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ABSTRACT | Solid-state drives (SSDs) based on nand flash are 

making deep inroads into data centers as well as the consumer 

market. In 2016, manufacturers shipped more than 130 million 

units totaling around 50 Exabytes of storage capacity. As the 

amount of data stored on solid state drives keeps increasing, 

it is important to understand the reliability characteristics 

of these devices. For a long time, our knowledge about 

flash reliability was derived from controlled experiments in 

lab environments under synthetic workloads, often using 

methods for accelerated testing. However, within the last two 

years, three large-scale field studies have been published that 

report on the failure behavior of flash devices in production 

environments subjected to real workloads and operating 

conditions. The goal of this paper is to provide an overview of 

what we have learned about flash reliability in production, and 

where appropriate contrasting it with prior studies performing 

controlled experiments.

KEYWORDS | Failure; field study; flash technology; production 

systems; reliability; solid-state drives (SSDs); uncorrectable errors

I .  IN TRODUCTION

The popularity of solid-state drives (SSDs) based on nand 
flash technology has been growing continuously both for 
use in consumer devices as well as in data center environ-
ments. The number of SSDs shipped in 2016 alone exceeded 
130 million units totaling around 50 Exabytes of storage 
capacity. The advantages of SSDs that drive their increas-
ing  market share are clear and include superior performance 
compared to hard-disk drives (HDDs), in particular for ran-
dom access workloads, and lower power consumption.

Digital Object Identifier: 10.1109/JPROC.2017.2735969

What is much less well understood are the reliability 
characteristics of flash drives. On the one hand, SSDs have 
some reliability advantages over HDDs: the lack of mov-
ing parts removes concerns about problems such as head 
crashes, scratches of the media or a failing spindle motor, 
and makes them more robust in hostile environments. On 
the other hand, flash-based SSDs also introduce new error 
modes, most notably because flash cells wear out with use.

As increasing amounts of data are being stored on 
SSDs, understanding their reliability profile becomes cru-
cial. Until very recently, our understanding of flash relia-
bility was solely based on research studies using controlled 
experiments with a small number of chips in lab environ-
ments under synthetic workloads, often using methods 
for accelerated testing that put the drive through many 
cycles to synthetically speed up wearout (e.g., following 
the JEDEC JESD218 and JESD219 standards [1], [2]).

However, within the two years, three field studies 
have been published that report on the failure behavior 
of flash devices in production environments subjected 
to real workloads and operating conditions. The first 
examines uncorrectable errors in flash-based SSDs in 
Facebook’s servers [3]. The second paper is our own 
work and reports on a range of different errors and 
types of hardware failures in SSDs in Google’s data 
centers [4]. The third paper studies fail-stop failures of 
SSDs at Microsoft data centers [5].

The goal of this paper is to provide an overview of 
what we have learned about flash reliability in produc-
tion, and where appropriate contrasting it with prior 
studies performing controlled lab experiments and com-
mon assumptions. We focus on the following aspects:

•  the different types of errors experienced by flash 
drives and their frequency in the field;

•  raw bit error rates (RBERs), how they are affected 
by factors such as wear-out, age and workload, and 
their relationship with other types of errors;
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•  uncorrectable errors, their frequency, and how they 
are affected by various factors;

•  the field characteristics of different types of hardware 
failures, including block failures, chip failures, and 
the rates of repair and replacement of drives;

• fail-stop events, their symptoms, and prediction;
•  a comparison of the reliability of different flash tech-

nologies (MLC, eMLC, SLC drives);
•  a comparison of the reliability of flash drives and HDDs.

II .  BACKGROU ND

In this section, we briefly describe different sources of errors 
in flash, as well as techniques flash drives utilize to protect 
against them, and provide an overview of the data used in 
the three field studies on flash reliability [3]–[5].

A. Flash-Specific Sources of Errors

Simply put, a flash cell stores data as a charge that is 
trapped on a floating gate in a transistor. A program (i.e., 
write) operation injects electrons to the floating gate and an 
erase operation removes electrons from the floating gate. Data 
stored in a flash cell can therefore be corrupted if either elec-
trons are inadvertently trapped in a cell or electrons uninten-
tionally leak from the transistor of a cell. Below we describe 
at a high level the error mechanisms that have been identi-
fied in the literature. For a detailed device-level description 
of flash error mechanisms we refer to another article in the 
ProceedingS of the ieee [6] or the book by Micheloni et al. [7]. 

•  Retention errors: A cell gradually loses charge over 
time through leakage current.

•  Read disturb errors: Reading a page in a block can 
(unintentionally) charge other cells in the same block, 
due to the way reads work in nand flash.

•  Write errors: These errors appear in a freshly written 
block, as an unintended side-effect when writing (pro-
gramming) a page in this block.

•  Wearout: As flash degrades with repeated program/
erase (P/E) cycles, the incidence of all error types 
above increases.

B. Other Sources of Data Loss or Corruption in SSDs

Besides problems related to the flash media itself, 
there are also other sources of data loss or corruption in 
SSDs. One source of potential issues is bugs in a flash 
drive’s firmware, which can cause data to be overwritten 
or corrupted. For storage systems using HDDs, a prior 
field study [8] demonstrates that data corruption is a 
serious concern. While we are not aware of field stud-
ies involving SSDs, there have been known incidents of 
firmware bugs that can result in data loss or corruption. 
For example, in 2009, Intel halted shipment of some of 
their drive models due to a data corruption bug in their 

firmware [9], and in 2015, Samsung and Apple had to 
release SSD firmware updates to fix bugs that can result 
in data loss or corruption [10], [11].

Another potential source of data loss or corruption is 
the sudden loss of power during a flash drive’s operation, 
as flash internal metadata cached in device-internal volatile 
memory might get corrupted and flash program or erase 
operations might be interrupted before proper completion. 
While power loss of a device might seem like an avoidable 
problem, power outages still occur even in data centers of 
major operators [12], [13]. Recent studies by Zheng et al. 
[14] and Tseng et al. [15] show that power loss makes SSDs 
susceptible to errors. For example, Zheng et al. report that 
SSDs, even those targeted at the enterprise market, can 
experience a range of failure behaviors when power is cut 
unexpectedly during operation. These range from bit cor-
ruption, to truncated writes, to complete device failure. 
Other power-related concerns that can severely affect the 
reliability of nand flash come from the design of the power 
supply of the drive as shown by Zambelli et al. [16].

C. Device-Level Protection Against Errors

The drives’ first line of defense against bit corruption are 
error-correcting codes (ECCs) that are stored on the drive along 
with the data. As long as the number of corrupted bits in a code-
word is within the ECC’s capability, corrupted bits can be cor-
rected and do not become visible to the application. When the 
number of corrupted bits is too large to be corrected, the error 
is uncorrectable and the application receives an error. Flash 
drives also take some proactive measures to prevent future 
errors: when the reliability of a block seems to be deteriorating, 
the drive marks it as bad and removes it from future usage. For 
example, the drives at Google mark a block bad after it experi-
ences an uncorrectable error or a failed program or erase opera-
tion. Many drives also go one step further and identify when an 
entire chip seems to be failing. Higher end commodity drives 
contain spare chips, so that they can tolerate a bad chip by 
remapping its contents to a spare chip. The drives at Google 
simply remove a bad chip from further usage and continue to 
operate with reduced capacity. Finally, some drives arrange 
the drive-internal chips in a RAID-like structure to cope with 
bursty errors, or page-, block-, or chip-level errors [18].

D. The Data

Our work reports on results from three different recent 
field studies, each based on a different data set.

The first, by Meza et al. [3], examines the majority of 
flash-based SSDs in Facebook’s server fleet comprising many 
millions of SSD-days of usage (i.e., the number of days that 
the drives in the study spent in the field sum up to many mil-
lion days). The drives are all based on MLC flash and have 
been deployed in five different hardware platforms, where a 
platform is defined as a combination of the device capacity 
used in the system, the host interface technology used, and 
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the number of SSDs in the system. Table 3 in the Appendix 
provides an overview of the drives and platforms. Their data 
include information on uncorrectable errors (which in the 
context of their work are errors uncorrectable by the SSD, 
but correctable by the host), the amount of data read from 
and written to a drive, the number of block erase operations 
and discarded blocks per drive, as well as information on 
some external factors, such as temperature and bus power 
consumption.

The second is our own recent work [4], and is based 
on data collected over a six-year period in data centers at 
Google and covers ten drive models, whose key features 
are summarized in Table 4 in the Appendix. These drives 
are custom designed high-performance drives, based on 
commodity flash chips, but use a custom PCIe interface, 
firmware, and driver. The study includes two generations 
of drives, where all drives of the same generation use the 
same device driver and firmware. That means that they 
also use the same ECCs and the same algorithms for wear 
leveling. This fact makes this study unique, since differ-
ences between different drive models in the same gen-
eration can be attributed to differences in the underlying 
flash, as firmware, device driver, etc., are identical. Since 
the drives are custom drives with custom logging, there are 
more detailed data available than what Self-Monitoring, 
Analysis and Reporting Technology (SMART) provides, 
including data on correctable and other types of errors 
(rather than only uncorrectable errors) and hardware fail-
ures, such as failed chips. Moreover, this is the only one 
of the three studies that not only includes multilevel-cell 
(MLC) drives, but also single-level-cell (SLC) and enter-
prise MLC (eMLC) drives.

The third is recent work by Naryanan et al. [5], who 
examine over half a million SSDs, which are used by 
cloud applications, in five large and several smaller data-
centers at Microsoft. The drives come from two manu-
facturers, comprise five drive models, and are all based 
on MLC flash. The key features of these drives are sum-
marized in Table 5 in the Appendix. The data include 
SMART monitoring on the drives and various measures 
of server level workload intensity, as well as information 
on fail-stop failure, which were derived from trouble tick-
ets. The authors define a fail-stop failure as a drive event 
that propagates to the corresponding server, causing it 
to be shut down for external (sometimes physical) inter-
vention or investigation. The device will be replaced or 
repaired subsequently.

