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ABSTRACT | In this paper, we provide an introduction to

machine learning tasks that address important problems in

genomic medicine. One of the goals of genomic medicine is to

determine how variations in the DNA of individuals can affect

the risk of different diseases, and to find causal explanations so

that targeted therapies can be designed. Here we focus on how

machine learning can help to model the relationship between

DNA and the quantities of key molecules in the cell, with the

premise that these quantities, which we refer to as cell

variables, may be associated with disease risks. Modern

biology allows high-throughput measurement of many such

cell variables, including gene expression, splicing, and proteins

binding to nucleic acids, which can all be treated as training

targets for predictive models. With the growing availability of

large-scale data sets and advanced computational techniques

such as deep learning, researchers can help to usher in a new

era of effective genomic medicine.
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I . INTRODUCTION

Here, we describe how machine learning can be used to

solve key problems in genomic medicine. Genomics is the

study of the function and information structure encoded in

the DNA sequences of living cells, whereas precision
medicine is the practice of tailoring treatment based on all

relevant information about the patient, including the

patient’s genome. Each of these disciplines is undergoing

an explosion of growth, especially in terms of data [1]–[4].

We see these problem domains as prime opportunities to

develop ‘‘machine learning that matters’’ [5], improving

the longevity and quality of life for the millions of

individuals suffering from a genetic disease or disorder,
both now and in years to come.

A genome is an instruction book for building an

organism. Since 1953 it has been understood that DNA

molecules are the physical medium of genetic information

storage [6], and by 2001 the Human Genome Project had

drafted the raw information content of a typical human

genome [7], [8]. However, the bigger challenge was to

interpret the structure, function, and meaning of the
genetic information itself. Biologist Eric Lander summa-

rized the situation in seven words: ‘‘Genome. Bought the

book. Hard to read.’’ Still, much is known about how

genetic information is organized into distinct genes. Each

gene is a like a chapter in the instruction book, describing

how to build a particular family of molecules. So-called

protein-coding genes describe how to build large mole-

cules made from amino-acid chains (proteins), whereas
noncoding genes describe how to build small molecules

made from ribonucleic acid (RNA) chains; see [9] and [10]

for introductions to molecular genetics and cell biology.
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Roughly, the human genome contains 20 000 protein-

coding genes [11], and 25 000 noncoding genes [12]. Some

genes are crucial for life, some are crucial for health, and

some can be deleted in their entirety without apparent harm.

One of the most important information structures

within a typical gene is the presence of alternating regions
called introns and exons. The boundaries between these

regions are determined by patterns in the nucleotide

sequence, and many disease-causing mutations act by

disrupting these patterns. Spinal muscular atrophy (SMA),

which is the leading genetic cause of infant mortality in

North America [13], results if a baby’s genome is missing

the SMN1 gene, or contains a damaged version of it,

resulting in deficient production of the survival motor
neuron (SMN) protein. Another version of the gene, called

SMN2, can compensate for the production of the SMN

protein. Fig. 1 shows the nucleotide sequence from the

seventh exon of the protein-coding gene SMN2. Due to

differences in nucleotides at the four positions shown, the

cell’s machinery fails to recognize the exon, resulting in a

protein that does not function properly, thereby unable to

compensate for the production of the SMN protein.
Researchers are evaluating therapies that restore function of

exon 7 in SMN2 [14], [15]. SMA is well studied and can be

diagnosed by outward symptoms, but genetic testing is crucial

for confirmation and therapeutic development. In other

genetic diseases, the causal mechanisms are more complex.

Cancer is a prime example of a heterogeneous disease, i.e., a

disease with multiple causal pathways all leading to similar

symptoms but requiring different treatments [16]. For cancer,
genomic data are becoming essential for providing more

detailed diagnoses and targeted treatments [17].

The concept of precision medicine is not entirely new;

doctors have been using blood type to tailor blood

transfusions for over a century [18]. What is different

today is the rapid growth in genomic data that can be
quickly and cheaply collected from the patient and the

wider community, and the potential for insights from

sharing that data. The scale and complexity of genomic

data dwarfs the 20–50 measurements that are traditionally

used in laboratory tests [17]. In this paper, we focus on

machine learning applications in genomic medicine,

where one assesses genomic characteristics to find

targeted therapies or match existing ones, and to identify
disease risks for potential preventative measures.

It is our view that to make genomic medicine a reality,

we must develop computer systems that can accurately

interpret the text of the genome just as the machinery

inside the cell does. While this is a difficult challenge, it

will enable the effects of genetic variation and potential

therapies to be explored quickly, cheaply, and more

accurately than can be achieved using laboratory experi-
ments and model organisms.

What is the current state of the art in genomic

medicine? Currently, protein-coding exons are the most

understood regions in the genome. The universal genetic

code for proteins was experimentally confirmed over

50 years ago [19], and knowing how a coding mutation

changes the corresponding amino-acid sequence is a

standard feature in genome diagnostic pipelines. For
example, if a mutation introduces a ‘‘stop codon’’ into the

sequence (called a ‘‘nonsense’’ mutation) then it is known

that the protein will be truncated as a general rule.

However, predicting whether a mutation will disrupt the

stability or structure of the final protein molecule is a long-

standing open problem [20]. Furthermore, coding regions

make up only �1.5% of the human genome, even though

there is evidence that at least �5.5% of positions undergo
purifying selection [21]. Disease-causing mutations are

increasingly being found outside of protein-coding regions

[22], indicating that analysis tools for coding regions are

not enough. Many of the functional noncoding positions

are regulatory sequences, meaning they instruct the cell

how to regulate important processes such as gene

expression and the reliable identification of exons. This

underscores the importance of developing computational
models that can automatically identify and understand

regulatory instructions in the genome, such as those in

Fig. 1. These regulatory elements contribute significantly

to the complexity of cell biology, which cannot be

accounted for only by the sheer number of genes (e.g.,

balsam poplar trees have twice as many genes as humans

[23]) or the coding regions themselves (e.g., less than 1%

of human genes have coding regions that are distinct from
those of mice and dogs [24]).

How can we learn to ‘‘read the genome’’? Unlike

familiar cognitive tasks such as visual object detection and

speech recognition, humans are not naturally equipped to

perceive and interpret genomic sequences nor to under-

stand all the mechanisms, pathways, and interactions that

go on inside a living cell. To make headway, a system with

Fig. 1. Exon and the regulatory instructions identified using machine

learning. If an infant is homozygous in a version of the survival motor

neuron gene SMN2, the result is spinal muscular atrophy, a leading

cause of infant mortality. Three of the nucleotides lie within genomic

instructions that a machine learning technique identified as being

important for including this exon when building the protein [44].
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superhuman analytical ability will be required. As
described below, a few research groups with sufficient

machine learning and genome biology expertise have been

developing techniques that can interpret the genome.

There are huge ongoing opportunities for machine

learning researchers to contribute in this area. In genomics

and biology, it is now being acknowledged that resources

would be better spent on new computational techniques

rather than on pure data collectionVsomething computa-
tional biologists have been arguing for years (‘‘The cultural

baggage of biology, that privileges data generation over all

other forms of science, is holding us back’’ [2]). For

instance, after nearly $1 billion was spent on The Cancer

Genome Atlas (TCGA) project, researchers question

whether the project should continue to focus on sequenc-

ing or shift to analyze function [25].

Computer systems that can read the text of the genome
can be used in a variety of ways to support genomic

medicine. For example, a recent breakthrough in ‘‘gene

editing’’ is allowing scientists to alter the genomes of

already living cells, with an efficacy no one thought

possible just a few years ago. Gene therapies can now

include targeted modifications, such as removing delete-

rious mutations or even inserting new sequences at

predetermined locations in a genome. Genome editing
technology [26], [27] opens a door to unprecedented

opportunities in genomic medicine, making it more

important than ever that we can predict the effects of

these edits in silico. In other words, knowing how to write

is not the same as knowing what to write.

II . USING MACHINE LEARNING TO
INTERPRET THE GENOME

Predicting phenotypes (e.g., traits and disease risks) from

biomarkers such as the genome is, in principle, a

supervised machine learning problem. The inputs are a

stretch of DNA sequence (genotype) relevant to the

underlying biology, and the outputs are the phenotypes.

