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Bioinspired computing promises low-power, high-performance computing but will

likely depend on devices beyond CMOS. Spin-torque-driven magnetic tunnel

junctions, with their multiple, tunable functionalities and CMOS compatibility, are

very well adapted for various roles in a variety of bioinspired architectures.
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ABSTRACT | Bioinspired hardware holds the promise of low-

energy, intelligent, and highly adaptable computing systems.

Applications span from automatic classification for big data

management, through unmanned vehicle control, to control

for biomedical prosthesis. However, one of the major chal-

lenges of fabricating bioinspired hardware is building ultra-

high-density networks out of complex processing units

interlinked by tunable connections. Nanometer-scale devices

exploiting spin electronics (or spintronics) can be a key tech-

nology in this context. In particular, magnetic tunnel junc-

tions (MTJs) are well suited for this purpose because of their

multiple tunable functionalities. One such functionality, non-

volatile memory, can provide massive embedded memory in

unconventional circuits, thus escaping the von-Neumann bot-

tleneck arising when memory and processors are located

separately. Other features of spintronic devices that could be

beneficial for bioinspired computing include tunable fast

nonlinear dynamics, controlled stochasticity, and the ability

of single devices to change functions in different operating

conditions. Large networks of interacting spintronic nanode-

vices can have their interactions tuned to induce complex

dynamics such as synchronization, chaos, soliton diffusion,

phase transitions, criticality, and convergence to multiple

metastable states. A number of groups have recently

proposed bioinspired architectures that include one or sev-

eral types of spintronic nanodevices. In this paper, we show

how spintronics can be used for bioinspired computing. We

review the different approaches that have been proposed,

the recent advances in this direction, and the challenges

toward fully integrated spintronics complementary metal–

oxide–semiconductor (CMOS) bioinspired hardware.

KEYWORDS | Bioinspired computing; magnetic tunnel junc-

tions (MTJs); spintronics

I . INTRODUCTION

A. Bioinspired Computing
Bioinspired, or neuromorphic, computing takes inspi-

ration from the way the brain computes to increase the

energy efficiency and computational power of our data

processing systems. Biological systems have impressive

computing abilities. For example, humans are able to
recognize people they barely know in just a fraction of

second from a three-quarter view of their face in a

crowd. Research in bioinspired computing is driven in

part by the need to invent new ways to automatically

make sense of the massive amount of digital information

we generate every day. Neural networks, which are ex-

tremely efficient at recognition, classification, and pre-

diction tasks, are intrinsically suited for this purpose [1]
and many major companies are now investing massively

in artificial intelligence research. In a recent scientific

breakthrough, the machine learning community has de-

veloped extremely efficient neural network algorithms.

These deep neural networks [1] are inspired by the hier-

archical structure of the cortex and are already the work-

ing principle behind the software for virtual assistants on
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smartphones, and for a wide range of massive classifica-
tion tasks [2], [3].

Another reason for research in biological computing is

to reduce the energy consumption used to perform the

tasks mentioned above. The performance of processors

that drive modern computing is limited by their excessive

power dissipation. The amount we compute has a signifi-

cant impact on global energy use. Today, information and

communication technologies consume more than 5% of
the electrical energy generated in the world and this num-

ber is expected to continue growing [4]. Following cur-

rent trends without rethinking the way we compute can

contribute to energy shortages and environmental issues.

Not only are human brains very good at tasks like recog-

nizing faces, but also we do so using a million times less

power than supercomputers do when performing these

complicated tasks [5], [6]. The development of low-power
bioinspired computing will help address these issues.

Existing implementations of neural networks are con-

structed in software that runs on conventional computers

rather than an attempt to imitate the efficient hardware

of biological systems. Biological systems require very lit-

tle power to operate for many reasons, including that

their densely connected architecture allows them to com-

pute in parallel. When mapped on the sequential archi-
tecture of existing processors, bioinspired algorithms lose

their most precious qualities: speed, defect tolerance,

and low energy consumption. Therefore, the most opti-

mal solution for low-power bioinspired computing is to

fabricate networks of interconnected components to real-

ize parallel computation on chip [7]–[10].

This vision raises two challenges. The first challenge

is the scale of the network that needs to be built in order
to perform interesting tasks. To appreciate the scale of

these networks, the brain possesses about 1011 neurons

interconnected by close to 1015 synapses, which even the

world’s largest supercomputer cannot simulate. Both

neurons and synapses perform complex operations to al-

low for learning and adaptation. CMOS, as the main-

stream technology today, is an excellent substrate for

building such systems. However, existing CMOS devices,
transistors, cannot be the entire solution. The high num-

ber of transistors required for imitating both neurons

and synapses, and the related power dissipation issues

limit the prospects of large-scale and dense stacking [7],

[11]. Existing all-CMOS-based prototypes of neuro-

morphic systems developed in academia (e.g., the Hu-

man Brain Flagship consortium in the European Union

[10], [12]) and industry [13] have restricted capabilities.
A key to progress can be to invent and fabricate CMOS-

compatible nanodevices that will be responsible for a large

part of the computation by emulating neurons and synapses

directly at the nanoscale. For example, a neuromorphic

chip developed by a Defense Advanced Research Projects

Agency (DARPA) consortium is designed so that its

CMOS-fixed synapses, which require offline training by a

separate, conventional computer, could be replaced by ma-
trices of tunable nanosynapses, which would allow the chip

to learn [8]. Toward this end, today a huge research effort

tries to realize dense arrays of nanodevices called memris-

tors on top of CMOS neurons, because a single memristor

can emulate a synapse [14]–[22].

The second challenge toward building neuromorphic

chips is that the existing bioinspired computing models

are abstract. They need to be rethought and adapted to be
realized efficiently in hardware. Therefore, the materials,

the physics that will allow nanodevices to embody inter-

esting functions, the overall hybrid CMOS-nanodevice ar-

chitecture, and the bioinspired computing models need

to be developed together.

