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ABSTRACT | Autonomous systems (ASs) operating in real-

world environments are exposed to a plurality and diversity

of sounds that carry a wealth of information for perception

in cognitive dynamic systems. While the importance of the

acoustic modality for humans as “ASs” is obvious, it is inves-

tigated to what extent current technical ASs operating in

scenarios filled with airborne sound exploit their potential for

supporting self-awareness. As a first step, the state of the art of

relevant generic techniques for acoustic scene analysis (ASA)

is reviewed, i.e., source localization and the various facets of

signal enhancement, including spatial filtering, source sepa-

ration, noise suppression, dereverberation, and echo cancel-

lation. Then, a comprehensive overview of current techniques

for ego-noise suppression, as a specific additional challenge

for ASs, is presented. Not only generic methods for robust

source localization and signal extraction but also specific mod-

els and estimation methods for ego-noise based on various

learning techniques are discussed. Finally, active sensing is

considered with its unique potential for ASA and, thus, for

supporting self-awareness of ASs. Therefore, recent techniques

for binaural listening exploiting head motion, for active local-

ization and exploration, and for active signal enhancement are

presented, with humanoïd robots as typical platforms. Under-

lining the multimodal nature of self-awareness, links to other
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modalities and nonacoustic reference information are pointed

out where appropriate.
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I. I N T R O D U C T I O N
Recent decades spawned striking examples of what is
commonly referred to as autonomous systems (ASs), such
as self-driving cars, robots operating in our daily environ-
ment or exploring unknown worlds in deep sea or outer
space, unmanned aerial vehicles (UAVs) for logistics, air
surveillance and combat, autonomous weapon systems,
and many more. What they all have in common is the
use of a large variety of sensor modalities for perceiving
their environment. The challenge to develop efficient tech-
niques for processing the according signals and intelligent
concepts for exploiting the extracted information triggered
an enormous amount of scientific contributions over the
past half-century. While the importance of the acoustic
modality for humans as “ASs” is obvious, relatively little
attention was paid, however, so far to the acoustic modality
of airborne sound1 for ASs, and especially the specific
challenges of ASs with its self-created noise resulting,
e.g., from its own movements. This can be attributed
to the fact that acoustic human–machine communication
and acoustic scene analysis (ASA) only recently reached
a stage of maturity which allows operation outside highly
constrained acoustic environments, and the complexity of
the acoustic scenario faced by ASs is often viewed as

1It should be noted that the large areas of underwater acoustics and
structure-borne sound processing are excluded for the remainder of this
article. Interested readers are referred to [1] and [2], respectively.
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Fig. 1. Generic AS exposed to an acoustic scene comprising human speakers, noise sources, ego-noise, loudspeaker signals, and acoustic

echoes and reverberation.

lying beyond more pressing and still unsolved problems
of simpler scenarios. While speech recognition in real-
world environments progressed enormously over recent
years [3], the wider domain of computational sound scene
analysis [4], [5] is still in its infancy and current research
is still restricted to limited scenarios and generally does
not consider the spatial aspects of acoustic scenes [6].
For an AS, however, spatial information on the sound
sources in its environment is crucial for proper under-
standing. Beyond the limitations of the technology in tradi-
tional acoustic application scenarios, the broad category of
mobile ASs typically poses an additional major challenge
by creating noise and interference itself, so-called ego-
noise, as resulting, e.g., from the mechanical noise of a
moving robot or a self-driving car, or the airflow around
a drone. Stimulated by recent progress in acoustic signal
processing and related learning algorithms, however, it can
be safely expected that in the near future, ASs will be able
to greatly augment their self-awareness by increasingly
exploiting the acoustic domain with its plurality and diver-
sity of sounds carrying a wealth of information, as a crucial
modality for the perception part of a cognitive dynamic
system. The importance of the acoustic modality should
also be recognized in its complementary role in multimodal
tasks, such as audiovisual source localization, where the
visual modality is strongly supported in situations of bad
lighting conditions, occlusions, or if the target is outside of
the current field of view [7].

A generic AS is illustrated in Fig. 1, which high-
lights perception and cognition units as key elements
of the perception–action cycle [8]. Perception comprises
the various sensing modalities and the according sig-
nal processing-based scene analysis collaborating with
the cognition unit. The illustrated sensor unit exhibits
not only a camera and multiple microphones but also
a proprioceptor providing information about the inter-

nal state of the AS, e.g., mechanical control informa-
tion such as joint angle or motor rotation. Obviously,
numerous other sensing modalities may be included,
e.g., acceleration sensors or GPS units providing spatial
information relative to an external coordinate system.
As such, the sensor unit enables the AS to perceive
on the one hand its own contribution to the acoustic
scene, e.g., by emitting ego-noise, and on the other
hand its ambient environment by, e.g., localizing sur-
rounding acoustic sources and extracting their signals.
Both tasks are crucial for an AS to achieve acoustic
self-awareness.

The collected sensor data are then further processed
and analyzed to extract the desired information about
the environment (scene analysis). In the acoustic domain,
it includes several subtasks such as source localization
and tracking, signal extraction, and enhancement, but
also higher-level tasks such as source detection and sig-
nal classification. Based on information extracted from
the acoustic scene, the cognitive unit of the AS con-
trols various actuators of the AS (actuator unit), e.g.,
motors to drive joints or propellers, but also loudspeakers
for human–machine communication. The actuator unit
therefore contributes to the acoustic world which the
AS perceives. Therefore, in the acoustic domain, percep-
tion and action are tightly connected in the perception–
action cycle.

Following the exemplary illustration in Fig. 1, the first
part of the ensuing treatment aims at a comprehensive
presentation of the relevant state of the art in acoustic
signal processing and scene analysis as the basis of acoustic
self-awareness for ASs, emphasizing localization, signal
extraction, and enhancement (see Section II). The ability
of an AS to respond to acoustic events has major poten-
tial in ASA, e.g., for improved localization and extrac-
tion of acoustic signals by motion and changing sensor
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Fig. 2. Overview of methods and algorithms for ASA (see Section II).

topologies. This, however, requires that the AS is aware
of its current state and its impact on the acoustic environ-
ment. These aspects will be discussed in the second part
of this article where we first focus on the specific challenge
for an AS resulting from self-created noise (see Section III).
We then consider motion and time-varying sensor topolo-
gies (see Section IV) and discuss resulting challenges
and opportunities.

Note that counting on a continuing increase of process-
ing capabilities, the scope for the discussed algorithms
is not tailored to currently available hardware platforms
for ASs, but is determined by the technical merits and
potential of the methods. Accordingly, only some of the
approaches presented in the following have been eval-
uated on one of the few commercially available hard-
ware platforms, which are still characterized by limited
processing capabilities due to space and power constraints.
Besides this, such platforms are rarely fully program-
mable, which makes it difficult for the user to employ the
AS for the required purposes. Consequently, self-designed
customized hardware platforms prevail among exper-
imental systems. Especially, computationally expensive
algorithms are implemented and processed offline on
external hardware.

II. A N A L Y Z I N G A W O R L D O F S O U N D S :
B A S I C C O N C E P T S
This section provides an introduction of the signal model
supporting the description of algorithms and an overview
of fundamental acoustic signal processing techniques as
used for ASA, notably for source localization and track-
ing, signal extraction and enhancement, scene classifica-
tion, and event detection (see Fig. 2). Since numerous
approaches for ASs in this area are inspired by more

generic methods, we first present the general underlying
problems and methods for addressing them, and then
concentrate on approaches where generic techniques were
extended for and adapted to ASs.

In the following, we distinguish between ASA and
computational auditory scene analysis (CASA) [9], [10]:
ASA does not refer to the functionality of the human
auditory system. On the other hand, CASA is inspired
by auditory scene analysis, as proposed in [9], and aims
at translating important features of the human auditory
system to computer systems, e.g., for extracting desired
sources among other competing sources. The principles
of CASA are often highly relevant also for ASA of ASs,
especially for humanoïd robots [11].

A. Signal Model

The algorithms considered in the following do not typ-
ically operate on raw time-domain signals but rather use
representations in a time–frequency domain, where the
temporal dependence supports capturing both the nonsta-
tionarity of signals and the time-variance of systems. In the
following, we use the discrete short-time Fourier transform
(STFT) as a widely used generic time–frequency represen-
tation with uniform resolution in time and frequency [12].
We assume that the acoustic transfer functions (ATFs) are
time-invariant within an STFT window such that, e.g.,
the characteristic shape or the statistics of a signal can
be learned or estimated. Typically, time-invariance of the
ATFs within an STFT window can be assured to a sufficient
extent by a proper choice of the STFT window size. If this
is not possible, e.g., if the AS is moving very fast, purely
time domain-based signal processing algorithms should be
considered as an alternative.

Vol. 108, No. 7, July 2020 | PROCEEDINGS OF THE IEEE 1129



Schmidt et al.: Acoustic Self-Awareness of Autonomous Systems in a World of Sounds

Let an AS be equipped with M microphones. We denote
the discrete-time signal of channel m at time instant k

by x
(m)
k , m = 1, . . . , M , and the corresponding discrete

STFT domain representation by X(m) ∈ C
F×T , where F

and T are the number of frequency bins and time frames,
respectively. X

(m)
ft ∈ C denotes the ftth time–frequency

bin of X(m) with f ∈ {1, . . . , F} and t ∈ {1, . . . , T}. For
capturing all M channels at a given single time–frequency
bin ft, we introduce Xft = [X

(1)
ft , . . . , X

(M)
ft ]T ∈ C

M . Based
on this, we define the spatial correlation matrices for time–
frequency bin ft as ΦX,ft = E{XftXH

ft} ∈ C
M×M with E{·}

as the expectation operator and ·H denoting the Hermitian
operator. For simplicity, signals will be referred to by their
discrete STFT representation in the following.

