
INV ITED
P A P E R

Boolean Satisfiability Solvers
and Their Applications in
Model Checking
This paper traces the important contributions made to modern Boolean satisfiability

solvers by the electronic design automation community to address synthesis and

verification problems, and discusses its applications in model checking.

By Yakir Vizel, Georg Weissenbacher, and Sharad Malik, Fellow IEEE

ABSTRACT | Boolean satisfiability (SAT)Vthe problem of de-

termining whether there exists an assignment satisfying a

given Boolean formulaVis a fundamental intractable problem

in computer science. SAT has many applications in electronic

design automation (EDA), notably in synthesis and verification.

Consequently, SAT has received much attention from the EDA

community, who developed algorithms that have had a signi-

ficant impact on the performance of SAT solvers. EDA re-

searchers introduced techniques such as conflict-driven clause

learning, novel branching heuristics, and efficient unit propa-

gation. These techniques form the basis of all modern SAT

solvers. Using these ideas, contemporary SAT solvers can often

handle practical instances with millions of variables and

constraints. The continuing advances of SAT solvers are the

driving force of modern model checking tools, which are used

to check the correctness of hardware designs. Contemporary

automated verification techniques such as bounded model

checking, proof-based abstraction, interpolation-based model

checking, and IC3 have in common that they are all based on

SAT solvers and their extensions. In this paper, we trace the

most important contributions made to modern SAT solvers by

the EDA community, and discuss applications of SAT in hard-

ware model checking.

KEYWORDS | IC3; interpolation; model checking; proofs;

satisfiability solving

I . INTRODUCTION

At the turn of the last century, a new generation of Boolean

satisfiability (SAT) solvers such as Grasp [62] and Chaff

[61] brought about a leap in the performance and scalabi-

lity of satisfiability checkers for propositional formulas.

This breakthrough was made possible by novel search

techniques such as clause learning, clever branching heu-
ristics, and carefully-engineered data structures. The im-

pressive advances in the field of SAT solving have

revolutionized a range of applications in electronic design

automation (EDA), such as formal equivalence checking,

model checking and formal verification of hardware, and

automatic test pattern generation.

Hardware model checking [26], [27], [75], a technique

to automatically determine whether a hardware design
satisfies a given specification, particularly benefited from

the advances of SAT solvers. SAT solvers boosted the sca-

lability of symbolic model checking [12], an important

hardware model checking technique. In symbolic model

checking, sets of states and transition relations of circuits

are represented as formulas to avoid a computationally

expensive enumeration of explicit states. Historically, the

first symbolic model checkers used binary decision diag-
rams (BDDs) [16], a data structure to represent formulas,

to encode sets of states [17]. Later, BDDs were replaced

with SAT solvers in order to increase scalability.

Manuscript received December 7, 2014; revised April 15, 2015; accepted June 16, 2015.

Date of publication August 26, 2015; date of current version October 26, 2015. The

work of Y. Vizel and S. Malik was supported in part by the Center for Future

Architectures Research (C-FAR), one of six centers of STARnet, a Semiconductor

Research Corporation program sponsored by MARCO and DARPA. The work of

G. Weissenbacher was supported by the Austrian National Research Network

S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and the Vienna Science and

Technology Fund (WWTF) under the Vienna Research Groups for Young Investigators

Grant VRG11-005.

Y. Vizel and S. Malik are with the Department of Electrical Engineering, Princeton

University, Princeton, NJ 08544 USA (e-mail: yvizel@princeton.edu;

sharad@princeton.edu).

G. Weissenbacher is with TU Wien, 1040 Vienna, Austria (e-mail:

georg.weissenbacher@tuwien.ac.at).

Digital Object Identifier: 10.1109/JPROC.2015.2455034

0018-9219 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2021

Bounded model checking (BMC) relies on SAT solvers
to exhaustively check hardware designs up to a limited

depth [12]. The inherently incomplete BMC approach was

soon followed by complete SAT-based model checking

techniques such as k-induction [77], image computation

methods based on quantifier elimination [63] or quantified

Boolean formulas (QBFs) [73], and the combination of

automatic test pattern generation (ATPG) with SAT tech-

niques [51]. As a result, the verification of industrial-sized
circuit designs became feasible, and model checking was

adopted by major chip manufacturers to ensure design

correctness [8], [43]. An excellent survey of the state of

the art and an empirical and industrial evaluation of SAT-

based verification techniques a decade ago are provided

by [1] and [73], respectively.