III .  A N OPER ATOR’S V IE W OF FL A SH 
R ELI A BILIT Y IN THE FIELD

While lab studies often focus on understanding lower level 
aspects of device reliability, such as the various mechanisms 
leading to bit corruption, operators in the field are more 
concerned with a higher level view of device reliability as 

it relates to issues that are potentially disruptive to appli-
cations and/or data center operations. In combination, 
the three recent field studies cover three different types of 
such issues: 1) uncorrectable errors, where a read operation 
encounters more corrupted bits than the drive-internal ECC 
can handle; 2) the repair and replacement of drives due to 
suspected hardware problems, which are problematic from 
an operator’s point of view as both are associated with costs 
as well as downtime; and 3) fail-stop failures, which are drive 
issues that propagate to the corresponding server, causing it 
to be shut down for external intervention or investigation. 
The three sections below summarize baseline statistics for 
the occurrence of these events in the field based on the three 
recent studies [3]–[5].

A. Drive Repair and Replacements

Fig. 1 shows the fraction of drives that was replaced 
within four years of being deployed in the field for ten dif-
ferent drive models at Google. These replacements include 
only replacements that were due to suspected hardware 
issues with the drive (rather than the retirement of obso-
lete models and hardware upgrades). We observe significant 
differences between models. Typical four-year replacement 
rates are in the 3%–5% range, but at the high end two drive 
models experience replacement rates closer to 10%. These 
rates correspond to annual replacement rates of around 1% 
for most drives and 2.5% for the highest rates.

Table 1 shows for the same drive models the fraction 
of drives in each population that was sent to repairs within 
four years of being deployed in the field. A drive is swapped 
and enters repairs if it develops issues that require manual 
intervention by a technician. We observe significant dif-
ferences in the repair rates between different models. 
While for most drive models 6%–9% of their population at 
some point required repairs, there are some drive models,  

Fig. 1. The percentage of flash drives that are replaced due to 
suspected hardware problems within the first four years of being 
deployed in the field based on the Google study.
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e.g., SLC-B and SLC-C, that enter repairs at significantly 
higher rates (30% and 26%, respectively). The vast majority 
(96%) of drives that go to repairs, go there only once in their 
life. Comparing with the rate of replacement, we observe 
that for most models less than half as many drives are being 
replaced as being sent to repairs, implying that at least half 
of all repairs are successful.

B. Uncorrectable Errors

Fig. 2 shows the fraction of drives that were affected 
by uncorrectable errors within the first four years of being 
deployed in the field, based on the Google study [4]. We 
observe that uncorrectable errors are common: depend-
ing on the drive model between 26% to more than 90% of 
drives experience at least one uncorrectable error. A closer 
look at the data reveals that, depending on the model, two 
to six out of 1000 drive days are affected by uncorrect-
able errors. Recall that all drives of the same generation 
use the same device driver and firmware, and also use the 
same type and strength of ECC, so differences in the rate 
of uncorrectable errors between any of the MLC and SLC 
drives (which are all of the same generation) are not due to 
differences in the ECC.

The Facebook study [3] reports slightly lower incidence 
rates, ranging from 20% to 35% for most of their hardware 
platforms, and rates as low as 4%–8% for two of the plat-
forms. The difference might be due to the lower age and less 
intensive drive usage: the average age of drives range from 
0.5 to 2.4 years across their different hardware platforms 
and drives have on average seen less than 100 P/E cycles, 
while the Google data spans at least four years for each 
model and for most models the drives have gone through 
500–1000 P/E cycles on average.

The Facebook and Microsoft studies also report uncor-
rectable bit error rates (UBERs), rather than just error 
incidence. The range of UBERs across different models 
in the two studies is very large, spanning   10   −11   to  −  10   −14   
at Microsoft and   10   −9   to   10   −11   at Facebook. All rates are  
more than an order of magnitude above the   10   −15   and   10   −16   
that the JEDEC standard [1] requires for consumer and 
enterprise class drives, respectively. We speculate that there 
might be different reasons for those extremely wide ranges 
of UBER. First, in our own work, we observe that counts 
of uncorrectable errors have a highly variable distribution 
with heavy-tails, where a small number of outliers might 
bias the population mean. Second, we find that UBER might 
not be a good metric for measuring uncorrectable errors in 
the field as we will elaborate further in Section V-A. Finally, 
the Facebook data are based on a nonstandard SSD design, 
in which the main ECC was performed by the custom driver 
and the host CPU, and the study defined UBER based on 
reads that simply required the main ECC engine. It is not 
clear what the UBER rates are after passing through the 
host-based ECC engine. The Microsoft data report UBERs 
after ECCs, but do not mention whether other mechanisms 
could be applied, beyond ECC, to reduce the host-visible 
rate of uncorrectable errors.

C. Fail-Stop Failures

Narayanan et al. [5] focus their study of the Microsoft 
data on fail-stop failures, which comprise drive events 
that propagate to the server and cause it to be shut down. 
According to [5] nearly 80% of the fail-stopped SSDs were 
replaced. They report annualized fail-stop rates from 0.4% 
to 1% for four consumer class drive models and around 0.1% 
for one enterprise class model (see Fig. 3).

Fig. 2. The percentage of flash drives that experience at least one 
uncorrectable error within the first four years of being deployed in 
the field based on the Google study.

Table 1 Overview of Prevalence of Factory Bad Blocks and New Bad Blocks Developing in the Field, and the Fraction of Drives for  

Each Model That Developed Bad Chips, Entered Repairs, and Were Replaced During the First Four Years in the Field.
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As the drives in the Microsoft study are commodity drives 
(unlike Google’s drives, which are custom drives based on 
commodity chips) it makes sense to compare the fail-stop 
rates with the annual failure rates one would expect based 
on vendor specifications. Drive data sheets typically specify 
a mean time before failure of 1.5–2 million hours, corre-
sponding to an annual failure rate of around 0.4%–0.5%. 
Narayanan et al. quote the specifications for the particular 
drives in their study in the 0.61%–0.73% range. We note 
that these numbers from data sheets are consistent with the 
only field failure rates published by a vendor that we are 
aware of: Intel reports in a white paper [19] annual failure 
rates of 0.61%.

Out of the five drive models covered in the Microsoft 
study, one is barely within the specifications and two 
exceed the rates in the specifications. What is particularly 
interesting is that the two drive models whose rates exceed 
the specifications do not seem to be very heavily used: The 
amount of data written in relation to drive capacity (see 
Table 5) implies that the drives on average have undergone 
fewer than 60–160 P/E cycles, well below the thousands of 
P/E cycles they should be able to withstand and well before 
wearout becomes an issue.

As fail-stop failures are closely related to drive repairs 
and replacements (nearly 80% of affected drives end up 
being replaced) it is worth comparing with the Google data 
on repairs and replacements. We observe lower fail-stop 
rates at Microsoft than drive repairs and replacements at 
Google. One problem with this comparison is that fail-stop 
events might not be the only events that trigger drive replace-
ments at Microsoft, so the number of fail-stop events might 
be lower than actual replacement rates. Other reasons for 
differences in the numbers could be differences in the usage 
of the drives. While the drives in the Microsoft study have 
seen less than 60–160 P/E cycles on average, the drives at 
Google have on average gone through 500–1000 P/E cycles. 
Moreover, the Google drive models have larger capacities, 
ranging from 480 GB to 2 TB, compared to 160–480 GB of 
the drives at Microsoft.

D. Comparison With HDDs

An obvious question for operators is how SSDs compare 
to HDDs, as these two technologies are the main competi-
tors in the persistent storage market.

We observe that replacement rates for SSDs are signifi-
cantly lower than for HDDs. Work by Schroeder et al. [20]  
and Google [21] shows that annual replacement rates for 
HDDs typically exceed 1%, with 2%–4% common and 
up to 13% observed on some systems. These numbers are 
consistent with the most recent publicly available data on 
HDDs, reported by Backblaze [17] based on observations on 
their own data centers (see Fig. 4). In comparison, annual 
replacement rates for SSDs are significantly lower, as we 
have seen in Section III-A (typically around 1%, with the 
worst model at 2.5%).

On the other hand, we observe that SSDs have signifi-
cantly higher rates of nontransparent errors, i.e., errors that 
the drive cannot mask from the application. For HDD the 
main source of nontransparent errors is latent sector errors, 
where individual sectors on a drive might become unavail-
able. If a latent sector is discovered during a read access the 
hard disk has to return an error. Bairavasundaram et al. [22] 
analyze data for 1.5 million hard disks collected from Netapp 
production storage systems and find that only 3.4% of them 
develop latent sector errors over a 32-months period (1.5% 
of enterprise disks and 8.5% of nearline disks). In compari-
son, for nearly all SSD models, more than 20% of the drives 
in the field experience an uncorrectable error, and half of 
all models in the Google study see more than 50% of drives 
experience uncorrectable errors.

I V.  R BER IN THE L A B A ND IN THE 
FIELD

A common metric to quantify flash reliability is the RBER, 
which is computed as the number of corrupted bits divided 
by the number of bits read (including both correctable and 
uncorrectable errors).

Fig. 3. The annual percentage of flash drives that experience a fail-
stop event based on the Microsoft study (reproduced from [5]).

Fig. 4. The most recent published data (figure from [17]) on annual 
replacement rates for HDDs, collected on systems at Backblaze.
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This section is entirely based on the Google study, as 
the Facebook and Microsoft studies do not contain data on 
raw bit errors. We can accurately determine the RBER for 
Google drives in the second generation (i.e., models eMLC-
A and eMLC-B), as they report precise counts of the num-
ber of bits read and the number of bits corrupted. However, 
drives in the first generation, while producing accurate 
counts for the number of bits read, only provide a lower 
bound on the number of corrupted bits. The reasons is that 
for each page (which consists of 16 data chunks) they only 
report the number of corrupted bits in the data chunk that 
had the most corrupted bits. Therefore, in a (not very likely) 
worst case scenario, where all chunks on a page have the 
same number of corrupted bits as the worst chunk on the 
page, the RBER rates would be a factor of 16 larger than 
the reported numbers indicate. While this does not mat-
ter when comparing drives from the same generation, it is 
a subtlety one must bear in mind when comparing across 
generations.

