulations constraining
the use of “driverless cars,” though these may have local
variations [8].

In what follows, we will describe how we can con-
struct self-aware and increasingly autonomous systems.
Work on self-awareness, particularly introspection and
internal models, has been around for a very long time.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1011

https://orcid.org/0000-0003-1426-1896
https://orcid.org/0000-0002-0875-3862

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

Fig. 1. Examples of embodied autonomous systems currently available. (a) Waymo self-driving car. Source: Waymo. http://waymo.com.

(b) Roomba vacuum cleaner. Source: iRobot. https://www.irobot.com/for-the-home/vacuuming/roomba. (c) Care-o-Bot 4 robotic home

assistant. Source: Fraunhofer IPA. http://www.care-o-bot.de/en/. (d) Parrot Bebop 2 drone http://www.parrot.com.

Clearly, philosophy and psychology have studied these
aspects for centuries, but logic has also developed (led
by philosophy) to provide a range of formalisms for
capturing these aspects. Once we move on to compu-
tational systems, and in particular AI systems, then all
of the above works become even more relevant. We
would argue that self-awareness is, in fact, crucial for
many aspects of safety, reliability, ethical behavior, and
ongoing verifiability. Any practical system will have a
much clearer and more accurate view of its own capa-
bilities and issues if it is self-aware. Furthermore, there
are many aspects of verification, and particularly valida-
tion, that depend crucially on self-awareness. Providing
explanations for actions or choices, as well as diagnosing
and explaining errors or issues, will be vital to accept-
ability, trust, and, therefore, the widespread adoption of
autonomous systems.

It is important to note that we are considering
autonomous systems here, not just individual subsymbolic
components. An autonomous system, especially a modular
one, will comprise a wide variety of components, not only
image classifiers developed using machine learning tech-
niques, but motor controls, sensors, planners, risk analysis
modules, etc. All these components work together to create
the overall autonomous behavior. However, within the
agent-based view it is the core agent/agents that captures/

capture the essential autonomous decision making (that
used to be undertaken by humans). When we carry out
verification and validation of autonomous systems, there
are a wide range of techniques used across the differing
modular components. We might use physical testing for
physical interactions, approximations for adaptive learn-
ing, and even formal verification for key software compo-
nents [9]. Formally verifying the decision making agent
in such architectures does not require us to enumerate
all possible environments/decisions but to verify the way
decisions are made to ensure that decisions are always
taken for the right reasons. In this way, we can be confident
of the decision making process without knowing about
every detailed situation.

In this article, we will provide an overview not only
of how we can construct self-aware autonomous sys-
tems, but also how we can potentially have verifiable,
self-aware behavior. Throughout, we will provide point-
ers to articles providing much greater detail, but intend
to highlight the key issues developed as part of this
article. The key message here is that, by using such a
modular agent-based approach, not only increased auton-
omy but increased self-awareness can be made avail-
able. Our formal agent verification techniques then allow
us to precisely assess a range of key properties. We
will begin, however, with a brief description of three

1012 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

aspects that converge in our work: autonomy; verification;
and self-awareness.

A. Automation, Adaptation, and Autonomy

Although a dictionary definition of (human) autonomy
involves independence, free will, and the ability to make
one’s own decisions, we can take a broad definition of
autonomy in computational systems as:

the ability to make decisions, and potentially take
actions, without direct human intervention.

Although rooted in philosophical views of autonomy [10],
the development of autonomous computational systems
has been taken up, expanding in the 1980s and 1990s,
through control systems [11] and agent-based sys-
tems [12]. This has led to a plethora of variations on
autonomy, and we can refine the above general defini-
tion into further subcategories describing where, and how,
decisions are made.

1) Automatic systems involve a number of fixed,
and prescribed, activities and, while there may be
options that can be taken, these are generally fixed
in advance.

→ Such systems are typically deployed in environ-
ments that are either well-understood and tightly
defined (e.g., factory automation) or where the
poorly understood or undefined parts of the envi-
ronment are not important to system performance
(for example, robot vacuum cleaners).

2) Adaptive systems typically match their activities (and
performance) against a physical environment, often
combining continuous sampling and optimization
through feedback control systems.

→ Here, while the precise nature of the environment
may be unknown, we have a good understanding
of how the robot should detect changes in the
environment and adapt to it in order to achieve
system performance in a reactive fashion.

3) Autonomous systems are neither prescripted nor
driven exclusively by feedback control but can make
their decisions based on a variety of dimensions
including internal state and motivations.

→ These systems are intended for operating environ-
ments that might be complex and unknown, and
so may require variable performance measures or
utilizing a range of adaptation methods depending
upon context (and so, may themselves have to
selecting new goals or modify initial goals).

In devising a range of practical systems and in working
toward strong analysis, such as formal verification, then
distinguishing between these variations is often crucial in
calibrating what analysis techniques should be used and
how much confidence we can place in them.

Since the key new aspect of autonomy is that the system,
rather than any human user/operator/driver, now makes

decisions (and potentially takes actions), it is important
to consider where those decisions are taken. General-
izing about the categories of system above we might
describe how:

1) in automatic systems, the decisions are essentially
precoded by the system developer and are not dra-
matically affected by developments or environments;

2) in adaptive systems, the decisions are essentially
made by the environment with tight feedback
control driving the system through environmental
interaction;

3) in autonomous systems, decisions are taken by the
system software based on internal state (such as
goals or motivations) and context, though informed
by environmental interactions.

As we will see later, the varieties of verification we
might use for each of these classes of system might be
quite different.

Finally, in this section, we note that there is another
dimension regarding autonomy that concerns the level
of human control. Many systems involve some aspects of
human control, and how much of this control there is
is often captured through “levels of autonomy.” Although
there are quite a number of these different classifications,
many being sector-specific, one of the earliest such tax-
onomies captures the spectrum of variable autonomy. This
effort, called “PACT” [13], was developed for aerospace
scenarios and catalog levels of autonomy from level 0
(direct human control) to level 5 (full autonomy), as
follows [13].

Level 0: “No Autonomy”

→ Whole task is carried out by the human except for
the actual operation

Level 1: “Advice only if requested”

→ Human asks system to suggest options and then
human makes selection

Level 2: “Advice”

→ System suggests options to human
Level 3: “Advice, and if authorized, action”

→ System suggests options and also proposes one of
them

Level 4: “Action unless revoked”

4a: System chooses an action and performs it if the
human approves

4b: System chooses an action and performs it unless
the human disapproves

Level 5: “Full Autonomy”

5a: System chooses action, performs it, and informs
the human

5b: System does everything autonomously
The ability to fulfill categorizations such as the above, of
course, depends on the capabilities of the system. A fully
autonomous system might be able to move between the
above levels, whereas an adaptive or automatic system

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1013

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

might find “suggesting options” or “providing advice” quite
challenging. An interesting aspect of this concerns the
mechanism by which a system changes between these
levels; not only when can the operator/pilot/driver give
the system more control, but when can the system relin-
quish some/all control back to the human? Work on such
variable, shared or adjustable autonomy remains of strong
relevance to practical systems [14]–[16].

B. Verification

The term “verification” covers a range of techniques
that aim to assess whether (and how well) a sys-
tem meets its requirements. A particular subset, termed
“formal verification,” carries out the analysis of precise,
formal requirements, with this analysis comprising strong
mathematical/logical techniques such as formal proof.
This leads us to be able, in some cases, to prove that
a system meets its requirements. Within the umbrella
term “formal verification,” there are many different tech-
niques. One particularly popular technique is model check-
ing [17], [18], where the formally defined requirements
are automatically checked against all possible executions
of the system, as captured within a mathematical model.
Model checking is the variety of formal verification most
widely used for safety critical systems, though its use for
autonomous (robotic) systems is relatively recent [19].

As we will see later, we employ a variety of
model checking to formally verify the behavior of our
practical autonomous systems. In capturing the system’s
core autonomous behavior as a rational agent, we allow
formal agent model-checking techniques to be used as a
route to the verification of autonomous behavior [20].
As we will see in Section IV, the verification of autonomy
should take into account not only what the agent does, but
also why it chooses to do it.

Since autonomous systems typically interact with a com-
plex external environment, we must ensure that verifica-
tion is extended to take this aspect into account. However,
since it is impossible to precisely model the real world in
a finite way, especially with its uncertain and continuous
dynamics, then exploration of all possibilities through
approaches such as model checking is infeasible [21]. This
leads us to several alternatives, such as using abstractions,
verification via testing, and runtime monitoring. In the
first case, we may try to abstract from the complexity
of the real world and provide a finite description of this
abstraction that we can then use in formal verification;
this abstraction is very likely to be incorrect in some way
and will need subsequent refinement [22]. It is important
to note that these abstractions of a complex, continuous
“real world” will necessarily never be correct. A practical
alternative is to use sophisticated coverage-driven test-
ing methods, appealing to Monte Carlo techniques and
dynamic test refinement in order to systematically “verify”
a wide range of practical situations. Such model-based
testing is a key technology but, as we move to more com-
plex robot–human interactions, sophisticated extensions

may be required [23], [24]. Again, testing only provides a
partial verification of the system behavior. In any realistic
system, we cannot test all possible scenarios. Finally, while
techniques such as abstraction and testing are typically
used before system deployment, it is also possible to verify
the system as it executes. There are a range of techniques
capturing runtime verification, dynamic fault monitoring,
and compliance testing [25], [26] that provide mecha-
nisms for assessing if the system has strayed (or is straying)
outside its requirements.