The boundaries of modern SAT solvers and model

checkers have been pushed ever since. The aim of this
paper is to provide a self-contained overview of contempo-

rary model checking algorithms and their underlying SAT

techniques, highlighting the advances since [1] and [73].

Our focus is on finite-state model checking exclusively; we

refer the reader to [36] and [53] for surveys of software

verification techniques.

Section II is dedicated to satisfiability solvers and their

extensions, which form the basis of the model checking
techniques covered in Section III. The capability of solvers

to generate refutation proofs (Section II-D), provide Craig

interpolants (Section II-E), and to solve SAT instances

incrementally (Section II-C) enables novel verification

techniques such as proof-based abstraction (Section III-D),

interpolation-based model checking (Section III-E), and

recently IC3 (Section III-F). Recent research combines

these model checking techniques (Section III-G) in order
to leverage the advantages of both approaches. In return,

the increasingly larger designs verified by these tools result

in large and difficult SAT instances, thus enriching the

benchmark sets of the annual SAT competition (http://

www.satcompetition.org). In this way, model checking

drives the development of ever faster solvers.

II . SATISFIABILITY SOLVING

The Boolean Satisfiability Problem (abbreviated as SAT) is

the problem of determining whether there exists an assig-

nment that satisfies a given propositional formula. SAT

[31] is the prototypical NP-complete problem and of tre-

mendous importance in computer science [13]. Paradox-

ically and despite its theoretical complexity, SAT is often

considered to be tractable. While this is a bold claim in
general, it seems to hold for many well-structured propo-

sitional formulas derived from industrial applications. The

focus of this section are the techniques underlying contem-

porary SAT engines (Section II-B and C) and extensions

such as proof logging (Section II-D) and interpolation

(Section II-E), which are at the core of the model checking

techniques presented in Section III.

A. Propositional Formulas and Basic Techniques
A propositional formula ’ is built from a set V of

Boolean variables, the logical constants T and F (denoting

true and false, respectively), the logical connectives ^, _,

), ,, and : (denoting conjunction, disjunction, impli-

cation, bi-implication, and negation, respectively), and
parenthesis. The syntax and semantics of formulas are de-

fined as usual; we refer the reader to [13] for details. We

use VarsðFÞ to denote the Boolean variables occurring in a

formula F. An assignment maps the variables V to logical

values (T or F). An assignment satisfies a formula ’ if ’
evaluates to T when the variables Varsð’Þ are assigned

according to the assignment. A formula is satisfiable if

there exists at least one assignment satisfying it, and unsa-
tisfiable otherwise. A formula is valid if and only if its

negation is unsatisfiable.

A SAT solver is a program that determines whether or

not a given formula is satisfiable. Many contemporary

solvers expect the input instances to be formulas in con-
junctive normal form (CNF). A formula in CNF is a con-

junction of clauses, which in turn are disjunctions over the

literals fx;:xjx 2 Vg. We use x to abbreviate the negation
:x, and omit the operator _ in clauses and ^ in formulas

whenever it is clear from the context. The subformula

ðo yzÞðo zyÞ in Fig. 1, for instance, corresponds to

ð:o _ :y _ zÞ ^ ð:o _ :z _ yÞ. The disjunction of

two clauses C and D, denoted by C _ D, is a clause con-

taining all literals of C and D. If D contains only one literal t
(i.e., D is a unit clause), we write C _ D as C _ t. The empty

clause (denoted by g) corresponds to the Boolean value F.
Propositional formulas can be transformed into CNF by

repeated application of rewriting rules such as distributiv-

ity, double negation elimination, and De Morgan’s laws.

Such a transformation, however, may lead to an exponen-

tial increase in formula size, a problem that can be avoided

by constructing a formula in CNF that is not logically

equivalent to the original formula, but preserves its satis-

fiability. Tseitin’s transformation [80] recursively replaces
each subformula ’ � (where � is an arbitrary logical

operation) of the original formula with a fresh proposi-

tional identifier o and adds the constraint o, ð’ � Þ.
The resulting formula is a conjunction of constraints of

the form o, ðp � qÞ, each of which can be represented

by at most four clauses. This process is illustrated in

Fig. 1. Optimizations of Tseitin’s transformation take the

Fig. 1. Tseitin’s satisfiability-preserving transformation.