This approach [Fig. 2(a)] is not ideal for most complex

phenotypes and diseases for two reasons. First is the sheer
complexity of the relationship between a full genotype and

its phenotype. Even within a single cell, the genome

directs the state of the cell through many layers of intricate

and interconnected biophysical processes and control

mechanisms that have been shaped ad hoc by evolution.

Attempting to infer the outcomes of these complex

regulatory processes by observing only genomes and

phenotypes is rather like trying to learn how computer
chess playing programs work by examining binary code

and wins and losses, while ignoring which moves were

taken. Second, even if one could infer such models (those

that are predictive of disease risks), it is likely that the

hidden variables of these models would not correspond to

biological mechanisms that can be acted upon. Insight into

disease mechanisms is important for the purpose of

developing targeted therapies, but can also provide

complementary information for phenotypic screens, which

traditionally identifies chemicals with desired biological

effects without knowledge of the precise targets [28].

We follow what we believe is a more powerful
approach, where the computational model is trained to

predict measurable intermediate cell variables, also known

as molecular phenotypes, first, and then these variables

can be linked to phenotype [Fig. 2(b)]. For example, in the

case of spinal muscular atrophy described above, the cell

variable could be the frequency with which the exon is

included when the gene is being copied to make a protein.

Other examples of cell variables include the locations
where a protein binds to a strand of DNA containing a

gene, the number of copies of a gene (transcripts) in a cell,

the distribution of proteins along the transcript, and

concentration of proteins. Examples of cell variables are

described in the next section.

This approach addresses the two aforementioned

problems. Since these cell variables are more closely

related to and more easily determined from genomic
sequences than are phenotypes, learning models that map

from DNA to cell variables can be more straightforward.

High-throughput assay technologies are generating mas-

sive amounts of data profiling these cell variables under

diverse conditions, and these data sets can be used to train

larger and more accurate models. Also, since the cell

variables correspond to intermediate biochemically active

quantities, such as the concentration of a gene transcript,
they are good targets for therapies. If high disease risk is

associated with a change in a cell variable compared to a

Fig. 2. (a) One major goal of genomic medicine is to predict

phenotypes, such as disease risks, from a genotype. (b) By training

models that predict how genotype defined by as a stretch of DNA

sequence influences ‘‘cell variables,’’ such as concentrations of

proteins, it hugely simplifies and modularizes the machine learning

problem, and enables the exploration of therapies that target

these crucial variables.
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healthy individual, an effective therapy may consist of

restoring that cell variable to its normal state. In the above

example of spinal muscular atrophy, therapies that modify
the genomic instructions so as to increase the frequency

with which the exon is included in the protein are

currently being tested in clinical trials [14].

The remainder of this paper provides an overview of

the role of machine learning in building computational

models of cell variables, with an aim to understand the

genetic determinants of disease. We will advocate the

approach of learning to model cell variables as an
intermediate step, and explain how this benefits from

the growing availability of diverse types of data. We will

describe in detail two types of cell variable that our group

has been closely involved in modeling, and briefly

summarize how this research has impacted our under-

standing of spinal muscular atrophy, cancer, and autism

spectrum disorder. To place our approach in context, we

will review existing techniques that are used for scoring
disease risks. Also, we will describe data sets and machine

learning formulations of problems that enable data

scientists to work in this hugely important area.

III . CELL BIOLOGY, MACHINE
LEARNING, AND GENOMIC MEDICINE

In this section, we describe the workflow through which

different actors participate toward the goal of genomic

medicine, which is summarized in Fig. 3.

To build a computational model of a particular cell

variable, an assay to measure the corresponding biological

quantity must exist, and training data must be collected
under many conditions. Well into the 1990s, biological

assays typically required several manual steps and gener-

ated small amounts of data. Such techniques are useful for

developing and testing hypotheses, but do not provide

sufficient data to infer accurate predictive models of

complex outcomes. With the commoditization of high-

throughput assay technologies, it is now commonplace to

acquire hundreds of thousands of measurements for a cell
variable in a single low-cost experiment. For example,

microarray technology has been used to peer into living

cells for decades [29], but new assays and new chemistry

are still being developed around this fundamental

approach, such as universal protein binding microarrays

(PBMs) [30], [31], ChIP-chip [32], [33], and RNAcompete

[34], [35]. High-throughput sequencing technologies are

likewise being used for a wide range of tasks [36]:
identifying protein binding sites, sequencing the genomes

of different organisms in evolutionary studies, and

profiling the genomes of individuals in medical studies

for the purpose of discovering variations, either in regions

of interest or across the entire genome.

In addition to measuring genotypes on a large scale,

high-throughput technologies can be used to measure cell

variables, such as the abundances of different transcripts
[37]. Although somatic mutations, which are alteration in

the DNA after conception, can occur in cancers and some

Fig. 3. Simplified view of how biologists, data scientists, and medical researchers can work toward genomic medicine. Machine learning

plays a central role by turning high-throughput measurements into specialized or general-purpose predictive models for what we referred to as

‘‘cell variables’’Vquantities that are relevant to cell function. By knowing how mutations affect disease via cell variables, diagnosticians and

pharmacogeneticists can more easily find direct correlates with disease, develop treatments, and plan targeted therapies for individual patients.
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neurological diseases [38], [39], the genome of an
individual is relatively stable. The ‘‘transcriptome,’’ on

the other hand, varies from cell to cell, and is affected by

the cell’s surrounding environment, for example, the tissue

type it represents. Previously, microarrays were used to

measure transcripts on a large scale, but now high-

throughput sequencing is the method of choice. Another

application of high-throughput sequencing is to profile

how proteins interact with specific regions of DNA [40].
Binding of proteins can influence how the instructions in

the genome are utilized, offering a layer of complexity that

can be exploited for regulation of cell biology. Data such as

these, which measure particular cell variables of interest,

allow us to peer into the underlying workings of the cell, at

the most fundamental level of the instructions that define

an organism. High-throughput assay technologies have

made it feasible to measure cell variables of interest
covering vast portions of the genome at various cell states,

including disease conditions, and a wealth of data is now

publicly available. This presents an exceptional opportu-

nity for data scientists to infer predictive models of cell

variables using machine learning techniques.

The inputs to the computational model include

sequence characteristics from a stretch of DNA, such as

the frequency of particular nucleotides or presence of
certain motifs, some of which can be learned from the

sequence themselves [41]. To account for instructions

encoded in the DNA that impact cell variables through

biochemical processes and structures, additional features

can be derived, for example, the binding of proteins to

DNA and RNA, nucleosome positioning and occupancy

profiles [42], and RNA secondary structures [43]. Gener-

ally, it is beneficial to require that the model’s inputs be
extractable from DNA sequences. For a computational

model to be useful in making predictions in the context of

genomic medicine, it is desirable for the inputs to be easily

obtainable. Given that the cost of whole genome sequenc-

ing continues to rapidly decrease, a growing number of

genomes will be available for training purposes, and within

the context of genomic medicine, it will likely become

standard for a patient’s genome to be available.
An important aspect of the approach illustrated in

Fig. 3 is the use of machine learning to infer models that

are capable of generalizing to new genetic contexts. For

example, we may infer a model using the publicly available

reference genome and data profiling transcripts in healthy

tissues, but then apply it to the genome of a diseased cell

and ascertain how the distribution of transcripts changes

in the diseased cell. This notion of generalization is a
crucial aspect of the models that need to be inferred. From

a modeling perspective, we expect a greater ability to

generalize to new genetic context for those cell states that

were observed during training. Consequently, an impor-

tant aspect of model development is validation using DNA

sequences that the model has never seen before and using

data for cell states that are different from those used

during training. We cannot expect the models to be
accurate for any DNA sequences and cell states that are

extremely different from those used during training, so the

validation procedure should also attempt to characterize

the inputs for which the model is reliable.

If a model is good at generalization, it can analyze

mutated DNA sequences that lead to changes in cell

variables that may be indicative of disease state, without

needing experimental measurements from diseased cells.
In practice, this kind of ‘‘zero-shot’’ learning has been

successfully used to identify mutations that cause a variety

of diseases, using a model that was trained using the

reference genome and healthy tissues [44].