B. Why Spintronics?
Since the early developments of neural network

theory, magnetic materials have been used as model

brain-like systems. In particular, the transitions from

disordered to ordered phases occurring in magnetic sys-

tems (e.g., ferromagnetic ordering at Curie temperature)

are reminiscent of phase transitions observed in biologi-

cal neural assemblies [23]. In 1982, Hopfield was the first

to make a direct link between neural networks and physi-

cal models [24]. He considered an Ising model, where
the synaptic connections are emulated by couplings be-

tween individual spins. After his initial proposal, many

other models of Ising neural networks have been pro-

posed, especially taking advantage of the many metastable

states in spin glasses [25], [26]. However, all these

models require controlling the coupling between each

pair of spins for the neural network to learn. In real spin

glasses, the coupling between the spins is set by the mate-
rials and geometry. It is, therefore, impossible to adjust

locally, explaining why Ising neural network models have

never been implemented in material systems. However,

recently, models of neural networks have been developed

that could be more easily transposed to hardware thanks

to less stringent requirements for learning [27]–[30].

In addition, other areas of magnetics appear to be

more promising for implementations—in particular,
there has been substantial progress in developing spintro-

nic devices that could be important for bioinspired com-

puting. These devices are based on new ways that have

been discovered for measuring the magnetic states lo-

cally, through giant magnetoresistance [31], [32] and

tunnel magnetoresistance [33]–[35], and for controlling

the magnetization states of nanodevices, through spin-

transfer torque [36], [37]. One such magnetic device,
the spin valve [38], consists of two thin film metallic

magnets separated by a nonmagnetic metallic layer.

All the layers are typically in the 1–10-nm thickness

range. Usually, the magnetization of one of the layers is

pinned by coupling it to an antiferromagnet. The magne-

tization of the other layer is free to respond to external

stimulus. The changing relative orientation of the two
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magnetizations changes the resistance of the structure

through the giant magnetoresistance effect, allowing

electrical determination of the magnetic state of the de-

vice. In a magnetic tunnel junction (MTJ), the metallic

spacer layer is replaced by an insulating layer that is thin

enough for electrons to tunnel between the two magnetic

layers. Such a device is illustrated in Fig. 1. There, the

change in the resistance of the tunnel junction with
changing relative orientation of the magnetization is re-

ferred to as the tunnel magnetoresistance.

In both of these cases, the electrical resistance of the

devices depends on the relative orientation of the mag-

netizations. This dependence can be understood in a

two-current model in which the current through a fer-

romagnet is carried by two types of electrons: majority

and minority. The resistances of the two types of elec-
trons are different in the ferromagnet, so more current is

carried by one type and the total current is said to be spin

polarized. The spin polarization of the current remains

largely unchanged when passing through the intermediate

layer. It then interacts with the other magnetic layer, re-

sulting in a low resistance if the properties of the layers

are matched so that one type of electrons sees the lower

resistance in both layers, and a higher resistance if not.
For spin valves [38], the resistance can differ by 50% be-

tween the configuration with the magnetizations parallel

to each other and that with the magnetizations antiparal-

lel. For tunnel junctions [33]–[35], the variation can be

up to 600%. The dependence of the resistance on the

state of the device, which can in turn depend on its his-

tory, is a useful attribute of these devices for bioinspired

computing, as it couples the magnetic state of the nano-

device with its electrical properties.

Another useful attribute of both of these devices is that

it is possible to change their magnetization state by passing

a current through them, through the spin-transfer torque.

Spin-transfer torques are another consequence of the spin-

polarized current flowing in these devices. These spin cur-

rents carry angular momentum which interacts with the
magnetization of subsequent ferromagnetic layers. This in-

teraction is strong enough that current densities as low as

106 A/cm2 can cause the magnetization to reverse [39] or

cause it to precess at frequencies in the gigahertz range.

The magnetization dynamics induced by these spin-transfer

torques are converted into resistance variations due to mag-

netoresistive effects. In addition to the resistive readout

and electrical manipulation of spin-torque nanodevices,
spintronic devices possess several other virtues, which we

discuss below, for bioinspired computing [40].

1) Spin-Transfer Torque Memory Is Close to Market: In
the last few years, significant progress has been made to-

ward the commercialization of spin-transfer torque mag-

netic random access memory (STT-MRAM), illustrated in

Fig. 2 [41]. Prototypes with 256 MB of storage have been
demonstrated [42]. These results, combined with outstand-

ing endurance and back-end-of-line CMOS compatibility,

suggest that STT-MRAM is in good position to become a

commercially viable nonvolatile memory. Several academic

and industrial teams are already taking the next step,

building electronic circuits with embedded magnetic mem-

ory [43]–[46], and exploiting the physics of spin torque

Fig. 1. Principle and multifunctionality of spin torque nanodevices. (Top) A direct current (dc) injected through a magnetic tunnel

junction creates a spin torque acting on the magnetization. The resulting magnetization dynamics generate resistance variations

which can help mimic important functionalities of synapses and neurons. (Bottom) Different types of responses can be obtained by

varying the geometry of the tunnel junction and the bias conditions, such as applied field or current. Here four different responses

are shown. Binary memories and memristors are interesting for emulating synapses, while harmonic and stochastic oscillators can

mimic some properties of neurons or assemblies of neurons.
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toward enhancing the functionality of Boolean logic cir-

cuits [47], [48]. This is important as the availability of

STT-MRAM for general purpose memory will provide op-
portunities for developing new devices and more advanced

schemes such as bioinspired computing.

2) Spin-Transfer Torque Allows Building a Wide Range
of Nanodevices From the Same Material Structures: Spin-

transfer torques act differently depending on the magneti-

zation configuration, which can in turn be controlled by

choosing the proper materials and geometry [40]. This flex-
ibility may allow the implementation of different function-

alities using the same materials stack but fabricating

different device geometries and then changing the bias con-

ditions during use. The functions illustrated in Fig. 1 can be

particularly useful for bioinspired computing. Binary mem-

ories [49], [50] store information. Spin-torque nano-oscilla-

tors are tiny oscillators that can generate microwave

voltages with frequencies larger than 50 GHz when biased
with direct currents [51]. Whether harmonic or stochastic

[52], they can emulate neural oscillators. Finally, the spin-

torque memristor [53], [54], a tunable nanoresistor devel-

oped recently, can be used as a nanosynapse. The flexibility

of spin-torque nanoneurons and nanosynapses will offer

the possibility of implementing a wide range of computing

concepts, and realizing reconfigurable architectures that

can switch between computational modes.

3) Spin-Torque Nanodevices Are Highly Cyclable: Mag-

netic tunnel junctions can be switched back and forth

more than 1015 times without degradation [43]. In the

lab, we have measured spin-torque nano-oscillators for

years without their failing. This cyclability is important

for implementing bioinspired hardware that can, like the

brain, reconfigure continuously to learn and process new
features in an ever-changing information flow.