In general, the M microphones mounted to an AS cap-
ture a single or multiple desired (“target”) source signals
in the presence of interfering sound sources and additive
noise. This is expressed in the STFT domain as follows:

Xft =
D�

d=1

HS,d,ft Sd,ft +
J�

j=1

HU,j,ft Uj,ft + NU,ft

+
L�

l=1

HV,l,ft Vl,ft + NEN,ft. (1)

Vector HS,d,ft represents the M possibly time-varying ATFs
between the dth desired target source, which emits signal
Sd,ft and the microphone array. The often challenging task
of detecting and classifying the desired target source(s) is
addressed in Section II-D. Vector HU,j,ft represents the M

ATFs between the jth interfering source emitting signal
Uj,ft and the microphone array. ATFs HS,d,ft and HU,j,ft

contain information about the directions of arrival (DOAs)
of the different source signals. Methods to estimate DOAs
are reviewed in Section II-B. Vector NU,ft contains additive
noise captured by the M microphones which is not caused
by the AS, such as background noise or diffuse room
reverberation. Methods to suppress this noise and the J

interfering source signals are treated in Section II-C. Vector
NEN,ft represents the so-called ego-noise captured by the
M microphones, which is distinctively characteristic rela-
tive to other acoustic signal processing scenarios as it is
directly or indirectly caused by the AS itself (self-created
noise). A comprehensive treatment of methods to suppress
this ego-noise is presented in Section III. If the AS is
equipped with L loudspeakers, e.g., for human–machine
communication, the audio signals emitted by the loud-
speakers Vl,ft feedback into the microphone array. Vector
HV,l,ft contains the M ATFs between loudspeaker l and
the microphone array. Since the loudspeaker signals are
known to the system, suppression of acoustic echoes is
most commonly treated as a supervised system identifica-
tion problem, as discussed in Section II-C4. We note that
the considered model assumes linear transfer functions
between the audio sources and receivers. This assumption
underlies most audio signal processing algorithms but

might be violated if, e.g., low-cost loudspeakers with non-
linear transmission characteristics are involved.

B. Source Localization

In this section, we will first review basic concepts for
sound source localization (SSL). A more detailed overview
for SSL in general and specifically for robots can be found
in [13]–[16], respectively.

Localization is viewed here as estimating the posi-
tion of an active sound source relative to a sensor
array and includes tracking techniques, i.e., techniques
for exploiting previous observations and hypothesized
models for this estimation. Typically, position estimation
requires estimation of DOA and range, or triangulation
techniques [17], [18] using multiple DOA estimates. For
static scenarios, acoustic range estimation approaches such
as [19] are so far much less common than DOA esti-
mation techniques. Range estimation for mobile ASs will
be addressed in Section IV. Very often, however, single
DOA estimates are sufficient for the given task, e.g., when
steering a beamformer (BF) [20] toward a target source.
Therefore, DOA estimation approaches dominate the fol-
lowing review.

1) Position Estimation in a Free Sound Field: We first
consider microphones as point-like sensors in an obstacle-
free sound field (disregarding its mounting to scatter-
ing structures in the real world), which receive delayed
versions of the original source signals, i.e., direct path
components, possible room reflections, and uncorrelated
noise components. For such scenarios, approaches for posi-
tion estimation are considered that can be categorized as
time difference of arrival (TDOA)-, steered response power
(SRP)-, and subspace-based methods.

TDOA-based position estimation methods comprise a
two-step strategy where first the relative time delays
(i.e., TDOAs) are estimated and subsequently employed
to estimate the position of the source. The performance
of this approach depends heavily on the accuracy of the
TDOA estimation, while the computation of the posi-
tion is a purely geometrical, however, not straightforward
problem [21]. The most widely used approach for TDOA
estimation is the generalized cross-correlation (GCC)
method [22], where the TDOA is extracted from a
weighted version of the cross power spectral density (PSD)
of two sensor signals. A popular weighting function is the
phase transform (PHAT) [22], especially for speech [23].
In the context of ASs, GCC-PHAT was employed in,
e.g., [24]. As an alternative, Valin et al. [25] pro-
posed a weight function that depends on an estimate
of the local signal-to-noise ratio (SNR) in each fre-
quency bin. If multiple sound sources are active, identi-
fying the correct source-specific TDOAs typically becomes
difficult [26].

SRP methods can be interpreted as a generalization
of the GCC approach to multiple microphone pairs by
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coherently adding up signals originating from a certain
point in space and hence estimating the source’s likeli-
hood to be located at this position. For appropriate array
geometries, the source’s likelihood can incorporate both
DOA- and range- estimates. For ASs, SRP-PHAT [27] is
predominantly used (see [28] for robots and [29], [30]
for drones). A microphone-dependent weight based on
the estimated a priori SNR in each frequency bin was
introduced in [31] and evaluated for a robot.

Subspace methods for DOA-estimation are based on the
eigenanalysis of the spatial correlation matrix Φ̂X,ft and
a subsequent separation of signal and noise subspace.
An in-depth overview of subspace methods can be found
in [32]. As an example, we consider multiple signal classi-
fication (MUSIC), where the so-called MUSIC pseudospec-
trum is computed by projecting steering vectors pointing to
different spatial directions onto the noise subspace, result-
ing in a minimum if a source is located in the hypothesized
spatial direction. MUSIC is by far the most used subspace
method for SSL in the field of ASs (see [33]–[40]). Since
MUSIC explicitly assumes narrowband sources, several
broadband extensions for audio signals have been pro-
posed and evaluated regarding their real-time capability
for ASs (see [36]). If the AS is exposed to directional
noise sources Uj , eigenvectors of noise can mistakenly
be identified as source eigenvectors. For this, generalized
eigenvalue decomposition MUSIC (GEVD-MUSIC) was
proposed in [33] and [35] where an estimate of the noise
spatial correlation matrix is used to whiten the microphone
signals. A more efficient extension of GEVD-MUSIC was
proposed in [35]. Further relevant approaches for estimat-
ing the noise spatial correlation matrix in the AS scenario
will be discussed in Section III.

2) Position Estimation With Embedded Microphone Arrays:
As opposed to Section II-B1, we now consider sensors
which are embedded into or mounted to scatterers, e.g.,
microphones embedded into the head of a humanoïd
robot. This example provides also the link to the first use
cases of DOA estimation, where the binaural hearing capa-
bility of humans was mimicked by humanoïd robots [11]
using the long-known concepts of interaural level differ-
ences (ILDs) and interaural time differences (ITDs) [41]
as predominant features to localize sources. ILDs and ITDs
[or its frequency-domain counterpart interaural phase dif-
ferences (IPDs)] are captured by the so-called head-related
transfer function (HRTF), which additionally describes
the filtering effect of the head, pinnae, and torso. For
humanoïd robots, a variety of HRTF models have been
proposed to map measured ILDs and ITDs to position
estimates (see [11] and [42]–[44]). The proposed models
are typically simple and hence allow implementation on
real-time systems. More involved methods map extracted
binaural cues to azimuths of multiple sound sources using
Gaussian mixture models (GMMs) [45] or deep neural
networks (DNNs) [46], [47]. To resolve the remain-
ing limitations of binaural cues regarding the front-back

ambiguity, the exploitation of motion will be discussed in
Section IV. The almost spherical shape of some robot heads
suggests to represent the received sound field by spherical
harmonics (SHs), i.e., harmonic functions defined on the
surface of a sphere, which allow efficient modeling of
the scattering effect on localization [48]–[50]. Microphone
array configurations on a robot’s head have been optimized
with respect to number and placement of sensors for,
e.g., maximizing the amount of acquired spatial informa-
tion [51] or extending the aliasing-free frequency range of
the array [52], [53]. Beyond robot heads and their HRTFs,
object-related transfer functions (ORTFs) [54] can be used
to account for more general scatterers. ORTFs are typically
measured or simulated and subsequently incorporated into
the previously presented approaches.

3) Tracking: Tracking accounts for the estimation of
source positions of moving sources over time based on pre-
vious observations and motion models. Traditional track-
ing systems [55] are based on Kalman filters (KFs) [56]
and particle filters (PFs) [57], [58]. For robots, single-
source tracking was investigated, e.g., in [59], including
voice activity detection. In [60], a method for acoustic
tracking of a single source or for drones is reported where
the latter is especially challenging due to the very low SNR
caused by massive ego-noise interference (see Section III).
The fusion of video and audio information for tracking was
exemplarily demonstrated in [61]–[63].

For tracking multiple targets, a data association stage is
required assigning each position or DOA measurement to
one of the hypothesized targets before they can be tracked
individually, e.g., using KF- or PF-based approaches. How-
ever, those methods generally require the knowledge of
the number of targets as input. In the context of robot
audition, a real-time capable system was proposed in [31].
An alternative rigorous Bayesian framework for multi-
target tracking is based on random finite sets, i.e., sets
with random numbers of elements, where each element is
represented by a random variable [64], therefore explic-
itly accounting for missing measurements, clutter, track
initiation, and termination of a source, so that no data
association step is needed. An approximate recursive, first-
order moment-based solution to this systematic approach
is given by the probability hypothesis density (PHD) filter
[65]. Multispeaker tracking using PHD filters and TDOA
measurements was presented in [66], demonstrating the
robustness of the concept against reverberation. For robot
audition, a bearing-only tracking approach employing PHD
filters was investigated in [67].