As we will see later, our approach is to apply formal
verification to the components of the system that we must
be certain of (e.g., the process of making decisions in unex-
pected situations) and carry out testing for components
whose behavior is tightly dependent on the (unknown)
environment (e.g., object recognition using reinforcement
learning). Such “corroborative” verification, combining a
variety of techniques for distinct components, is increas-
ingly used in robotic systems [9].

C. Self-Awareness

Work on self-awareness, from philosophy, psychology,
AI, and logic, came together in the 1970s and 1980s,
for example, with “mental models” from cognitive psy-
chology [27], logic [28], and computation [29], all help-
ing start the field of “agents.” Similar activities occurred
across object-based systems in computer science (reflec-
tion, meta-objects, etc.) and control systems in engineering
(hierarchical control, model-predictive control, etc). Since
that time, the field of agents, and multiagent systems, has
become vast linking (through control systems) to robotics
and (through objects) to computation, as well as back
to psychology and philosophy. For example, robots with
internal/self-models are well established [30], [31]; com-
putational introspection (including reflection, awareness,
etc.) is often used [32], [33]; and even hardware compo-
nents may incorporate self-awareness [34]. A variation of
this, specifically targeted at networks, has come through
the development of autonomic computing and then on
to (so-called) Self-* systems, most obviously described
as computational self-awareness. Lewis et al. [35] state
the key idea behind autonomic computing is that
“. . . complexity leaves system managers neither able to
respond sufficiently quickly and effectively at run-time,
nor consider and design for all possible actions of and
interactions between components at design time. Thus,
in response, autonomic systems should instead manage
themselves at run-time according to high level objectives”
(attributed to Kephart and Chess [36]).

In our overview of self-awareness from an agent point
of view, we will revert to earlier work in psychology
where the study of self-awareness and introspection (in a
human context) is a strong and persistent research field.
Leading work by Duval and Wicklund [37] described how
individuals could assess not only what they are doing
and experiencing, but why they are doing these things

1014 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

and whether their goals are being achieved. Specifically,
we might focus either on ourselves or on the environment
in which we are situated. In the former, we can assess
the following:

1. What we are thinking?
2. What motives do we have?
3. What we are doing (or at least trying to do)?
4. Why choose this?

We can also go further and, through introspection, assess
our own health and capabilities. So, added to the above we
might have the following questions:

5. What affect this is having on the world?
6. How well we are achieving our goals?
7. How well are we functioning?
8. What current capabilities do we have?

In addition, as we live within a society that provides legal
constraints and ethical norms, we also have the following
questions:

9. Are we acting to legal standards?
10. Are we conforming with ethical/societal norms of

behavior?

There are many other psychological aspects that we are
not concerned with here, for example, emotions such as
happiness or stress. However, the above elements provide
a strong set of requirements for (human) self-awareness
and introspection. These provide us with a framework to
assess how we can design (artificial) autonomous systems
that allow us to implement and expose any, most, or all
of the above and, if so, how strongly can we verify these
aspects in our system?

In this article, we provide an overview of how we
can construct self-aware autonomous systems so as to
expose all the above elements. This will not only facil-
itate explicit self-awareness within the system but will
provide the opportunity for strong, specifically formal,
verification of these aspects. Combining these elements
together, we can potentially have verifiable, self-aware
behavior. In Section II, we address the key aspect of
our approach involving the architectural foundations of
autonomous systems.

II. A R C H I T E C T U R E S
Architectures for autonomous systems, especially for those
systems that have physical embodiment such as vehicles or
robots, require many different functions and functionali-
ties. They need to sense their environment and recognize
objects, communicate with both other systems and people,
move using some form of propulsion mechanism, and
act on their environment, for example, through grippers,
drills, loudspeakers, etc. In many complex autonomous
systems, it makes sense to have all of these aspects,
such as sensors, actuators, and communication as separate
components in a modular architecture. The predominant
modular middleware, at least in academic endeavors,
is provided by the robot operating system (ROS) [38].

Each modular component, together with specific hardware
(cameras, wheels, etc), will incorporate software to control
(or interpret) the activity of the hardware. Consequently,
software control systems are very widely used to manage
and monitor individual hardware components. Each of
these (software controlled) components then forms part of
an architectural scheme linking components together and
providing whole system behavior.

A most obvious architectural approach is to have very
limited modularity and to implement large and complex
monolithic control systems integrating multiple hardware
devices. At this extreme we might, for example, provide a
complex (and deep) neural network to control all aspects
of our system. While this avoids problems with modularity,
it increases the complexity significantly, especially when
we require explainability or verifiability. Such a monolithic
approach is also difficult to engineer and maintain, and
so a more structured architecture, in terms of hierarchical
control is very popular. Here, a particular control system
“manages” subsystems, each with their own control algo-
rithms. Each of the subsystems might, in turn manage
further subsystems. Such a hierarchical tree-like structure
provides natural organization in terms of levels of abstrac-
tion, with the higher levels dealing with more abstract
considerations, and the lower control nodes dealing more
directly with hardware/system control. This hierarchical
type of approach is very popular within cyber–physical
systems such as robots [39].

An alternative, but also hierarchical, approach uses sym-
bolic AI techniques. For example, a planning node within
such an architecture utilizes a symbolic world model and
invokes symbolic planning to provide potential solutions.
Being in symbolic form, often encoded via variations of
formal logic, the representations of world, plan outcomes,
and plan options, are amenable to deductive reason-
ing and sophisticated analysis of various forms. While
such approaches can benefit from analysis and reasoning,
the techniques used are generally much slower than sub-
symbolic algorithms such as provided by neural networks.

This leads on to an obvious compromise involv-
ing hybrid architectures. Developed within control sys-
tems engineering, hybrid architectures provide a mixture
of (continuous) feedback control nodes, often at lower lay-
ers in a hierarchy, together with (discrete) nodes involving
symbolic reasoning at higher levels. The feedback control
nodes are fast and provide rapid interaction and local
optimization, while the discrete symbolic nodes manage
activity across the continuous nodes also providing discon-
tinuous changes in behavior that are difficult to produce
using hierarchies of continuous controllers. Such hybrid
architectures are efficient and flexible yet, in spite of the
discrete nature of higher level nodes, are often opaque in
terms of exposing the reasons for their decisions, etc.

In our work, we go one step further and ensure that
the high-level symbolic nodes are themselves agents.
An “agent” is a key abstraction devised to capture the
concept of “autonomous behavior” [40], and an agent will

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1015

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

Fig. 2. Hybrid agent architecture.

typically make its own decisions about what to do and
when to do it. Importantly, any high-level decision about
what to do is encapsulated in the agent, corresponding
to our earlier “fully autonomous” categorisation. We take
this yet further and insist that any high-level agent (and
there is often only one) in the architecture is a rational
agent [41]. Alternatively termed as either an “intentional
agent” or “cognitive agent,” this is an agent that not only
makes its own decisions but also:

must have explicit reasons for making the choices
it does, and should be able to explain these if
necessary.

These hybrid agent architectures provide flexibility and
efficiency [42] while, as we will see later, retaining explain-
ability and verifiability [20]. The agents themselves are
symbolic, typically programmed in terms of the so-called
BDI principles [43], [44]: agents contain Beliefs about the
state of the world (and themselves), Desires representing
their long-term goals, and Intentions capturing the goals
that the rational agent is committed to. As we will see
later, these components are crucial in providing a range
of self-aware elements within the autonomous system.

It is useful to note that rational agents in these hybrid
agent architectures collate information from their subsys-
tems, representing them in terms of beliefs. Then, based
on current desires (long-term goals) and beliefs, they
deliberate and decide what activity to undertake, and
finally invoke activity again within their subsystems. The
agent is not driven solely by environmental interaction and
can choose, for example, based on its own motivations,
to undertake very different activities. In such a hybrid
approach, the rational agent is responsible for high-level
autonomous (discrete) decisions, while traditional feed-
back control systems are responsible for low-level (contin-
uous) interactions.

Fig. 2 aims to convey a typical structure for such a
hybrid agent architecture. On the left, there are a range
of feedback control modules, such as:

1) those integrating and assessing perceptions coming
in to the system—for example, object recognition,
sensing, planning, language understanding, etc;

2) those invoking actuation or communication under-
taken by the system—for example, motor control,
language generation, manipulation, etc.

Those modules dealing with perceptions process
data/signals and provide symbolic knowledge to the
rational agent. The agent then makes high-level decisions
given what it has received, combined with its internal
state and representation of context, and then sends
actions/instructions to various control elements that will
invoke the actuation and communication. While there
are some cases where there may be a direct link from
the perception elements to the actuation elements, for
example, in emergency situations requiring immediate
reaction, the general process is to locate all high-level
decisions in the rational agent.

As indicated above, there will likely be very many
feedback control components but typically only one
rational agent per autonomous system. For example,
a “driverless” car will have feedback control components
for object recognition, learning, engine monitoring, etc,
and will have further components controlling motor
speed, lane-following, braking, communication, etc. The
agent will, based on input received from the perception
elements, make decisions about how to proceed and will
then invoke various actuation components, for example,
whether it is safe to turn, what to do if something
unexpected happens, etc.

As we will see later, a key aspect of self-awareness
is for the agent to be aware of the control modules
within the architecture and to have a (hopefully rea-
sonably accurate) view of the capabilities and reliabil-
ity of each. For example, if some sensor fusion module
regularly produces incorrect results, the agent can take
this reliability into account when making decisions (espe-
cially critical decisions) when this node provides it with
some input.