4) Spin-Transfer-Torque-Driven Junctions Are Model Non-
linear Dynamical Systems at the Nanoscale: Magnetization

dynamics is nonlinear, and can be tuned by adjusting the

intensity of the injected current or the applied magnetic

field. In particular, spin-torque nano-oscillators are nonlin-

ear frequency tunable oscillators [55]. Just like neural oscil-
lators, spin-torque nano-oscillators can couple and

synchronize due to magnetic or electric interactions [56]–

[60]. This tunable nonlinearity and ability to couple is a key

feature for building bioinspired computing architectures

based on nonlinear dynamical processes for coding, process-

ing, and storing information [61], [62]. Due to their intrin-

sic and tunable non-linearity, networks of interconnected

spin-torque nano-oscillators appear very suitable for imple-
menting formal nonlinear bioinspired computing concepts.

C. Artificial Neural Networks
Before discussing in detail how these features of spin-

tronic nanodevices can be used for computing inspired
by biology, we briefly introduce the key concepts of neu-

ral networks. Artificial neural networks are the most

studied implementations of bioinspired computing [1].

As illustrated in Fig. 3, these networks take input into

layers of nonlinear neurons and then pass the output of

each neuron to many neurons in the next layer. In con-

trast to more conventional programs on computers, neu-

ral networks are not good at precise calculations.
However, they excel at recognizing patterns in complex

information flow, and at clustering data in an organized

way. Indeed, layer after layer, the dimensionality of in-

put data (e.g., a picture with millions of pixels) is pro-

gressively reduced, until the final output layer contains

only higher level information (e.g., dog, cat, human)

[63]. The transformation of the input to relevant few

outputs is possible thanks to the nonlinearity of neurons.
As illustrated in Fig. 3(b) and (c), at each layer, the non-

linearity changes the relationships between different in-

put values. The nonlinear functions of the neurons in

each layer change the relationships between the inputs,

making it easier to classify the inputs by associating the

related ones. Associating appropriate inputs allows filter-

ing the important features of inputs and eliminating

Fig. 2. Schematic view of a spin-torque random access memory. To address a particular magnetic tunnel junction, a voltage is applied

to the word line, creating a connection via the transistor below between the associated source line and all of the bit lines. A current is

passed through the appropriate bit line to the selected source line to either read the state of the magnetic tunnel junction (small

current) or set its magnetic state (large current). The transistors are necessary to avoid a large contribution between the selected

source line and bit line through more complicated connections, so-called “sneak paths.”
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extraneous information, thereby reducing the dimension

of data passed to the next layer.

The separation of inputs [e.g., finding conditions that

will separate triangles and squares in Fig. 3(c)] can be

achieved thanks to the very high number of parameters

that allow tuning the network response: the synaptic
weights, which are the amounts by which the information

transmitted from one neuron to the other is multiplied.

The synaptic weights act like gradual valves for the flow

of information. For classifying data, these synaptic

weights have to change until the network exhibits simi-

lar behavior for similar inputs, and dissimilar response

for different inputs. The rule according to which synap-

tic weights evolve as new inputs are presented and
processed by the network is called a “learning rule.” In

biology, the ability of synaptic weights to evolve accord-

ing to neuronal activity is called plasticity.

Synaptic weights can be tuned by an external operator

who knows the desired output for a given input, and who

minimizes the error of the network: this is called super-

vised learning. One of the most efficient supervised learn-

ing rules is error backpropagation [64]. An input is
presented to the first neuronal layer, propagates through

the network without modifying the actual weights, and

produces an output. Then, starting from the last neuronal

layer, the error is calculated layer by layer back to the first

layer. Finally, the synaptic weights are modified by an
amount proportional to the error. Recently supervised

learning algorithms have shown impressive results, beating

humans at image recognition [1]. They are used widely in

applications such as computer vision and natural language

processing. Such neural networks are very powerful within

the space of data on which they have been trained. How-

ever, the training requires substantial external computer

power and the networks have no way to process informa-
tion that is not closely related to their training set.

Unsupervised learning occurs when synaptic weights

evolve autonomously, that is without supervision, accord-

ing to the local activity of the neurons connected to each

synapse, similarly to what happens in the brain. In that

case data clustering occurs spontaneously. The most promi-

nent unsupervised learning rules are connected to biologi-

cal models and can often be classified among “Hebbian”
learning rules. The underlying principle is that “cells who

fire together wire together.” In other words, a synaptic

weight is modified in proportion to the activity of its pre-

neuron and postneuron [65]. Unsupervised learning

methods can solve efficiently medium-size problems such

as visual feature extraction [66]. The next challenge in arti-

ficial intelligence is large-scale unsupervised learning. This

capability allows neural networks to learn how to treat data
that no operator has formerly classified or identified.

To summarize, the common features to all neural

network models are: nonlinearity, a high number of tun-

able parameters for learning, and enough reproducibility

in the response of the network to distinguish between

different classes of inputs. These are the features that

need to be created in spintronics neural networks. Sec-

tion II presents preliminary approaches to implement
some of these ideas. Section II-A describes the utility of

magnetic tunnel junctions used as MRAM cells to fuse

memory and processing in one region of space to capture

the colocation of both in the brain. Section II-B discusses

proposals to use magnetic tunnel junctions in the oppo-

site limit, in which they are thermally unstable rather

than being stable for ten years. In this limit, they require

much less power to use. Section II-C describes how to
use magnetic domain walls to implement a variety of fea-

tures of both neurons and synapses. Section II-D pre-

sents proposals to take advantage of the nonlinear

dynamics in spintronic devices. All of these approaches

face serious challenges, which are presented in Section III

and a summary of this paper is given in Section IV.

II . IMPLEMENTATIONS OF
BIOINSPIRED HARDWARE
USING SPINTRONICS

A. Fusing Memory and Computing
It is instructive to contrast the large-scale design of

traditional von Neumann computers with our brains.

Fig. 3. Neural network. (a) Four layers of neurons (circles) all

take inputs, which they nonlinearly process to produce an output

signal. The output signal is passed to the next layer of neurons

through the synapses (straight lines) weighted by the

synaptic weight wij. Signals flow from left to right. (b) A simple

neuron that takes the input values (x and y values) for different

possible inputs and aims to produce an output that is different

for triangles and squares. There is no linear function of the

inputs that can do this separation, but nonlinear functions

(neurons) can. (c) A nonlinear function of x and y produces

higher output values for squares, allowing classification and

reducing the information sent to the next layer.
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Computers are sequential; they are designed around a
powerful processing unit that has access to all of the in-

formation stored in the computer. While many things

happen at the same time in computers, all of these activi-

ties are focused on the computer doing one logical step

at a time. Much of this activity is dedicated to bringing

information from memory to the processing unit because

memory and data processing are spatially separated. Data

are continuously transported back and forth, consuming
power. The communication bus between computing and

memory is often called the “von Neumann bottleneck.”