A. RBER Summary Statistics

When studying RBER we find that the average RBER can 
be dominated by just a few outliers, which can obscure any 
trends. We therefore report medians and percentiles instead. 
More precisely, Table 2 reports the median, 95th and 99th 
percentile of RBER across all drives for a given model.

We observe that RBER varies widely from one drive 
model to another. For example, the median RBER for 
drive models in the first generation ranges from as little as 
5.8e-10 to more than 3e-08. Even drives of the same drive 
model can have vastly different RBER. For most models, 
the RBER of a drive in the 99th percentile is about an order 
of magnitude higher than the RBER of the median drive of 
the same model.

Finally, we do not find that one vendor produces consist-
ently better RBER than others. For example, among the SLC 
and eMLC drives, some of the best and some of the worst 
models come from the same vendor.

B. What Factors Impact RBER in the Field?

This section studies the impact of the following factors 
on RBER: wearout from P/E cycles; chronological age, i.e., 
the amount of time a drive has spent in the field, irrespec-
tive of P/E cycles; the number of read, write, and erase oper-
ations; and the presence of other errors.

Fig. 5 shows the degree of correlation between RBER 
and various factors. We used the Spearman rank correlation 

coefficient, as it can capture general monotonic relation-
ships, rather than only strictly linear relationships (in 
contrast to, for example, the Pearson correlation coeffi-
cient). We compute the correlation coefficient between 
the RBER observed for a drive in a given month, and other 
factors as they were observed in the same month. The fac-
tors include the device age in months, the number of prior 
P/E cycles, the number of read, write or erase operations in 
that month, the RBER observed in the previous month and 
the number of uncorrectable errors (UEs) in the previous 
month. Correlation coefficients close to +1 indicate a strong 
positive correlation and values close to −1 indicate a strong 
negative correlation. Each group of bars correspond to one 
particular factor (see X-axis labels) and each bar within a 
group corresponds to one drive model. All correlation coef-
ficients are significant at more than 95% confidence.

The figure shows a clear correlation between RBER and 
all of the factors, except the number of earlier uncorrect-
able errors, for at least some of the models. However, we 
stress that some of these correlations might be spurious 
(as there might be correlations between various factors) and 
will therefore use the remainder of this section to study the 
effect of each factor in more detail.

1) RBER and Wearout: Due to the limited endurance 
of flash cells, a drive’s RBER rate grows as the number of 
P/E cycles grows. However, existing studies, based on con-
trolled experiments, do not always agree on the rate of 
growth. Several papers present graphs that show a superlin-
ear, often exponential, relationship between RBER and P/E 
cycles [23]–[28]. However, these are all for devices in the 
20–30-nm range (compared to mostly 50-nm devices in the 

Table 2 Summary of RBERs for Different Models

Fig. 5. The Spearman rank correlation coefficient between the 
RBER observed in a drive month and other factors.
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Google data) and for some [23]–[25] the relationship is not 
clearly visible for smaller P/E cycle counts (less than 10 000), 
while for another one [29] the rate is exponential only for 
smaller P/E cycles (less than 5000). Among two papers 
that report on 50-nm devices, one shows a linear increase 
for  <4000  cycles and superlinear increase for higher cycle 
counts for some devices [30]. The other paper uses curve 
fitting and provides an exponential fit to the data [31].  
However, visual inspection reveals a poor exponential fit for 
smaller cycle counts ( <4000 ) and instead indicates a sublin-
ear relationship for this cycle range. Finally, work by Mielke 
et al. [32] shows a sublinear (power-law) relationship for 
63–72-nm devices.

Note that all these studies are based on controlled lab 
experiments and that only one [26] is done at the drive level 
rather than the chip level. However, we note that the RBER 
rates reported in this work appear anomalous (rates in the 
1E-11 range) and might point to problems in the interpreta-
tion of the SMART data that the work relied on.

Our goal is to study in detail how RBER grows with P/E 
cycles in the field. Toward this end, Fig. 6 plots the median 
and the 95th percentile RBER as a function of the num-
ber of P/E cycles. The data points in the two graphs were 
obtained by sorting all drive days in the Google data into 
bins, based on the total P/E cycles a drive had seen by this 
day, and then computing for each bin the median and the 
95th percentile RBER.

The figure shows that both median and 95th percentile 
RBER increase as a function of the number of P/E cycles. 
We also observe that the growth rate more closely resembles 
a linear increase, rather than a superlinear or exponential 
increase as reported in some earlier studies.

We also make another interesting observation: how 
quickly RBER rates grow with P/E cycles differs greatly 
between drive models, even for models that start out with 
comparable RBER rates early in their lifetime. For example, 
the RBER for all four MLC models is very similar at very low 
P/E cycles, while there is a 4X difference between the best 
and the worst model by the time they reach 3000 P/E cycles.

We are also interested in seeing what happens to RBER 
once a drive goes past its P/E cycle limit and observe that 

the growth in RBER continues to be quite smooth (see, for 
example, model MLC-D with a P/E cycle limit of 3000). 
Accelerated life tests for the same drives exhibit a steep 
increase in RBER at around 3X the vendor’s P/E cycle limit. 
This might indicate that vendor’s P/E cycle limits are chosen 
very conservatively or that they were based on requirements 
that we cannot measure with our data. For example, SSD 
endurance ratings require that a drive maintain a certain 
number of months (e.g., three months) of data retention 
capability, so the endurance limit might be chosen at the 
point where this retention capability is no longer met. It 
is also possible that the P/E cycle limit was based on early 
devices of a particular model and that fabrication engineers 
improved the nand margins over time.

2) RBER and Age (Beyond P/E Cycles): Lab studies rely on 
accelerated life tests to evaluate the effect of age on devices. 
Using field data we can study the effect of natural aging in 
the field. Here we are particularly interested to see whether 
there are aging effects besides the P/E cycle induced wea-
rout of individual flash cells.

Fig. 5 shows a significant correlation between the num-
ber of months a drive has been in the field, and its RBER. 
This correlation might not be surprising, since older drives 
are more likely to have higher P/E cycles counts, which are 
correlated with RBER.

We therefore take measures to isolate the effect of 
age from that of P/E cycles as follows. We assign all drive 
months to bins based on the deciles of the P/E cycle distri-
bution, e.g., the first bin contains all drive months up to the 
first decile of the P/E cycle distribution, and so on. Now 
there is only a negligible correlation between P/E cycles and 
RBER within a bin as each bin only spans a small P/E cycle 
range. Next we determine separately for each bin and each 
drive model the correlation coefficient between RBER and 
age. Separating by drive model allows us to rule out that 
any observed correlations are due to differences between 
younger and older drive models, rather than younger versus 
older drives within the same model.

We find that even when isolating the effect of the time a 
drive has spent in field from that of P/E cycles there is still 

Fig. 6. The figures show the median and the 95th percentile RBER as a function of the P/E cycles.
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a significant correlation with RBER (correlation coefficients 
between 0.2 and 0.4) for all drive models.

Fig. 7 visualizes the correlation between RBER and drive 
age by plotting RBER as a function of P/E cycles for two sepa-
rate groups of drive months: The first group consists of data 
points observed at a young drive age (less than one year) while 
the second group consists of drive days that were observed 
when a drive was older (four years or more). The results in 
Fig. 7 are for one sample drive model (MLC-D). We observe 
clearly different RBER rates for the two groups, across the 
entire P/E cycle spectrum.

There could be different reasons for the correlation 
between age and RBER. One might suspect that the older 
drives might be from a different (older) manufacturing vintage 
than younger drives, which leads to a difference in reliability 
of the two groups; however, we made sure that all drives in the 
study were put into production within the same one-year time 
window. One could hypothesize that there are other aging 
mechanisms at play, beyond cycle-induced wearout, however 
the literature documents only very few reliability mechanisms 
that depend simply on age. These typically involve metal 
interconnects (e.g., corrosion) and would more likely lead to 
circuit failure rather than individual cell errors. It is also pos-
sible that the source of the correlation is related to the drives’ 
workloads. An older drive with the same number of P/E cycles 
had more retention time between than a younger drive with 
the same P/E cycles. Longer retention times might have lead 
to retention errors that increase the RBER. This is an issue 
that remains to be investigated in more detail in future work.

3) RBER and Workload: The workload that a drive experi-
ences can affect its reliability in different ways. As explained 
in Section II, bit errors can be caused by different mecha-
nisms: retention errors, due to cells leaking charge over 
time; read disturb errors, where a read operation disturbs 
the charge in another cell in the same block; or write errors 
in a recently written block.

While these errors are expected to be correlated with 
workload, the characteristics of these correlations make 
them hard to quantify using field data. For example, in the 
case of read disturb errors, one would need information on 

the number of read operations and the RBER per block, as a 
read can only affect other cells in the same block. One would 
also need information on the number of read operations 
between erase cycles, as any erase operations would clear 
previous errors. One also needs to control for the total num-
ber of P/E cycles, when looking at the effect of read opera-
tions on RBER, as P/E cycles have an effect by themselves 
(wearout) and the number of reads and P/E cycles are likely 
to be correlated. The latter issue can to some degree be con-
trolled by data mining techniques, but the first two issues 
cannot be easily resolved, as field data is typically not col-
lected at a sufficiently fine granularity (e.g., including per-
block information) due to associated overheads. That means 
when field data shows no correlation between RBER and the 
number of read operations, we cannot conclude that read 
disturb does not occur (the per-drive rather than per block 
data might just be too coarse grained). On the other hand a 
correlation between RBER and read operations might indi-
cate the presence of read disturb (provided that the analysis 
controlled for P/E cycles).

The Google study checked for correlations between read 
operations and RBER and found a correlation (even after con-
trolling for P/E cycles), but only for two of the models (models 
MLC-B and SLC-B). We conclude that read disturb might affect 
RBER in the field, at least for some models, but more fine-
grained data would be necessary for any definite conclusions.