C. Signal Extraction and Enhancement

In ASA, signal extraction aims at recovering the desired
source signal in the presence of interfering sound sources
and/or background noise and reverberation. Since ASs
are usually equipped with multiple microphones to allow
source localization, multichannel filtering techniques are
preferably utilized. Signal enhancement is usually already
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a byproduct of the signal extraction step but is often be
applied as additional postprocessing to the extracted sig-
nal, e.g., for further suppression of noise or reverberation.

This section briefly reviews the main concepts for signal
extraction and enhancement as they are relevant for cur-
rent and promising for next-generation ASs (see Fig. 2).
We refer to, e.g., [68]–[70] for a more comprehensive
treatment of multichannel acoustic signal enhancement
methods and to, e.g., [32] and [71] for the general signal
processing background.

The main approaches to multichannel signal extraction
and enhancement can be categorized as either data-inde-
pendent or data-dependent [20], [32]. Data-independent
approaches perform a spatial filtering where, typically,
signals arriving from an estimated or known DOA or posi-
tion are emphasized, while signals arriving from other
directions are suppressed, i.e., a “beam” is steered
toward the source of interest (“beamforming”), with-
out accounting for the statistics of the source signal.
In contrast, data-dependent approaches include the sta-
tistics of the microphone signals when optimizing the
signal extraction performance. In general, algorithms for
data-independent multichannel signal enhancement are
more robust and have lower computational complexity
than data-dependent approaches (see [72] and [73]),
whereas data-dependent approaches will outperform data-
independent methods as long as the required signal statis-
tics can be estimated reliably [32], [69].

1) Data-Independent Spatial Filtering: Data-independent
spatial filtering is typically realized as a filter-and-sum
BF [71]. The output signal of this linear filtering operation
can be expressed in the STFT domain as

Yft =
M�

m=1

W
(m)
f

∗
X

(m)
ft = WH

f Xft (2)

with generally complex-valued vector Wf containing time-
invariant weights for each of the M sensor signals at
frequency f . ·∗ denotes the conjugate complex operator.
As input, we consider here

Xft = HS,ft Sft +

J�
j=1

HU,j,ft Uj,ft + NU,ft

= HS,ft Sft + XU,ft (3)

where XU,ft denotes all unwanted signal components. This
signal model is a special case of (1) as acoustic feed-
back and ego-noise are neglected and only a single target
source Sft with ATFs HS,ft is considered.

In its simplest form, weights W
(m)
f in (2) only com-

pensate TDOA of the desired signal components in each
sensor signal prior to summation. This yields the popular
delay-and-sum beamformer (DSB) which leads to mini-
mum sensitivity to sensor noise or sensor mismatch at

the cost of low directivity [32]. For audio signals, broad-
band BFs offering frequency-invariant beamwidth are
attractive [74], [75] and typically involve noise-sensitive
differential beamforming (“superdirectivity”) at low fre-
quencies [76], [77]. Robustness to microphone mismatch
has been optimized in [78] and more general optimum
tradeoffs reconciling spatial selectivity with beampattern
constraints and noise robustness can be determined via
convex optimization (see [75]). To allow ASs operating in
dynamic environments to steer the main beam to arbitrary
directions, polynomial BF designs can be used [79], [80].

The aforementioned BF designs implicitly assume free-
field sound propagation around the sensor array and thus
neglect scattering effects caused by the physical embed-
ding of the microphones. In [81], the method of [75]
is extended by incorporating HRTFs of a robot head to
account for its scattering so that a significantly lower
word error rate (WER) for automatic speech recognition
(ASR) and increased speech quality could be reported. This
design was also generalized to allow flexible beamsteering
by polynomial beamforming [82]. Note that the robot-
specific HRTF-based designs can also be applied to other
ASs by considering ORTFs instead of HRTFs. BF design for
spherical microphone arrays or arrays mounted to a rigid,
approximately spherical scatterer can be conveniently car-
ried out in the SH domain using the spherical Fourier
transform [52], [83].

2) Data-Dependent Spatial Filtering: In contrast to
data-independent BFs, data-dependent BFs exploit spectro-
temporal as well as spatial information of the micro-
phone signals to extract the desired source signal from a
mixture including interferers and noise. The BF weights
are obtained by solving a supervised optimum multichan-
nel filtering problem relying either on estimates of the
interference and noise, and/or target source statistics.
A prominent example for this approach is given by the
minimum variance distortionless response (MVDR) beam-
former (see [32]). Its weights are obtained by minimizing
the power of the unwanted signal components in the
BF output signal

E���WH
ft XU,ft

��2� = E�WH
ft XU,ft XH

U,ft Wft

�

= WH
ft ΦU,ft Wft (4)

subject to the constraint that the desired component
in the output signal is equal to the target signal,
i.e., WH

ft HS,ft = 1. If target signal Sft, interfering sig-
nals Uj,ft, and noise NU,ft are mutually uncorrelated and
of zero mean, the resulting weights are given by

W(mvdr)
ft =

Φ−1
U,ft HS,ft

HH
S,ft Φ

−1
U,ft HS,ft

. (5)

As ATFs HS,ft are very difficult to estimate in practice,
the MVDR BF is often formulated in terms of the so-called
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relative transfer functions (RTFs) which are much easier to
estimate than ATFs [84] and are often assumed as relative
time delays for simplicity.

The need to estimate the spatial correlation matrix of
the unwanted signal components ΦU,ft can be circum-
vented by the use of the minimum power distortionless
response (MPDR) BF. By replacing ΦU,ft with ΦX,ft in (5),
it minimizes the power of the BF output signal WH

ft Xft

subject to the distortionless constraint WH
ft HS,ft = 1 at the

cost of a higher sensitivity to sensor mismatch relative to
the MVDR BF (see [72]).

The constrained optimization of the MVDR and MPDR
BF is converted to an unconstrained optimization problem
using the generalized sidelobe canceler (GSC) in [85]. The
GSC structure consists of a BF to fulfill the distortionless
constraint, a blocking matrix to create so-called noise ref-
erences, and a multichannel interference canceller, which
uses these noise references as inputs and minimizes the
residual interference and noise in the output of the BF to
the extent to which it is correlated with the noise refer-
ences. The GSC structure is especially suitable to adapt
to nonstationary signals such as speech and time-varying
DOAs and RTFs [86]–[88].

The MVDR BF is a special case of the linearly con-
strained minimum variance (LCMV) BF, which minimizes
the output noise power subject to multiple linear con-
straints to account for multiple desired or interfering point
sources [32]. Just as for MVDR BFs, time-varying block-
ing matrices can be estimated by blind source separation
(BSS)-based methods allowing adaptation during a simul-
taneous activity of multiple sources [54], [89].

In addition to the MVDR BF and its variants,
the multichannel Wiener filter (MWF) is another widely
used approach for data-dependent signal extraction [32].
It minimizes the mean-squared error (MSE) between the
BF output and a target signal and it can be shown that
the MWF is equivalent to an MVDR BF according to (5)
followed by a single-channel Wiener filter (WF)-based
postfilter [90], [91]:

W(mwf)
ft = W(mvdr)

ft� �� �
MVDR beamformer

· ΦS,ft

ΦS,ft + ΦU,ft� �� �
Wiener postfilter

(6)

with ΦS,ft and ΦU,ft denoting the PSDs of the desired
and undesired signal components at the MVDR BF out-
put, respectively. Thus, compared to the MVDR, the MWF
attains further noise suppression at the cost of target signal
distortion. Tradeoffs between noise suppression and signal
distortion can be formulated as tradeoffs between (5)
and (6) and have been proposed in [73] and [92].

The approaches discussed so far require information
about the DOA of the desired source, the microphone con-
figuration and/or spatiotemporal statistics of the signals.
In the following, BSS methods are discussed which sepa-
rate signals emitted by point sources without such prior

information. Therefore, multiple desired sources Sd,ft can
be separated from each other, or the separation of a single
desired source Sft from interferers Uj,ft can be achieved.
Representing a broad class of BSS algorithms, independent
component analysis (ICA) is based on the assumption that
the signals which are to be separated are mutually sta-
tistically independent and only requires knowledge about
the number of sources (see [93]). Moreover, for most
multichannel ICA-based algorithms, the number of sources
should not exceed the number of microphones. The demix-
ing weights for source separation are obtained by maximiz-
ing cost functions reflecting the statistical independence
of the output signals [94]–[98]. ICA can be performed
either in the time domain or in the frequency domain
(see [99] and [100]). Frequency-domain approaches
are computationally more attractive than time-domain
approaches but, in contrast to time-domain approaches,
require coping with the internal permutation and scaling
problems [99], [101]. Comprehensive treatments of vari-
ous ICA-based algorithms can be found, e.g., in [69], [93],
[102], and [103].

The cost function of ICA-based BSS can also be for-
mulated with an additional geometric constraint in the
frequency domain such that, e.g., a spatial null is forced in
a given direction [104], [105]. If the spatial null is directed
toward a desired speaker, the unwanted signals can be
extracted, which can then be used as noise reference in
a GSC BF [54], [89], [105]. Favored by its relatively low
computational complexity, the use of this geometrically
constrained (GC) BSS scheme has been proposed for var-
ious mobile robots [25], [106], [107] (see Section IV-C).
For the possibly rapidly changing scenarios faced by ASs,
stepsize control for iterative optimization algorithms plays
a crucial role and has been addressed in [108] and evalu-
ated for the humanoïd robot ASIMO in [109].