While the model that predicts cell variables does not

directly take into account information pertaining to

disease, if the model accurately reflects how the instruc-

tions in the genome are processed, then it should be able to
detect diseases that are caused by mutations that change

cell variables. This approach has been shown to work very

well for a large number of mutations and disease [44], but

of course it makes errors. If mutations are scored by how

much they cause a change in the cell variables, then false

positives will arise when a mutation causes a large change

in cell variables that have no impact on disease, for

example, a mutation that changes a cell variable, which
leads to a change in hair color. False negatives will arise for

mutations that act through cell variables that are not being

modeled. Both kinds of error will also arise due to

inaccuracies in the computational models. When investi-

gating specific diseases, scores for mutations can be

combined with disease-specific data, such as population

data. In this way, sets of candidate mutations can be

filtered to identify the ones that are most likely to have a
causal effect on a cell variable. More generally, these

scores can be used as input features for models that are

specific to certain diseases, where the models may utilize

many such scores across multiple regions in the genome.

After reviewing the processes involved in gene expres-

sion, we provide concrete examples of this approach. The

focus is on splicing and protein nucleic acid binding, but

there are a variety of cell variables that are relevant to
disease, such as transcription rate [45], DNA methylation

[46], [47], polyadenylation [48], chromatin structure [49],

[50], RNA folding [51], and protein folding [52].

A. Gene Expression
During gene expression, the gene is first copied

(transcribed) to make a messenger RNA (mRNA) and

then the mRNA is translated to make a protein. The DNA
sequence containing both exons and introns is first

transcribed into RNA, which is referred to as the precursor

mRNA (pre-mRNA), as shown in Fig. 4. The term

‘‘precursor’’ refers to the fact that the pre-mRNA needs

to be further processed within the nucleus to make a

mature mRNA. Various modifications take place during

RNA processing, one of which is splicing [53]. Splicing

Leung et al. : Machine Learning in Genomic Medicine

180 Proceedings of the IEEE | Vol. 104, No. 1, January 2016



removes the introns from the pre-mRNA and connects the

exons together. Another step is polyadenylation, which

appends a sequence of adenine bases to the end of the

mRNA [48]. In the standard model, splicing removes

introns and retains all exons, as illustrated in Fig. 4, but

most genes may be spliced in different ways, so that exons

are sometimes removed and/or introns are retained, which
increases the variety of proteins. Splicing is a critical

cellular process that is deeply integrated in the gene

regulatory networks [54]. Splicing may occur after

transcription is complete, but it frequently occurs concur-

rently with transcription, so that the processes of

transcription and splicing interact [55]. Finally, the

mRNA is transported out of the nucleus to a ribosome,

which translates the mRNA into protein. These are the
main processes involved in gene expression, but others

include stabilization of the mRNA and localization of the

protein.

B. A Computational Model of Splicing
In spite of being able to generate highly complex

tissues and organs, the human genome contains only

�20 000 genes [11], in addition to other functional

molecules, such as microRNAs. One way that it achieves

complexity is through the use of instructions to direct how
single genes can perform different functions by splicing

the same gene in different ways. In alternative splicing

(AS), some exons may be removed during splicing,

depending on the cellular context, such as the tissue the

cell is in, and the genomic instructions that are nearby.

Control of this process is called ‘‘splicing regulation’’ and it

depends on complex interactions between numerous

genomic elements within the DNA and the pre-mRNA,
which are features near the site of regulation, and

transfactors, which are proteins and other molecules that

interact with the genomic elements [56]. Given that there

are multiple exons within a gene, AS can connect exons in

different ways and produce different protein isoforms

(Fig. 5, top), thus ‘‘expanding’’ the protein repertoire of the

cell [57]. The latest statistics indicate that the average

number of transcripts per protein coding gene is approx-
imately four [11]. In a notable instance, alternative splicing

of exon 6 of Interleukin 7 receptor, IL7R, can render the

translated protein water soluble or water insoluble and

membrane localized [58]. The importance of AS is

supported by evidence that at least 95% of human

multiple-exon genes are alternatively spliced [59]. Many

human diseases have been found to be affected by

mutations in the instructions that regulate splicing [60].

Fig. 5. Gene can generate different proteins by the process of

alternative splicing, where genomic instructions cause an exon to

sometimes be included or excluded, depending on cellular conditions,

such as the cell type. Using RNA-seq, the frequency with which each of

tens of thousands of exons is included in a specific cell type can be

measured, and these data can be used to train a computational model

that discovers the instructions that control splicing and combines them

to predict splicing.

Fig. 4. Gene expression consists of three high-level steps.

Transcription creates an RNA molecule that is essentially a copy of

the DNA in the gene being transcribed; at this stage, the RNA molecule

is called precursor messenger RNA (pre-mRNA). RNA processing then

modifies the pre-mRNA, which includes splicing out long stretches

of sequence called introns and connecting the flanking regions called

exons; at this stage, the RNA molecule is called messenger RNA

(mRNA). Translation creates a protein molecule (an amino-acid chain)

by reading the three-letter ‘‘codes’’ in the mRNA sequence. Other

processes include polyadenylation, wherein adenine bases are

appended to the end of the mRNA; mRNA stabilization, wherein the

mRNA molecule is processed so as to make it less likely to degrade;

mRNA localization, wherein the mRNA is moved to a location suitable

for translation; and protein localization, wherein the protein is moved

to a specific type of location in the cell.

Leung et al. : Machine Learning in Genomic Medicine

Vol. 104, No. 1, January 2016 | Proceedings of the IEEE 181



AS is observed more frequently in more complex cell
types, and among all cell types found in different

vertebrate species, the human brain exhibits the most

complex alternative splicing patterns [61]. It is not

surprising, then, that aberrant splicing is indicated as a

major contributor in several psychiatric disorders. For

example, transcriptomic analyses have found consistent

deviations in AS patterns in the cortical regions of autism

spectrum disorder (ASD) cases [62], [63], pointing to
splicing misregulation as an ASD mechanism.

López-Bigas et al. estimate that up to 60% of genetic

diseases caused by mutations are related to defects in the

splicing process [64]. In particular, nearly one third of all

disease-causing mutations alter a splice site [65], mostly

resulting in abnormal exon skipping [66], [67]. Moreover,

nearly 45% of disease/trait-associated variants reside in

introns, and most of them are believed to modulate
splicing patterns [22]. Aberrant splicing causes abnormal-

ities in two major ways: 1) it results in inactive or less

effective protein isoforms; or 2) it disrupts the balance of

protein isoforms. Major splicing-related diseases include

neurological and psychiatric disorders, cystic fibrosis,

Parkinsonism, spinal muscular atrophy, myotonic dystro-

phy, amyotrophic lateral sclerosis, premature aging, and

dozens of cancers [56], [66], [68].
Over the past decade, our group has worked to develop

accurate computational models of splicing, discover new

insights into the biological mechanisms of splicing, and

determine the genetic causes of diverse diseases and

neurological disorders. By accurately modeling splicing

and AS computationally, we have been able to predict how

it is affected by variations in the genome, and then to

assess whether a mutation in the genome affects disease
risk. The computational model of splicing uses input

features that are extracted from the genome near regions

where splicing occurs and then predicts the frequency with

which the corresponding exons are kept or excluded from

the mRNA [44], [69]–[71]. To train the model, measure-

ments from RNA sequencing (RNA-seq) technologies are

used to determine which isoforms are present in cells of

different tissue types. A brief description of RNA-seq is
provided here, details of which can be found in [72].

Sequencing involves first fragmenting mRNAs present in a

population of cells under investigation, and then sequenc-

ing these fragments. The sequenced fragments, or ‘‘reads,’’

are then mapped to the reference genome of the organism,

allowing for a small number of mismatches. The number of

reads is then used to determine the relative abundance of

isoforms in the sample [73]. For splicing, reads mapped to
the junction between the boundaries of exons are analyzed

[44], [74]. This gives a measure of how often an exon is

included or excluded in the mRNA (Fig. 5, bottom).

Recently, we showed how this approach can be used to

discover new ways that mutations can affect splicing and

lead to disease [44]. To analyze a specific genetic variant,

the normal DNA sequence and the mutated DNA sequence

are fed into the computational model and the predicted
change in the splicing level is used as an indication of

whether the mutation may be deleterious. Our approach

led to specific predictions of the effects of clinical variants

and synthetic variants in a variety of disorders, including

spinal muscular atrophy, hereditary nonpolyposis colorec-

tal cancer, and autism spectrum disorder. Validation

experiments showed that the predictions matched exper-

imental data quite well [44]. By analyzing all rare genomic
variants in ASD patients, Xiong et al. identified 19

aberrantly spliced genes involved in central nervous

system development, synaptic transmission, and neuron

projection [44], significantly expanding the set of putative

ASD-related genes.