Despite efforts toward increasing parallelism in com-

puters, this separation of memory and processing re-

mains a fundamental principle of traditional computers.

On the other hand, our brain functions with completely

embedded processing and memory. The processing units,

the neurons, are taking many inputs and producing a
simple output. The neurons all work simultaneously in

parallel but operate on the basis of very limited amounts

of stored information, provided through the weights of

the synapses which connect them to other neurons. This

entanglement of memory and processing along with par-

allel processing are two reasons the brain is low power

and fast at certain tasks.

Let us consider the simple feedforward artificial neu-
ral network—a canonical example of neural network—

illustrated in Fig. 3(a). The synapses represent weights

and are stored as floating point real numbers. When a

conventional processor is used to evaluate the output of

such a neural network, the computer needs to compute

the state of each neuron, which is not a particularly com-

putationally expensive task. However, to do so, the pro-

cessor needs to retrieve from memory the synaptic
weights of all the synapses connected to the neuron.

This kind of task, which requires little computing but

substantial memory access, is especially unfavorable for

computers because of the separation between computing

and memory. The inefficiency of bioinspired and cogni-

tive models on traditional computers, which is widely ac-

cepted [67], makes it attractive to design computing

structures for such assignments that would fuse comput-
ing and memory [7], [11]. From a design perspective fus-

ing computing and memory is a difficult challenge. In

recent years, however, there has been considerable prog-

ress in one direction: neuromorphic chips implementing

neural networks with memory blocks embedded at the

core of computing, [8], [10]. Currently, such chips use

static random access memory (SRAM), a very fast form

of memory, but one that uses substantial active and pas-
sive power and occupies a large area in the circuit [8],

[17]. These systems therefore possess limited memory ca-

pacity. Replacing SRAM by magnetic memory could thus

dramatically improve the capability of current neuro-

morphic chips. Additionally, unlike SRAM, magnetic

memories are nonvolatile. Not only does this minimize

passive power consumption but in addition, the system

could be turned OFF and ON and function instantly, an
especially attractive feature for embedded applications.

Therefore, the most straightforward application of spin-

tronics within a bioinspired system is as embedded mem-

ory to store the parameters of the system, such as the

synaptic weights in the case of a neural network. This pros-

pect is near, as it has been technologically demonstrated

that such cells can be embedded at the core of CMOS [68].

As magnetic memory becomes readily available, bioin-
spired digital systems specifically designed for magnetic

tunnel junction cells can also be realized. Such systems as-

sociate small computing with memory blocks distributed

all over computing blocks. A first digital bioinspired system

with magnetic tunnel junctions working along this idea has

already been demonstrated [69]. This associative memory

achieves 89% energy reduction in comparison to ap-

proaches using conventional hardware. One can also imag-
ine going further and entirely fusing magnetic tunnel

junctions with logic, therefore not having any difference

between logic and memory blocks. It is, for example, possi-

ble to design logic blocks where some inputs are memo-

rized parameters stored in magnetic tunnel junctions [70],

[71]. Such logic gates might give rise to systems which en-

tirely eliminate all the energy and delays associated with

memory access, and that would probably be well adapted
to bioinspired models. However, their design brings consid-

erable challenges and their potential has not been fully

achieved.

B. Leveraging Noise for Computing
It is also possible to use magnetic tunnel junctions for

different purposes than nonvolatile memory cells. MRAM

is designed to be thermally stable so that information is
preserved for ten years. Therefore, the energy consump-

tion required to switch perfectly nonvolatile magnetic

tunnel junctions is relatively high, typically 100 fJ [72], as

compared with 23 fJ per synaptic event (considering that

there are, on average, 10000 synapses per neuron in the

brain) [73]. In addition, magnetic random access memory

cells are required to have a minimum variability, which

imposes severe constraints on nanofabrication. If MRAM
cells are predominantly used passively, this stability is ad-

vantageous because the passive power use is zero. On the

other hand, writing new information in the MRAM cell

requires energies much higher than thermal. If the circuit

requires frequent changes in the stored information,

MRAM is not particularly low power [43], [68].

In the opposite limit, in which the barrier between

the two states is comparable to the thermal energy,
changing the state of the tunnel junction requires much

less power. Neuroscience data indicates that the brain

and its components operate at this thermal limit making

them very noisy [74]. Neurons and synapses consume

very little energy but are unreliable and display stochas-

tic behavior [75]. Nevertheless computations in the brain

are reliable [76]. One common interpretation of this
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property is that the brain compensates for the high noise
and variability of its individual components by redun-

dancy [77]. Apparently, the brain finds the optimum tra-

deoff between lowering the energy and the reliability of

the computation to be very close to the thermal limit.

In spintronics, a similar strategy is conceivable when

the barrier between states in a magnetic tunnel junction

is significantly decreased as compared to MRAM. We

can imagine lowering the usual criteria used for design-
ing magnetic memories when designing magnetic nano-

devices for bioinspired computing. By allowing noise,

variability, and stochasticity, the energy consumption of

magnetic nano-objects can be lowered, and their size

can be reduced below 20 nm. Additionally, embracing

such behaviors can allow spintronics devices to display

richer, more complex physics, and therefore make them

more analogous to biology’s nanodevices. For example,
unlike in many models of artificial neural networks, bio-

logical synapses do not only act as real number weights:

they have rich dynamics and behaviors, which are har-

nessed by the brain for computing. As biology exploits

the rich physics of its synapses for computation [78],

one can use the dynamics of spin-transfer torque switch-

ing physics for computation. This general idea of har-

nessing device physics for bioinspired computation was
pioneered by Carver Mead in the late 1980s [79]. He

proposed using transistors in weak inversion to imple-

ment neural network blocks, an approach which is still

used in large neuromorphic systems [7], [9].

In the following, we describe a few ideas on how to

compute with stochastic magnetic nanodevices.