Example: Consider an unmanned air system, or a
“drone,” that is fully autonomous. There will be a variety
of continuous control subsystems such as those involved
in object recognition, communication to authorities, fault
detection, navigation, autopilot, etc. In very specific emer-
gency cases, such as an imminent collision, we might have
direct linkage between these subsystems. For example,
within something like an Airborne Collision Avoidance Sys-
tem, object recognition might be connected directly to the
autopilot. In general flight, however, the sensing/detection
components pass information (such as “air vehicle detected
at 2-km distance, bearing 90◦”) to the agent. The agent
then uses this, combined with its mission goals, safety
requirements, etc., to decide what to do next. The “what to
do next” will rarely be detailed, low-level controls but will
typically be new destination instructions to the autopilot
or an intention to keep monitoring the other air vehicle’s

1016 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

position. In such a way, the agent provides separation
of the high-level decisions, from the low-level signals,
reaction, and manipulation.

Work on architectures particularly for self-aware or
autonomic systems are, as we might expect, derived from
work on agent architectures. These were often, in turn,
derived from psychological or philosophical interpreta-
tions of human decision making. Consequently, change in
high-level goals in computational systems can often been
seen as analogous to (interpretations of) humans “chang-
ing their mind.” This article has led on to the development
of a particular branch of “computationally self-aware” sys-
tems. For example, the collection [35] describes the work
from a large EU project tackling self-aware systems, bring-
ing together strands from multiagent systems, autonomy,
philosophy, predictive control, planning, etc. The collec-
tion develops the notion of computational self-awareness,
a development of introspective agents, but is particularly
targeted at networks, as it says it “focuses on architec-
tures and techniques for designing self-aware computing
systems at the node and network levels.” As this traditional
system focus, the techniques utilized are almost exclusively
based on learning, typically online learning, reinforcement
learning, and adaptivity in general. It is notable that, in this
article, the route from psychology and philosophy through
to computation follows a very similar path to that of agents
and multiagent systems and, to a lesser extent, general AI
before that. Although much of such work is focused on
learning, models built through learning, and adaptivity,
reference is made to formal models (though limited to
continuous envelopes), to higher level discrete concepts
such as “knowledge” (though limited to ontologies), and
to the self-models widespread across a range of disciplines.
All of these aspects are relevant to us. However, as high-
lighted in the foreword to [35] “there is still a lack of
formal frameworks for rigorously about the behavior of
such systems.”

III. S E L F - A W A R E N E S S I N H Y B R I D
A G E N T A R C H I T E C T U R E S
We will now go through a range of the self-awareness
attributes expected of humans (as described earlier) and
assess how well we can capture these within autonomous
systems built using the above hybrid agent approach.
Several of the attributes or concepts will merge once
we consider artificial, rather than human, systems but
it is instructive to explore how (and if at all) artificial
autonomous systems can provide what we might consider
to be self-awareness.

Recall that the computational elements we are con-
cerned with are typically termed rational (alternatively,
intentional or cognitive) agents [43], [45], [46]. The core
aspects here are that, as they are autonomous, these agents
should have some “motivation” for acting in the way that
they do. An agent is rational in the sense that the decisions
it makes, often in unpredictable environments, should be
both “reasonable” and “justifiable.”

A. What Is It “Thinking”?

Can we expose the “reasoning” of the agent/system
to show what options there are, where we are in the
execution, and what agent is trying to do? In relation to
human self-awareness, this corresponds to asking:

1. What we are thinking?
2. What motives do we have?
3. What we are doing (or at least trying to do)?

Rao and Georgeff [44] developed a specific agent
framework where agents comprise the “mental attitudes”
of beliefs, desires, and intentions (BDI) that are used to
describe, respectively, the informational, motivational, and
deliberative states of the agent, and together effectively
determine the high-level behavior. Rational agents,
particularly BDI agents have a “reasoning cycle” that
captures the stages of reasoning that the agent will go
through. The particular agent programming language we
have developed and deployed, Gwendolen [47], [48],
exhibits a reasoning cycle typical of many BDI
languages.

1) Get external perceptions/messages—Extract all the new
information received, either from the environment or
from other agents.

2) Generate possible intentions—From the new inputs,
combined with existing intentions, a new set of possi-
ble intentions is generated representing events (new
beliefs) the agent needs to handle, goals the agent
wants to achieve and (where an intention has an
associated plan) the steps that the agent has chosen
for pursuing the intention.

3) Select an intention—Choose one from this set.
4) Where there is no associated plan for handling the

intention’s event or achieving its goal, generate plans
for that intention and select one of these plans and
associate it with the intention.

5) Execute the next step in the plan for the selected
intention.

6) Go back to 1).

If, in 3) no intentions are available, then the agent goes
back to 1) to check its environment for updated percep-
tions and new messages, both of which may then generate
new intentions.

In 3), there is an application-specific function that
selects one intention out of a set of intentions. By default,
intentions are maintained in a first-in–first-out (FIFO)
queue and selected in that order.

Step 4) involves inspecting a plan library and finding
plans that match the current intention. These check both
the event (belief or goal) the intention needs to handle and
that some plan-specific context (a logical expression over
the agent’s beliefs and goals) holds. As with intentions,
application-specific functions for selecting a plan from the
set can be created but, by default, plans are selected in
an order specified by the programmer. Plans specify a
sequence of steps to be taken which can include adding
or removing beliefs and goals and performing actions such

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1017

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

as sending instructions to other parts of the autonomous
system.

In this sense, the options and motivations are symbol-
ically represented and so can be used in explanations of
what the agent (and, hence, system) is trying to do (see
Section VI-A). So, corresponding to human self-awareness,
we can see agent/system self-awareness as follows.

1. What is it “thinking”? −→ Where are we in the agent’s
reasoning cycle [steps (1)–(6)]?

2. What motives do we have? −→ What are the agent’s
current goals/desires?

3. What are we doing (or at least trying to do)? −→
What is the agent’s currently selected intention?

B. Why Choose That?

As well as exposing the state of internal intentions,
it is important to expose deliberative aspects, in particular,
the reasons for taking certain decisions. Why is one par-
ticular course of action chosen rather than another? What
options are there, what reasons/motivations were used for
selection, and what options were not chosen (and why)?
Again, relating back to human self-awareness, we might
ask the following.

2. What motives do we have? −→ What are the agent’s
current goals/desires?

3. What are we doing (or at least trying to do)? −→
What is the agent’s currently selected intention?

4. Why choose this? −→ Why was this inten-
tion/plan/action selected?

As in Section II, we can expose (and explain, if neces-
sary) exactly what “motives” (i.e., goals/intentions) the
agent/system has, and so what it is “trying” to do. Now we
can also expose the plan selection mechanism (potentially
also intention selection) in order to capture the reasons for
choosing one plan to achieve some goal/intention, rather
than another.

Abstractly, we might have a simple goal to go_to_shop
and have two possible plans:

1) go_to_shop by vehicle;
2) go_to_shop by walking.

Without any further beliefs/motivations we might choose
arbitrarily between these. But if we now add a
goal/motivation to get to the shop quickly, then when
we come to this choice again, we will select the first
option (assuming the vehicle is quicker than walking).
On the other hand, if the agent has a belief that
vehicle_out_of_fuel is true, then the selection will
favor the second plan. In all these cases, the reasons for
choosing one plan over another is explicit and symbolically
represented.

Example: Consider a robot deployed in a search and
rescue situation. It might have a number of roles including
map_area and clear_area. The robot might well be
part of some ad hoc team of robots formed rapidly on
the fly and its role (mapping or clearing) will have been

assigned during team formation and transformed into a
goal. We will represent a plan in the general form

Event: Context <- Action

where Event is the event associated with the current
intention (i.e., the addition or removal of a belief or goal),
Context is the plan-specific context that needs to hold
for the plan to be applicable, and Action is an action to
be taken if the plan applies. We will use B p to indicate
that some predicate p is a belief of the agent and G q to
indicate that some predicate q is a goal of the agent.

In our example, the robot therefore has two plans for
what to do when it enters a location that contains rubble.

1) B contains_rubble(Location): G map_area
<- send_message(contains_rubble

(Location))
Here, the recognition that a particular belief has
become true (B contains_rubble(Location))
acts as a trigger for the behavior. However, there
is a context requirement (or guard) that acts
as a filter on triggered behavior (G map_area).
Then, if the trigger occurs and the guard is
satisfied, the body of the plan can be invoked
(send_message(contains_rubble(Location)).
Consequently, the intuitive representation of the
above is

If you believe the current location contains rubble
and your goal is to map the area then send a
message to the rest of the team informing them
of the location of the rubble.

2) B contains_rubble(Location): G
clear_area <- collect_rubble
This second plan corresponds to

If you believe the current location contains rubble
and your goal is to clear the area then collect the
rubble.

To extend the example the robot might also have a plan
for how to react if it receives an urgent request for help
(e.g., from a trapped person). In a situation where it both
receives a call for help and perceives some rubble, then
its intention selection mechanism can potentially prioritize
handling the call for help.

In summary, in choosing what to do and how to do it, the
agent will use its particular intention selection [49], [50]
and plan selection [51], [52] mechanisms, both of which
can be exposed to scrutiny.

C. What Can It Do?

Systems take actions that impact the real world. If we
are to use a rational agent to reason about these actions
and their effects, then we typically need to model these
actions as capabilities. Essentially, capabilities simply
extend actions with preconditions describing the state
of the world in which the action will be invoked and

1018 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

postconditions describing the (expected) change in the
world affected by the action. These preconditions and
postconditions are typically represented in symbolic logic,
allowing the agent to reason about when the actions can
be used and what outcomes from them might be expected.