As a second class of BSS algorithms, binary mask-
ing (see [110]–[112]) relies on the assumption that
audio signals are sparse in the time–frequency plane so
that, for any time–frequency bin tf , only one of the
sources is dominant and other sources can be neglected
(W-disjoint orthogonality) [111]. Each source is then rep-
resented only by those time–frequency bins where it is
dominant, and its entire spectrogram is estimated from this
mask [111], [112].

Various signal enhancement methods for mobile robots
capitalize on the sparsity assumption: An ICA-based sep-
aration scheme for instantaneous mixtures followed by
binary masking is introduced in [113]. In [114], a sig-
nal extraction scheme was proposed where the demixing
weights are obtained by maximizing the sparsity of the
BSS output signals. In [115], this scheme is extended by
performing HRTF-based beamforming followed by BSS.

While the aforementioned spatial filtering techni-
ques primarily aim at suppressing undesired sources
or separating competing sources from each other, mul-
tichannel dereverberation aims at minimizing the dis-
tortion of the desired signals Sd,ft due to acoustic
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reflections and reverberation as captured by ATFs HS,d,ft

(see [116]–[121]). If, in the multichannel case, the ATFs
HS,d,ft are exactly known, they can be perfectly equal-
ized by multichannel inverse filtering according to
the multiple-input–output inverse theorem (MINT) the-
orem [116]. Techniques for increasing robustness to
errors in ATF estimation have been proposed, e.g.,
in [117] and [118]. Avoiding the need to explicitly esti-
mate the ATFs, the weighted prediction error (WPE)
method for speech dereverberation [119]–[121] is based
on linear prediction inverting an autoregressive model for
a desired speech signal and the acoustic channels. This
widely used multichannel dereverberation concept has also
been proposed for the SH domain [122]. A generic BSS-
based approach for speech and audio dereverberation was
presented in [123].

3) Single-Channel Signal Enhancement: Single-channel
signal enhancement is applied either to a single micro-
phone signal or to the output of a multichannel filtering
scheme (postfiltering) [see (6)]. Commonly implemented
in the STFT domain, the enhanced signal Ŝft is obtained
by multiplying the input signal Xft with nonnegative real-
valued weights Wft [124]

Ŝft = Xft Wft with 0 ≤ Wft ≤ 1. (7)

For signal enhancement, large weights should be assigned
to undistorted time–frequency bins Xft and low weights
to distorted Xft. A large variety of approaches to opti-
mize the (time-varying) weights Wft have been proposed
(see [125] and [126]) including, e.g., the spectral subtrac-
tion filter [124] and the single-channel WF as contained
in (5). Several spectral subtraction schemes have been pro-
posed for robots (see [127]–[130]), which are discussed
in Section III.

While the WF is a minimum mean-squared error
(MMSE) estimator for the complex-valued spectral coef-
ficients, optimal amplitude estimators, as desirable for (7),
have been proposed in [131] and [132]. The use of an
MMSE short-term spectral amplitude estimator for speech
enhancement in mobile robots is proposed, e.g., in [133].

All schemes for computing weights Wft in (7) require an
estimate for the PSD of either the desired signal ΦS,ft or of
the unwanted signal components ΦU,ft. In scenarios where
the desired signal is speech, noise estimates are usually
obtained during speech pauses and then are also used dur-
ing subsequent speech activity, assuming sufficient station-
arity of the noise [134]–[136]. Obviously, these methods
are not well suited for interfering speech sources or other
nonstationary and unpredictable noise.

The discussed enhancement schemes based on spectral
weighting according to (7) can also be used for suppressing
late reverberation in speech signals. To this end, the late
reverberation is considered as the unwanted noise ΦU,ft in
the postfilter [see (7)] [137], [138]. Estimation of ΦU,ft

then requires knowledge about the reverberation time T60,

which can be obtained by blind T60 estimators (see [139]
and [140]). Joint noise suppression and dereverberation
is achieved if ΦU,ft represents both the PSD of background
noise and the PSD of the late reverberant speech (see [138]
and [141]).

4) Acoustic Echo Control: When ASs communicate via
loudspeaker signals with their environment, e.g., service
robots or humanoïd robots communicating with humans
via voice, or other ASs emitting warning sounds, the echoes
of the according signals feedback into the microphones and
thus act as interference for the desired signals (see Fig. 1).
Extensively studied for telecommunications, acoustic echo
cancellation is a nontrivial supervised system identification
problem [142], [143], and efficient schemes for human–
machine interfaces using microphone arrays [144], [145]
can be directly applied to ASs [146] for identifying the
acoustic paths HV,l,ft in (1). Postfiltering is common for
suppressing residual echoes after echo cancellation [143],
[147]. Other techniques renouncing on the loudspeaker
signals as reference information have also been proposed
for mobile robots, e.g., a scheme for acoustic echo control
(AEC) and dereverberation using ICA [148]. Nonlinear
behavior of loudspeakers and/or microphones calls for
nonlinear echo path models [149]–[151] or according
postfiltering [147], [152]. Since ASs are typically using
single-channel audio output only, multichannel extensions
for AEC, as investigated in [153]–[156], have not been
studied for ASs yet.

D. Detection, Classification, and Understanding

The aforementioned algorithms for source extraction
and enhancement, see Section II-C, presuppose that a
target source was identified as such. If so, ASR and
natural language understanding (NLU) can be employed
to recognize the utterance and determine whether the
semantic content is relevant for the intention of the
AS or not. Compared to localization, signal extraction, and
enhancement, methods for detection, classification, and
understanding fall conceptually into a different category
and despite their relevance for acoustic self-awareness,
a more detailed description of generic concepts for these
methods is out of the scope of this article. In the following,
we therefore concentrate on describing their relation to
acoustic self-awareness and point to relevant references for
further reading.

In simple scenarios with a single acoustic source, and an
AS that is, e.g., supposed to direct a camera to any sound
source, the identification reduces to detecting a certain
sound level and localizing the origin of the sound. In a
more complex smart-home scenario, where the intention of
a humanoïd robot may be to react upon certain utterances
of a specific person, this involves: 1) detection and classifi-
cation of all sound sources; 2) possibly authenticating the
voice of a specific speaker; 3) recognizing multiple speech
streams; and 4) understanding their content, before the
action can be defined. Obviously, source detection and clas-
sification needs to precede a distinction between desired
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and undesired sources. The task of detecting occurrences
of a specific type of sound(s) in an audio recording is
referred to as acoustic event detection (AED), which is
a rapidly growing research area in audio-related signal
processing and machine learning [157]. Closely related to
AED is acoustic scene classification (ASC), which classifies
recordings along acoustic environments (such as street
life, subway station, and living room) without classifying
individual sound sources. An overview of state-of-the-art
approaches for AED and ASC can be found in [4]. So far,
most approaches in AED and ASC are based on single-
channel recordings, sometimes also jointly processed with
data from other modalities [158], e.g., cameras for audio-
visual event detection. Features and acoustic models for
describing sound events, and classification methods are
largely adopted from the wealth of techniques offered by
state-of-the-art ASR [4]. However, it should be noted that
some recently proposed features were specifically designed
for AED and ASC (see [159] and [160]). An overview of
publicly available data sets for sound classification and
detection, including a comparison of their structure, sizes,
and annotation quality can be found in [161]. While
the performance of single-channel approaches for AED
and ASC rapidly degrades with the growing complexity
of the scenario if the acoustic events are not separated
in time or frequency, promising multichannel techniques
for exploiting the spatial information are still in their
infancy [4].

Despite the enormous recent progress of ASR and
NLU supported by efficient deep learning techniques
and large amounts of training data [162], AS-typical
scenarios, like a smart home, with a combination
of large distances between target sources and micro-
phones, a potentially large variety and variability of
previously unseen noise sources, interfering voices,
and reverberant acoustic environments are still pos-
ing serious challenges for the state of the art in
ASR [162], [163].

III. C O N T R I B U T I N G T O A W O R L D
O F S O U N D S : E G O - N O I S E
With its self-created noise or ego-noise, the AS has a self-
inflicted impact on the acoustic scene which distinguishes
ASA for ASs decisively from conventional ASA. To allow
the AS to pursue its intentions even while ego-noise is
emitted, robust strategies and algorithms are required to
cope with ego-noise [11], [165], [166]. In the following,
we first discuss the various origins and resulting properties
of ego-noise. Then, in Section III-B, generic approaches
for robust localization and source extraction under ego-
noise are introduced. This discussion is continued in
Section III-C by introducing ego-noise modeling and esti-
mation approaches that explicitly incorporate knowledge
about the AS and the properties of ego-noise. An overview
of all presented methods for ego-noise estimation and
modeling is given in Table 1.

A. Origins and Properties of Ego-Noise
Typically, an AS has various ego-noise sources producing

signals that generally have specific temporal, spectral and
spatial characteristics. In many cases, there is a primary
ego-noise source, e.g., a motor. In addition, the interaction
of an AS with the physical environment also causes ego-
noise, e.g., the noise of the footsteps of a humanoïd
robot or the tire noise of a self-driving vehicle. A common
property of ego-noise—independent of the application—is
that it is usually louder than a signal of interest since the
ego-noise sources are typically located in the immediate
proximity of the microphones.