1) Probabilistic Magnetization Switching: Switching of
magnetic devices is intrinsically probabilistic due to the

importance of thermal effects [80], [81]. When a mag-

netic field or spin-transfer torque is applied to a mag-

netic tunnel junction, it creates a probability rate for

switching. For memory applications, the amplitude and

durations of current pulses applied for switching are cho-

sen so that the probabilistic effects result in an accept-

able error rate [80], [82]. If the currents or pulse
durations are reduced, it is possible to tune the switching

probability to any chosen value. If successive switching

events do not follow each other too closely (with a fre-

quency smaller than a few hundred megahertz), the

switching probabilities are not correlated. By setting the

switching probability close to 50%, spin-transfer torque

has been used to generate true random numbers, using

limited postprocessing [83].
It is also possible to harness these probabilistic ef-

fects: magnetic tunnel junctions can be considered as a

form of memory with “stochastic programming,” when

used with short, low-energy voltage or current pulses.

Such a memory is reminiscent of some models in compu-

tational neuroscience or in machine learning, where syn-

apses do not feature floating point real number weights,

but binary weights programmed stochastically [84]–[86].
In particular, spin-torque-driven magnetic tunnel junc-

tions can implement a stochastic version of spike-timing-

dependent plasticity (STDP) [87].

STDP is a Hebbian learning rule inspired by biologi-

cal measurements [88], [89]. Even though the synapse

transmits information in one direction, it is influenced by

the firing of both the presynaptic and postsynaptic neu-

rons. If they spike together in a short time window, the
synaptic weight is modified. It increases if the postneuron

fires after the preneuron, indicating a causal relation, and

decreases otherwise. It has been shown recently that

memristor nanodevices can implement STDP [15], [16],

[19]. By carefully choosing the shape of neuronal voltage

pulses, their resistance can evolve autonomously and

gradually according to the firing of preneurons and post-

neurons [90]. Simulations indicate that unsupervised
classification of features in input data flow is possible in

systems where different neural layers are connected by

memristor crossbar arrays [91].

In binary devices such as magnetic tunnel junctions,

the resistance cannot evolve gradually according to the

preneurons and postneurons activities, but it can evolve

probabilistically. The probability of a junction switching

during a voltage pulse can be tuned between 0% and
100% through the amplitude of the pulse. This allows

implementing a probabilistic STDP learning rule, where

the relative timing between neural spikes does not deter-

mine the amplitude of an analog synaptic weight modifi-

cation, but the probability to switch a binary weight. How

this works can be understood as follows. When a neural

network learns, it is essential that each learning event

changes the network only slightly. The canonical method
to achieve this is to have synapses with real number

weights that are updated only slightly at each learning

step. An alternate method is to use binary synapses,

which have only a slight probability to change at each

learning step. Using discrete synapses makes learning

slower but endows the network with an increased mem-

ory stability [85], [86].

Recent simulations [92] explore the capability of mag-
netic tunnel junctions for stochastic STDP. This work

shows that a system equipped with magnetic tunnel junc-

tions implementing a highly abstracted form of stochastic

STDP can learn complex tasks such as detecting cars in a

video (Fig. 4). Interestingly, the system is robust to de-

vice variations: due to device mismatch, each magnetic

tunnel junction has a different switching probability, but

this can be tolerated to a wide extent by neural networks.
It should also be noted that it is possible to combine sto-

chastic synapses to recreate analogs to multilevel synap-

ses. This is necessary for a neural network to accomplish

hard tasks such as image recognition [11], [93].

2) Stochastic Resonance: A common method deployed

by biological organisms to exploit noise for computing is
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stochastic resonance [94]. The principle is illustrated in

Fig. 5. Consider a dynamical system that can compute if

the input signal reaches a given threshold. In the absence

of noise, if the excitation signal is weaker than the
threshold, the sensor is unable to detect the small input.

However, in the presence of noise, the signal will be

amplified by fluctuations at its maxima, and thus able to

trigger the detection. Stochastic resonance is widespread

in nature, and has been observed in various biological

systems, such as the behavior of feeding paddlefish [95],
neural models [96], and many others.

Magnetic tunnel junctions, which are typical double

well systems with a threshold (the critical current for

switching), exhibit stochastic resonance [97]. Some appli-

cations in electronics, especially for audio (dither) pro-

cessing make use of stochastic resonance by adding noise

to the system. For audioprocessing, the noise has to be

added specifically for this purpose because current elec-
tronic circuits are designed to eliminate all noise sources.

However, in a bioinspired computing context, noise is

omnipresent, and stochastic resonance does not require

additional noise sources [98], [99]. We can, therefore,

envisage constructing spintronic circuits harnessing sto-

chastic resonance for bioinspired applications, taking in-

spiration, for example, from cochlear implants [100].

C. Propagating Magnetic Information in Devices
and Arrays

In the brain, efficient information propagation is vital
[101]. Neuroscientists have observed that many neurolog-

ical disorders are due to connectivity issues between spa-

tially distributed brain regions [102]. In spintronics,

information can be represented in different ways. It can

be a magnetization state or texture, an electric current or

even a spin current. In the following, we show how the

propagation of magnetic information can be used in

Fig. 4. Simulations of learning through probabilistic switching of magnetic tunnel junctions [82]. The synaptic crossbar array (center

schematic) consists of magnetic tunnel junctions for which the probability to switch depends on the programming pulse duration and

amplitude (right graph). Here, for learning, pulses are chosen so that junctions have only a slight probability to switch. Input pulses code

for each pixel amplitude in a video of cars on a highway taken with a bioinspired artificial retina (left image). Output pulses are generated

by the output neurons Ni if the input pulses weighted by the junctions’ conductances in each column exceed a threshold. The switching of

junctions depending on input and output pulses evolves according to STDP. The junctions’ states are initially random but after the input

video has run for some time, the weights stabilize to a configuration such that each output neuron specializes to recognize cars in each

lane of the highway (images at the bottom). In other words, the neural network made of stochastic magnetic tunnel junctions has

autonomously learned to count cars in each lane.

Fig. 5. Principle of stochastic resonance applied to magnetic

tunnel junctions. The dashed curve shows the input signal, which

does not reach the thresholds for switching (heavy solid curves

labeled þIc and �Ic). When an appropriate level of noise is added

(solid curve) the current does cross the critical currents and the

device switches. Even though the noise fluctuates below the

critical current, the device stays in the desired state because the

current never crosses the threshold for switching in the other

direction. The bottom panel gives the resistance of the device

due to the switching caused by the noise plus the signal. The

resistance closely matches the input signal.
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individual magnetic nanostructures to capture important

brain-like functions and as a principle for computing in
arrays of interacting magnetic nanodevices.