A capability can thus only be executed when its precon-
ditions are satisfied, and its postconditions will be satisfied
if the action/capability succeeds. This form of capabil-
ity/action theory is widely used in planning systems as
well as agent programming, and corresponds with classical
STRIPS [53] or primitive operations [54], while BDI pro-
gramming languages that explicitly deal with capabilities
include 3APL [55] and GOAL [56]. Once we have such
capabilities, the following questions become clearer.

5. What affect is this having on the world?
6. How well we are achieving our goals?
8. What current capabilities do we have?

Certainly, the answer to 8) is clearly linked to the set
of viable capabilities the agent has. The answer to 5) is
potentially more complex and can involve combining a
tree of capabilities so that the postconditions of all these
combined actions/capabilities describe all the possible
ways in which the system can “impact” the real-world.
Answering 6) requires the agent to monitor its progress
toward its goals.

The inclusion of a perception step in the reasoning cycle
of most BDI agents allows them to monitor the effect of
their actions on the world. At its simplest, the concept
of an achievement goal used in many BDI languages
enables agents to continue attempting some action until
some desired state of the world is achieved. For instance,
an agent could have a goal to clear an area of rubble and a
simple plan

G clear_area:{}<-select_and_remove_debris

interpreted as follows: If your goal is to clear the area select
and remove one piece of debris. Note that this plan has
an empty context, {}, and so it is always applicable if the
agent still has a goal to clear the area.

This plan will continue executing until the goal is
achieved (i.e., clear_area is achieved), so the agent
will continue selecting and removing pieces of debris until
no more remain. More sophisticated plans could track
progress toward achievement of the goal, for instance,
checking in the plan context that the amount of rubble in
the area was reducing. If the amount of rubble was not
reducing, then the system could conclude that something
was wrong with the debris removal capabilities and take
appropriate action.

In principle, we can go beyond the straightforward
modeling of actions and capabilities and bring in much
stronger mechanisms to predict future behavior. There
are many works related to this area, such as in control
engineering through aspects such as predictive control, but
we just mention one stream of work that is very relevant
to our model. This is work by Winfield and colleagues
incorporating self-simulations within an autonomous sys-
tem, particularly a robot. Inspired by the artificial theory of

mind, this article provides (mobile) robots with simulation-
based internal models that the robot can use for the
prediction of outcomes. Thus, at significant moments, the
robot can simulate/predict what might happen if it chooses
various actions, and then can assess the outcomes. This
has been shown to be very useful in predicting both
safe [57] and ethical [58] behavior. Furthermore, this
approach coincides with our work here when we consider
the verification of ethical autonomy in [59] and later in
Section V-B. Finally, while this self-simulation approach is
very appealing it is also very costly since predicting all
possibilities at every execution step is infeasible. However,
just as we humans do, this approach need only be used
at critical or important decision points, thus potentially
limiting the overall cost.

D. How Well Is It Working?

This ability to monitor the affect an agent is having
on the world and, in particular, to reason about success
and failure naturally leads us to consider the following
question:

7. How well are we functioning?
and to a more refined view on:

8. What current capabilities do we have?
The representation of capabilities in an explicit way has a
practical benefit. Representing capabilities in terms of pre
and postconditions allows us to compare the actual effect
an action has in the world with its expected effect. For
instance, in [60], we advocate representing capabilities as
a tuple �C, Pre, Post, φs, φf , φa�, where C is an identifier for
the capability; Pre and Post are preconditions and postcon-
ditions; and φs, φf , and φa are logical conditions for when
the capability has “completed and succeeded,” “completed
and failed,” or is “ongoing but in need of an abort.”

Conditions such as φs can be inferred from the agent’s
belief base and so checked after the perception stage has
occurred. This allows the agent to monitor the effect of the
action on the environment and react as appropriate. Action
monitoring and failure for BDI agents is an area of ongoing
research.

If some capability is malfunctioning, for example, due to
failure of a software or hardware component, then it may
be necessary to adapt the plans that use that capability.
We might need to replace either the whole plan, or com-
ponents within it, by alternative actions/capabilities. It is
here that the awareness of the agent is concerned with
what it is trying to do and what capabilities it provides
as benefits. The agent can reason about how to replace
some plan elements by carrying out symbolic reasoning in
order to assess whether the modified plan will achieve less,
more, the same, or just different outcomes. Further work
along these lines, involving a rational agent reasoning
about its explicit capabilities, is given in [61]. As a simple
example of capability representations, the move action of
an autonomous vehicle is represented in [61] as

C = {at(X), not (X = Y)}move(X, Y){not at(X), at(Y)}

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1019

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

where X is the current position of the vehicle, and Y

is the destination. The above capability C incorporates a
precondition that the vehicle must be at (X) and a postcon-
dition that (upon successful completion) the vehicle will be
at (Y). We assume that this simple move capability works
by calculating a plan of waypoints to the desired location
Y , and then calculating the necessary wheel rotations to
navigate between the waypoints.

Now, suppose we have a plan to perform some task
(for instance, some kind of inspection task) at a specific
location. So, we might have a plan

B daily_inspection_time:
B current_location(X)
<- move(X, inspection_point); inspect

When it is the daily inspection time, move from
the current location to the inspection point and
perform the inspection.

If something has gone wrong with one of the
motors or wheels on the robot, then the calculations
needed to navigate between waypoints in move(X,
inspection_point) may no longer be accurate (for
instance, its movement calculations may always result
in the robot slightly missing its target location) and this
plan would start failing. An alternative movement strategy
might be to use a feedback controller to fix on the desired
final location and move there by orienting in that direction
and then activating the motors to keep the robot always
pointing the same way and moving forward. This could be
represented by the capability

C1 = {at(X), not (X = Y)}feedback(Y) {not at(X), at(Y)}.

It is easy to see that the new action feedback(Y), invoking
a particular feedback controller, should be substitutable for
move(X, Y) in the inspection plan.

Potentially, it would also be possible to learn new
postconditions for move(X, Y) utilizing work on the
learning of action descriptions from the domain of AI
planning [62], [63].

IV. F O R M A L V E R I F I C AT I O N O F
R AT I O N A L A G E N T S
Formal verification is essentially the process of assessing
whether a precise specification, usually given in a formal
logic, is satisfied on the system in question. For a prop-
erty A, given in the relevant logic, there may be many
different approaches to formal verification [64]–[66], from
deductive verification against a logical description of the
system S (i.e., a proof that S implies A) to the algorithmic
verification of the property against a formal model of the
system MS (i.e., MS |= A, meaning that A is true of all
possible routes through MS). This algorithmic approach
has been very successful in both academia and industry,
principally via the technique of model checking [17].
This takes a precise, mathematical model of the system

in question, defining all the system’s possible executions,
and then checks the required logical property against this
model (and, hence, against all possible executions).

While model checking involves assessing a logical for-
mula against all executions of a model of the system,
an alternative approach is to check a logical formula
directly against all actual executions of the system. This
progam model checking approach [67] depends centrally
on being able to determine all true executions of the actual
program. With languages such as Java, this is feasible
since virtual machines are available that can be used
to extract all program executions. Specifically, the Java
Pathfinder (JPF) system carries out formal verification of
Java programs following this approach by assessing all
possible execution paths through the Java program [67].
While sometimes slower than traditional model checking,
this approach avoids the need for an additional level of
modeling (and therefore, justification) and ensures that
the verification results directly apply to the real code.

In examples discussed later, we utilize the MCAPL
framework, which includes a model-checker for our agent
programs built on top of JPF. As the MCAPL framework
is described in detail in [68], we provide only a brief
overview here. MCAPL has two main subcomponents: the
AIL-toolkit for implementing interpreters for BDI agent
programming languages; and the agent JPF (AJPF) model
checker for verifying programs in those languages.

Interpreters for BDI programming languages are pro-
grammed by instantiating the Java-based AIL toolkit [69].
Essentially, an agent system can be programmed in the
normal way for the programming language but then any
program must run within the AIL interpreter, which in turn
runs on top of the JPF virtual machine.

AJPF is a customisation of JPF that is specifically
optimized for AIL-based language interpreters. Agents pro-
grammed in languages that are implemented using the
AIL-toolkit can thus be formally verified via AJPF. The
Gwendolen language we use throughout this article is just
such a language and so AJPF provides a formal verification
route for our rational agents. Furthermore, if agents run
within an environment programmed in Java, then the
whole agent-environment system can be model checked.
Here, symbolic execution of the code is used to generate
all executions, while the modified virtual machine allows
backtracking over various executions generated.

Common to all language interpreters implemented using
the AIL are the AIL-agent data structures for beliefs, inten-
tions, goals, etc., which are subsequently accessed by the
model checker and on which the logical modalities of a
property specification language are defined.

Finally, in our case, the base formal logic used is a tem-
poral logic of belief, intention, and action. This combines
standard (linear time) operators such as “�,” meaning
“always in the future,” and “♦,” meaning “at some point in
the future,” with operators capture the beliefs, intentions,
or actions of various agents. For example, we use the
formulas such as Bx daytime to represent the statement

1020 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

that agent x believes it is daytime. Again, we will not
provide detailed description here but point toward articles
such as [68] and [70].

V. V E R I F I C AT I O N A N D
S E L F - A W A R E N E S S
The ability to formally verify an agent’s behavior and deci-
sion making can lead us toward a range of additional ques-
tions concerning self-awareness and autonomous systems.
We begin with a necessary step before any autonomous
system can be deployed in practical scenarios.