Ego-noise was first investigated in the context of robot
audition for humanoïd robots [11], [165], [166], where
ego-noise is primarily caused when the robot is moving
and rotating joints as well as the moving parts of its body
cause significant noise. The main motivation to develop
robust algorithms for ASA in the presence of ego-noise
was the quest for an intuitive human–robot interaction by
overcoming the limitations of the so-called stop-perceive-
act principle [11], where the humanoïd needs to stall
its activity while sensing acoustic signals. A typical ego-
noise spectrogram recorded by a humanoïd robot is shown
in Fig. 3(a). Ego-noise is highly nonstationary as the robot
moves with varying speeds and accelerations. Further-
more, ego-noise cannot be modeled as a single static inter-
fering point source as, e.g., the noise originating from each
joint is radiated to the environment as structure-borne
sound (see Fig. 4). On the other hand, ego-noise often
exhibits characteristic spectral structure, e.g., harmonic
components, and distinctive radiation characteristics as the
different ego-noise sources, e.g. joints, are distributed over
the robot’s body (see Fig. 4). Both spectral and spatial
characteristics of ego-noise can be used advantageously for
its modeling (see Section III-C).

Ego-noise of drones mainly consists of multiple narrow-
band harmonic components caused, similar to humanoïds,
by motors and broadband noise due to the airflow by
the propellers and wind [167]. Fig. 3(b) shows an ego-
noise spectrogram of a single motor and propeller rotating
with constant speed. The visible harmonics would exhibit
highly nonstationary transient characteristics if the rota-
tion speed varied. If four simultaneously active motors and
propellers are considered, the harmonic structure of the
propeller noise becomes less pronounced [see Fig. 3(c)],
which renders ego-noise suppression for drones to a
highly challenging task. On the other hand, however,
the relative position between motors and microphones is
fixed, which has been proven to be beneficial for robust
SSL and source extraction [60]. Significant effort was
spent reducing the harmful impact of ego-noise of drones
by construction, e.g., optimizing a drone’s propulsion
system [168], [169] or by the optimum placement
of the microphones on a drone. For this, Ishiki and
Kumon [170] propose to simulate the intensity of ego-
noise at different locations using a kinematic model of
the drone.
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Fig. 3. Spectrograms of exemplary ego-noise recordings (logarithm of magnitude). (a) Ego-noise of a right arm waving movement of the

humanoïd robot NAO, SoftBank Robotics. The movement incorporates all six joints in the arm. (b) Motor and propeller ego-noise of an

quadrotor UAV MK-Quadro, MikroKopter. The ego-noise originates from a single motor rotating with constant speed. (c) Ego-noise of all four

motors and propellers for the UAV from (b). Recordings (b) and (c) taken with permission from [164].

Since the primary ego-noise source is the AS itself,
knowledge about the current internal state of the
AS can provide important information about the emitted
ego-noise. Inspired by this, various approaches investi-
gated the question of how this knowledge can be bene-
ficially used in addition to the recorded audio signals. In
the following, we refer to information about the inter-
nal state of an AS as nonacoustic reference informa-
tion (NARI) aside from acoustic reference signals like
loudspeaker signals. Various kinds of NARI have been
employed in the literature, e.g., ratios between pulsewidth
and period length in pulsewidth modulation (PWM) for
electric motors [171] or piezoelectric sensors measuring
the vibration of a drone [172]. Most prominently, motor

Fig. 4. Humanoïd robot NAO waving its arm. During the

movement, different joints are activated emitting ego-noise

(hypothesized source positions shown in blue). This motivates

modeling ego-noise comprising multiple spatially distributed

sources.

data are used, i.e., angle information collected by propri-
oceptors of joints or rotation speed of motors, therefore
immediately describing the primary source of ego-noise.
Integrating motor data to the audio processing pipeline is
generally referred to as audio-motor integration [173] and
corresponding methods will be discussed in Section III-C.

B. Generic Methods for Robust SSL and Source
Extraction

Since ego-noise heavily affects the microphone signals,
the question of how to achieve robust performance for
subsequent signal processing algorithms has gained con-
siderable attention in the last two decades. In this section,
we discuss generic approaches both for localization and
signal enhancement, i.e., methods which do not or only
very weakly rely on the characteristics or an explicit model
of ego-noise.

1) Ego-Noise Suppression Using Reference Signals: As one
of the first approaches for ego-noise reduction, the SIG
humanoïd robot [11] was equipped with additional
microphones mounted inside the robot’s housing near the
motors in order to record an ego-noise reference signal.
The internal microphones were interpreted as additional
auditory perception channels of the robot and were sub-
sequently used as reference signals for adaptive filtering-
based ego-noise cancellation. Internal microphones were
also employed in [174] for improving the performance of
a human–robot dialogue system, which is exposed to ego-
noise as well as external environmental noise sources. The
authors propose a frequency-domain semi-blind source
separation algorithm to estimate the noise signals and
obtain an enhanced desired signal by applying an MWF.
The idea of reference microphones was also adopted
for drones, where separate microphones were mounted
next to the propellers, e.g., in [175], which applies the
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conventional least mean square (LMS) adaptive filtering
for noise cancellation. In general, the noise reduction per-
formance of such reference signal-based methods depends
heavily on how accurately the noise in the sensor signal can
be estimated from the reference signal. Especially in the
context of drones, this is a crucial problem since the micro-
phones are typically not shielded from other sounds [175].

2) Spatial Filtering-Based Signal Extraction for Drones:
Other methods address the extraction of desired signals
from drone ego-noise by spatial filtering-based techniques.
In [176], the performance of ICA-based BSS and several
beamforming techniques was compared for extracting a
target source at a known position from a microphone
signal recorded by a drone hovering with varying motor
speeds and distances to the target source. For MVDR
beamforming, the required spatial correlation matrices
of ego-noise were estimated either incrementally (see
below) or during noise-only periods and then kept con-
stant. In addition, an MWF was evaluated for source
extraction, assuming that ego-noise and the target signal
are sparse in the STFT domain, i.e., each time–frequency
bin is dominated by one of the two sources. Based on
this sparseness assumption, a probabilistic time–frequency
mask can be computed to estimate the spatial correlation
matrix of the desired source signal [177], [178]. In [167],
it is argued that the sparseness assumption is valid for
the harmonic components of drone ego-noise, which for
broadband propeller noise holds as an approximation at
best [see Fig. 3(c)]. The evaluation in terms of SNR
improvement shows best results for BSS- and MWF-based
techniques, especially for high SNR values, i.e., if ego-noise
is less dominant compared to the target source.2 In [179],
a similar comparison is presented; however, it assumed
that the position of the target source is not known and
its location is estimated by visual information captured
by a camera mounted to the drone. In [180], a fixed
BF with subsequent postfilter is proposed to enhance a
desired source signal. For this, the drone is equipped with
two microphone arrays, installed both on a metallic beam
attached to the UAV. Ego-noise is assumed to be comprised
of several coherent noise sources and its PSD is estimated
in the beamspace [181] by directing a set of nonadaptive
BFs to different directions in space. The BF output PSDs
are subsequently used to estimate the required ego-noise
PSD which is employed for a WF-based postfiltering. For
simulated data, it is shown that the proposed method
significantly reduces ego-noise, while also robustly sup-
pressing an additional interfering speaker.

3) Spatial Filtering-Based SSL for Drones: Robust SSL
under ego-noise is usually addressed by GEVD-MUSIC,
i.e., whitening the microphone array’s spatial correlation
matrix in a preprocessing step (see Section II-B). For
obtaining reliable estimates for the spatial correlation

2Audio demos for methods described in [176] could be
found on //www.eecs.qmul.ac.uk/~andrea/auditory-mav.html at the
time of writing.

matrix of the emitted ego-noise, Okutani et al. [37] used
a time-averaging method for drones (called incremen-
tal GEVD-MUSIC, iGEVD-MUSIC), taking the dynamically
changing characteristics of ego-noise into account. In [38],
this idea is extended for GSVD-MUSIC (iGSVD-MUSIC).
The duration of the averaging window is adapted to the
noise dynamics, i.e., a large window can be chosen if the
drone is hovering, while the windows need to be short if
the drone is flying with varying speeds and accelerations.
As an intrinsic problem of these methods, performance
degrades drastically if, within the averaging window, other
sources become active and bias the estimation. In [182],
two different UAV microphone array designs are presented
and MUSIC and iGSVD-MUSIC are evaluated and com-
pared for an outdoor SSL scenario. SSL success rates,
defined as the ratio between the number of successful and
total number of localization experiments, of almost 100%
are reported even for low SNRs. It is proposed to adapt
the algorithms specifically to the scenario and emphasized
that the significant computational costs are a major chal-
lenge for real-time applicability. In [183], an alternative
SSL method was presented localizing a single source.
A set of MWF-based spatial filters, constructed similar
to the method presented in [176] (see Section III-B2),
are steered to different candidate DOAs. If pointing toward
a speech target source, the filter output is argued to
be non-Gaussian which was detected using a Kurtosis-
based criterion. The approach shows superior results
compared to different competing methods including
iGEVD-MUSIC.

C. Ego-Noise Modeling and Estimation Methods

The use of classical denoising techniques such as spec-
tral subtraction or single- and multichannel Wiener filter-
ing (see Section II-C) requires ego-noise estimates, e.g.,
in the form of PSDs or spatial correlation matrices. Beyond
the discussion of generic methods in Section III-B, we now
consider approaches that use signal models to explicitly
take into account the spectral and spatial properties and
characteristics of ego-noise.