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2022 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

structure of the original formula (such as the polarity of
subformulas [72]) into account, resulting in smaller CNF

instances.

The translation into CNF, however, may introduce

unnecessary (functionally dependent) atoms. This prob-

lem is addressed by preprocessing techniques that reduce

the size of the formula by eliminating dependent variables

by means of substitution [38], for instance. More such

techniques are covered in [11] and our tutorial on SAT and
extensions [60].

B. Conflict-Driven Clause Learning
SAT solvers search for a satisfying assignment of a for-

mula given in CNF. The influential DPLL-algorithm (in-

troduced by Davis, Putnam, Logemann, and Loveland [34])

performs a case split on the truth values of variables.

Whenever the solver encounters a variable assignment in

which one of the clauses of the formula evaluates to F, it

backtracks and changes the most recent assignment until
all assignments have been explored.

Chronological backtracking, as described above, has

since been superseded by backjumping and conflict-driven

clause learning (CDCL) [62], [78]. The CDCL algorithm

(an outline of which is presented in Fig. 2) avoids the

repeated exploration of conflicting variable assignments by

caching the causes of failures in the form of learned

clauses.
By iteratively assigning values to variables, the solver

systematically explores partial assignments. Under a given

partial assignment, each clause is in one of the following

states:

• Satisfied: At least one of the literals of the clause

evaluates to T.

• Conflicting: All literals are assigned to F, and

therefore the clause cannot be satisfied.
• Unit: All but one of the literals are assigned, but the

clause is not satisfied. Consequently, the remain-

ing literal must be assigned in a way that satisfies

the clause, i.e., the value of the corresponding

variable is implied.

• In all other cases the clause is unresolved.

During the search, a trail represents the current partial

assignment. The algorithm tracks the reason for each

assignment to a variable: The value of a variable can be the

result of a decision by the solver, or it can be implied by a

clause that is unit (under the current partial assignment).
In the former case, the solver associates a new decision level
(represented by a counter) with the assignment. Implied

decisions retain the current decision level. The trail en-

sures that no decision level is entered with the same partial

assignment twice.

The solver stores decisions and their implications in an

implication graph, from which it derives learned clauses in

case of a conflict (step�6 in Fig. 2). Each node of the
implication graph represents an assignment and the respec-

tive decision level. In this context, x@n is short for x ¼ T at

decision level n, and x@n denotes x ¼ F at decision level n.

Each directed edge represents a clause that is unit and

implies the assignment represented by the node the edge

points to. An implication graph is a conflict graph if it contains

two implications resulting in a conflicting assignment.

Fig. 3 shows a conflict graph for the clauses C1–C4.
The graph shows the implications at the current decision

level 5 and the decisions at levels 1 and 3 (x9@1 and x2@3,

respectively) causing these implications. The conflict node

" indicates the conflict under the given assignment, and its

incoming edges are annotated with the conflicting clause

C4. This conflict stems from the fact that C4 disagrees with

C1 and C3 on the implied literals x6 and x7, respectively.

In case a conflict is encountered, the solver proceeds to
extract from the conflict graph a set of assignments and

decisions causing the conflict. The decisions and assign-

ments at and prior to the current decision level in the

partial conflict graph constitute an obvious choice: for

instance, the decisions x9@1 and x2@3 and the assignment

x4@5 in Fig. 3. Adding a learned clause ðx2 x4 x9Þ to the

clause database prevents the solver from revisiting the

same conflicting constellation of assignments. Note that
x4@5 need not necessarily be a decision in our example: It

is sufficient to choose an assignment at the current level

(different from the conflict node) that lies on all paths

from the most recent decision to the conflict node ". Such

a node is called a unique implication point (UIP) [62], [78]

and determines which single literal from the current deci-

sion level appears in the learned clause.

The decision levels contributing literals to the learned
clause then determine the backtracking level. By undoingFig. 2. CDCL algorithm.

Fig. 3. Implication graph and conflict analysis.