4) RBER and Lithography: To see whether differences 
in RBER for models using the same technology (MLC or 
SLC) can be partially explained by differences in feature 
size, Table 4 includes lithography information for all mod-
els in the Google study. As one might expect, models with a 
smaller lithography tend to have higher RBER. For example, 
the RBER of the two 34-nm SLC models (models SLC-A and 
SLC-D) is an order of magnitude higher than that of the two 
50-nm models (SLC-B and SLC-C). For the MLC models, 
the only 43-nm model (MLC-B) has a median RBER that is 
50% higher than that of the other three models, which are 
all 50 nm. Moreover, this difference in RBER increases to 
4X with wearout, as shown in Fig. 6.

Differences in lithography might also explain why the 
RBER for the eMLC drives is several orders of magnitude 
higher than that of the MLC drives. The two eMLC models 
are based on 25- and 32-nm chips compared to 50 nm for 
the MLC drives. (The reader might recall that first genera-
tion drives only report a lower bound on their RBER, which 
in the worst case could be up to 16X higher, however, we 
observe that that would still result in more than an order of 
magnitude difference between the eMLC and MLC drives.)

5) RBER for MLC Versus SLC: MLC drives are considered 
to be more susceptible to errors than SLC drives, since MLC 
cells store multiple bits per cell and as a result the voltage 
window separating different values is smaller. (See [6] for 
details on MLC versus SLC.) This difference has been dem-
onstrated in lab studies and is also reflected in the technical 

Fig. 7. RBER rates as a function of P/E cycles for young and 
old drives, showing a correlation between age and RBER, 
independently of P/E cycle induced wearout.
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specifications for MLC drives, which have a significantly 
lower P/E cycle limit.

Revisiting Fig. 6 we observe that there is indeed a sig-
nificant difference between SLC and MLC drive models, as 
RBER rates for the MLC models are orders of magnitude 
higher than for the SLC models. However, we will see in 
Section V that these differences do not necessarily translate 
to differences in the rate of uncorrectable errors or other 
types of errors that are visible to the user.

6) Effect of Other Factors: One challenge with field stud-
ies compared to controlled lab experiments is that the data 
available to the data analyst are limited to what the system 
designers and operators decided to monitor and collect.

While the Google data set is quite rich it cannot account 
for all possible factors. Examples are details on environmen-
tal conditions beyond just average temperatures (e.g., tem-
perature variation), information on external factors, such as 
power outages, which have been shown to have a detrimen-
tal effect on hardware components, or details on workload 
patterns (beyond just total number of reads and writes), 
which lab studies have shown to be important.

While we cannot comment on the importance of those 
individual factors, we do find evidence that existing data can-
not directly account for all factors with significant impact on 
RBER. In particular, we observe that the RBER for a particu-
lar drive model varies depending on the cluster where the 
drive is deployed, even when controlling for P/E cycles.

One example is depicted in Fig. 8, which plots RBER as 
experienced by MLC-D drives deployed in three different 
clusters (dashed lines) and compares this to the RBER of the 
entire MLC-D population (solid line). We verified that these 
differences cannot be directly explained by any of the fac-
tors our data accounts for, including factors, such as physi-
cal age, read counts, or write counts.

One possible reason could be different types of workloads 
running in different clusters. For example, Fig. 8(b) shows 
that the read/write ratio tends to be higher in those clusters 
with the highest RBER. However, the read/write ratio does 
not explain differences across clusters for all models, so it 
is likely that there are other factors at play, such as other 

workload characteristics or environmental factors (tempera-
ture, humidity, etc.), that the data do not account for.

The observation above also points out another problem 
with field studies. Unlike in controlled lab environments, 
where all factors can be controlled and equalized for all drives 
under test, many different factors affect the field experience 
of different drives. Ideally, for the study of any particular 
effect on a drive in the field one would like to hold all other 
factors constant, which is not possible for drives in produc-
tion. When performing our analysis of the Google data, we 
controlled for as many factors as possible. For example, we 
ensured that trends we observe persist when studying only 
drives that are all deployed in the same cluster.

V. U NCOR R ECTA BLE ER ROR S

This section takes a closer look at uncorrectable errors 
(UEs), including a look at metrics to measure UEs and the 
impact of various factors on UEs.

A. Why UBER Is Not a Useful Metric for 
Field Studies

The frequency of uncorrectable errors is commonly 
measured by a metric called UBER (uncorrectable bit error 
rate), which is the number of uncorrectable bit errors 
divided by the total number of bits read. Note that this met-
ric implicitly assumes that the number of uncorrectable bit 
errors is correlated with the number of bits read, and hence 
normalizes by this number.

The same assumption underlies the RBER metric and it 
makes sense in that context, as we find that the number of 
errors observed in a given month is strongly correlated with 
the number of reads in the same time period (Spearman 
correlation coefficient larger than 0.9). The reason for this 
strong correlation is that one corrupted (but correctable) bit 
will continue to increment the error count with every read 
operation that accesses it, since the corrupted bit is not cor-
rected immediately upon detection of the corruption (drives 
only periodically rewrite pages with corrupted bits).

The assumption also often makes sense in controlled 
lab experiments, e.g., where the experimenter ensures that 

Fig. 8. (a) Median RBER rates as a function of P/E cycles for model MLC-D for three different clusters. (b) The read/write ratio of the 
workload for the same model and clusters.
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when different devices are compared they have all experi-
enced the same number of reads and writes, and every bit 
that was written is being read back. This is, for example, the 
case if the experimenter follows JEDEC standards.

The same assumption makes less sense for uncorrectable 
errors in the field: upon the detection of an uncorrectable 
error the SSD controller will usually remove the corre-
sponding block from further usage, so it will not continue to 
increase the error count afterwards. To verify this intuition, 
we employed a variety of measures (Pearson, Kendall, and 
Spearman correlation coefficients) to study the relationship 
between the number of reads within a time period and the 
number of uncorrectable errors in the same time period, as 
well as visual inspection. Besides the raw number of uncor-
rectable errors, we also considered the incidence of uncor-
rectable errors (i.e., the probability that a drive will have at 
least one within a certain time period) and their correlation 
with read operations.

None of the measures provides any evidence for a corre-
lation between the number of uncorrectable errors and the 
number of read operations or the amount of data read. The 
correlation coefficients are less than 0.02 for all drive mod-
els, and visual inspection does not show a higher rate for 
uncorrectable errors when there are more read operations.

We therefore conclude that UBER is not a meaningful 
metric to compare the reliability of different drives (or drive 
types) in the field. UBER is a metric that is more useful in 
controlled environments where the workload is set by the 
experimenter and is identical for all drives under test. If 
used as a metric in the field, UBER will artificially decrease 
the error rates for drives with high read count and artifi-
cially inflate the rates for drives with low read counts, as 
UEs occur independently of the number of reads.

One might consider an alternative definition of UBER, 
as suggested in the JESD218 standard, which divides the 
number of uncorrectable bits by the number of write or 
erase operations instead of read operations. However, the 
Google study [4] observes that also write and erase opera-
tions are uncorrelated with uncorrectable errors, so such an 
alternative definition would not be any more useful when 
considering field data.

B. What Factors Impact UEs in the Field?

1) Uncorrectable Errors and Wearout: Fig. 9 studies how 
the daily probability of experiencing a UE is affected by a 
drive’s P/E cycles (based on Google data). We note that, sim-
ilarly to RBER, the probability of UEs grows continuously 
with P/E cycles and visual inspection as well as curve fitting 
suggest a linear growth rate.

Also, as was the case for RBER, we observe no signifi-
cant jump in error probabilities after a drive’s P/E cycle limit 
is exceeded and we see a large variance in error probabili-
ties across models (even those within the same class and 

similar feature size), albeit the differences are smaller than 
for RBER.

Interestingly, when comparing Fig. 9 with Fig. 6 on 
RBER, we observe that the models with the lowest RBER 
are not necessarily those with the lowest incidence of UEs. 
For example, at 3000 P/E cycles the RBER rates of MLC-D 
are 4X lower than those of MLC-B, while its UE probability 
is actually slightly higher than that of MLC-B. This moti-
vates us to further study the relationship between RBER and 
uncorrectable errors in Section VIII-B.

2) Infant Mortality: Much of the discussion on flash relia-
bility over an SSD’s lifetime is focused on wearout with age. 
However, hardware components are also known to exhibit 
infant mortality, where many devices fail shortly after being 
deployed in the field. More generally, a common model for 
device failure over lifetime is the bathtub model, with high 
initial failure rates, then lower rates during the useful life, 
before rates start increasing again when wearout sets in.

Meza et al. [3] have studied the early lifetime behavior 
of flash drives at Facebook and find that it is slightly more 
complex than the bathtub model. Rather than initially high 
rates of infant mortality that drop over time, they observe 
two distinct periods, as shown in Fig. 10. During the initial 
period rates increase, then there is a second phase during 
which rates decrease, before rates start increasing again for 
the remainder of a drive’s life. They call the first phase “early 
detection period” and hypothesize that during this phase, 

Fig. 9. Daily probability of a drive experiencing an uncorrectable 
error as a function of the P/E cycles the drive has experienced.

Fig. 10. Rate of uncorrectable errors versus the amount of data 
written to flash cells during early life. (Reproduced from [3].)
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when the device is first being used in the field, weak cells 
are being detected and consequently the corresponding 
block is marked bad and removed from usage. In the sec-
ond phase reliability improves, since bad cells/blocks have 
been identified and taken out of circulation. In the third 
phase, rates start rising again as wearout starts to become 
the  dominating effect.

3) Uncorrectable Errors and Workload Intensity: For the 
same reasons that workload can affect RBER one might 
expect an effect on UEs. For example, since we observed a 
correlation between read errors and RBER for two drive mod-
els at Google (recall Section IV-B2), read operations might 
also correlate with uncorrectable errors. Unfortunately, nei-
ther the Google data nor the Facebook data exhibit a signifi-
cant correlation between read operations and the number 
of UEs (when controlling for P/E cycles). That means we 
cannot draw any conclusions on the effect of read disturb on 
UEs, as the lack of a correlation might be due to the coarse-
grained nature of the field data used in these studies.

4) Workload Patterns: Besides workload intensity, it is 
also possible that certain workload patterns affect the rate 
of uncorrectable errors. For example, the amount of time 
that passes before a previously written piece of data is over-
written or rewritten, will affect the rate of retention errors 
(which increase as data is left untouched for long periods 
of time). Unfortunately, there is no field data available that 
contains low-level input/output (I/O) traces to allow for 
such analysis (as collecting such data would be associated 
with considerable overhead).