1) Generic Dictionary Approaches: The basic idea of a
dictionary representation is to approximate an ego-noise
signal NEN,ft in the STFT domain by a linear combination
of prototype signals, called atoms, which are specifically
designed to match the characteristics of ego-noise. The
atoms are collected in a dictionary, and for each time
frame, a linear combination of those atoms has to be
found which optimally fits the current ego-noise signal
with respect to the chosen criterion. For ego-noise mod-
eling, a dictionary is typically learned from recordings
which contain ego-noise only as a data set for training.
Subsequently, the trained dictionary can be employed to
estimate the ego-noise for an STFT frame which contains
ego-noise and other signals, e.g., speech. Typically, these
approaches are semi-supervised [184] and entirely based
on information from the audio modality.
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Fig. 5. Illustration of the dictionary method: dictionary with

K � 10 atoms (bottom left), activation matrix (top right), and

estimated spectrogram (bottom right).

In the following, we consider single- and multichan-
nel nonnegative matrix factorization (MNMF), denoted as
SC-nonnegative matrix factorization (NMF) [69], [185],
[186] and MC-NMF [187], [188], respectively, and phase-
optimized KSVD (PO-KSVD) [189] as exemplary dictionary
learning methods.

The objective of NMF is to model PSDs of ego-
noise, i.e., spatial correlation matrices for MC-NMF, which
degenerate to scalar PSD values for SC-NMF. SC-NMF
aims at approximating the squared magnitude of the
mth microphone channel ÑEN = |N(m)

EN |2 ∈ R
F×T
+ [190]

by a product of the nonnegative dictionary D ∈ R
F×K
+ and

the activation matrix H = [h1, . . . , hT ] ∈ R
K×T
+

ÑEN ≈ DH = [Dh1, . . . , DhT ]. (8)

The factorization is achieved by minimizing a cost function
which measures the similarity between X̃ and DH with
respect to the model parameters. A common choice as cost
function for audio applications is the so-called Itakura-
Saito (IS) divergence since it depends only on the power
ratios between the true and approximated signal [191].
D and H are typically obtained using iterative update rules
that can be derived using, e.g., majorization–minimization
algorithms [192] or heuristic approaches [186]. Fig. 5
illustrates the fundamental idea of SC-NMF by estimating
the PSD of an exemplary ego-noise signal. Semi-supervised
approaches for SC-NMF for noise reduction, in general,
were initially addressed in [184] and specifically applied
for the reduction of ego-noise, e.g., in [193].

For MC-NMF, (8) is adopted as source model and
extended by an additional spatial model. Following this
idea, MC-NMF can be applied to the estimation of spa-
tial correlation matrices of ego-noise assuming again that

ego-noise originates from various mechanical parts of a
robot or drone and thus is reasonably well modeled by
a set of time-variant, spectrally structured and spatially
distributed sources. Considering a dictionary with K atoms
D = [d1, . . . , dK ], the spatial correlation matrix of ego-
noise for frequency bin f and time frame t is given by

Φ̂EN,ft =

K�
k=1

Φfkdfkhkt (9)

where dfk is the f th entry of atom k, dk, modeling
the squared STFT magnitudes of the ego-noise sources.
Φfk ∈ C

M×M is an estimated correlation matrix mod-
eling the spatial characteristics of dfk. Thus, while the
atoms in D describe the spectral properties of each ego-
noise source, matrices Φfk assigned to each atom add the
spatial characteristics to the model. The contribution of
each atom and spatial correlation matrix to the overall
Φ̂EN,ft is determined by activation hkt which allows a
flexible and time-varying modeling of Φ̂EN,ft. Depending
on the assumptions for Φfk, different algorithms to learn a
dictionary and the associated spatial correlation matrices
can be derived, varying widely in complexity and mod-
eling accuracy. For example, Φfk can be assumed to be
a rank-1 matrix [194] or alternatively full-rank [188].
MC-NMF-based ego-noise modeling has successfully been
used for ego-noise reduction for a humanoïd robot
in [195], following a semi-supervised approach (see
Section III-C1) and an MWF. In [196] and [197], a rank-1
MC-NMF model is applied to blindly estimate a demixing
filter to extract speech from the ego-noise of a hose-
shaped rescue robot. This approach, however, assumes
oracle knowledge to solve the permutation problem after
demixing, i.e., to identify the channel which contains the
desired signal component. A similar approach for ego-
noise suppression was presented in [198] and is shown
to require significantly less computational effort compared
to a robust PCA-based method at the cost of reduced noise
suppression. This illustrates the typical tradeoff between
computational effort and achievable performance in the
design of algorithms for ASs.

While SC-NMF captures only the spectral characteristics
of ego-noise, multichannel approaches are able to capture
also the characteristic spatial structure of ego-noise. A
corresponding approach explicitly addressing ego-noise
reduction was presented in [189]. The assumed signal
model interprets each atom as a contribution of a set of
sound sources that are spatially distributed over the body
of the robot (see Fig. 4). Per frequency bin, the M micro-
phone channels are concatenated, giving a signal matrix
ÑEN ∈ C

MF×T and a dictionary D ∈ C
MF×K . In [189],

a time-varying phase matrix Φt ∈ C
F×K is introduced

that allows to adjust the phase of the atoms, e.g., in order
to compensate for TDOAs for the noise components of
the various hypothesized ego-noise sources. This phase-
corrected dictionary is denoted by D{Φt}, where the curly
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brackets indicate that the ftth element of Φt is multiplied
with the M bins associated with the frequency index f in
atom t. Analogously to (8), ÑEN is then modeled by

ÑEN ≈ [D{Φ1}h1, . . . , D{ΦT }hT ] (10)

where H = [h1, . . . , hT ] ∈ C
K×T is the activation matrix.

While in (8) the number of activated atoms per time
frame is not bounded, Deleforge and Kellermann [189]
constrained (10) such that only a fixed number of atoms
can be chosen per time frame. This constraint is based on
the assumption that the gain and the activation of each
source is sparse along the time axis. The dictionary is
learned using the PO-KSVD algorithm which is based on
[199], including an additional phase optimization step.
Subsequently, the best matching atoms from the dictionary
can be chosen using a sparse coding algorithm [189].

2) Motor Information-Guided Methods: Besides methods
purely based on audio signals, other ego-noise modeling
approaches exploit available motor information given by,
e.g., (software) motor commands or motor data such as
engine rotation frequency, joints’ angle, or angular veloci-
ties collected by proprioceptors.

The benefit of motor data compared to motor commands
is that the emitted ego-noise is directly related to the mea-
sured physical state of the robot which may differ from the
reference physical states defined by the motor command.
However, a complete analytical modeling of the depen-
dence between motor data and emitted ego-noise is usually
infeasible due to the complex mechanical dependencies
and interactions between structure- and airborne sounds.
Nevertheless, some prior knowledge of the structure and
shape of ego-noise spectrograms can be straightforwardly
inferred from motor data. In some cases, ego-noise exhibits
pronounced harmonic, deterministic spectral components
caused by rotating engines, appearing at half of the rota-
tion frequency of the motors. In [130], this knowledge
is used to perform an order analysis (OA) [203] of the
signal, so that the position of the harmonics becomes
independent of the rotation frequency, which allows for
simple subtraction-based denoising.

Other approaches model the complex dependencies
between motor data and emitted ego-noise entirely by
learning-based strategies, which, similar to dictionary
methods, involve a prior training of the model that in
turn can subsequently be used for ego-noise estimation
in mixtures of multiple sounds. In [127], a feedfor-
ward neural network with two hidden layers containing
thirty nodes each is trained to predict the PSD of ego-
noise caused by the Aibo robot. The neural network is
fed with angular velocities of Aibo’s joints collected by
proprioceptors. The obtained estimate was subsequently
used for spectral subtraction resulting in a significant
improvement of speech recognition rates, especially for
low SNRs. In [128], an approach is considered where the

characteristic spectral shape of the ego-noise for each
movement was saved as PSD templates in a database and
associated with the motor command which triggers the
movement. During application, an additional preprocess-
ing stage is required to ensure that the templates are
temporally aligned to the recorded signal. An alternative
template-based method was proposed in [129] and [200],
where the choice of spectral templates is, however, not
motor command- but motor data-guided. For a new motor
data sample, the nearest neighbor in the motor data-
space is searched and the associated ego-noise template is
used for spectral subtraction. The idea to associate motor
data with ego-noise templates was also followed in [201],
where, however, nonlinear classifiers in the motor data-
space are used to link a new motor data sample to a set
of atoms from a previously trained dictionary-based ego-
noise model. Therefore, the classifiers replace the costly
search for atoms in the dictionary.

In [204], prior knowledge of the harmonic structure is
incorporated into the learning-based ego-noise modeling.
It is proposed to decompose the observed ego-noise spec-
trogram into a part which captures the harmonic structure
and a residual part. Each component is modeled by an
NMF-based dictionary to yield

ÑEN = Ñ
(h)
EN + Ñ

(r)
EN = D(h)H(h) + D(r)H(r) (11)

where D(h) is completely motor data-driven and only D(r)

requires prior training. This approach is evaluated for
speech enhancement and outperforms an audio only-based
method in scenarios which are insufficiently captured in
the beforehand training.

3) NARI-Based Estimation of Spatial Correlation Matrices:
Similar to the methods described in Section III-C2, spatial
correlation matrices of ego-noise can be estimated based
on NARI describing the physical state of the AS. For this,
several approaches have been proposed in the context of
estimating ΦEN,ft, which is subsequently employed for
GEVD-MUSIC. In [171], NARI is composed of pitch-, roll-,
and yaw-angle, as well as the vertical and horizontal speed
of an UAV. In addition, the ratio between pulsewidth
and period length of the propulsion system’s PWM is
considered. The resulting parameter reference vector sub-
sequently serves as input to a Gaussian process (GP)
regression framework [205] to estimate the vectorized
spatial correlation matrix of ego-noise. Localization results
show an improvement compared to conventional MUSIC,
especially for high SNR values.