1) Magnetic Domain Walls for Multilevel Memristive
Magnetic Synapses: The strength of the coupling with

which synapses transmit information between the neu-

rons they connect depends on the past activity of those

neurons. The efficiency evolves continuously and gradu-

ally based on the electrical impulses from those neurons,
a property called plasticity. Plasticity allows neural net-

works to learn and reconfigure. Magnetic devices are

particularly well adapted for implementing such plastic-

ity [103], [104] due to their memory effects and tunabil-

ity. In particular, leveraging magnetic domain-wall

displacement in a magnetoresistive structure, in contrast

to switching a magnetization in one shot and uniformly,

can be used to implement synaptic plasticity.
As shown in Fig. 6, a magnetic domain wall is a mag-

netic object separating regions with uniform magnetiza-

tion. Magnetic domain walls are easily created in

magnetic structures with a stripe shape. They can then

be displaced by spin torque through the injection of an

electrical current either in the stripe or perpendicularly

to its plane [105]. In an ideal stripe, a current pulse of

amplitude I and duration �t displaces a domain wall by

a distance �x proportional to I�t, in other words, pro-
portional to the amount of charge �q that has been in-

jected [106]. As illustrated in Fig. 7, when this stripe is

used as one of the layers of a spin valve or a magnetic

tunnel junction, current pulses give gradual displace-

ments of a domain wall, resulting in turn in gradual vari-

ation of resistance �R, such that �R is proportional to

�q as well [53], [54], [107]. This dependence of resis-

tance on the charge is the hallmark of memristor devices.
Such memristive behavior has been demonstrated in

magnetic tunnel junction with more than 15 intermediate

resistance states [108]. Recently, it has also been shown

that similar smooth magnetization variations can be trig-

gered by spin-orbit torques in a magnetic stripe on top of

an antiferromagnetic layer [109]. Memristive-like fea-

tures can then be obtained by fabricating a tunnel junc-

tion on top of the bilayer stripe.
Such spintronic memristors may be used as multilevel

synapses, similarly to many schemes proposed for other

memristive technologies [15], [20], [110], [111]. In such

proposals, the conductances of the memristive devices

act as synaptic weights: inputs are presented as voltages,

which are converted into weighted currents by the nano-

devices. They can be naturally coupled to either CMOS

neurons [112] or spintronic neurons as described in the
next section. As we have seen previously, oxide memris-

tors allow an easy implementation of the STDP learning

rule, potentially leading to neural networks learning au-

tonomously. Learning through STDP has not yet been

demonstrated in spintronic memristors.

2) Magnetic Domain Walls for Neural Integration: In the

brain, neurons integrate the sum of the weighted synaptic
currents they receive. When the total integrated input cur-

rent exceeds a threshold the neuron emits a spike and re-

sets. This behavior is called “integrate and fire.” Both the

integration phase and the nonlinearity associated with the

threshold play an important role in neural computation.

Spintronic devices can realize neural-like integration

and thresholding. Integration can be realized as described

above for devices based on moving domain walls.

Fig. 6.Magnetic domain wall. The arrows indicate the direction

of the magnetization. For typical thin films, the energy is lower

when the magnetization is parallel to the side of the structure, so

in thin film wires, it tends to lie in the plane along the wire.

There are two possible directions for domains. Where they meet

is a domain wall, where the magnetization rotates continuously

from one direction to the other.

Fig. 7. Principle of the spintronic memristor based on magnetic domain-wall motion. The position x of a domain wall in a magnetic

trilayer determines the fraction of parallel and antiparallel domains and sets the resistance of the junction. When a current pulse is

injected, the domain wall is expected to move by a quantity �x proportional to the pulse duration and amplitude, in other words,

to the charge. In addition, the direction of the domain-wall motion is set by the sign of injected current. The trilayer resistance

depends on the charge that was previously injected, making it a memristor device.
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Thresholding can be realized using a standard magnetic

tunnel junction, which switches only if the amount of
current it received is above the critical current. The

switch of the junction resistance from ON to OFF state em-

ulates neural spiking. After each switch the junction has

to be reset to the ON state by a current pulse of opposite

polarity. To realize the integration and thresholding in

the same device, a tunnel junction with a bottom mag-

netic electrode extending as a long stripe on one side can

be used, as can be seen in Fig. 8 [113]. The weighted in-
put current to the neuron is injected in the stripe and

used to move a magnetic domain wall. To illustrate the

principle, let us consider that the domain wall is initially

at the end of the stripe the farthest away from the junc-

tion. As information flows in the stripe as a function of

the electrical activity of preneurons, the domain wall will

gradually move along the stripe, getting closer and closer

to the junction. This motion has no effect (integration
phase), until the domain wall reaches the junction, and

passes below it, thus switching the magnetic configura-

tion (firing phase). Then, the device is reset and the pro-

cess repeats.

In a more futuristic vision, such neurons could also

operate with pure spin currents. Several theoretical works

have investigated this possibility for perceptrons, which

are single-layer neural networks [113]. Due to the limited
spin diffusion length of magnetic metals, such a scheme

could only be used for small structures: conversion to

charge current is necessary to connect to a network over

larger distances. Optimistic assumptions on spin devices

suggest that this approach could reduce power consump-

tion very significantly with regards to charge-current-

based approaches [113]. Many variations of this idea are

possible [114]. In particular, it could be possible to imple-
ment convolutional neural networks, a basic element of

deep neural networks [115]. Of course, the success of

these proposals is dependent on the success of all spin

logic, which still has many challenges [116].

3) Soliton Propagation in Arrays of Interacting Magnetic
Nano-Objects: Magnetic domain walls are not the only

objects that can be displaced inside magnetic layers by

currents and magnetic fields. Magnetic bubbles [117] and
skyrmions [118], monopoles [119], waves [120], or even

the local orientation of magnetization [121] can propagate

in a controlled way (Fig. 9). It is conceivable to use these

tiny solitons, rather than just charge, as the units of infor-

mation in spintronic neural networks. This approach is

feasible though challenging. Shift registers based on the

motion of solitons have been realized, such as the mag-

netic bubble memory [122], or are currently investigated
in industry such as the racetrack memory based on do-

main walls [123]. Solitons can be propagated in large ar-

rays of nanomagnets in the framework of nanomagnetic

logic [121] or spin ice [124], [125]. To realize bioinspired

computing, the challenge will be to tune these networks,

so that when solitons representing an input are injected

into the network, they propagate in a way that will be

characteristic of this input, and easily detectable, allow-
ing for pattern recognition and classification. Such spe-

cific cascades of events in response to specific inputs can

take different forms, such as phase changes or avalanches

in networks close to criticality [23], features that have

been observed in the brain [126].