However Meza et al. are able to indirectly study one 
aspect of workload patterns for the drives at Facebook by 
observing DRAM buffer usage, which for their devices is 
used exclusively for drive-internal metadata. They find 
that as more DRAM buffer is used, the rate of uncorrect-
able errors increases. They hypothesize that this is because 
DRAM buffer usage is higher when data is sparsely (e.g., 
noncontiguously) allocated, as more metadata is needed for 
the same total amount of data stored. Sparse data alloca-
tion might indicate workloads which perform many small 
writes and hence require a large number of copy and erase 
operations. The paper unfortunately provides no data on the 
number of erase operations per drive, which could be used 
to further validate this hypothesis.

5) Temperature: Temperature is well known to affect the 
reliability of hardware components. This is the reason that 
for example the JEDEC JESD218 standard requires cycling 
to be done at both 25 °C and a high-use type of temperature 
(55 °C–85 °C). Meza et al. [3] study the effect of tempera-
ture, measured by sensors on the SSD cards in Facebook’s 
fleet, on uncorrectable errors and find that it is not as clear 
cut as in lab experiments. For the range of operating tem-
peratures observed in their data, spanning 30 °C–65 °C, 
there was no clear effect in two of the six platforms, for two 

platforms errors increased with temperature, and for two 
platforms errors decreased with temperature. The authors 
speculate that drive-internal mechanisms deployed by the 
SSD controller, which try to protect the drive under higher 
temperatures by throttling workload and power, might 
explain the stable or decreasing failure rates under higher 
temperatures for some models.

6) Lithography: While we found RBER to be clearly 
affected by lithography, it is interesting to observe that the 
effects of lithography are much less obvious in the case of 
uncorrectable errors. Fig. 9 shows, for example, that SLC-B 
drives experience a higher rate of uncorrectable errors than 
SLC-A drives, despite the fact that SLC-B has the larger 
lithography (50 nm compared to 34 nm for model SLC-A).  
Moreover, MLC-B, which is the MLC model with the 
smallest feature size, does not generally have higher rates 
of uncorrectable errors than the other models. In fact, dur-
ing the first third of its life (0–1000 P/E cycles) and the 
last third ( > 2200 P/E cycles) it has lower rates than, for 
 example, model MLC-D.

While we cannot say for sure why lithography has a 
weaker effect on uncorrectable errors, it is possible that fab-
rication process improvements can compensate for the chal-
lenges of smaller feature sizes, and that some contributors to 
UEs like firmware bugs do not depend on lithography at all.

7) MLC Versus SLC: eMLC and SLC drives offer a higher 
write endurance (in terms of the maximum number of P/E 
cycles they are rated for) than MLC drives and are often 
expected to be generally more reliable and robust as they 
are targeted at the enterprise market and command a higher 
price point. This section uses the Google data to see how 
accurate this perception is.

A look at Table 2 shows that these expectations are cor-
rect with respect to RBER and SLC drives, as RBER is sig-
nificantly lower for SLC drives than for MLC and eMLC 
drives. However, we do not find that SLC drives are superior 
for those reliability metrics that matter most in practice: 
Neither the rate of repairs and replacements nor the rate of 
nontransparent errors is lower for SLC drives compared to 
MLC or eMLC drives (within the P/E cycle ranges that the 
data covers).

Maybe surprisingly the eMLC drives experience higher 
RBER than the MLC drives, however recall that their 
smaller lithography might be responsible, rather than other 
differences in technology.

We conclude that while SLC drives might be more reli-
able at very high cycle counts, they are not generally more 
reliable than MLC drives when comparing the two drive 
types within the cycle limit of MLC drives.

C. Correlations Between Errors

This sections looks at whether there are correlations 
between errors, both within a drive and across drives in the 
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same machine. Correlations can have practical implications, 
which make their study worthwhile. First, correlated errors 
have a higher chance of negatively affecting applications 
as they are more likely to break redundancy than isolated 
errors. Second, correlations can indicate some potential to 
predict errors, as prior errors can be used as an indicator for 
a higher chance of future errors.

1) Correlations Between UEs on the Same Drive: Both the 
Google and the Facebook studies provide clear evidence of 
correlations between UEs on the same drive. The Facebook 
study observes that a large fraction of errors (more than 
80%) is concentrated in a small subset of the drive popula-
tion (10%) and that 99% of drives that have an uncorrecta-
ble error have another one within the following week. Some 
of these correlations might be because the same weak block 
or cell might generate multiple errors. However, using the 
Google data we can show that there is correlation beyond 
this effect: the drives at Google retire a block after it expe-
riences an uncorrectable error, so the same block or cell 
cannot create multiple errors. We still observe that a drive 
that has an uncorrectable error has a 30% chance of having 
another uncorrectable error within the next month, which 
is significantly higher than the error probability in an aver-
age month.

2) Correlations Between UEs on Different Drives: The 
Facebook study also observes that there are correlations 
between errors in different SSDs on the same machine. 
They report that an SSD experiencing an uncorrectable error 
increases the probability of another SSD in the same machine 
developing UEs by up to 26%. A possible explanation is that 
SSDs in the same machine share the same or similar operating 
conditions, such as temperature or workload. Correlations 
between different SSDs in the same machine are of particu-
lar concern in settings where both SSDs are part of the same 
redundancy group, e.g., part of the same RAID group.

3) Correlations Between UEs and Other Types of Errors: The 
Google data contain information on other types of errors, 
besides uncorrectable errors, which allows us to investigate 
whether other types of errors are correlated with uncorrect-
able errors. To this end Fig. 11 shows the probability of see-
ing an uncorrectable error in a given drive month depending 

on whether the drive saw different types of errors at some 
previous point in its life (yellow) or in the previous month 
(green bars) and compares it to the probability of seeing an 
uncorrectable error in an average month (red bar).

Fig. 11 shows that nearly any type of prior error raises 
the probability of experiencing uncorrectable errors. The 
only exception is RBER (prior correctable errors), which is 
not correlated with later uncorrectable errors. The strongest 
effect is observed if the prior error was also an uncorrectable 
error and if the prior error occurred recently (i.e., in the pre-
vious month, green bar, versus just at any prior time, yellow 
bar). For example, while the chance of seeing an uncorrect-
able error in a random month is only 2%, this probability 
increases to almost 30% if there was an uncorrectable error 
in the previous month. Additionally, a number of other 
types of errors increase the UE probability by more than 5X. 
For a detailed description of those error types, see [4].

In summary, prior errors, in particular prior uncorrect-
able errors, increase the chance of later uncorrectable errors 
by more than an order of magnitude.

V I.  H A R DWA R E FA ILU R ES

The Google study also includes information on hardware 
failures, including bad blocks and bad chips. We describe 
some of the results below.

A. Bad Blocks

Blocks are the unit at which erase operations are per-
formed. Many drives are shipped with factory bad blocks, 
i.e. blocks that have already been marked as bad by the 
manufacturer. Drives can also develop new bad blocks after 
being deployed in the field.

Drives usually support mechanisms for dealing with bad 
blocks. Typically, once a block is diagnosed as bad, a drive 
will try to recover any data that might still be on it, copy it to 
a different block and stop using the bad block in the future. 
How blocks are identified as bad is drive policy dependent. 
For the drives in the Google study, an uncorrectable error, a 

Fig. 11. The monthly probability of a UE as a function of whether 
there were previous errors of various types.

Fig. 12. The graph shows the median number of bad blocks a drive 
will develop, as a function of how many bad blocks it has already 
developed.
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write error, or an erase error on a block will lead to the block 
being marked as bad.

Table 1 summarizes the prevalence of bad blocks based 
on the Google study. It provides the percentage of drives that 
developed bad blocks after being deployed, and the median 
and mean number of bad blocks for drives with bad blocks. 
The table is based on drives that were deployed four or more 
years before the time of the study and includes only data for 
the first four years in the field. The table also includes the 
corresponding statistics for factory bad blocks.

1) Bad Blocks Developed in the Field: Bad blocks are a com-
mon occurrence in the field with 30%–80% of drives affected 
by them. A closer look at the empirical distribution function 
of the number of bad blocks per drive shows that it is highly 
variable with a long tail: most drives with bad blocks develop 
only a small number of them (medians are in the 2–4 range), 
but once a drive exceeds this number it is likely to develop 
many more bad blocks. This point is illustrated in Fig. 12. 
Intuitively, the figure is meant to show how many more bad 
blocks a drive will likely develop during its lifetime, based 
on how many bad blocks it has already experienced. More 
precisely, the figure looks at the statistical distribution of 
the number of bad blocks (not including factory bad blocks) 
a drive develops over its lifetime and plots the conditional 
median. For example, the  (x, y)  point says, out of all drives 
that have developed at least  x  bad blocks during their life-
time, how many more than  x  did they develop in total. Fig. 12 
includes a separate line for each drive model, with MLC mod-
els drawn in blue solid lines and SLC models drawn in red 
dashed lines. We observe, for example for MLC drives a sharp 
jump in the expected number of bad blocks once a second bad 
block is detected: 50% of those drives that develop two bad 
blocks will develop close to 200 or more bad blocks in total.

There is also another interesting interpretation of this 
data. A drive that experiences hundreds of bad blocks is 
likely experiencing a chip failure. So our observations above 
imply that once a drive sees just 2–4 new bad blocks it is 
very likely to experience a chip failure and that chips seem 
to either develop only one or two isolated bad blocks, or the 
chip fails entirely. An interesting direction for future work 
would be to investigate the potential for predicting chip 
failure, based on prior bad blocks and possibly other factors 
(P/E cycles, workload, etc.).

It is also interesting to consider whether bad blocks are 
typically detected in a way that is user transparent (e.g., in a 
write or erase operation) or in a way that leads to an uncor-
rectable error that has to be passed on to the user and can 
potentially mean data loss.

The Google data do not include detailed records on how 
each block was identified as failed. However, we observe 
that the number of erase and write errors is lower than that 
of uncorrectable errors, which means that bad blocks are 
most commonly encountered during a read operation mak-
ing them visible to the user application.