This example illustrates the general workflow outlined

in Fig. 3, where experimental data are first gathered in the

lab to quantify cell variables of interest, and then passed to
data scientists, who create models of data that are used for

analysis of genetic diseases.

C. A Computational Model of Protein-DNA and
Protein-RNA Binding

A ‘‘protein-sequence interaction’’ is a chemical attrac-

tion between a protein molecule and a DNA or RNA

strand, either in a living cell (in vivo) or in a controlled
medium (in vitro). The strength of protein-sequence

interactions is a low-level category of cell variable for

which we have much training data. These interactions are

important to model accurately, because they influence so

many key processes in the cell. DNA- and RNA-binding

proteins bind selectively to DNA or RNA strands,

respectively, and are sensitive to mutations at the binding

site. A wide spectrum of ailments are known to be caused
by mutations that alter binding sites, including cholesterol

overproduction [75], melanoma [76], and prostate cancer

[77] [cf., Fig. 5(h)]. Accurate models of protein-sequence

binding are essential for interpreting the genome and for

predicting the effects of mutationsVthis is where machine

learning can play a key role.

The human genome encodes for at least �1400 DNA-

binding proteins [78] and at least �1500 RNA-binding
proteins (RBPs) [79], making these the largest categories

of proteins. Many DNA-binding proteins are called

transcription factors (TFs) because, when they bind, they

influence the rate at which specific genes are copied

(transcribed) to RNA. RNA-binding proteins can influence

the subsequent processing of RNA, for example, by folding

the RNA [80] or by dictating how certain exons within

mRNA are spliced [81]. In fact, computational models of
RBPs provide essential input features to the computational

model of splicing we presented earlier. Fig. 6 (top) depicts

just two important ways that these protein-DNA and

protein-RNA interactions can influence cell state.

Biologists have developed high-throughput experi-

ments that measure the sequence specificity of individual

proteins. These measurements can be used to train
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computational models of protein-sequence interaction: the

input is a genomic sequence, and the output is a binding

score [82]. However, before endeavoring to train a

predictive model, it is helpful to understand what these

measurements represent, how they were acquired, and

what biases may lurk within the data. Two popular
approaches to high-throughput experiments are sequencing-

based methods and microarray-based methods. Large data

sets of both kinds are publicly available. We first review

sequencing and microarray procedures, and then describe

popular computational models. For an overview of other

protein-DNA measurement technologies available, see the

review by Levo and Segal [83].

1) Sequencing: Sequencing methods work by isolating

short DNA or RNA fragments (length �100) that are

bound to the protein of interest, then sequencing those

fragments, and finally mapping them to a reference

genome. The idea is that, wherever mapped reads overlap

and pile up to form a ‘‘peak,’’ we can infer that the protein

prefers binding in the vicinity of that peak (Fig. 6, middle).

A common experimental protocol for DNA-binding

proteins is ChIP-seq [40], and for RNA-binding proteins
there are for example RIP- and CLIP-seq [84]. Each

sequencing experiment results in a list of 100–100 000

short sequences (one for each distinct peak) that have all

been excerpted from the reference genome. Machine

learning researchers would consider these peaks ‘‘weakly

labeled’’ because the appearance and locations of the

binding sites are not known, much like the ImageNet

classification challenge [85]. From this list of sequences,
we can learn to discriminate between sequences that the

protein binds to versus sequences that the protein

presumably ignores. Computational biologists have devel-

oped several tools for finding recurring patterns (motifs)

among a list of peaks. A popular software suite is MEME-

ChIP [86], which uses expectation–maximization to find

one or more motifs that discriminate peaks (positives) from

a statistical model of background sequences (negatives);
the MEME suite has been in development since the 1990s.

One difficulty with sequencing is that the resulting

peaks often contain motifs of several proteins that bind in

the same vicinity as the protein targeted by the experi-

ment. For computer vision researchers, this would be akin

to training an unsupervised model on images of the

character ‘‘q’’ that were coarsely cropped from real text,

only to find that the final model also responds strongly to
the character ‘‘u.’’ What we have, then, is not a model for

recognizing a particular handwritten character, but rather

a model for recognizing the context in which a particular

character tends to appear. For biologists, it is important

that the right patterns be associated with the right protein,

and so the interpretability of the computational model can

be a valid concern here. Currently, biologists examine the

output of tools like MEME-ChIP by hand, visualizing each
motif that was discovered and then reasoning about which

motif likely belongs to the target protein based on prior

knowledge of the existing literature.

2) Microarrays: High-throughput protein binding micro-

array (PBM) experiments expose a protein of interest to a

library of �40 000–250 000 distinct ‘‘probe’’ sequences

[87]. It is not known at the outset to which probes, or to
where within those probes, the protein will bind. The

experiment relies on a specially manufactured slide

containing a matrix of tiny wells on its surfaceVone well

for each type of probe in the library. Copies of the protein

are then introduced over the slide so that they may bind

selectively to the probes, after which the unbound proteins

are washed away. The remaining proteins are made to emit

visible light by laser excitation of an attached fluorophore.
The slide is photographed and the intensity of each well is

measured, revealing the concentration of protein in each

well (Fig. 6, bottom). The final result of a PBM experiment

is a list of (sequence, score) pairs that can be used to train a

computational model of the protein’s sequence specificity.

The probe sequences are explicitly designed to contain

good coverage of all possible subsequences of some length k.

Fig. 6. DNA- and RNA-binding proteins regulate many processes in the

cell, including gene transcription rates (top left) and splicing rates

(top right). To determine the motifs(s) that a particular protein binds to

(e.g., agata), biologists collect ‘‘specificity’’ data either by sequencing

protein-bound fragments from a living cell (middle), or by exposing

tagged proteins to synthetic fragments on a microarray (bottom).
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The k-mer length is usually approximately 10 for high-
throughput array designs. The set of probes are generated

starting with a de Brujin sequence of order k, and then

partitioned with overlap to generate the desired probe

sequences, each of length �40 [35]. Therefore, unlike

sequencing data, microarray data do not have the problem of

unrelated motifs appearing frequently together in the

positive set. The raw intensity measurements from each

microarray experiment can still have noise, artifacts, and
biases. That is why intensities are often postprocessed,

including outlier removal, spatial detrending, and quantile

normalization (see [35], supplementary information).

3) Basic Computational Models: An early way to model

binding sites was by ‘‘consensus sequence,’’ where the

protein is assumed to bind preferably to one designated

pattern, sometimes with one or two mismatched positions
allowed. Today, the workhorse of binding site modeling is

the position-frequency matrix (PFM), along with several

variations of the idea [88]. Parameter ði; jÞ of a protein’s

PFM represents the frequency at which base i appears at

position j when the PFM is aligned to a binding site for that

protein [89]. The frequencies in each column are often

normalized to become probabilities. For example, Fig. 7

(left) shows a published PFM for modeling the human
RBFOX1 protein [35]. RBFOX1 is an RBP that influences

splicing [Fig. 6, top] during neuronal development, and is

associated with autism [90]. The PFM parameters shown

are from [35], and were inferred by identifying recurring

motifs in the highest intensity probes of a microarray-

based experiment. The consensus sequence for RBFOX1 is

widely recognized to be gcaug, yet the PFM shown

suggests that it binds even more preferably to the longer
motif ugcaugVa secondary preference sometimes writ-

ten as (u)gcaug in consensus sequence notation.

Once a PFM has been ascertained for a protein, it can

act as a soft pattern for template-matching along the

genome. Given a sequence s ¼ ðs1; . . . ; snÞ of length n
where each si 2 f1; 2; 3; 4g (representing a,c,g,t, resp.),

the binding score zi for a normalized PFM with 4� m
parameters M is

zi ¼
Ym

j¼1

Msðiþj�1Þ;j:

After scoring each individual position i, the entire
sequence can be scored by taking the maximum, the

average, or the total sum of scores across positions. For

researchers familiar with deep neural networks, PFMs play

a similar role as the filters do in a convolutional neural

network [91], where here the input is a 1-D ‘‘image’’ with

four input channels representing the occurrence of

{a,c,g,t}, as depicted in Fig. 7 (right).