D. Nonlinear Dynamics at the Nanoscale
A whole class of computing models takes inspiration

from the dynamical nature of the brain when processing

cognitive data [78], [127]. Neurons and synapses are dy-

namical objects. Synapses evolve in time, particularly the

degree to which they transmit information. The connec-

tions are decreased or reinforced according to the activity

of neurons, a process which allows the network to learn.

Groups of neurons can be modeled as nonlinear oscillators

that adjust their rhythms depending on incoming signals
[128]. The brain itself displays a wealth of phenomena

characteristic of nonlinear dynamical systems: synchroni-

zation of oscillating neural assemblies [129], complex tran-

sients [130], and even chaotic behavior [131].

Neural networks with feedback, in contrast to the

strictly feedforward networks illustrated in Fig. 3(a), are

called recurrent neural networks. They have significant

Fig. 8. Neural integration based on magnetic domain-wall motion [113]. A domain wall is initially positioned at the end of a magnetic

stripe farther away from the magnetic tunnel junction. After each pulse injected in the magnetic stripe, the domain wall moves toward

the junction by a given amount. During the integration phase (a) and (b), the motion of the magnetic domain wall does not modify the

junction resistance. When the domain wall passes below the junction, the magnetization configuration of the junction switches from

parallel to antiparallel, and its resistance jumps to the high state: this is the firing phase (c). After firing, the configuration has to be

reset to (a).
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computing capabilities and can implement any kind of

dynamics (fixed points, limit cycles, and chaos) [132].

Attractors in such systems can store memories. Transient

dynamics can be used to process input time sequences

provided by sensors or to generate trajectories as outputs

for motor control [133]. Spin-torque nanodevices, which

are multifunctional and tunable nonlinear dynamical na-
nocomponents, are interesting building blocks for imple-

menting recurrent neural network models in hardware.

They can be assembled and coupled in large networks in

order to generate complex nonlinear dynamics that im-

itate interesting behaviors of populations of neurons and

synapses.

A well-known example of a recurrent neural network

is a Hopfield network. When synapses are symmetric,
that is, when information flows between each pair of

neurons at the same rate in both directions, Hopfield has

shown that the dynamics of recurrent neural networks

derives from an energy function [24]. A network contain-

ing a large number of neurons and synaptic connections

can have numerous energy minima. The energy minima

correspond to dynamical attractors, which can be used to

store information. As illustrated in Fig. 10, when a noisy
input is presented to the system, in spite of the noise, it

is in the basin of attraction of the pattern to be recog-

nized and dynamically converges to the attractor per-

forming a “recognition” step.

The attractors in Hopfield networks were originally

considered to be static fixed points. Following this idea,

it has been recently demonstrated experimentally that ar-

rays of coupled nanomagnets can perform pattern recog-
nition in images by minimizing their global energy [134].

The attractors can also be the different synchronized

states of networks of coupled oscillators. In 1998,

Aonishi theoretically proved that a network of coupled

phase oscillators with individually adjustable coupling

strengths can recognize binary pattern vectors from a set

of memorized patterns [135]. Most current work on

bioinspired computing with oscillators continues to be

theoretical. The only existing electronic implementation,

which is very recent, involves a circuit board with eight

lumped oscillators that gives a proof of concept without

prospects for scaling up the system [30].

The dearth of hardware prototypes follows from the

stringent requirements on the oscillators. In order to
build a bioinspired memory based on the associative op-

erations of the brain, it is necessary to implement a net-

work of oscillators that can be synchronized and in

which the coupling between individual oscillators is tun-

able. In addition, maximizing the storage density and the

efficiency of the network requires shrinking the oscilla-

tors to nanometer-scale dimensions. In this context, the

nanometer size, tunability, and ability to synchronize of

Fig. 9. Different magnetic solitons seen from a top view. Arrows are larger when they are in plane. The background color reflects the

local out-of-plane component of magnetization. Domain walls, bubbles, skyrmions, and waves are all solitons in continuous media.

On the other hand, the monopole is a point of frustrated interactions between bar magnets in an artificially fabricated lattice,

frequently referred to as an artificial spin ice lattice. The magnetization state is one of two configurations found in nanomagnetic

logic and all-spin-logic devices.

Fig. 10. Principle of Hopfield networks. Hopfield networks are

distinct from networks with synapses that transmit information

in one direction in that they have symmetric connections

between pairs of neurons. With these symmetric connections,

it is possible to define an energy of the system when the state of

the system is mapped onto a position. When the system is

trained to recognize particular patterns, like the four on the

right, the energy of that state is a local minimum. That means

that when something close to a four, like the pattern on the left,

is presented to the network, it relaxes to the closest local

minimum, which is the four on the right.
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spin-torque nano-oscillators could be disruptive. There
are several proposals for interconnecting such oscillators

for computing [136]–[138]. We expect that an experi-

mental demonstration will follow soon.

The challenges for real scale applications will be to re-

alize large networks of synchronized oscillators, to tune

the couplings between oscillators, to efficiently detect the

emerging synchronization patterns, and to minimize the

energy consumption. Spintronics offers many approaches
for tuning the coupling between magnetic oscillators

needed to generate the desired synchronization patterns.

When the coupling is electrical, memristors can be in-

serted in the current lines connecting the oscillators

[108]. When the coupling is induced by spin waves, it can

be modified by spin-orbit torque locally damping or en-

hancing the wave amplitude.

Two approaches can be used for reducing the energy
dissipation during computation. The first is to use spin-

torque oscillators with a high frequency in the range of sev-

eral tens of gigahertz. In this case, the computation time,

given by the time to reach synchronization [139] after the

initial perturbation of the network by the input, will be

short, typically a few nanoseconds (�2 ns at 50 GHz), re-

ducing the total energy correspondingly. The other solution

is the opposite—to use ultraslow, but stochastic magnetic
oscillators [52], [140], [141]. For example, neural oscillators

can be emulated by superparamagnetic tunnel junctions,

which fluctuate randomly between the ON and OFF resis-

tance. Instead of functioning as unstable bits, superpara-

magnetic tunnel junctions can be treated as stochastic

oscillators that do not need any source of energy to oscil-

late other than thermal noise. In addition, spin-torque is

particularly efficient in these junctions since the energy
barrier between the magnetization configurations is small.