A. Is It Legal?

Once we can expose the high-level system decisions,
we can match these against a range of “expected” behav-
iors. In particular, we can match against legal requirements
we might have. This comparison can be made before
system deployment but, as the system is aware of its
own decision making, it can, in principle, carry out this
analysis as it executes. Although this may involve quite
complex, and resource intensive, verification to be carried
out, it does provide increased flexibility in that the system
is able to match its decision making against new, previously
unseen, legal expectations. In order to show how we might
answer the following question.

9. Are we acting to legal standards?
We will consider one exemplar from the field of unmanned
air systems. This work, from [71] and [72], and partic-
ularly [73], shows how we might formally verify that an
agent controlling an unmanned air system makes the same
(high-level) decisions that a human pilot would (or at least
should). The basic idea is that there are rules describing
what a human pilot should do when in control of an air
vehicle and, once we are replacing human control by a
software agent, then the agent must at least abide by the
same rules the human pilot should. Note that this does not
concern low-level flying skills—the aircraft’s autopilot will
take care of those—but addresses the high-level decision
making involved in issues such as what to do in traffic,
what to do if there are problems, what to do with air traffic
control instructions, etc.

Specifically, in [73], the “Rules of the Air” [74] are
considered. Written for human pilots, these provide the
required (legal) behavior of the pilot responsible for the air
vehicle. Any prospective human pilot is examined against
these rules and so we at least wish to know that if we
replace the pilot with a software agent, the agent will
also adhere to the rules. In order to be truly confident
in the autonomous system, the agent must at least be
verified against all the “Rules of the Air,” no doubt with
additional legal requirements. We will not consider these
extra aspects, but just show how some of the “Rules of the
Air” can be formalized and then formally verified on the
rational agent controlling a relevant air vehicle.1 A typical

1In [73], the air vehicle in question is a simulated one, flying in a
realistic but simulated air environment.

rule (from the “Rules of the Air”) that we expect a human
pilot to obey is

when two aircraft are approaching head-on, etc.,
and there is danger of a collision, each shall alter
its course to the right [74].

We would expect a trained pilot to adhere to this; once we
have an autonomous system, it is our rational agent that is
responsible for this.

As we wish to formally verify that the agent conforms to
this “legal” behavior, we need several elements.

1) The agent that is controlling the unmanned air
vehicle.

2) A formal description of the precise requirement, for
example, of the rule above.

The basic agent implemented in [73] is a Gwendolen agent
comprising 36 plans capturing the different phases of the
air mission, such as taxiing to the runway, interacting with
air traffic control, taking off, following a particular route
at selected altitude, emergency avoid, landing approach,
landing, taxiing to parking position, etc. The agent’s plans
interact with a range of subsystems, some providing input
(such as sensors) others providing capabilities (such as
directional change). As with other uses of agents in
autonomous systems, the agent’s beliefs are formed from
sensor readings. In principle, a BDI agent controlling the
air vehicle might have some/all of the following.
Beliefs, for example, concerning:

1) being at the runway;
2) turning right (e.g., during sense & avoid).

.

Desires, for example, concerning:

1) completing its mission;
2) avoiding collisions and near-misses.

.

and Intentions, for example, concerning:

1) taxiing to runway;
2) turning right to avoid object approaching head-on.

.

In addition to the agent, with its plans, beliefs, and deci-
sion making, we also need a formal description of the
rules to be checked. There are very many of these in
the “Rules of the Air,” with many being ambiguous or
imprecise (after all they are intended for human pilots)
meaning that formalization can be quite difficult. However,
for illustration, we just choose a relatively simple detect
and avoid requirement, as described above.

When two aircraft are approaching head-on,
or approximately so, in the air and there is a
danger of collision, each shall alter its course to
the right.

This rule might be formalized in our temporal logic of
belief and intention as

�(Badetected_aircraft ⇒ ♦Baengage(emergency_avoid))

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1021

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

ensuring that emergency_avoid will be engaged. It is a sep-
arate question, often delegated to nonformal verification
techniques, of how effective emergency_avoid is in ensuring
the aircraft turns to the right, but the expected decision is
nevertheless captured by the above. (There are many more
rules, and formulae derived from the rules, that complete
this formalization—we will not describe them all here, but
see [73] for details.)

Now that we have a suitable Gwendolen agent that
can control, at a high-level, the autonomous air vehicle
together with formalizations of the legal requirements
captured in the “Rules of the Air,” we can carry our formal
verification using AJPF as described elsewhere. Verifying
the above rule is relatively simple, but increasingly com-
plex rules together with a more sophisticated agent, will
lead to complex and time-consuming verification.

If such a verification is carried out before a mission,
then we are likely to be unconcerned with the speed of
verification. In such a case, we know that the unmanned
air vehicle will conform to the legal requirements cap-
tured in the “Rules of the Air.” The agent is aware of
its own decision making and of the rules against which
it has been verified. If the air vehicle moves to a dif-
ferent jurisdiction, then as long as the agent has behav-
ior previously verified to conform to this new context,
it can utilize these. If, however, it comes across a new
set of regulations/rules that it has not seen before, what
should it do? Most likely “stop,” if it can. However, in the
future, we might foresee a situation where the regula-
tions/rules for certain airspaces are available as formal
(in our sense) requirements. Then, there is the possibil-
ity that the agent might invoke formal verification tech-
niques to assess its own plans/behavior against these new
rules, identifying and explaining where mismatches occur.
This, of course, would require much more efficient formal
verification techniques [75].

Finally, while we have concentrated on the rational
agent part of the architecture, an unmanned air system
comprises very many lower level feedback control and sub-
symbolic systems. These range across autopilot functions,
visual recognition, stability management, navigation, sys-
tem health monitoring, etc.

B. Is It Ethical?

While conforming to legal requirements may be suffi-
cient for many autonomous systems, a further question,
particularly for systems deployed in domestic settings is:

10. Are we conforming with ethical/societal norms of
behavior?

Cointe et al. [76] integrate BDI agents and ethical rea-
soning into a comprehensive framework in which agent
reasoning determines sets of desirable, feasible, and moral
actions/plans and then uses context-sensitive ethical prin-
ciples to select one action from these sets. Desirable actions
are those which will advance the agent’s goals (as in the
kinds of reasoning we have already discussed here), feasi-

ble actions are those which can be performed, and moral
actions are those which conform to societal norms. At the
intention/plan selection phase the agent can then con-
sider these sets, selecting from their intersection (if such
exists) or using mechanisms based on some ethical theory
to select them.

In [59], we explore this idea further. We implemented
BDI style reasoning in Python and used Asimov’s Laws
of Robotics as a simple (and well known) example of an
ethical theory that could be used to decide courses of
action. In experiments a robot had a goal to move to a
particular location but through monitoring of its environ-
ment it became aware that a “human” (also represented by
a robot) was moving toward a dangerous area. The robot
could continue moving to its desired location (as ordered)
or choose to intercept the human (and potentially in some
situations could do both). Where the goal-based reasoning
did not produce an ethically acceptable outcome (i.e.,
where harm befell the human) the moral decision making
could override the default choices and would select the
option for intercepting the human.

In performing this reasoning, the Python implementa-
tion used three comparison functions for its options.

1) task1 ≺hd task2—meaning task2 places a human in
more danger (hd) than task1.

2) task1 ≺ro task2—meaning task2 places the robot fur-
ther away from its ordered location (ro) than task1.

3) task1 ≺rd task2—meaning task2 places the robot in
more danger than task1 (rd).

In the case where two options, task1 and task2, are avail-
able, we were able to verify that our implementation of
Asimov’s laws were correct by verifying the properties

�((Ba(current_plan(task1))

→ ¬P(task1 ≺hd task2) (1)

�((Ba(current_plan(task1)) ∧ P(task2 ≺ro task1)

→ P(task1 ≺hd task2) (2)

�((Ba(current_plan(task1)) ∧ P(task2 ≺hd task1)

→ P(task1 ≺ro task2) ∨ P(task1 ≺rd task2). (3)

The three properties state the following.

1) It is always the case that if task1 is believed to be
the current task, then Python has calculated that
task1 either does not place the human in significant
danger or, if it does, then task2 places the human
in greater danger [property 1)—corresponding to
Asimov’s first law].

2) It is always the case that if task1 is believed to
be the current task and Python calculates that it
places the robot further away from its (human
specified) objective than task2, then Python has
calculated that task2 places the human in more
danger than task1 [property 2)—corresponding to
Asimov’s second law].

1022 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

3) That if task1 is believed to be the current task
and Python calculates that it places the robot in
more danger than task2, then either task2 places
the robot much further from its objective than task1
or it results in the human being in much closer to
danger than task1 [property 3)—corresponding to
Asimov’s third law].

Similar properties can be constructed to compare groups
of multiple tasks, etc.

Fundamental to this article was both the self-awareness
involved in monitoring the robot’s environment and pre-
dicting the outcomes of its actions, and the explicit internal
representation of Asimov’s laws that allowed it to pick the
most ethically acceptable option.