2) Factory Bad Blocks: For most drive models, including 
MLC as well as SLC drives, the vast majority (more than 
97%) of drives are shipped with factory bad blocks. The 
mean and median number of factory bad blocks varies con-
siderably by model. For example, two SLC models see medi-
ans of less than 100 factory bad blocks, while most other 
models see 800 or more factory bad blocks. The distribution 
of factory bad blocks looks close to a normal distribution, 
with mean and median being close in value.

Interestingly, the number of factory bad blocks shows a 
correlation with the number of bad blocks and a few types 
of errors a drive experiences later in the field. For example, 
for most models the drives above the 95th percenile of fac-
tory bad blocks experience a higher rate of uncorrectable 
errors in the field, compared to an average drive of the same 
model. The drives in the bottom 5th percentile are less often 
affected by timeout errors than an average drive.

B. Bad Chips 

Similar to how bad blocks are being remapped to other 
blocks, many drives also include mechanisms for dealing 
with bad chips. For example, higher end commodity drives 
can include spare flash chips that can be used to replace a 
chip that dies. The Google drives do not contain spare chips. 
Instead, when they detect a bad chip, they mark it as failed 
and continue to operate with reduced capacity. The Google 
drives mark a chip as bad if the number of errors it experi-
ences within a certain time window exceed some limit or if 
some predefined percentage of its blocks are bad.

Table 1 shows that failed chips are not a rare occur-
rence. Depending on the drive model, between 2% and 
7% of drives in a population experience bad chips within 
four years of being deployed in the field. That means that 
without mechanisms for tolerating failed chips, 2%–7% of 
drives would have undergone repairs or been returned to 
the manufacturer.

Recall that Google drives mark a chip as bad either 
because some percentage (5% for the models in the study) of 
blocks on the chip are bad or because the chip exceeded some 
limit on the number of errors it experienced. It is interesting 
to consider which of these two is the more common rea-
sons for declaring a chip failed, in particular because vendor 
guarantees for all flash chips in the study state that at most 
2% of a chip’s blocks will fail within the P/E cycle limit. We 
find that in two thirds of the cases, a chip was marked bad 
because of the number of failed blocks it had experienced. 
That means these are chips that violate vendor data sheets.

V II.  W H AT A R E SY MP TOMS A ND 
PR EDICTOR S OF FA IL-STOP FA ILU R ES?

Narayanan et al. [5] focus their study on the nature of 
fail-stop failures, which they define as drive events that 
propagate to the corresponding server, causing it to be 
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shutdown for external intervention or investigation and 
consequently lead to drive replacement or repair. They are 
particularly interested in symptoms and predictors of fail-
stop events and identify four drive-level symptoms that sig-
nificantly increase the likelihood of the drive experiencing 
a fail-stop event:

•  Data errors: These are errors triggered by the cyclic-
redundancy-check (CRC) codes and error correcting 
codes used by the drive to detect and correct data 
corruption.

•  Program or erase failures: These correspond to pro-
gram or erase operations that failed. They are often 
symptomatic of block or chip failures.

•  SATA downshift: The SATA interface might decide to 
lower the signaling rate if error counts exceed some 
threshold.

•  Reallocated sectors: The number of sectors that the 
drive declared bad. These sectors are remapped to 
other sectors and removed from further usage hence 
reducing the spare space on the drive (which is also 
used for other purposes than reallocation, most nota-
bly wear leveling).

Fig. 13 shows for one of the drive models in the Microsoft 
study how the annual percentage of drives experiencing fail-
stop events differs between drives that experienced one of 
the symptoms above, compared to those who did not. The 
graph shows that data errors have the strongest impact on 
the occurrence of fail-stop events: drives that experienced 
data errors have a 20X higher rate of fail-stop events. All 
other symptoms each increase the rate of fail-stop events by 
at least 2.75X.

To gauge the potential for predicting fail-stop events 
based on these symptoms, Narayanan et al. also study 
what fraction of drives with fail-stop events did have one 
of these prior symptoms (see Fig. 14). They find that while 
the majority of fail-stopped drives had at least one of these 
symptoms (see right-most bar labeled “any”), a significant 
fraction (38%) did not experience any of these symptoms. 

Hence these symptoms are not sufficient in predicting 
fail-stop events. However, the authors show that taking 
workload information (most importantly the number of 
writes) into account can result in more powerful predic-
tors of fail-stop events.

V III.  FOR EC A STING FIELD 
R ELI A BILIT Y

Data center operators as well as academics are interested 
in forecasting how a given device will perform when 
deployed at large scale in the field, and exposed to real 
workloads and operating conditions, aging and wearout 
effects. Typically, two techniques are used: accelerated life 
tests and projections of the expected rate of uncorrectable 
errors based on the measured RBER. In this section, we 
look at how such projections reflect field experience, based 
on the Google data.

A. Accelerated Life Tests

In order to predict the reliability characteristics of a par-
ticular device throughout its lifetime, when aging and wea-
rout become a factor, it is common to use techniques for test 
acceleration, where synthetic workloads are used to add P/E 
cycles to a drive much faster than they would typically occur 
in the field. Such techniques are used in many research 
studies and during the procurement phase in industry. The 
JEDEC JESD218 and JESD219 provide standards for run-
ning such accelerated tests [1], [2].

We obtained data from accelerated tests performed 
at Google during the procurement phase for some of the 
devices included in this study. Unfortunately, we have not 
been able to obtain detailed information on how the tests 
were run, but as a company with a large deal of experience 
in procuring and deploying massive amounts of hardware 
we assume that industry best practices have been followed. 
A study of this data shows that, for those drive models that 

Fig. 13. Annual percentage of drives with fail-stop events in the 
presence and absence of symptoms (reproduced from [5]).

Fig. 14. Percentage of fail-stopped versus healthy drives that 
exhibit symptoms (reproduced from [5]).
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we had data for, RBER in the field is markedly higher than 
what the accelerated tests had indicated. As an example, 
the RBER that eMLC-A drives experienced in the field at an 
average of 600 P/E cycles, was only reached for more than 
4000 P/E cycles in the accelerated tests. These observations 
serve to show that forecasting field RBER based on acceler-
ated testing is not a trivial exercise.

Another observation we make is that some error mecha-
nisms seem to be difficult to trigger in accelerated testing. In 
particular, we find that uncorrectable errors and bad blocks 
were observed only at very high P/E cycles in accelerated 
tests, while they occur frequently in the field. For example, 
the six MLC-B drives that were tested during procurement 
did not experience uncorrectable errors or bad blocks until 
reaching nearly 10 000 P/E cycles (more than three times 
the limit), yet well above half of these drives developed such 
problems in the field.

Our study of previous work that publishes RBER based 
on lab experiments shows a large range of reported RBER 
numbers, including results that are higher than what we 
observe in the field. For example, Grupp et al. [30], [33] 
report end-of-life RBER for devices similar to the ones in 
the Google study (between 25 and 50 nm) in the range of 
1e-08 to 1e-03, with most common values close to 1e-06. 
In contrast, the three drive models in the Google study that 
reach their P/E cycle limit report RBER between 3e-08 to 
8e-08. Even looking at the 95th percentile of RBER the field 
rates are significantly lower.

We conclude that predicting field behavior of flash 
drives based on accelerated life tests is not trivial. One of the 
main difficulties is likely that workload characteristics in the 
field can vary widely and are not always captured by stand-
ard tests. For example, error rates might be higher under 
test than in the field because there are mechanisms that 
allow flash devices to partially recover in the delay between 
cycles [34] and accelerated cycling therefore provides fewer 
opportunities to recover between cycles. On the other hand 
there are also workload-related reasons why error rates in 
the field can turn out higher than under test. For example, 
recent work shows how the reading of data before blocks are 

fully programmed can increase read disturb errors [35], and 
hence lab tests, which read only fully programmed blocks, 
might have lower error rates than field usage, if the field 
workload frequently reads the most recently written sectors. 
Also, if the retention time between writes to a data block are 
longer in the field than the test assumed, field error rates 
can be higher than error rates under test.

B. Projecting Drive Reliability Based on RBER

Operators are concerned about raw bit error rates, 
as high raw bit error rates might turn into uncorrectable 
errors. Bit errors, as long as they are correctable, are less of 
a concern. The reason that RBER is still a widely used metric 
for flash reliability is that it can be measured easily for raw 
flash chips and then be used as an indicator for the likeli-
hood of experiencing UEs when using these chips inside an 
SSD. Projecting the rate of uncorrectable errors based on 
RBER was first proposed by Mielke et al. [32]. Since then 
it has become a commonly used technique [36]–[40] that is 
used, for example, to determine the appropriate strength of 
error correction in order to keep the rate of uncorrectable 
errors below a certain threshold.

This section studies the relationship between RBER and 
UEs as well as other types of errors, based on the Google 
data [4]. This question is motivated by the fact that individ-
ual cell errors that accumulate and become uncorrectable 
are only one possible cause of UEs. Other possible causes are 
defects, such as interconnect shorts that are created when 
applied voltage over time breaks down a marginal circuit, 
or bugs in the controller or firmware. The question was also 
motivated by Fig. 5, which to our surprise does not show 
a significant correlation between uncorrectable errors and 
RBER (recall the group of bars on the right in the figure).

We study the relationship between RBER and UEs in 
more detail in Fig. 15(a), which plots the median RBER and 
the fraction of drive days with UEs for all first generation 
disk models.1 We see no correlation between RBER and 

1Some of the 16 models in the figure were not included in Table 4, as 
they do not have enough data for some other analyses in the paper. The 
red markers correspond to SLC drives, the black ones to MLC drives.

Fig. 15. The two figures show the relationship between RBER and uncorrectable errors for different disk models (left) and for individual 
disk drives within the same model (right).
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UEs. We repeated the same analysis for the 95th percentile, 
rather than RBER, but did not see any evidence of a correla-
tion either. Recall from Section II-D that all first generation 
drive models employ identical ECC, so if drives with differ-
ent RBER still experience similar incidence of UEs it is not 
due to differences in the ECC.