Due to these properties, superparamagnetic tunnel junc-

tions can be phase locked to a weak periodic excitation

[52], [142], opening the path to low power synchronization

of magnetic oscillator networks.

III . THE CHALLENGES OF
SPINTRONICS FOR BIOINSPIRED
COMPUTING

A. Designing Modular Magnetic Neural Networks
Magnetic tunnel junctions are nanoresistors, as are

most memory cells in other emerging technologies, such as

resistive random access memories [17], phase change mem-

ories [18], ferroelectric memories [143], etc. The main ad-
vantage of spintronics compared to other resistive

memories for neuromorphic computing is the possibility to

induce complex and tunable resistance dynamics through

spin torque. Like other memory cells, they can switch be-

tween fixed states allowing them to emulate synapses. But

the resistance of a magnetic tunnel junction can also oscil-

late, spike, or show chaotic dynamics [144]. These

dynamical behaviors potentially allow tunnel junctions to
implement neurons at the nanoscale, a role which is not

possible with other memristor technologies that require

the addition of capacitors or inductors to oscillate [145].

A drawback of spintronics is that magnetic tunnel

junctions have small resistance variations compared to

other memory cells, with OFF/ON ratios typically equal to

2 or 3. Therefore, it will not be possible to create large

arrays of electrically interconnected junctions without se-
lector devices placed under each because otherwise so-

called sneak paths dominate the array [146]. In addition,

fast electrical signals damp out quickly in large resistive

arrays. One way to create larger networks of interacting

elements could be to use magnetic coupling through di-

polar fields between nanomagnets, as in artificial spin

ices and nanomagnet logic arrays [119], [121]. But in any

case, an organization in small modular arrays, intercon-
nected through CMOS interfaces, will be necessary.

Magnetic neuromorphic computers will require radically

new architectures, using special design rules to assemble

elements or devices into smaller scale circuits and then

integrating such circuits into higher order operational

units. Computing with ensembles of smaller neural net-

works follows closely the modular and hierarchical orga-

nization of the brain. Such models (deep and modular
neural networks) already exist [147], and adapting them

to magnetic systems will be an important challenge.

B. Giving Spintronic Networks Useful Features
Aspects of brain behavior that these circuits may in-

herit include spiked input and output, stochastic behav-

ior, strong feedback, nonlinearity, and operation close to

the thermal limit. As we have outlined in this review,
many different paths can be explored for this purpose.

While most neural network models are very tolerant to

variability between components (i.e., different behaviors

for different neurons and synapses), the quality of com-

putation degrades rapidly when the behavior of individual

components’ behavior is not consistent with itself. There-

fore, generating reproducible responses in these networks

will be crucial, independent of the computing substrate:
domain walls, skyrmions, waves, electrical oscillations.

Designing the magnetic network architectures and func-

tionality will require interdisciplinary studies, and the de-

velopment of adapted fast numerical simulation tools.

C. Tuning for Learning
Once a network has been endowed with the desired

function it has to be trained to give different responses to
the different kind of inputs that should be differentiated.

In many models, training requires being able to tune the

interactions between each pair of neurons. It will, there-

fore, be a huge technical challenge to find efficient ways

to tune interactions inside large assemblies of magnetic

nano-objects. Here spintronics has some advantages, as

many possibilities are available for tuning the
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information propagation between magnetic nano-objects,
for example, via local spin-transfer torques or spin-orbit

torques, electric-field-induced anisotropy modifications,

or magnetic fields generated through close-by wires.

D. Measuring the Response of Magnetic
Neural Networks

Clearly, one of the requirements for spintronics-based

bioinspired computing will be to design and use mag-
netic nanodevices with easily measurable states (whether

they are the resistances of a junction, domain-wall posi-

tions, magnetic configurations, etc.). In any case, the

standard tools used to characterize existing circuits will

not work for circuits with these properties because the

circuits will be inherently stochastic and will likely in-

volve feedback. Therefore, the output will not be a sim-

ple function of the instantaneous input. To progress
toward spintronic neuromorphic computing, it will be

necessary to develop the measurement techniques

needed to characterize such circuits. These measure-

ments will provide feedback to research aimed at opti-

mizing individual devices and to research on developing

architectures to combine such circuits into to functioning

computers. Modeling will facilitate this feedback. Thus,

it is essential to bridge the device–circuit and circuit–ar-
chitecture gaps by characterizing the behavior circuits of

novel devices assembled and developing models of the

behaviors of such circuits for use in architectures.

IV. CONCLUSIONS AND PERSPECTIVES

Neural network algorithms are already in widespread

use. The next step is to realize low power computing by
building chips whose organization is inspired by the

brain’s architecture. One of the challenges is the almost

infinite number of possibilities. Undoubtedly, CMOS de-
vices will play an important role, but it is likely that

novel nanodevices will complement them by bringing

important functionalities such as memory and intrinsic

forms of plasticity. In this review, we have described

how spintronic devices might play an important role.

Magnetic tunnel junctions can bring nonvolatile memory

close to CMOS. In addition, magnetic nanodevices dis-

play a wide variety of behaviors that capture some of the
properties of both neurons and synapses. They have the

great advantage over other prospective devices in that

there is already significant experience in integrating

them into CMOS circuits.

To date, most ideas have not reached the experimen-

tal level, and in most cases the experiments are prelimi-

nary, making this promising field wide open for more

experiments and additional ideas. Further progress will
require a broad and interdisciplinary approach. Original

physics should be developed to confer interesting func-

tionalities for computing to magnetic nanodevices and

magnetic circuits. At the device level, much is known

about optimizing magnetic tunnel junctions that require

long-term stability. Not nearly as much is known about

optimizing these tunnel junctions when designed to

function with lower thermal stability and energy cost.
Devices based on magnetic domain-wall motion or other

magnetic solitons are still in their infancy. While there

have been demonstrations of coupling several magnetic

nanodevices together, it is still not clear how to connect

large numbers of devices together and even less how to

compute with these assemblies. Moving from a few

coupled devices to circuits of millions of neuron-like de-

vices connection by hundreds of millions of synapses will
require a number of breakthroughs in circuit design, cir-

cuit measurement, and modeling. h
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