Inspired by the search for ego-noise PSD templates
in a motor data-space, Ince et al. [202] extended this
idea to the estimation of spatial correlation matrices by
the outer product of identified ego-noise templates. The
presented approach showed a significant reduction of the
mean localization error compared to conventional MUSIC
for both sinusoidal and white noise target signals.
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Table 1 Overview of Different Ego-Noise Modeling and Estimation Methods

IV. E X P L O R I N G A W O R L D O F
S O U N D S : A C T I V E S E N S I N G
While in the previous sections the surrounding acoustic
scene was already allowed to be dynamical, the capability
of the AS to move has only been viewed as a source of ego-
noise. In the following, we will consider the AS’s ability
to move actively in space. Then, motion implies both:
1) the capability to change and adapt its own pose and
internal sensor topology and 2) changing its position in a
room. As main promises, the capability to move allows an
enhanced localization and source extraction performance
by overcoming limitations linked to static sensor arrange-
ments such as front-back disambiguation or the problem
of range estimation in localization. Besides, it allows the
AS to actively explore its environment and gain knowledge
about the surrounding acoustic scene. The idea to combine
audition with behavior and motion, referred to as active
audition, was initially proposed by Nakadai et al. [11].

Inspired by humans and mammals, we first review meth-
ods which utilize the AS’s capability to move explicitly
for SSL. Subsequently, we address active localization and
exploration, i.e., using motion on purpose to enhance
localization and to explore the environment. This involves
several subproblems such as fusing localization measure-
ments over space and time, self-localization, and evalu-
ation of different motion strategies. Finally, we present
approaches that demonstrate that motion can be beneficial
for speech enhancement, referred to as active enhance-
ment [11]. Fig. 6 summarizes the different tasks for active
sensing with an AS.

A. Motion-Based Auditorimotor Maps

Approaches presented in this section fall into the cate-
gory of binaural listening (see Section II-B2) and require
head rotation for localization. If we assume that an
AS is localizing an emitting acoustic source in a room,

localization can be interpreted as an association of audi-
tory features, like ILD or IPD, to particular points in
space. These mappings are referred to as auditorimotor
maps [206] or audio-motor mapping [207], since the
perceived audio features depend in general on the motor
state of the AS, describing, e.g., position, orientation, and
velocity in the room relative to the emitting source. It is
generally assumed that these mappings can be learned.
An example of such a learning method is based on the
sensorimotor theory of perception [208], [209], suggest-
ing that experiencing the sensory consequences of motor
actions is necessary for learning and that the auditorimotor
maps can be represented by low-dimensional manifolds of
according dimensions [206], [207], [209], [210]. Follow-
ing this idea, several approaches have been implemented
for binaural localization for humanoïd robots using specific
binaural cues as audio-motor features. In [206], Laplacian
eigenmaps are used as manifold learning technique and
constructed by an unsupervised approach using so-called
auditory-evoked orientation behavior: as soon as an audi-
tory event is perceived, the head is rotated until the first
zero-crossing of the ILD is detected. The performed head
rotation is associated with the initially perceived audio-
motor feature. Once a map is built, the nearest neighbor
in the map is identified for any new audio-motor feature
and the associated head rotation is performed.

In [210], a modified version of self-organizing maps
(SOMs) is used to represent the manifold. SOMs are a
specific type of neural network, which should represent the
similarity between the audio features, i.e., similar audio
vectors are supposed to activate similar regions of the map.
A map-architecture is suggested in [210], where the center
of the map is activated if an audio feature originating
from a source facing the robot is the input. Based on this,
a reinforcement learning-inspired method for localization
is proposed with the objective to turn the robot’s head until
the center of the map is activated. Movements that increase
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Fig. 6. Overview of different tasks for active acoustic sensing by a mobile AS.

the distance to the center are penalized, while move-
ments toward the center are rewarded. A similar approach
addresses the problem of finding a low-dimensional repre-
sentation with a regression-based method [207].

In [173], dynamic binaural cues are proposed, which
explicitly require a head rotation for computation if the
acoustic scene is assumed to be static. For a head rota-
tion with constant speed, the dynamic cue is assumed
to be specific for a certain source position. The audito-
rimotor map is learned in a supervised learning-based
SSL framework [211].

B. Active Localization and Exploration

While the methods in Section IV-A were limited on bin-
aural localization, we now turn to approaches for micro-
phone array-equipped robots which use motion beyond
head rotation for localization and exploration. After dis-
cussing how to fuse localization measurements over space
and time, we review methods for self-localization, which
is a necessary requirement for the subsequently presented
motion strategies. An overview of the different tasks and
their relations is given in Fig. 6.

1) Localization and Mapping: In the following, we dis-
cuss how localization measurements collected over time
and space can be integrated into a single localization
estimate. Moreover, we consider approaches which focus
on integrating localization estimates into a map, repre-
senting the acoustic scene. At this point, it is not specified
how the movements are planned—they could be, e.g.,
predefined or controlled by a user. Dedicated approaches
for motion planning are presented in Section IV-B3.

If the source is assumed to be static, DOA esti-
mates collected at different positions can be used for
triangulation to estimate the distance to the source and

has been proposed for robots in [212] and [213]. Estimat-
ing the orientation and distance of an acoustic source over
time by a moving robot has been successfully implemented
in real time using nonlinear extensions of a KF [214]. This
approach was extended in [236], accounting explicitly for
false measurements and intermittent source activity.

While the latter approaches localize and track a specific,
however possibly time-varying, number of sources while
moving, other methods aim at mapping the entire acoustic
scene. Occupancy grids are one of the most successful
frameworks for environment modeling in robotics [237]
and have been introduced for mapping of acoustic scenes,
then called auditory evidence grids (AEGs), in [215].
AEGs have been successfully implemented on mobile
robots [215]–[217]. In this concept, a room is represented
by a 2-D or 3-D map m consisting of an evenly spaced grid,
where each cell mi is associated with a probability that
any sound source is located in this cell. The goal of AEG
is to compute the posterior probability for the map m at
time step t given all localization measurements z1:t and
positions/poses of the AS s1:t collected so far

p(m|z1:t, s1:t).

Similar to the original occupancy grid idea, the AEG frame-
work is based on the assumption that the occupancy in
each grid cell is independent of all neighboring cells, which
allows to formulate iterative Bayesian updates that are
based on an inverse sensor model

p(mi|zt, st)

describing the probability that cell mi is occupied given
the current localization measurement and pose of the AS.
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In [215]–[217], a rescaled version of the GCC-PHAT
response is considered as pseudo-likelihood for
p(mi|zt, st), where the pose information of the AS st

is measured by laser light sensors mounted on top of the
AS. By moving into a room, scanning the environment
from different positions, and updating the map, the AS can
successively create an acoustic image of its surroundings.
A similar approach was presented in [218], in which a
PF was used to localize the AS within the map and a
laser detection and ranging (LIDAR) sensor was employed
to estimate the distances to hypothesized sound sources.
Thus, the problem of poor range estimation from audio
localization techniques could be overcome to some
extent. The fundamental assumption of AEG to treat the
occupancy in each cell independently of its neighboring
cells can result in inconsistent maps [232], [238].
To solve this problem, forward sensor models have been
proposed [238], specifying a probability distribution for
localization measurements zt given a map m. An according
approach for SSL by optimal control of a robot will be
presented in Section IV-B3.

An alternative acoustic mapping approach was proposed
in [219], where radiated sound intensities are estimated
instead of occupancy probabilities. Similar to [218], cells
in which possible sound sources are located are identi-
fied by matching DOA measurements with objects in the
scene recognized by an onboard LIDAR sensor. The corre-
sponding cells are filled by the measured sound intensity.
The presented grid-based approaches for estimating maps
of the acoustic environment have all been evaluated on
robots and are real-time capable. To the best of the authors’
knowledge, there exists no study comparing the different
methods among each other.

2) Self-Localization and Mapping: The aforementioned
methods for fusing localization measurements are based
on the assumption that the AS has knowledge about its
own position in space, either by being tracked by an exter-
nal system or alternatively using own sensor data, e.g.,
LIDAR or radar sensors. Employing motor controls or iner-
tial sensor data is reported to be subject to errors due to
physical and mechanical limitations (see [239], [240])

Alternative approaches aim at creating maps of the
environment, while simultaneously estimating the location
of the AS within this map [simultaneous localization and
mapping (SLAM)], which can be interpreted as anchoring
the AS’s position and orientation such that both align best
to the localization estimates in the map. The SLAM prob-
lem has gained significant attention in the robotics com-
munity [241], [242], where vision is predominantly used
to obtain instantaneous localization estimates. In contrast,
using the acoustic modality for SLAM is still in its early
stages of the development. A multipath propagation-based
concept was proposed in [220], referred to as EchoSLAM
where the position of the AS was inferred with the help of
echoes perceived at multiple viewpoints in a room. Inter-
estingly, only one microphone is required in this approach.

Most other approaches extend concepts from visual
SLAM by TDOA-based estimation using microphone
arrays [221], [222]. However, the prerequisites for vision-
based SLAM are often fundamentally conflicting with the
properties of acoustic sources. For example, factored solu-
tion to SLAM (FastSLAM) [243] requires landmarks in
the scene assisting the AS to locate itself within the map.
However, acoustic sources are not appropriate for this,
since they are not continuously active and a permanent
emission of sound stimuli is usually highly undesirable.