On the spectrum of binding complexity, our RBFOX1
example from Fig. 7 is known as one of the proteins most

easily modeled by PFMs. The sequence specificity of many

proteins is more accurately modeled by a combination of

two PFMs, where the secondary PFM captures an extra

‘‘mode’’ of binding [92]. Using default settings, the MEME-

ChIP software suite [86] actually outputs a list of up to

three distinct PFMs, each found to be statistically

significant with regard to MEME’s modeling assumptions.
The MatrixREDUCE software suite [93] outputs up to 20

PFM-like matrices called position-specific affinity matrices

(PSAMs). One difficulty with PFMs and PSAMs is that the

length of the pattern (number of columns in the matrix)

must be guessed beforehand, and this guess can influence

the quality of results; common practice is to overestimate

the length and then trim high-entropy columns (‘‘don’t

care’’ positions) from the matrix in a postprocessing step.

4) Beyond PFM-Based Models: The most obvious

drawback to PFMs is that they make the strong assumption

that each position contributes independently to binding

strength. For some proteins this assumption seems to hold,

but for many it does not. Computational biologists are

actively developing models that capture the sequence

specificity of more challenging proteins. Examples include
models that capture global features of the binding site [94],

models specialized for specific protein families such as

C2H2 zinc fingers [95], [96], and models of ‘‘structure-

selective’’ RBPs that are sensitive to the way RNA folds in

on itself [97]. Proteins can also bind at adjacent locations

on the strand, leading to protein–protein interactions that

complicate binding specificity [83]. Advanced models

often rely on biological insights such as the protein’s
crystal structure or knowledge of the ‘‘binding domains’’

on the protein’s surface. Stormo and Zhao [98] provide a

more in-depth review of DNA-binding protein experi-

ments and PFM-based computational models. See [84]

for a recent review of RBP experiments and models.

Slattery et al. [99] provide an excellent review of more

advanced issues in TF-DNA binding.

Fig. 7. Position-frequency matrix (PFM) model of the RNA-binding

protein RBFOX1 as reported by Ray et al. [35]. A PFM can be used to

score each position along a target sequence. Biologists commonly

visualize PFMs as a sequence logo [89].
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For machine learning researchers interested in the
sequence specificity problem, a good starting point is the

DREAM5 TF-DNA Motif Recognition Challenge [100]. In

that work, Weirauch et al. provided PBM and ChIP-seq data

and evaluated the performance of 26 specialized algorithms

from the computational biology community, including

MEME-ChIP and MatrixREDUCE. Alipanahi et al. [41]

recently found that convolutional neural networks can be

adapted to this challenge, and that they outperform the
algorithms participating in the original challenge on both

PBM and ChIP-seq data. The DREAM5 challenge is part of

a large series of computational biology challenges; see [101]

and [102] for an overview.

IV. MACHINE LEARNING IN
COMPUTATIONAL BIOLOGY

In recent years, machine learning researchers have focused

their most high-profile efforts on speech recognition [103]

and computer vision [104]. Computer vision in particular

has a long history in machine learning due to its intuitive,

accessible nature. Human beings are exceedingly good at

computer vision tasks, and so when our learning algo-

rithms do not satisfy our own expectations we often find

new insights. In fact, the handwritten digit recognition
data set known as MNIST [105] has been called ‘‘the

drosophila of machine learning’’Va reference to the fruit

fly model organism in biologyVowing to MNIST’s

widespread use as a test bed for new learning algorithms.

One of our goals in this paper is to explain

computational biology problems in a way that is accessible

to machine learning researchers. The situation in biology is

fundamentally different from the situation in computer
vision. The visual world is directly accessible to us, and

researchers exploit our knowledge of how images are

generated through light, occlusion, and projection. The

nanoscale world of a cell’s machinery is not directly

accessible and, despite decades of painstaking effort, our

knowledge of the mechanisms at play is woefully

incomplete [106], [107]; this is true even for single-cell

organisms like yeast [108], [109]. The genotype-to-
phenotype relationship [Fig. 2(a)] is arguably orders of

magnitude more complex than the pixels-to-labels rela-

tionship in high-profile vision challenges such as ImageNet

[85]. The details of many interactions, quantities, and

processes in the cell are ‘‘hidden’’ from us because we do

not have the technology to systematically measure them.

In other words, the few cell variables that we can observe

[Fig. 2(b)] are the outcome of many layers of interacting
cell variables that we cannot. That is why we believe

advanced machine learning, and deep learning in partic-

ular, will play an important role as biology moves toward

high-throughput experiments.

In this section, we first describe some approaches to

map genetic variants with disease risks by association and

through the use of comparative genomics. These methods

directly model the genotype-to-phenotype relationship and
are in common use. We then give a brief outline of

additional cell variables that are of interest to the research

community, some of which have predictive models that

have leveraged the use of deep learning to improve

performance. These cell variables may be used alone or in

combination for disease risk modeling. We also provide

additional publicly available sources of data for machine

learning researchers to contribute to the field.

A. Current Approaches to Model the Genetic Basis
of Disease Risks

1) Genome-Wide Association Studies: The goal of genome-

wide association studies (GWASs) is to detect how traits

within a population can be related to variants in particular

genomic locations, or loci. Early GWAS experiments used
microarrays that were designed by the most easily

determined variants in the human population: single-

nucleotide polymorphisms (SNPs), which are variations

that are relatively frequent across humans (frequency

greater than 1%). Modern GWAS analysis use more

comprehensive sets of variants and even whole genome

sequencing data, which is not restricted to a subset of

variants. Here, we focus on some of the challenges
of GWAS; for an excellent review of the current state of

GWAS, see [110].

From a data analysis point of view, one of the main

difficulties with GWAS is establishing statistical signifi-

cance between a potentially causal variant with a change in

risk for particular diseases between the affected group of

individuals compared to a control. The main problem in

GWAS and any association-based technique [e.g., expres-
sion quantitative trait loci (eQTLs)] is that they indicate

correlation, not causation. Due to confounding hidden

variables, such as correlations between nearby variants

caused by cross-over (linkage disequilibrium) or differ-

ences in subpopulations caused by factors such as

migration, two or more genomic loci might be correlated,

and an SNP could be picked up by GWAS, simply because

some other genomic locus is causal [111]. The causal
variant is often not even observed in the GWAS study.

GWAS furthermore provides a huge number of putative

causal mutations, and researchers may be biased toward

candidates that have greater ‘‘narrative potential’’ [112].

Some of the bigger GWAS studies involve tens of

millions of SNPs that are conducted on thousands of

individuals. Assessing the statistical significance of an

immense number of SNPs is challenging and requires
careful multiple-hypothesis correction or false discovery

rate analysis [113]. The problem is compounded by the fact

that many common variants have weak effects, and those

that have strong effects tend to be rare [114]. To improve

significance, some studies limit the profiling of SNPs to the

coding region of the genome [115], with the assumption

that mutations in these regions are more likely to impact
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risks as they can alter the function of the proteins [116].
Another way to address this problem is by increasing the

sample size. Significant resources have been channeled

into large population study initiatives such as TCGA and

HapMap, which have raised debates within the research

community on the cost-benefit ratio of these projects [25],

[117], [118]. Another major hurdle is population structure

and its stratification. A recent paper [119] that used a

genetic classifier based on SNPs for ASD detection raised
some controversy [120] and it was alleged that most of the

observed signal was due to ‘‘potential population stratifi-

cation’’ (genetic differences due to ancestry).

One approach to make better use of GWAS data beyond

statistical associations is to use computational models that

take as input the SNP profiles of individuals to predict

disease risks. These SNP profiles tend to be high

dimensional, and typically have a large proportions of
SNPs that are not relevant to the disease at hand (and

therefore noisy). Several tools are available for prioritizing

causal variants (e.g., PolyPhen [121], SIFT [122], SPANR

[44]), and machine learning algorithms have been used for

learning predictive models of disease risks [123], [124].

2) Evolutionary Conservation: Comparative genomics is a

powerful way to identify genomic sequences that have
function. The most well-known resource that comparative

genomics provides is sequence conservation. The rationale

behind sequence conservation is as follows. First, consider

evolution as being driven by two forces: the slow

accumulation of random mutations, and selective pres-

sures against mutations that damage reproductive fitness

within a population [125]. Now consider the genomes of

several species that diverged from a common ancestor long
ago; long enough that random mutations have had plenty

of time to occur. When we compare the genomes, we find

many long distinct sequences that are nearly identical, or

‘‘conserved,’’ across species. When a sequence is con-

served, it is strong evidence that evolution is exerting

selective pressure on the positions within those sequences.