We have also investigated the use of other theories
to allow BDI agents to reason about the ethical accept-
ability of their actions. In [77], we considered a situa-
tion where ethical reasoning is only invoked when none
of the systems existing plans apply, or a plan is being
applied but is not achieving the robot’s goal—this follows
from the agent having some self-awareness of the effec-
tiveness of its actions and the options it has available.
In this situation, we considered an architecture where
a route planning system is invoked to produce a wider
range of options and they are annotated with the ethi-
cal consequences of selecting that option. We considered
examples from the domain of unmanned air systems and
an ethical theory based on prima facie duties in which
the system has a preference order over its ethical duties
(e.g., its duty to minimize casualties takes precedence
over its duty to obey the laws of the air). In this system,
we were able to prove not only properties such as those
in the Python-based system (i.e., that the implementation
correctly captured the ethical theory) but also “sanity
checking” properties—so, for instance, in specific scenar-
ios we could verify that the aircraft, if forced into an
emergency landing, would always land in a field rather
than on a road.

Clearly, this just “scratches the surface” of the realm of
machine ethics. There is much work in philosophy, AI, and
robotics concerning all these aspects. However, the above
shows, at least for some simple ethical views, that the
combination of self-awareness (“what decisions are made,
and why”) and formal verification (“are all decisions made
in the right way”) gives us a mechanisms for exploring
verifiable robot/machine ethics.

C. Awareness of Acceptable Boundaries

In order to formally verify the agents controlling our
autonomous systems, we have to supply them with all
sequences of all possible incoming perception predicates.
In systems of any complexity, this rapidly becomes imprac-
tical and we are forced to make some assumptions about
the behavior of the environment in order to control the
state space exploration of the verification technique (in our
case, model checking).

Consider, for example, an intelligent cruise control agent
in an autonomous vehicle, that can perceive the environ-
mental predicates safe, meaning that it is safe for the
vehicle to accelerate, at_speed_limit, meaning that
the vehicle reached its speed limit, driver_brakes and
driver_accelerates, meaning that the driver is brak-
ing or accelerating.

The state space explosion problem, occurring when
all executions need to be explored, can be addressed
by making assumptions about the environment. For
instance, we might assume that a car cannot both
brake and accelerate at the same time: subsets of envi-
ronmental predicates containing both driver_brakes
and driver_accelerates therefore need not be sup-
plied to the agent during model-checking, as they do
not correspond to situations that we believe likely (or
even possible) in the actual environment. This structured
abstraction of the world is grounded in assumptions that
help prune the possible perceptions and hence control
state space explosion.

However, these structured abstractions can be a problem
if their assumptions are incorrect. Let us suppose that the
cruise control system crashes if the driver is accelerating
and braking at the same time. If the subsets of environmen-
tal predicates generated to formally verify it never contains
both driver_brakes and driver_accelerates, then
the static formal verification succeeds but if one real driver,
for whatever reason, operates both the acceleration and
brake pedals at the same time, the real system crashes!

In [78] and [79], we investigated the use of runtime
verification in order to monitor whether the system was
operating within the bounds where it had been verified.
In particular, we generate both the structured abstraction
used in model checking and a runtime monitor from the
same specification (in a formalism known as trace expres-
sions [80]). The runtime monitor is used by the agent
to observe the perceptions coming into the system and
check whether they fall within the bounds of the structured
abstraction. If they do not, then the agent can employ
fail-safe procedures having recognized it as now operating
outside its guaranteed safe envelope.

VI. E X P L A I N A B I L I T Y
Although verification is an important part of the devel-
opment process of any safety-critical system, autonomous
systems face an additional barrier to public acceptance,
namely that their behavior can often seem mysterious.
Thus, it is widely recognized that autonomous systems
need to be explainable and self-aware, and agent-based
approaches, such as we have been discussing here, can
help with this.

A. Can It Explain Itself?

Once we have the exposure of mental states such as
beliefs and desires, possibilities, and choices, we are able
to modify the agent/system to explain itself in more under-
standable natural language. In [81], we carry out such an

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1023

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

extension, providing human-level explanations for the
decisions taken. This effectively provides a “why did you
do that”? button which allows a user to interrogate a robot
about its actions.

Given the symbolic nature of the agent underlying the
autonomous system, this involves utilizing previous work
on debugging cognitive agent programs and extending
it to generate explanations from logs of key events in
the program execution. These logs were represented as a
sequence of numbered states.

In order to make the answers to why-questions com-
prehensible to end users, events must be abstracted from
application-specific predicates. Dictionaries are employed
in order to translate the first-order logic presentation of
concepts within the agent program in natural language.

Typical sample output, from [81], is provided below.

drop was executed because Plan 1: in
response to the event: added the
goal achieve rubble(2,2) do add the
goal achieve “the robot is holding
rubble” THEN move_to(2,2) THEN drop
was selected in state 13 because the event
added the goal achieve rubble(2,2)
was posted in state 9.

This is in contrast to autonomous systems built using more
opaque, subsymbolic AI, where explainability is much
more challenging. In our approach, however, the fact that
we already have explicit representations of beliefs, goals,
selections, and actions, provides a strong basis for a range
of explainability options.

Furthermore, the combination of in-built self simulation
(as outlined in Section III-C) together with the notion of
explainability allows us to move beyond answering just
“why did you do that” questions and on to “what will you
do next, and why” questions.

B. Winfield and Jirotka’s “Ethical Black Box”

In addition to being able to explain its behavior directly
to users/clients, it will be important to provide a clear

and precise record of its behavior, not least for subse-
quent accident investigation or legal action. Winfield and
Jirotka [82] suggested a mechanism analogous to the
“flight data recorder” mandated for all passenger aircraft
but now for robots and designed to record all the deci-
sions made, options available, environmental context, etc.
Once we are able to ensure that any robot can explain
its decisions and options to humans, as in Section V,
then we simply do this at every (or at least every cru-
cial) step but record the explanation in a log rather
than (or possibly as well as) conveying it to the humans
involved.

VII. C O N C L U D I N G R E M A R K S
In this article, we have described a broad theme of work
centered on agent-based architectures for autonomous sys-
tems. With the right type of agent, specifically a rational
agent [41], this not only provides strong self-awareness
capabilities but allows for strong (and formal) verifica-
tion [20]. From a system point of view, separating out
low-level control and high-level decision making in this
way allows diverse verification techniques to be used and
integrated [83].

The approach provides a range of self-awareness
capabilities and capture a diverse range of aspects,
from ethics [59] or self-certification [84] to self-
reconfigurability, [61] and explainability [81]. In addition
to providing a range of capabilities, this approach is being
applied to a range of practical autonomous systems, such
as satellites [70], [85], unmanned air systems [71], [73],
and road vehicle convoys [86]–[88].

Finally, in cases where a distinct agent is not available
within the autonomous system’s architecture, we might
instead add a governor agent to the system to monitor
and regulate actions/decisions the system makes [89],
[90]. Here, we can again use our agent verification
techniques but this time to prove that the governor
agent always regulate the safety/ethics of decisions
correctly [59].

R E F E R E N C E S
[1] Waymo Wins Industry’s First Approval to Test

Driverless Cars on Public Roads in California.
Accessed: May 2020. [Online]. Available:
https://www.cnbc.com/2018/
10/30/waymo-can-now-test-driverless-cars-on-
public-roads-in-california.html

[2] Roomba Vacuum Cleaning Robot.
Accessed: May 2020. [Online]. Available:
http://www.irobot.com/uk/Roomba

[3] E. Ackerman, “Care-O-bot 4 is the robot servant we
all want but probably can’t afford,” IEEE Spectr., to
be published. [Online]. Available: https://
spectrum.ieee.org/automaton/robotics/home-
robots/care-o-bot-4-mobile-manipulator

[4] New Modular Care-O-Bot Generation Released:
Care-O-Bot 4. Accessed: May 2020. [Online].
Available: http://www.ros.org/news/2015/01/
new-modular-care-o-bot-generation-released-
care-o-bot-4.html

[5] J. Pitt, The Computer After Me: Awareness and
Self-Awareness in Autonomic Systems. Singapore:
World Scientific, 2014.

[6] Automated Trading Systems: The Pros and Cons.
Accessed: May 2020. [Online]. Available:
https://www.investopedia.com/articles/trading/
11/automated-trading-systems.asp

[7] Civil Aviation Authority. Unmanned Aircraft and
Drones. Accessed: May 2020. [Online]. Available:
https://www.caa.co.uk/Consumers/Unmanned-
aircraft-and-drones

[8] A. Knapp. Nevada Passes Law Authorizing
Driverless Cars. Forbes Jun. 22, 2011. [Online].
Available: http://www.forbes.com/
sites/alexknapp/2011/06/22/nevada-passes-law-
authorizing-driverless-cars

[9] M. Webster et al., “A corroborative approach to
verification and validation of human–robot teams,”
Int. J. Robot. Res., vol. 39, no. 1, pp. 73–99,
Jan. 2020.

[10] J. S. Taylor. (2017). Autonomy. [Online]. Available:
https://www.britannica.com/topic/autonomy

[11] P. J. Antsaklis and K. M. Passino, Eds., An
Introduction to Intelligent and Autonomous Control.
Norwell, MA, USA: Kluwer, 1993.

[12] M. Wooldridge and N. R. Jennings,
“Intelligent agents: Theory and practice,”
Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152,
Jun. 1995.

[13] M. C. Bonner, R. M. Taylor, and C. A. Miller,
“Tasking interface manager: Affording pilot control
of adaptive automation and aiding,” in
Contemporary Ergonomics. Boca Raton, FL, USA:
CRC Press, 2004, pp. 70–74.

[14] C. Castelfranchi and R. Falcone, “Towards a theory
of delegation for agent-based systems,” Robot.
Autonom. Syst., vol. 24, nos. 3–4, pp. 141–157,
1998, doi: 10.1016/S0921-8890(98)00028-1.