To further study this issue we looked at the data at differ-
ent granularities. Fig. 15(b) replots the same information as 
Fig. 15(a), but plots a separate data point for each individual 
drive. (The sample plot in the figure is for drives of model 
MLC-C.) Again, we see no indication that drives with higher 
RBER are more likely to experience uncorrectable errors.

Finally, we perform an analysis at an even finer time 
granularity, and study whether drive months with higher 
RBER are more likely to be months that experience a UE. 
Again we find no correlation.

We also studied the relationship between RBER and a 
number of other types of errors that Google’s drives report 
(e.g., errors because an operation timed out, errors in 
accessing drive metadata, operations that succeeded only 
after a few retries), in particular whether RBER is higher 
in a month that also experiences other types of errors. We 
find that correlation coefficients are even lower for other 
error types.

In summary, we conclude that per-drive RBER is a poor 
predictor of UEs or other types of errors seen in the field. 
This might imply that the failure mechanisms leading to 
UEs are typically not due to individual cell errors (which 
RBER captures), but rather other mechanisms, such as flash 
defects or bugs in the controller or firmware.

I X .  LIMITATIONS A ND F U T U R E WOR K

The three recent field studies described in this work provide 
a first step toward a better understanding of the reliability 
characteristics of nand-based SSDs in the field. However, 
they also have some limitations and leave a number of inter-
esting avenues open for future work.

Any future work that confirms trends and observations 
based on new field data sets would be valuable. Also, repeat-
ing prior analyses with an emphasis on controlling for con-
founding factors would be useful. For example, the Google 
analysis strives to control for confounding factors by con-
firming that trends persist when only looking at the data of 
individual clusters, or making sure that for a given model 
only drives that were put into production within the same 
year were considered. However, a year’s difference might 
already be large for nand and one might want to try and 
obtain data with manufacturing dates of drives and repeat 
the analysis with smaller manufacture date windows. This 
would rule out vintage effects, like those previously observed 
for HDDs [41], to be a major factor.

The existing work provides only little insight into the 
root cause of UEs. The observation in the Google study that 
there is little correlation between RBER and UEs points 

towards defects or controller/firmware as contributors to 
UEs. It would be interesting to study patterns of UEs in 
more detail to gather additional evidence. For example, 
one could look for program status failures, which are often 
caused by defects, or for correlations to cluster or workload 
type or simultaneous batches of UEs across multiple sectors 
or pages. These could all be used to further rule out RBER-
type causes.

Also, the results published so far make it difficult to dis-
tinguish nand issues and SSD design issues. For example, 
the papers includes little detail about drive internal protec-
tion mechanisms, including for example the strength of the 
ECC, or whether drives include redundant nand dies for 
RAID-like recovery of post-ECC errors. Also, more details 
on repair actions or results from failure analyses that might 
be performed by the manufacturer on returned devices 
could provide additional insights. For example, if reformat-
ting a drive as part of a repair process resolved a problem, 
the problem was unlikely due to nand issues.

Finally, it would be interesting to see a more detailed 
analysis of bad blocks and bad chips. For example, the Google 
study observes a long tail in the number of bad blocks per 
drive. It would be insightful to study the drives in the long 
tail more closely. For example, are all the bad blocks in the 
same bad chip that is causing the problem, or are they more 
scattered pointing to maybe workload factors or controller 
issues? Similarly for bad chips, did they go bad because lots 
of its nand cells are wearing out or because of defects?

X . SUM M A RY

This paper provides a number of interesting insights into 
flash reliability in production use, based on three recent field 
studies [3]–[5]. Some of these support common assump-
tions and expectations, while many were unexpected. The 
summary below focuses on the more surprising results and 
implications. 

•  RBER, the standard metric for drive reliability, is not 
a good predictor of those failure modes that are the 
major concern in practice. In particular, in the field 
higher per-drive RBER does not translate to a higher 
incidence of uncorrectable errors. This might indi-
cate that a common root cause of UEs in the field are 
defects or firmware/controller bugs, rather than sin-
gle cell errors that accumulate.

•  UBER, the standard metric to measure uncorrectable 
errors, is not very meaningful for field measurements. 
We see no correlation between UEs and number of 
reads, so normalizing uncorrectable errors by the 
number of bits read will artificially inflate the reported 
error rate for drives with low read count.

•  Uncorrectable errors are a significant concern in prac-
tice: Depending on the model 20% to more than 90% 
of drives experience uncorrectable errors and two to 
six out of 1000 device days are affected.
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•  Both RBER and the number of uncorrectable errors 
grow with P/E cycles. While the literature contains 
reports of sublinear, linear, and superlinear growth of 
RBER with P/E cycles, we observe linear growth. We 
also observe no sudden spikes once a drive exceeds the 
vendor’s P/E cycle limit, within the P/E cycle ranges 
we observe in the field.

•  SLC drives, which are targeted at the enterprise mar-
ket and considered to be higher end, are not more reli-
able than the lower end MLC drives with respect to 
uncorrectable errors for the P/E cycle ranges within 
the MLC cycle limits.

•  The effect of temperature is more complex than one 
might expect. Rather than continuously increasing 
rates of uncorrectable errors with increasing tempera-
ture, some drives show stable or decreasing error rates 
under higher temperature. Reasons might be drive 
internal protection mechanisms that throttle drive 
operation under higher temperatures.

•  Some drive models exhibit infant mortality that can be 
divided into two phases: A first phase with increasing 

error rates as bad cells are detected and removed from 
usage and a second phase with decreasing failure rates 
as weak cells have been weeded out.

•  We observe that chips with smaller feature size tend 
to experience higher RBER, but are not necessarily 
the ones with the highest incidence of nontransparent 
errors.

•  While flash drives offer lower field replacement rates 
than HDDs, they have a higher rate of problems that 
can impact the user, such as uncorrectable errors.

•  Field replacement rates are often higher than what 
vendor specifications of MTTF might indicate.

•  Previous errors of various types are predictive of later 
uncorrectable errors.

•  Drives tend to either have less than a handful of bad 
blocks, or a large number of them, suggesting that 
impending chip failure could be predicted based on 
prior number of bad blocks (and maybe other factors). 
Also, a drive with a large number of factory bad blocks 
has a higher chance of developing more bad blocks in 
the field, as well as certain types of errors.

Table 3 Summary of the Key Characteristics of the SSDs in the Facebook Study [3]

A PPENDI X

Acknowledgments
The authors would like to thank the reviewers, in particu-
lar, N. Mielke, who provided incredibly detailed feedback 
on the paper and many of their questions that arose while 
making edits for the final version of the paper. They would 
also like to thank the Platforms Team at Google, as well as 
N. Janevski and W. Chen for help with the data collection, 
and C. Sabol, T. Jeznach, and L. Barroso for feedback on ear-
lier drafts of the paper. Finally, the first author would like to 
thank the Storage Analytics team at Google for hosting her 
in summer 2015 and for all their support. 

Table 4 Overview of Drive Models in the Google Study [4]

Table 5 Summary of the Key Characteristics of the SSDs in the Micro-

soft Study [5].   μ  age   ,  μ  reads   ,  μ  writes    Refers to the Average Age, and 

Amount of Data Read/Written on Average Per Disk



Schroeder et al . : Reliability of nand-Based SSDs: What Field Studies Tell Us

1768 Proceedings of the IEEE | Vol. 105, No. 9, September 2017

REFERENCES
 [1] JEDEC. (2016). Solid State Drive (SSD) 

Requirements and Endurance Test Method. 
[Online]. Available: https://www.jedec.org/
standards-documents/results/jesd218

 [2] JEDEC. (2012). Solid State Drive (SSD) 
Endurance Workloads. [Online]. Available: 
https://www.jedec.org/standards-
documents/results/jesd219

 [3] J. Meza, Q. Wu, S. Kumar, and O. Mutlu,  
“A large-scale study of flash memory failures 
in the field,” in Proc. ACM SIGMETRICS Int. 
Conf. Meas. Modelling Comput. Syst. 
(SIGMETRICS), 2015, pp. 177–190.

 [4] B. Schroeder, R. Lagisetty, and A. Merchant, 
“Flash reliability in production: The 
expected and the unexpected,” in Proc. 14th 
USENIX Conf. File Storage Technol. (FAST), 
Feb. 2016, pp. 67–80.

 [5] I. Narayanan et al., “SSD failures in 
datacenters: What? When? And why?” in 
Proc. 9th ACM Int. Syst. Storage Conf. 
(SYSTOR), 2016, pp. 7:1–7:11.

 [6] N. Mielke, R. Frikey, I. Kalistirsky, M. Quan, 
D. Ustinov, and V. Vasudevan, “Reliability of 
solid-state drives based on NAND flash 
memory,” Proc. IEEE, 2017, DOI: 10.1109/
JPROC.2017.2725738.

 [7] R. Micheloni, L. Crippa, and A. Marelli, 
Inside NAND Flash Memories. Berlin, 
Germany: Springer-Verlag, 2010.

 [8] L. N. Bairavasundaram, G. R. Goodson,  
B. Schroeder, A. C. Arpaci-Dusseau, and  
R. H. Arpaci-Dusseau, “An analysis of data 
corruption in the storage stack,” in Proc. 6th 
USENIX Conf. File Storage Technol. (FAST), 
San Jose, CA, USA, Feb. 2008, p. 8.

 [9] L. Mearian. (2009). Intel Confirms Data 
Corruption Bug in New SSDs, Halts Shipments. 
[Online]. Available: http://www.
computerworld.com/article/2526707/data-
center/intel-confirms-data-corruption-bug-
in-new-ssds–halts-shipments.html

 [10] B. Ferreira. (2015). Some Samsung SSDs May 
Suffer From a Buggy TRIM Implementation. 
[Online]. Available: http://techreport.com/
news/28473/some-samsung-ssds-may-suffer-
from-a-buggy-trim-implementation

 [11] M. Campbell. (2015). Apple Fixes 2015 MacBook 
Pro Flash Storage Issue in Firmware Update. 
[Online]. Available: http://appleinsider.com/
articles/15/07/22/apple-fixes-2015-macbook-
pro-flash-storage-issue-in-firmware-update

 [12] A. Chanthadavong. (2016). Amazon Web 
Services Sydney Suffers Outage. [Online]. 
Available: http://www.zdnet.com/article/
amazon-web-services-sydney-suffers-outage

 [13] Z. Whittaker. (2012). Amazon Explains Latest 
Cloud Outage: Blame the Power. [Online]. 
Available: http://www.zdnet.com/article/amazon-
explains-latest-cloud-outage-blame-the-power/

 [14] M. Zheng, J. Tucek, F. Qin, and M. Lillibridge, 
“Understanding the robustness of SSDs under 
power fault,” in Proc. 11th USENIX Conf. File 

Storage Technol. (FAST). San Jose, CA, USA, 
2013, pp. 271–284.