Studies estimate at least 5%–6% of the human genome is

conserved with mammals [21], [126].
Detection of conserved sequences has been instrumen-

tal in annotating functional elements in the human

genome [21], such as exons. Conservation scores are

available for multiple organisms from the software tool

phastCons [127]. For each position in a genome, phastCons

provides a number between 0 and 1, where 0 indicates no

discernible conservation, and 1 indicates 100% conserva-

tion across all species considered. Other methods for
quantifying conservation include GERP [128] and phyloP

[129]. Conservation scores for each position in the human

genome can be viewed online as a ‘‘track’’ within the UCSC

Genome Browser [130].

A mutation that lowers reproductive fitness is called

deleterious, whereas a mutation that causes a disease is

called pathogenic [112]. Many mutations are, of course,

both deleterious and pathogenic, such as mutations
causing Tay Sachs disease, but it is important to

understand that conservation only provides information

about deleteriousness. Even so, conservation-based tech-

niques have been an extremely useful input feature for

predictive models of disease. One recent example is the

combined annotation dependent depletion (CADD) meth-

od [131]. Kircher et al. first developed a ‘‘mutation

simulator’’ that generates realistic synthetic mutations
without regard to selective pressure. They then trained an

ensemble of ten linear support vector machines to

discriminate between synthetic mutations (assumed dele-

terious) and the �16 million actual human mutations that

have survived selective pressure (nondeleterious) since the

human–chimpanzee common ancestor.

B. Current Directions
We believe the cell variable approach will be important

for making reliable in silico predictions in genomic

medicine and provide insight to disease mechanisms. We

have described two examples of cell variables (splicing and

protein-sequence binding) that may be useful to ascertain

disease risk from genetic variants. For splicing, we have

shown that our model is quite different from existing

techniques, so it can be used to complement them and
significantly improve their sensitivity [44]. In addition, the

cell variable approach can provide putative explanations as

to how variants affect disease risks. Referring to the

example in Fig. 1, four differences in nucleotides between

the SMN1 and SMN2 gene cause spinal muscular atrophy.

Our splicing model is able to suggest that the synonymous

mutation in the exon reduces the binding affinity of SF2/

ASF (a splicing regulator protein) and thereby causes the
exon to be skipped [44], [132]. Approaches like GWAS do

not offer such information.

For both these problems, there have been recent works

that utilized deep learning to improve predictive perfor-

mance, such as feedforward neural networks for alterna-

tive splicing patterns by Leung et al. [71] and convolutional

neural networks for binding specificity by Alipanahi et al.
[41]. In another example, Quang et al. used the previously
described CADD data set to train a deep neural network to

lower error rate [133].

Current research includes improved modeling of other

cell variables related to regulation at the DNA level. Some

of these are listed in Table 1. Many of these variables are

coregulated. For example, transcription is tightly coupled

with splicing [55], and therefore having a good model for

one cell variable can often improve the prediction of
another. For the studies cited, the authors do not

necessarily present their models for use in disease risk

analysis. However, the goal here is to provide to the reader

a larger exposure to measurable quantities in the cell that

researchers have developed predictive models for, many of

which can potentially act as intermediate cell variables for

disease risk prediction [134]. Even though deep learning is
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not currently common practice for most of these models, it

is utilized by some and in certain instances there has been

significant improvement.

C. Large Data Initiatives for Modeling the Genotype
to Phenotype Relationship

Beyond data sets of single cell variables, large interna-

tional efforts are now in place to coordinate and acquire

measurements from different levels of the biological system

from genotype to particular phenotypes, such as cancer, for

a large number of individuals. Some of these initiatives are

listed in Table 2. A good variety of ‘‘omic’’ data are publicly

available from these initiatives, including genomic, tran-

scriptomic, epigenomic, and proteomic information [106].
Another source of information is the dbGaP database

maintained by the National Center of Biotechnology

Information, which archives the results of studies that

have investigated the interaction between genotype and

phenotype [135]. Using multiple sources of data can

compensate for missing information from any single data

source, and can help bridge the gap between the many

layers of interactions between genotype and phenotype
toward a more complete biological model of regulation.

V. DISCUSSION AND FUTURE
DIRECTIONS

Based on our experience, we expect the role of machine

learning in genome biology, genome medicine, and

precision medicine to grow rapidly in the coming years.

Particularly relevant is the dramatic progress that has been

made in the deep learning community, including the

discovery of techniques that can more effectively learn

from very large and much more complex data sets than

ever before. Since genotype and phenotype are related
through many layers of biophysical processes and interac-

tions, most of which are not fully understood, we

anticipate that only through the development and appli-

cation of even more powerful computational techniques

can we hope to model the outcomes of these complex

processes and interactions.

Machine learning and most recently deep learning

have achieved human-level performance in domains such
as image recognition, speech recognition, and natural

language processing. However, from a machine learning

perspective, genome biology differs from these domains in

a very important way. Humans are very good at the former

tasks, which involve human perception (e.g., seeing

images, hearing speech) and human action (e.g., grabbing

an object, responding to words). In stark contrast, we can

think of no reason why the genome should be interpretable
by humans. Whereas there has been evolutionary pressure

for humans to perceive, interpret, and respond to patterns

of light, such as that produced by an advancing tiger, there

has been no pressure for the genome to be interpretable by

humans or for humans to develop the capacity to interpret

the genome. Consequently, it is important to incorporate

the latest biological knowledge and data into learning

Table 1 Sample of Cell Variables Related to Genomic Regulatory Mechanisms
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algorithms and to carefully and rapidly validate models in

different ways, since the models cannot be ‘‘checked by eye.’’
It is possible that the association of the genome to some

diseases might simply be too complex to be modeled from a

practical number of ‘‘inputs.’’ This is in contrast to image

or speech recognition, where we know what the prediction

ought to be given the input. Furthermore, it should be

noted that due to the inherent stochasticity of cellular

processes, environmental factors that differ from person to

person (even for identical twins), and uninherited variants
from the parent that can affect offsprings, the genotype of

an individual may not be sufficient to completely

determine their phenotype [136]. Therefore, we do not

expect computational methods to be able to entirely

replace laboratory and clinical diagnosis, but they should

greatly shorten the time required for these methods of

analysis by reducing the search space of hypotheses that

need to be validated.
With respect to machine learning, there are some

similarities between genome biology and other domains.

The genotype–phenotype relationship can be thought of as

a landscape. This landscape has extremely steep valleys,

where small perturbations in genotype give rise to vastly

different phenotypes [137]. It also has large plateaus,

where seemingly unrelated genotypes yield an equivalent

phenotype [138], [139]. To some extent, the same

observation applies to other application domains, such as
speech recognition, where a perturbed vocalization can

dramatically alter semantics, or computer vision, where

image interpretation must be invariant to a huge space of

possible image transformations. Deep learning has facili-

tated great progress in speech and vision. Perhaps most

exciting are the recent successes in ‘‘end-to-end’’ learning,

where systems with many layers can learn from extremely

low-level (unprocessed, uninterpreted) data [140], [141]. If
comparable progress can be made on the computational

challenges facing biology and genomics, the potential

impact on genomic medicine is very real.

Cell variables are more difficult to measure than

phenotypic observations such as whether a patient is sick.

However, consider measuring few variables per patient for

a large number of individuals, versus taking hundreds of

thousands of cell variable measurements per patient for a
smaller group of people. We believe that the latter

approach gives us a better chance at deciphering the

genomic instructions of the cell, where there is much more

information available about the biological mechanisms at

play, and therefore more data overall for a model to learn

from. In a sense, we are making the ‘‘genomic invariance’’

assumption; that is, we assume that regulatory processes

Table 2 Overview of Large Initiatives and the Available Sources of ‘‘omic’’ Data Set
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act the same across the entire genome and so we can learn
the DNA-to-cell variable relationship by treating different

locations in the genome as independent measurements.

The immense growth of genomic data poses storage,

privacy, and computing challenges that make it difficult for

small research groups to participate in at scale. With regard

to computation, there exist parallel distributed training

algorithms that handle extremely large data sets [142], [143].