[15] H. Hexmoor and B. McLaughlan, “Computationally
adjustable autonomy,” Scalable Comput. Pract.
Exper., vol. 8, no. 1, pp. 41–48, 2007. [Online].
Available: http://www.scpe.org/index.php/scpe/
article/view/396

[16] L. Esterle and J. N. Brown, “Levels of networked
self-awareness,” in Proc. IEEE 3rd Int. Workshops
Found. Appl. Self Syst. (FASW), Sep. 2018,
pp. 237–238.

1024 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

http://dx.doi.org/10.1016/S0921-8890(98)00028-1

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

[17] E. M. Clarke, O. Grumberg, and D. Peled, Model
Checking. Cambridge, MA, USA: MIT Press, 1999.

[18] P. J. Armstrong et al., “Recent developments in
FDR,” in Proc. CAV, vol. 7358, 2012, pp. 699–704.

[19] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and
M. Fisher, “Formal specification and verification of
autonomous robotic systems: A survey,” ACM
Comput. Surveys, vol. 52, no. 5, pp. 100:1–100:41,
Sep. 2019.

[20] M. Fisher, L. A. Dennis, and M. Webster, “Verifying
autonomous systems,” CACM, vol. 56, no. 9,
pp. 84–93, 2013.

[21] B. Edmonds and J. Bryson, “The insufficiency of
formal design methods: Necessity of an
experimental approach for the understanding and
control of complex MAS,” in Proc. AAMAS, 2004,
pp. 938–945.

[22] R. Alur, T. Dang, and F. Ivančić,
“Counterexample-guided predicate abstraction of
hybrid systems,” Theor. Comput. Sci., vol. 354,
no. 2, pp. 250–271, Mar. 2006.

[23] B. K. Aichernig, H. Brandl, and F. Wotawa,
“Conformance testing of hybrid systems with
qualitative reasoning models,” Electron. Notes Theor.
Comput. Sci., vol. 253, no. 2, pp. 53–69, Oct. 2009.

[24] C. Ioannides and K. I. Eder, “Coverage-directed test
generation automated by machine learning—A
review,” ACM Trans. Design Autom. Electron. Syst.,
vol. 17, no. 1, pp. 1–21, Jan. 2012.

[25] G. Roşu and K. Havelund, “Rewriting-based
techniques for runtime verification,” Automated
Softw. Eng., vol. 12, no. 2, pp. 151–197, Apr. 2005.

[26] Y. Falcone, K. Havelund, and G. Reger, “A tutorial
on runtime verification,” in Engineering Dependable
Software Systems. Amsterdam, The Netherlands:
IOS Press, 2013, pp. 141–175.

[27] P. N. Johnson-Laird, Mental Models: Toward a
Cognitive Science of Language, Inference and
Consciousness. Cambridge, MA, USA: Harvard Univ.
Press, 1983.

[28] K. Konolige, “A computational theory of belief
introspection,” in Proc. IJCAI. San Mateo, CA, USA:
Morgan Kaufmann, 1985, pp. 502–508.

[29] P. Maes and D. Nardi, Eds., Meta-Level Architectures
Reflection. Amsterdam, The Netherlands: Elsevier,
1988.

[30] O. Holland and G. Goodman, “Robots with internal
models a route to machine consciousness?”
J. Consciousness Stud., vol. 10, pp. 77–109,
Jan. 2003.

[31] A. Winfield, Robots with Internal Models: A Route to
Self-Aware Hence Safer Robots. Imperial College
Press, Oct. 2014, pp. 232–257.

[32] M. T. Cox and A. Ram, “Introspective multistrategy
learning: On the construction of learning
strategies,” Artif. Intell., vol. 112, nos. 1–2,
pp. 1–55, 1999, doi:
10.1016/S0004-3702(99)00047-8.

[33] J. Ressia, L. Renggli, T. Gîrba, and O. Nierstrasz,
“Run-time evolution through explicit meta-objects,”
in Proc. 5th Workshop Modelsrun.Time (CEUR),
vol. 641, 2010, pp. 37–48. [Online]. Available:
http://ceur-ws.org/Vol-641

[34] H. Hoffmann et al., “Self-aware computing in the
angstrom processor,” in Proc. 49th Annu. Design
Autom. Conf. (DAC), San Francisco, CA, USA,
Jun. 2012, pp. 259–264.

[35] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and
X. Yao, Eds., Self-Aware Computing Systems—An
Engineering Approach (Natural Computing Series).
Springer, 2016, doi: 10.1007/978-3-319-39675-0.

[36] J. O. Kephart and D. M. Chess, “The vision of
autonomic computing,” Computer, vol. 36, no. 1,
pp. 41–50, Jan. 2003.

[37] S. Duval and R. A. Wicklund, A Theory of Objective
Self Awareness. New York, NY, USA: Academic,
1972.

[38] ROS—Robot Operating System.
Accessed: May 2020. [Online]. Available:
http://www.ros.org

[39] R. Brooks, “A robust layered control system for a
mobile robot,” IEEE J. Robot. Autom., vol. RA-2,
no. 1, pp. 14–23, Mar. 1986.

[40] M. Wooldridge, An Introduction to Multiagent
Systems. Hoboken, NJ, USA: Wiley, 2002.

[41] M. Wooldridge and A. Rao, Eds., Foundations of
Rational Agency (Applied Logic Series). Norwell,
MA, USA: Kluwer, 1999.

[42] L. A. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and
S. M. Veres, “Reducing code complexity in hybrid
control systems,” in Proc. 10th Int. Symp. Artif.
Intell., Robot. Automat. Space (i-Sairas), 2010.

[43] M. E. Bratman, Intentions, Plans, Practical Reason.
Cambridge, MA, USA: Harvard Univ. Press, 1987.

[44] A. S. Rao and M. P. Georgeff, “An abstract
architecture for rational agents,” in Proc. Int. Conf.
Knowl. Represent. Reasoning (KR&R). San Mateo,
CA, USA: Morgan Kaufmann, 1992, pp. 439–449.

[45] P. R. Cohen and H. J. Levesque, “Intention is choice
with commitment,” Artif. Intell., vol. 42, nos. 2–3,
pp. 213–261, Mar. 1990.

[46] M. Wooldridge, Reasoning about Rational Agents.
Cambridge, MA, USA: MIT Press, 2000.

[47] L. A. Dennis, “Gwendolen semantics: 2017,” Dept.
Comput. Sci., Univ. Liverpool, Liverpool, U.K., Tech.
Rep. ULCS-17-001, 2017.

[48] L. A. Dennis, “The MCAPL framework including the
agent infrastructure layer an agent java pathfinder,”
J. Open Source Softw., vol. 3, no. 24, p. 617,
Apr. 2018.

[49] M. Waters, L. Padgham, and S. Sardina, “Improving
domain-independent intention selection in BDI
systems,” Auto. Agents Multi-Agent Syst., vol. 29,
no. 4, pp. 683–717, Jul. 2015.

[50] M. Schut, M. Wooldridge, and S. Parsons, “The
theory and practice of intention reconsideration,”
J. Exp. Theor. Artif. Intell., vol. 16, no. 4,
pp. 261–293, Oct. 2004.

[51] D. Singh, S. Sardina, and L. Padgham, “Extending
BDI plan selection to incorporate learning from
experience,” Robot. Auto. Syst., vol. 58, no. 9,
pp. 1067–1075, Sep. 2010.

[52] J. Faccin and I. Nunes, “BDI-agent plan selection
based on prediction of plan outcomes,” in Proc.
IEEE/WIC/ACM Int. Conf. Web Intell. Intell. Agent
Technol. (WI-IAT), Dec. 2015, pp. 166–173.

[53] R. E. Fikes and N. J. Nilsson, “Strips: A new
approach to the application of theorem proving to
problem solving,” Artif. Intell., vol. 2, nos. 3–4,
pp. 189–208, Dec. 1971.

[54] A. Tate, “Generating project networks,” in Proc. 5th
Int. Joint Conf. Artif. Intell. (IJCAI), vol. 2.
San Francisco, CA, USA: Morgan Kaufmann
Publishers, 1977, pp. 888–893.

[55] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. C. Meyer, “Agent programming in 3APL,” Auto.
Agents Multi-Agent Syst., vol. 2, no. 4, pp. 357–401,
1999.

[56] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J.-J. Meyer, “Agent programming with declarative
goals,” in Proc. Intell. Agents 6th Workshop Agent
Theories, Archit., Lang. (ATAL LNAI), vol. 1986.
Springer, 2001, pp. 228–243.

[57] C. Blum, A. F. T. Winfield, and V. V. Hafner,
“Simulation-based internal models for safer robots,”
Frontiers Robot. AI, vol. 8, no. 1, pp. 1–17, 2018.

[58] D. Vanderelst and A. Winfield, “An architecture for
ethical robots inspired by the simulation theory of
cognition,” Cognit. Syst. Res., vol. 48, pp. 56–66,
May 2018.

[59] P. Bremner, L. A. Dennis, M. Fisher, and
A. F. Winfield, “On proactive, transparent, and
verifiable ethical reasoning for robots,” Proc. IEEE,
vol. 107, no. 3, pp. 541–561, Mar. 2019.

[60] L. A. Dennis and M. Fisher, “Actions with durations
and failures in BDI languages,” in Proc. 21st Eur.
Conf. Artif. Intell. (ECAI), in Frontiers in Artificial
Intelligence and Applications, vol. 263. Amsterdam,
The Netherlands: IOS Press, 2014, pp. 995–996.