 [15] H.-W. Tseng, L. M. Grupp, and S. Swanson, 
“Understanding the impact of power loss on 
flash memory,” in Proc. 48th Design Autom. 
Conf., 2011, pp. 35–40.

 [16] C. Zambelli, P. King, P. Olivo, L. Crippa, and 
R. Micheloni, “Power-supply impact on the 
reliability of mid-1X TLC NAND flash 
memories,” in Proc. IEEE Int. Rel. Phys. Symp. 
(IRPS), Apr. 2016, pp. 2B-3-1–2B-3-6.

 [17] A. Klein. (2016). One Billion Drive Hours and 
Counting: Q1 2016 Hard Drive Stats. [Online]. 
Available: https://www.backblaze.com/blog/
hard-drive-reliability-stats-q1-2016/

 [18] J. Kim, E. Lee, J. Choi, D. Lee, and 
 S. H. Noh, “Chip-Level RAID with flexible 
stripe size and parity placement for enhanced 
SSD reliability,” IEEE Trans. Comput., vol. 65, 
no. 4, pp. 1116–1130, Apr. 2016.

 [19] Intel. (2011). Validating the Reliability of Intel 
Solid-State Drives. [Online]. Available: http://
www.intel.de/content/dam/doc/technology-
brief/intel-it-validating-reliability-of-intel-
solid-state-drives-brief.pdf

 [20] B. Schroeder and G. A. Gibson, “Disk 
failures in the real world: What does an 
MTTF of 1,000,000 hours mean to you?” in 
Proc. FAST, vol. 7. 2007, pp. 1–16.

 [21] E. Pinheiro, W.-D. Weber, and L. A. Barroso, 
“Failure trends in a large disk drive population,” 
in Proc. FAST, vol. 7. 2007, pp. 17–23.

 [22] L. N. Bairavasundaram, G. R. Goodson, 
 S. Pasupathy, and J. Schindler, “An analysis 
of latent sector errors in disk drives,” in Proc. 
ACM SIGMETRICS Int. Conf. Meas. Modelling 
Comput. Syst., New York, NY, USA, 2007,  
pp. 289–300.

 [23] D. Wei, L. Deng, P. Zhang, L. Qiao, and  
X. Peng, “A page-granularity wear-leveling 
(PGWL) strategy for NAND flash memory-
based sink nodes in wireless sensor 
networks,” J. Netw. Comput. Appl., vol. 63,  
pp. 125–139, Mar. 2016.

 [24] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and  
O. Mutlu, “Data retention in MLC NAND 
flash memory: Characterization, optimization, 
and recovery,” in Proc. 21st IEEE Int. Symp. High 
Perform. Comput. Archit. (HPCA), Burlingame, 
CA, USA, Feb. 2015, pp. 551–563.

 [25] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, 
“Program interference in MLC NAND flash 
memory: Characterization, modeling, and 
mitigation,” in Proc. IEEE 31st Int. Conf. Comput. 
Design (ICCD), Oct. 2013, pp. 123–130.

 [26] X. Xu and H. H. Huang, “Exploring data-
level error tolerance in high-performance 
solid-state drives,” IEEE Trans. Reliability,  
vol. 64, no. 1, pp. 15–30, Mar. 2015.

 [27] M. Huang, Z. Liu, and L. Qiao, “Asymmetric 
programming: A highly reliable metadata 
allocation strategy for MLC NAND flash 
memory-based sensor systems,” MDPI Sensors, 
vol. 14, no. 10, pp. 18851–18877, 2014.

 [28] X. Jimenez, D. Novo, and P. Ienne, “Wear 
unleveling: Improving NAND flash lifetime 
by balancing page endurance,” in Proc. 12th 
USENIX Conf. File Storage Technol. (FAST), 
Santa Clara, CA, USA, 2014, pp. 47–59.

 [29] L. Zuolo, C. Zambelli, P. Olivo, and  
A. Marelli, “LDPC soft decoding with 
reduced power and latency in 1X-2X NAND 
flash-based solid state drives,” in Proc. Int. 
Memory Workshop (IMW), May 2015, pp. 1–4.

 [30] L. M. Grupp et al., “Characterizing flash 
memory: Anomalies, observations, and 
applications,” in Proc. 42nd Annu. IEEE/ACM 
Int. Symp. Microarchit., New York, NY, USA, 
Dec. 2009, pp. 24–33.

 [31] H. Sun, P. Grayson, and B. Wood, 
“Quantifying reliability of solid-state storage 
from multiple aspects,” in Proc. SNAPI, 2011.

 [32] N. Mielke et al., “Bit error rate in NAND 
flash memories,” in Proc. IEEE Int. Rel. Phys. 
Symp., Apr./May 2008, pp. 9–19.

 [33] L. M. Grupp, J. D. Davis, and S. Swanson, 
“The bleak future of NAND flash memory,” 
in Proc. 10th USENIX Conf. File Storage 
Technol., Berkeley, CA, USA, 2012, p. 2.

 [34] N. Mielke, H. P. Belgal, A. Fazio, Q. Meng, 
and N. Righos, “Recovery effects in the 
distributed cycling of flash memories,” in 
Proc. IEEE 44th Annu. Int. Rel. Phys. Symp., 
Mar. 2006, pp. 29–35.

 [35] N. Papandreou et al., “Effect of read disturb 
on incomplete blocks in MLC NAND flash 
arrays,” in Proc. IEEE 8th Int. Memory 
Workshop (IMW), May 2016, pp. 1–4.

 [36] Y. Cai et al., “Flash correct-and-refresh: 
Retention-aware error management for 
increased flash memory lifetime,” in Proc. 
IEEE 30th Int. Conf. Comput. Design (ICCD), 
Sep./Oct. 2012, pp. 94–101.

 [37] R.-S. Liu, C.-L. Yang, and W. Wu, 
“Optimizing NAND flash-based SSDs via 
retention relaxation,” in Proc. 10th USENIX 
Conf. File Storage Technol. (FAST), San Jose, 
CA, USA, Feb. 2012, p. 11.

 [38] M. Balakrishnan, A. Kadav, V. Prabhakaran, 
and D. Malkhi, “Differential RAID: 
Rethinking RAID for SSD reliability,” Trans. 
Storage, vol. 6, no. 2, pp. 4:1–4:22, Jul. 2010.

 [39] C. Zambelli et al., “A cross-layer approach for 
new reliability-performance trade-offs in 
MLC NAND flash memories,” in Proc. 
Design, Autom. Test Eur. Conf. Exhib., San Jose, 
CA, USA, Mar. 2012, pp. 881–886.

 [40] G. Wu, X. He, N. Xie, and T. Zhang, 
“Exploiting workload dynamics to improve ssd 
read latency via differentiated error correction 
codes,” ACM Trans. Des. Autom. Electron. Syst., 
vol. 18, no. 4, pp. 55:1–55:22, Oct. 2013.

 [41] J. G. Elerath, “Specifying reliability in the 
disk drive industry: No more MTBF’s,” in 
Proc. Annu. Rel. Maintainability Symp.,  
Jan. 2000, pp. 194–199.

ABOUT THE AUTHORS
Bianca Schroeder received the Ph.D. degree 

from the Computer Science Department, Carne-

gie Mellon University, Pittsburgh, PA, USA, under 

the direction of M. Harchol-Balter. 

She is an Associate Professor and Canada 

Research Chair in the Computer Science Depart-

ment, University of Toronto, Toronto, ON, 

Canada, also currently serving as an Associate 

Department Chair at the Computer and Mathe-

matical Sciences Department, University of Toronto, Scarborough. Before 

joining UofT, she spent two years as a Postdoctoral Researcher at Carn-

egie Mellon University, working with G. Gibson. 

Prof. Schroeder is an Alfred P. Sloan Research Fellow, the recipient of 

the Outstanding Young Canadian Computer Science Prize of the Canadian 

Association for Computer Science, an Ontario Early Researcher Award, an 

NSERC Accelerator Award, a two-time winner of the IBM PhD fellowship and 

her work has won four best paper awards and one best presentation award. 

She has served on numerous conference program committees and has 

cochaired the TPCs of Usenix FAST�14, ACM Sigmetrics�14, and IEEE NAS�11.



Schroeder et al . : Reliability of nand-Based SSDs: What Field Studies Tell Us

Vol. 105, No. 9, September 2017 | Proceedings of the IEEE 1769

Arif Merchant received the B.Tech. degree from 

the Indian Institute of Technology Bombay (IIT 

Bombay), Powai, Mumbai, India and the Ph.D. 

degree in computer science from Stanford Uni-

versity, Stanford, CA, USA. 

He is a Research Scientist at Google Inc., 

Mountain View, CA, USA, and leads the Stor-

age Analytics group, which studies interactions 

between components of the storage stack. His 

interests include distributed storage systems, 

storage management, and stochastic modeling.

Dr. Merchant is an Association for Computing Machinery (ACM)  

Distinguished Scientist.

Raghav Lagisetty received the B.S. degree 

in computer science from the Indian Institute 

of Technology Bombay (IIT Bombay), Powai, 

Mumbai, India and the M.S. degree in computer 

 science from the University of Arizona, Tucson, 

AZ, USA.

He is an Engineering Lead at Google Inc., 

Mountain View, CA, USA, for the backend infra-

structure team of Ads systems. Previously he has 

built ground up products and engineering teams 

in the areas of cloud storage virtualization, storage reliability, and big data 

analytics.