These algorithms are effective on compute clusters with
�1000 nodes [�16 000 central processing unit (CPU)

cores]. However, it was recently shown that large-scale

machine learning can be done fast and much more

economically on ‘‘consumer off-the-shelf’’ clusters that are

accelerated by graphics processing units (GPUs) [141], [144].

Cloud-based computing can also facilitate reproducible

research through the use of virtual machine images. Dudley

and Butte [145] call this the whole system snapshot exchange
(WSSE) approach, where data sets, code libraries, processing

pipelines, and experimental results are all packaged and

made available for inspection and for follow-up research.

Similarly, Stein et al. make a point that reducing sequencing

costs are outpacing information technology and storage

support in laboratories around the world, challenging the

traditional use case where practitioners are accustomed to

downloading genomic data to local computer for analysis
[146], [147]. Configuring a large-scale machine learning

experiment requires significant software engineering exper-

tise, and the resulting pipelines often have complex, brittle,

soon-outdated dependencies that are extremely burdensome

to reproduce [148]. To participate in the era of ‘‘Big Data’’

genomics, machine learning research projects should be

designed with scalability, portability, and reproducibility in

mind, even at the earliest stages.
In addition to genomic and disease risk data, we believe

the best way forward is to also leverage cell-level data and

explicitly model how they are influenced by the genome.

Given a new patient in need of diagnosis and treatment,

the ‘‘computational models of cell variables’’ approach

[Fig. 2(b)] has economic advantages. The idea is to

measure variables for which the measurement technology

is inexpensive/fast/noninvasive (e.g., genome sequencing)
and to then predict variables that would be expensive/

slow/invasive to measure on per-patient basis (e.g.,

splicing in the brain of an autism patient). Still, biologists

are developing new high-throughput technologies for

measuring cell variables, such as DNA methylation [149],

novel mRNA isoforms via long-read technology [150]–

[152], and mRNA levels in a single cell [153]–[155].

Integrating the many emerging sources of data into
analysis will be a challenge for some time to come, and

no gold standard has emerged [106]. For example, much of

the raw data generated by the experiments in Table 2

require a background in the relevant biology to preprocess

them before they can be used to train models. For machine

learning researchers, this hurdle can be high, although

perhaps not very high in comparison to the potential value of

transforming medicine and saving lives. In the remaining
text, we discuss how to engage machine learning researchers,

as well as future research directions.

A. Engaging the Machine Learning Community
Today, researchers in machine learning tend to develop

their algorithmic ideas around applications in speech

recognition, natural language processing, and computer

vision. In doing so, they have transformed these fields and
supplanted many specialized systems developed within

those communities. In our experience, machine learning

researchers are eager to prove the efficacy of their

algorithms on important applications. Genomics and

computational biology could become areas that are actively

targeted, just as computer vision is, if only the problems

and data were prepared and communicated in a more

accessible manner.
A successful example of machine learning community

engagement is the Merck Molecular Activity Challenge

hosted on the Kaggle platform. Deep learning researchers

were able to significantly improve a state-of-the-art drug

discovery pipeline, despite no knowledge of what bio-

chemical properties the training features represented

[156]. Another example of community engagement is

protein side-chain prediction, an important step in protein
folding and protein design [157], [158]. Side-chain

prediction has received attention from researchers work-

ing on inference algorithms [159]–[162] because the

problem was formulated in terms of graphical modelsVa

familiar and well-studied abstraction. As for the more

challenging problem of protein folding itself, the biannual

critical assessment of protein structure prediction (CASP)

challenge [20] provides the data and proving ground for
folding-related tasks. The critical assessment of protein

function annotation (CAFA) challenge is another initiative

where the community is asked to predict protein function

from its sequence [163]. However, both the CASP and

CAFA challenge data and problem descriptions are

designed for experts in that field. Many problems in

computational biology, such as splicing, genome annota-

tion, protein folding, and protein-sequence binding, would
be well served by being packaged as accessible Kaggle-like

competitions. These community challenges can foster

knowledge sharing and attract members from different

communities, such as those from machine learning, to

bring new perspectives to otherwise specialized computa-

tional biology problems, and can often lead to improve-

ments to the state of the art [101], [164].

Several organizations have been successful in machine
learning engagement. DREAM, the dialog for reverse

engineering assessments and methods (dreamchallenges.

org), poses fundamental questions about biology and

medicine, uses rigorous practices to assess the perfor-

mance of different methods (e.g., holding data out for

testing), and fosters collaborations. CAGI, the critical asses-

sment of genome annotation (genomeinterpretation.org), is
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a community experiment to objectively assess computational
methods for predicting phenotypic impacts of genomic

variation and to inform future research directions. CASP

(predictioncenter.org) is another organization that aims to

establish the current state of the art in protein structure

prediction, identifying what progress has been made, and

highlighting where future effort may be most productively

focused.

B. Less Reliance on Evolutionary Conservation
As noted in Section IV-A, the current assortment of

variant analysis tools (e.g., CADD) rely heavily on conser-

vation features. One drawback to relying on conservation is

that the resulting models can seem to perform well even if

they trivially rely on conservation and do not discover any

meaningful patterns in the genome itself. For example, the

computational model of splicing in Section III-B is more
accurate when given access to conservation features [44],

[69], presumably because there are subtle aspects of splicing

that the model did not ascertain from the raw messenger

RNA sequences in the training set. Also, since the relevant

biochemical processes do not get to directly examine

information about evolutionary conservation, it seems

inappropriate for a model that is meant to mimic the

biochemical processes to have access to it.
Another drawback to relying on conservation is that it

only represents sequence conservation, not functional

conservation. Not all conserved sequences are functional,

and not all functional sequences are conserved [165], [166].

We would expect a lack of functional conservation to be more

associated with disease but, at this time, it is not known how

to measure or to estimate the function of many gene

products. Also, even when conservation can tell us that a
mutation likely hurts reproductive fitness, it cannot tell us

why the mutation is damaging nor what therapies may help

the patient. Furthermore, conservation can only tell us what

has survived millions of years of natural selection. It is

indifferent to variations in DNA that cause pain or thatVlike

Alzheimer’s, Parkinson’s, heart disease, and most cancersV
tend to manifest long after reproductive age. In some

instances, disease-associated mutations can also appear as
wild-type in another species [167]. Finally, conservation is

blind to variants that alter nucleotides in recently evolved

parts of the genome. For example, methods that aim to

classify disease-causing genetic variants from databases such

as Human Gene Mutation Database (HGMD) are known to

be heavily biased toward the variants in the conserved

genomic regions [168]. In short, conservation can be a source

of information that is predictive, but it will never be able to
tell the whole story.

C. Recurrent Neural Networks (RNNs)
Other research communities that deal with sequence

data have seen dramatic gains in accuracy by moving from

Markov models toward deep recurrent models. In text-

based natural language processing, the classic n-gram

model is fast being replaced with RNNs [169] and related
long short-term memory models (LSTMs) [170]. In speech

recognition, hidden Markov models (HMMs) have been

supplanted by LSTMs due to the power of learning better

representations of the data [103]. We believe that similar

gains may be expected for sequential prediction applica-

tions in computational biology. For example, genome

annotation is a problem for which HMM-based models are

still prevalent [171]–[173], treating genomic position as the
‘‘time’’ axis and using position-specific genomic measure-

ments as the observed variables. The official genome

annotations of the recent Encyclopedia of DNA Elements

(ENCODE) project were determined by an HMM-based

model [174]. HMM have also been used to predict whether

single nucleotide variants are potentially pathogenic [175].

Another example is the modeling of cell variable dynamics

through time. The work of Karr et al. [176], [177] is widely
regarded as the first whole-cell computational model with

any reasonable degree of predictive accuracy. They

simulate the human parasitic bacterium Mycoplasma
genitalium by training a model to update 16 cell variables

at one minute intervalsVa time-series task for which

RNNs may be highly suitable. As another example where

RNNs may be powerful, we observe that DNA-binding

proteins (Section III-C) are known to arrive at binding
sites through a dynamic process wherein the protein

migrates along the DNA backbone [178]. During migra-

tion, the protein may be influenced by intervening

sequence patterns or (in a real cell) by the state of

chromatin. This dynamical view of TF-DNA interaction

seems to call for a sequential state model of binding based

on RNNs or LSTMs. Another potential application of

RNNs is for the imputation of epigenomic tracks.
Regression trees were utilized for this problem in the

work of Ernst and Kellis [179], but since the problem can

be viewed as a ‘‘sequence-to-sequence mapping’’ problem,

it may benefit from an RNN architecture [180].