To address this challenge, acoustic SLAM (aSLAM) was
proposed [223]. To avoid the need for permanently active
acoustic landmarks in the scenery, Evers and Naylor [223]
introduce PHD filters for SLAM, explicitly modeling multi-
ple, intermittent sources subject to erroneous and missing
DOA estimates. As a consequence, the approach is reported
to be robust against reverberation and noise. The locations
of the acoustic sources are inferred from 2-D DOA mea-
surements, making use of a novel probabilistic triangula-
tion method benefiting from the mobility of the ASs.

3) Motion Strategies for Active Localization and Explo-
ration: In this section, we present concepts that use the
capability of an AS to move actively to improve local-
ization, referred to as active localization, and to explore
the acoustic environment. Both active localization and
exploration have in common that they are feedback-
controlled, i.e., based on a current localization measure-
ment or acoustic map, the behavior of the AS is adapted.

Approaches presented in Section IV-B1 for building an
acoustic map do not fall into this category, since there the
movement of the AS is either predefined or user-controlled,
i.e., a specific feedback loop is missing. However,
Martinson [215], [216] stipulated a subsequent explo-
ration stage to refine the previously established acoustic
map. For this, the AS defines waypoints around a hypoth-
esized source in the acoustic map, which are subsequently
approached according to the nearest-neighbor-principle.
The AS stops at each waypoint, collects samples, and
finally refines the position of the investigated source within
the map.

A variety of active localization strategies are human-
inspired and heuristically adopted for robots, mainly to
solve the front-back-ambiguity problem in the context
of binaural localization. Motion is then typically limited
to horizontal head movements, where the head turns
randomly within a predefined range [45], [46], [227].
In [228], also tipping movements of the head are
considered. In other approaches, the head is turned
by a predefinded range toward the hypothesized
source [210], [227], which implies that these approaches
are feedback-based, i.e., a detected front-back-ambiguity
triggers the head movement, followed by a subsequent
localization and possibly further head movement.

While these head movement strategies were heuristi-
cally motivated, an analytic strategy to design optimal
movements for localization is presented in [244] and [245]
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for localization in the SH domain. If the acoustic source
is assumed to be static, sampling the sound field by a
moving array can be thought of as producing additional
virtual microphones at each of the array positions in the
different time frames. The quality of this virtual micro-
phone array can be measured by the effective rank [246]
of the so-called measurement matrix, which can be shown
to be directly related to DOA estimation performance.
In [245], the effective rank for varying head movements
and microphone geometries was evaluated, confirming its
effectiveness as a measure to design movements.

An information-theoretic approach for the design of
head movements for active binaural localization has been
presented in [229] and [230]: first, for timestep t, a pos-
terior probability describing the head-to-source relation pt

given all previously collected measurements z1:t is derived,
p(pt|z1:t). Based on this, an information-theoretic one-step-
look-ahead control scheme is proposed, determining the
head movement which maximizes the posterior probabil-
ity p(pt+1|z1:t+1) computed by a gradient ascent method.
The evaluation demonstrates that limitations linked to
static sensor arrangements such as front-back ambigui-
ties or missing range information can be overcome. Using
a similar approach, in [231], the movement of external
movable reflectors mounted next to the head microphones
of a robot, mimicking the pinnae of animals, is determined.

An extension to the previously described information-
theoretic approach has been used in [232], where arrays
with four microphones are considered and the AS is
able to change its position in a room. Here, AEGs from
Section IV-B1 are extended by learning forward sensor
models expressed by

p(zt|mi, st). (12)

This method avoids inconsistencies in the map and allows
to compute an entropy over all grid cells bearing uncer-
tainty information about the position of the acoustic
source. Over a finite time horizon, the expected map
entropy is accumulated assuming that the entropy at each
future pose does not depend on the trajectory used to reach
that pose. This simplifying assumption is required for the
employed dynamic programming method to identify those
poses which minimize the accumulated entropy. In [233],
Gaussian mixtures instead of AEGs are chosen to represent
the belief over the acoustic scene based on current mea-
surements, and Monte Carlo tree search (MCTS) is pro-
posed to find optimal sequences of poses which minimize
the expected entropy of the estimated source location.
A similar approach was chosen in [234] for binaural active
localization. However, here, the optimization is reformu-
lated, allowing a tradeoff between two conflicting goals,
namely, minimizing the localization uncertainty of a source
and reaching a specific final target along the shortest path.

An exploration scheme that also considers self-
localization within the acoustic map has been presented

in [235]. Within an assumedly static acoustic scene,
the state of the AS and the sources is tracked by an
unscented Kalman filter (UKF). Each hypothesized source
applies a potential field (PoF) on the AS, being composed
of an attractive PoF, whose strength is determined by
the uncertainty of the source’s state, and a repulsive PoF,
which on the one hand should avoid a collision of the
source with the AS and on the other hand rewards circular
trajectories around the source. For exploration, the AS
is guided by following the steepest descent along the
gradient of the superposition of the PoFs of all sources.
By simulation, it was shown that the proposed method
clearly outperforms other recent approaches regarding
acoustic scene mapping performance, while at the same
time being efficient enough to allow a real-time implemen-
tation on a robot.

C. Active Signal Enhancement

Complementary to active localization and exploration,
the ability of an AS to move can also lead to an
improved signal enhancement performance. Intuitively,
a human would direct its head toward an acoustic
source or approach it along a direct path in order to better
understand the signal of interest. Indeed, both strategies
were implemented and tested on mobile robot platforms,
see [224] and [225], respectively. A more sophisticated
path-planning strategy has been presented in [226]: If
an acoustic map is given, i.e., the position and sound
intensity of the desired and interfering sources are known,
the expected signal-to-interference (SIR) ratio at each
point in the room can be estimated, assuming that the
signal amplitudes are proportional to the inverse of the
source-AS distance. Then, the AS approaches the neigh-
boring cell with the highest SIR, updates the map, and
continues its approach toward the desired source. This
method was implemented on a robot and was shown to
be especially beneficial compared to directly approaching
the source if an interferer is located along the direct path
between AS and the desired source.

Exploiting additional degrees of freedom, Barfuss and
Kellermann [107] and Tourbabin et al. [244] placed micro-
phones not only on the head but also on the movable limbs
of a humanoïd robot, thus allowing changes of the aperture
of the microphone array, e.g., by letting the robot stretch
out its arms or pull them back in. In [107], this adaptive
microphone array is employed to control the spatial char-
acteristics of a GC-BSS-based blocking matrix [247], used
to estimate a noise reference, and thus to enhance spatial
filtering performance.

V. S U M M A R Y A N D O U T L O O K
Aiming at exploiting the acoustic domain for supporting
self-awareness of ASs, this article attempts to pro-
vide a structured and comprehensive survey on rele-
vant signal processing techniques for perception tasks
in the perception–action cycle of ASs as cognitive dynamic
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systems. With multiple microphones as sensors, many well-
established techniques for multichannel acoustic signal
processing from other application domains can be adopted
for ASA by ASs. Along with brief generic descriptions
of relevant state-of-the-art methods, their adaptation to
the goals and constraints of ASs is discussed and known
realizations are described. The resulting overview covers
the areas of source position estimation and tracking, as
well as the various facets of signal enhancement, includ-
ing spatial filtering, source separation, noise suppression,
dereverberation, and echo cancellation, as far as they are
deployed with ASs.

Beyond the challenges that ASs share with other
acoustic application domains, ASs often need to cope
with high levels of ego-noise and also should exploit
their ability to move and explore for active sensing.
It is demonstrated how ego-noise suppression can benefit
from prior knowledge on its origins, and powerful
and efficient techniques are presented which merge
according models—often benefiting from NARI—with
advanced learning techniques. Most of the proposed ego-
noise suppression algorithms concentrate on humanoïd
robots and drones, but even within these domains,
concepts vary widely, and published results for the
respective implementations are hardly comparable. Similar
observations hold for the state of the art in active
sensing: While the benefit of robot head movement for
disambiguating binaural localization information has been
recognized early on, other concepts for combining local-
ization or self-localization with mapping in the acoustic
domain are not yet developed beyond a prototypical
stage. Unsurprisingly, active signal enhancement, either
requiring location information as a precondition or esti-

mating it simultaneously, also has not matured beyond
this stage.

In summary, the state of the art suggests that, for
supporting self-awareness of ASs, the acoustic modality is
still much less exploited than humans use it. While robotic
vision is a well-established and broad technical area, robot
audition has not reached the same level of maturity yet.
This may largely be attributed to the complexity of real-
world acoustic scenes that ASs will typically face, where,
e.g., unlike in the visual domain, focusing on a specific
target already requires sophisticated spatial filtering and
not just narrowing a viewing angle. Moreover, as a typical
challenge for ASs in real-world acoustic scenarios, several
signal processing tasks have to be solved simultaneously
and in real time, e.g., algorithms for ego-noise suppression,
echo cancellation, and BSS need to collaborate efficiently
and demand a holistic algorithm design beyond the cur-
rently known single-task solutions. However, with recent
progress in acoustic signal processing, ASA, and automatic
recognition of acoustic events and speech on the one
hand, and the imminent demand from application areas
such as autonomous cars on the other hand, it can be
expected that the acoustic dimension of self-awareness of
ASs will assume a significantly more important role in the
near future. Therefore, sharing a fast and synchronized
communication infrastructure with high throughput, and
adequate energy-efficient computing resources will play
a crucial role for exploiting synergies with other modal-
ities, not just with the visual modality, but also with all
other sensors of the AS. Then, based on the techniques
presented earlier, the wealth of acoustic information can
be collectively extracted from complex acoustic scenes by
next-generation ASs.
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