[61] R. C. Cardoso, L. A. Dennis, and M. Fisher, “Plan
library reconfigurability in BDI agents,” in Proc. 7th
Int. Workshop Eng. Multi-Agent Syst. (EMAS), 2019,
pp. 1–16.

[62] R. Reiter, Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
Cambridge, MA, USA: MIT Press, 2001.

[63] M. Fisher, D. Gabbay, and L. Vila, Eds., Handbook of
Temporal Reasoning in Artificial Intelligence
(Advances in Artificial Intelligence). vol. 1.
Amsterdam, The Netherlands: Elsevier, 2005.

[64] J. H. Fetzer, “Program verification: The very idea,”
Commun. ACM, vol. 31, no. 9, pp. 1048–1063,
1988.

[65] R. A. DeMillo, R. J. Lipton, and A. J. Perlis, “Social
processes and proofs of theorems of programs,”
Commun. ACM, vol. 22, no. 5, pp. 271–280, 1979.

[66] R. S. Boyer and J. S. Moore, Eds., The Correctness
Problem in Computer Science. London, U.K.:
Academic, 1981.

[67] W. Visser, K. Havelund, G. P. Brat, S. Park, and
F. Lerda, “Model checking programs,” Autom. Softw.
Eng., vol. 10, no. 2, pp. 203–232, 2003.

[68] L. A. Dennis, M. Fisher, M. P. Webster, and R. H.
Bordini, “Model checking agent programming
languages,” Automated Softw. Eng., vol. 19, no. 1,
pp. 5–63, Mar. 2012.

[69] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher,
and M. Wooldridge, “A common semantic basis for
BDI languages,” in Proc. 7th Int. Workshop
Program. Multiagent Syst. (ProMAS). Springer,
2008, vol. 4908, pp. 124–139.

[70] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and
S. M. Veres, “Practical verification of
decision-making in agent-based autonomous
systems,” Automated Softw. Eng., vol. 23, no. 3,
pp. 305–359, Sep. 2016.

[71] N. Cameron, M. Webster, M. Jump, and M. Fisher,
“Certification of a civil UAS: A virtual engineering
approach,” in Proc. AIAA Modeling Simulation
Technol. Conf., 2011, Paper AIAA-2011-6664.

[72] M. Webster, M. Fisher, N. Cameron, and M. Jump,
“Formal methods and the certification of
autonomous unmanned aircraft systems,” in Proc.
30th Int. Conf. Comput. Saf., Rel. Secur.
(SAFECOMP), in Lecture Notes in Computer
Science, vol. 6894. Springer, 2011, pp. 228–242.

[73] M. Webster, N. Cameron, M. Fisher, and M. Jump,
“Generating certification evidence for autonomous
unmanned aircraft using model checking and
simulation,” J. Aerosp. Inf. Syst., vol. 11, no. 5,
pp. 258–279, May 2014.

[74] Civil Aviation Authority. (2010). CAP 393 Air
Navigation: The Order and the Regulations.
[Online]. Available: http://www.caa.co.uk/
docs/33/CAP393.pdf

[75] R. H. Bordini, M. Fisher, M. Wooldridge, and
W. Visser, “Property-based slicing for agent
verification,” J. Log. Comput., vol. 19, no. 6,
pp. 1385–1425, Dec. 2009.

[76] N. Cointe, G. Bonnet, and O. Boissier, “Ethical
judgment of agents’ behaviors in multi-agent
systems,” in Proc. Int. Conf. Auto. Agents Multiagent
Syst. (AAMAS), 2016, pp. 1106–1114.

[77] L. Dennis, M. Fisher, M. Slavkovik, and M. Webster,
“Formal verification of ethical choices in
autonomous systems,” Robot. Autonom. Syst.,
vol. 77, pp. 1–14, Mar. 2016.

[78] L. A. Dennis, A. Ferrando, D. Ancona, M. Fisher,
and V. Mascardi, “Recognising assumption
violations in autonomous systems verification,” in
Proc. Int. Conf. Autonom. Agents Multiagent Syst.
(AAMAS), 2018, pp. 1933–1935.

[79] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher,
and V. Mascardi, “Verifying and validating
autonomous systems: Towards an integrated
approach,” in Proc. 8th IEEE Int. Conf. Runtime
Verification (RV), Nov. 2018, pp. 263–281.

[80] D. Ancona, A. Ferrando, L. Franceschini, and
V. Mascardi, “Parametric trace expressions for
runtime verification of Java-like programs,” in Proc.
19th Workshop Formal Techn. Java-Like Programs
(FTFJP), 2017, pp. 1–6.

[81] V. Koeman, L. A. Dennis, M. Webster, M. Fisher, and
K. Hindriks, “The ‘why did you do that?’ button:
Answering why-questions for end users of robotic
systems,” in Proc. 7th Int. Workshop Eng.
Multi-Agent Syst. (EMAS), 2019.

[82] A. F. T. Winfield and M. Jirotka, “The case for an
ethical black box,” in Proc. 18th Annu. Conf.
Towards Autonom. Robotic Syst., ser. Lecture Notes
in Computer Science, vol. 10454. Springer, 2017,
pp. 262–273.

[83] M. Farrell, M. Luckcuck, and M. Fisher, “Robotics
and integrated formal methods: Necessity meets
opportunity,” in Proc. 14th Int. Conf. Integr. Formal

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1025

http://dx.doi.org/10.1016/S0004-3702(99)00047-8
http://dx.doi.org/10.1007/978-3-319-39675-0

Dennis and Fisher: Verifiable Self-Aware Agent-Based Autonomous Systems

Methods (iFM), in Lecture Notes in Computer
Science, vol. 11023. Springer, 2018, pp. 161–171.

[84] M. Fisher et al., “Verifiable self-certifying
autonomous systems,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops (ISSREW), Memphis,
TN, USA, Oct. 2018, pp. 341–348.

[85] L. Dennis, M. Fisher, A. Lisitsa, N. Lincoln, and
S. Veres, “Satellite control using rational agent
programming,” IEEE Intell. Syst., vol. 25, no. 3,
pp. 92–97, May/Jun. 2010.

[86] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and
S. M. Veres, “Formal verification of autonomous

vehicle platooning,” Sci. Comput. Program.,
vol. 148, pp. 88–106, Nov. 2017.

[87] L. E. R. Fernandes, V. Custodio, G. V. Alves, and
M. Fisher, “A rational agent controlling an
autonomous vehicle: Implementation and formal
verification,” in Proc. 1st Workshop Formal
Verification Auto. Vehicles, in Electronic Proceedings
in Theoretical Computer Science, vol. 257. Open
Publishing Association, 2017, pp. 35–42.

[88] M. Kamali, S. Linker, and M. Fisher, “Modular
verification of vehicle platooning with respect to
decisions, space and time,” in Proc. 6th Int.

Workshop Formal Techn. Saf.-Crit. Syst., in
Communications in Computer and Information
Science, vol. 1008. Springer, 2018,
pp. 18–36.

[89] R. C. Arkin, “Governing lethal behavior:
Embedding ethics in a hybrid deliberative/reactive
robot architecture,” Georgia Tech, Atlanta, GA,
USA, Tech. Rep. GIT-GVU-07-11, 2007.

[90] R. Woodman, A. F. T. Winfield, C. Harper, and
M. Fraser, “Building safer robots: Safety driven
control,” Int. J. Robot. Res., vol. 31, no. 13,
pp. 1603–1626, Nov. 2012.

A B O U T T H E A U T H O R S

Louise A. Dennis received the B.A. degree
in mathematics and philosophy from the
University of Oxford, Oxford, U.K., in 1992,
and the M.Sc. degree in knowledge-based
systems and the Ph.D. degree in artificial
intelligence from The University of Edin-
burgh, Edinburgh, U.K., in 1994 and 2001,
respectively.
She has worked as a Research Associate

with the University of Glasgow, Glasgow, U.K., and The University
of Edinburgh, and a Lecturer with the University of Nottingham,
Nottingham, U.K. Since 2006, she has been working with the
University of Liverpool, Liverpool, U.K., first as a Research Associate
and currently as a Lecturer. Her research interests are autonomous
systems, formal verification, beliefs, desires, and intentions (BDI)
agent programming languages, automated reasoning, and ethical
machine reasoning.
Dr. Dennis is a member of the Embedding Values into

Autonomous Intelligent Systems Committee of the IEEE Global
Initiative for Ethical Considerations in Artificial Intelligence and
Autonomous Systems and the Working Group for IEEE-P7001 Trans-
parency of Autonomous Systems.

Michael Fisher is currently the Chair of
emerging technologies with the Royal Acad-
emy of Engineering, London, U.K. He is also
the Director of the Multidisciplinary Centre
for Autonomous Systems Technology, Uni-
versity of Liverpool, Liverpool, U.K. He has
authored An Introduction to Practical For-
mal Methods Using Temporal Logic (Wiley,
2011). His research interests mainly involve
formal verification for the certification, safety, ethics, and reliability
of autonomous systems.
Prof. Fisher is a member of the British Standards Institu-

tion AMT/10 Committee on Robotics and the IEEE Standards
Group for IEEE-P7009 on Fail-Safe Design of Autonomous and
Semi-Autonomous Systems. He is on the Editorial Boards of both
Applied Logic and Annals of Mathematics and Artificial Intelli-
gence journals. He is also a Corner Editor of the Journal of Logic
and Computation. He holds the European Chair position for the
newly formed IEEE Technical Committee on the Verification of
Autonomous Systems.

1026 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