D. Interpretability
Interpretability is not a well-defined concept. Despite

calls in the 1990s to define a clear measure of interpret-
ability for machine learning models [181], there is still no

universally agreed-upon definition. The validity of an

interpretation is dependent on the framework used to

formalize and communicate concepts. Also, a ‘‘simple’’

interpretation may in fact appear complicated when

presented in a different framework.

Within some application domains, interpretability is

deemed to be quite important [182]. Following the
movement to rely more on data-driven explanations rather

than incorrect conceptual ‘‘explanations,’’ we advocate the

development of systems that can be queried by human

experts so as to make predictions that can be experimen-

tally tested. Instead of examining the parameters of a

neural network and coming up with an ‘‘interpretation,’’ a

more useful exercise would be to ask the system about
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relationships between inputs and outputs, for instance,
whether a cell variable will increase or decrease if a

particular nucleotide is changed, or, whether changing a

pair of nucleotides leads to a change in the cell variable

that cannot be accounted for by independent, additive

contributions. This question-and-answer interaction be-

tween the expert and the machine learning model provides

a quantitative, data-driven interpretation.

Traditional methods can be used to identify important
input features. For example, given a machine learning

model that has been trained on well-understood data, a

domain expert can inspect the model and recognize

familiar features, patterns, or hidden variables that are

known to be relevant to the prediction task. The input

features can be ranked by importance, such as done with

linear models, decision trees, and random forests.

The community’s ability to derive interpretations from
machine learning models is likely to improve as these

models become more effective in practice. Some of the

world’s best researchers are setting their sights on the

problem of interpretability, and progress is being made

rapidly. However, consider for a moment what it would

mean to wait for interpretability challenges to be ‘‘solved’’;

to forego the benefit of more accurate models in genomic

and precision medicine. Throughout history, many
advances were made by noticing a pattern without

understanding the precise causal mechanisms involved.

For example, in 1847, Ignaz Semmelweis found that

washing hands before delivering babies was correlated

with fewer maternal deaths. He achieved a two third

reduction in mortality rate a full 25 years before Louis

Pasteur established the relationship between germs and

disease. Viewed from a different perspective, if machine
learning can be used to identify the genetic cause of a

disease and an effective therapy, it is unlikely that the

patient who benefits will care about interpretability.

Regardless of the progress in machine learning,

machine learning researchers working with biologists

should be prepared for a strong bias toward interpretability

and historical models. For example, it is widely understood

that PFMs (Section III-C) make unrealistic simplifying
assumptions with regard to protein-sequence binding (e.g.,

positional independence), but they persist as a popular

model of TF and RBP sequence specificity precisely

because they are so simple. Furthermore, their specificity

rules can be visually depicted as sequence logos (Fig. 7),

which are intuitive and can be understood at a glance by

domain experts. Some successors to PFMs attempt to

provide logo-like visualizations, e.g., the feature motif
model of Sharon et al. [94], but they are inevitably more

complex and thus much less popular among biologists

today, despite their better accuracy.

There have been many efforts to improve the

interpretability of machine learning models, and in

particular deep architectures like deep neural networks.

Erhan et al. introduced the idea of tuning the input to

maximize the activation of a hidden unit. This enables one
to see what kind of inputs a hidden unit is sensitive to

[183]. The method has been applied to deep architectures

trained on millions of images, where neurons that

correspond to face, cat, and human body detectors have

been found [184]; they do so by designing a norm-

constrained input that maximizes the activity of a neuron

deep inside the network. Zeiler and Fergus [185] aim to

visualize the input variations that high-level features
respond to in a convolutional neural network; they do so

by generating several diverse inputs that each cause high

activations in a feature map deep within the network.

Several compelling visualization approaches use back-

propagation to efficiently visualize how deep architectures

respond to input perturbations [186], [187] and to

understand invariances in deeper layers [188]. Another

approach in deep learning has been to simplify computa-
tions within the actual models themselves. Examples

include the optimal brain damage [189] method, filter

decomposition techniques [190]–[193], and model com-

pression [194]. However, the motivation for model

simplification techniques has been to provide faster

predictions, not to gain insights into the characteristics

of the learned function. We propose that model compres-

sion, in particular, can be repurposed to provide
interpretable approximations to large black-box models

such as deep neural networks.

There are examples in machine learning where inter-

pretability has led to important biological insights. The

computational pathologist (C-Path) project [195] is an

example at the intersection of computer vision and cancer

diagnostics. The authors of C-Path discovered that their

machine learning model relied much more heavily on
features of the stromal cells (connective tissue) than

expected, providing human pathologists with new insights

into the development of breast cancer. The continued

popularity of decision trees in computational biology is in

part due to the potential for insight from the rules that they

learn [196]. In their HMM model of T-cell chromatin states,

Ernst and Kellis [172] explicitly simplify the state space (from

79 to 51) so as to assign meaningful biological function to
each state; the insight gained from these interpretable states

is an important aspect of their contribution. Going forward,

techniques such as deep neural networks must be able to

provide similar insights ‘‘out of the box’’ for the sake of

nonmachine learning experts.

E. Adversarial Data for Genomics
Recent work in computer vision has highlighted the

fact that neural networks make wildly inaccurate predic-

tions when presented with adversarial inputs. These inputs

are called adversarial because they are explicitly designed

to ‘‘fool’’ a model into making mistakes. The inputs are

often designed with a specific model instance in mind,

such as a particular neural network that has already been

trained, or is in the midst of being trained.
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Szegedy et al. [197] showed that adversarial inputs need
not appear unusual or pathological. As just one example, a

state-of-the-art neural network that correctly classified a

particular image as car was found to misclassify that same

image as ostrich after introducing an imperceptibly small

perturbation of the image pixels. For genomic data, in

many circumstances, a small variation (e.g., a single

mutation) really should have a drastic effect [137].

Szegedy et al. showed that this troubling behavior was
exhibited for a wide variety of images and classes, even

when the images being perturbed were taken directly from

the training set. Less surprisingly, adversarial inputs are

also abundant when we move far from the training data

[198]. In either case, adversarial inputs designed to fool

one specific model were also good at fooling a different

model trained on the same data, indicating that ensemble

predictions are highly susceptible as well.
A key insight into why adversarial examples exist is

that, given any training example, we can always perturb it

in a direction that aligns well with the weights of a neural

network, thereby amplifying its effect on the output [199].

It is important to note that these adversarial examples may

not occur naturally and so the system may work fine for

naturally occurring inputs. However, one of our objectives

is to use our computational models to predict the effects of
therapies, such as making small changes to the genome, for

example, using genome editing technologies. The resulting

genome sequences may be unnatural and so the question of

testing for adversarial input arises. To address this, it is

possible to synthesize adversarial genomic variants and

compare predictions to real experiments, thereby validat-

ing and then improving the computational models. We

believe adversarial examples will play an important role in
shaping and validating the invariances learned by data-

driven models in biology and genomics.

F. Genome Editing
One of the most promising directions in genomic

medicine is genome editing that is performed by using

RNA-guided DNA endonuclease Cas9 (CRISPR-associated

endonuclease 9) enzyme from the type II bacterial

adaptive immune systemVcalled clustered regularly

interspaced short palindromic repeats (CRISPR) [26],

[27]. The elegance of CRISPR-Cas9 systems is that they

only need the Cas9 enzyme and a single guide RNA
(sgRNA) [200]. Given its sgRNA as the template, Cas9 can

target specific locations in the genome and cut the genome

at those locations. The CRISPR-Cas9 system can be used

for the modification, insertion, or deletion of genomic

instructions. The system has been used to control gene

expression by deactivating the endonuclease domain [201],

study gene functions in neural cells [202], develop

synthetic biology applications [203], fix pathogenic
mutations causing �-thalassemia [204], and to repair

cystic fibrosis transmembrane conductor receptor muta-

tions [205]. There are still challenges to practical genome

editing of individual tissues in the human body, but these

challenges seem surmountable in the near term [206]. We

believe computational models not only can improve the

efficacy of CRISPR-Cas9 system [207], but also can predict

the phenotypic effects of genome edits that in turn will
maximize the potential of this exciting technology. As we

stated above, knowing how to write to the genome is not

the same as knowing what to write. h
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