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2023

all decisions up to (but excluding) the second highest
decision level occurring in the learned clause (Fig. 2,

step�8), all literals of the clause (added in step�7) except

one are assigned. Such a clause is called asserting and

enables immediate unit propagation [61], [62], [78]. The

UIP that is closest to the conflict results in a higher back-

jump level [2], [62], [78] is called the first UIP and is

preferred in practice.

By caching variable values erased from the trail and
(re)using these saved literals in future decisions, progress
saving (or phase saving) can avoid work repetition caused

by far nonchronological backtracking [69].

An in-depth discussion of clause learning is provided in

[70]. Competitive SAT solvers incorporate numerous addi-

tional heuristics and optimizations, some of which are

discussed below.

The propagation of implied literals described above is
known as Boolean constraint propagation (BCP) and is con-

tingent on the efficient detection of unit clauses. To detect

clauses that are unit, it is sufficient to watch the first two

literals of each clause [41], [42], [61]. Whenever one of the

watched literals is assigned to F, it is swapped with a literal

not yet assigned in that clause. If there is no such literal

and the clause is not satisfied, then the clause must be unit.

The advantage of watched literals is that no action is
required when decisions are undone.

In practice, the order of decisions (made in step�2) is of

paramount importance to the performance of the solver.

Variable State Independent Decaying Sum (VSIDS) [61] is a

popular heuristic that associates a weight with each literal

that is increased whenever a learned clause containing the

literal is added. The computational overhead of this tech-

nique is low since only the weight of literals occurring in
learned clauses needs to be updated. Choosing a literal can

be done efficiently, and using a floating point number to

represent the weight adds accuracy and avoids ties [41].

The weights indicate the priority of a literal and are pe-

riodically divided by a constant, leading to a bias towards

literals involved in recent conflicts.

Periodic restarts of the search process pose a key

difference between CDCL solvers and the DPLL algorithm
[6], [50], making the former exponentially more powerful

(see also Section II-D). Restarts can be enforced by impos-

ing a bound on the number of decisions or conflicts, for

instance. After each restart, these bounds are increased

until they are large enough to ensure completeness of the

solver. For pure Las Vegas algorithms, optimal restart

strategies achieving the minimum expected running time

exist, given full knowledge of the distribution of the
solver running time (which is a random variable) [59].

Luby et al. [59] prove that a universal sequence of bounds

of the form 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, . . .
results in a strategy whose performance is within a loga-

rithmic factor of the optimal strategy. In practice, these

results do not immediately apply to CDCL solvers, which

retain learned clauses across restarts. Depending on the

benchmarks, dynamic and adaptive restart strategies (see
[3], [4], [9], [55], and [79], for instance) can have a signi-

ficant impact on the performance.

Since the trail guarantees the completeness of the

solver, learned clauses can be safely discarded to save

memory and increase performance. Keeping ‘‘relevant’’

clauses, however, can be highly beneficial for guiding the

search process. In Glucose [3], for instance, the im-

portance of clauses is determined by computing the num-
ber of different decision levels in the learned clause (the

Literal Block Difference).

Some of the leading SAT solvers also apply formula

rewriting and simplification rules as an integral part of the

CDCL search [52]. Such SAT solvers are called inprocessing.

C. Incremental SAT Solving
In many applications, solvers are required to answer

sequences of similar queries (see Section III). Restarting

the solver from scratch, however, would result in the loss of

learned clauses and partial assignments. To avoid the

overhead of rediscovering previously learned facts, many

solvers support incremental queries. Incremental solvers

allow for the subsequent modification of already solved

instances by: 1) adding or retracting assumptions about the

values of literals, or 2) adding or removing clauses.
Assumptions are conjunctions of unit clauses, which

are added as decisions at the beginning of the trail. Conse-

quently, assumptions can be retracted by simply undoing

the corresponding decisions [24], [40], [41]. For unsatisfi-

able instances, incremental solvers provide a subset of the

assumptions that is inconsistent with the given formula.

The CDCL algorithm (Fig. 2 in Section II-B) naturally

supports augmenting formulas in CNF with additional
clauses. Removing (or popping) clauses requires additional

bookkeeping, however, since learned clauses derived from

obsolete clauses need to be discarded as well. Satire [86]

and zChaff [61] provide partial support for the removal of

clauses by creating a new context on a stack when a clause

is pushed. A subsequent pop discards the corresponding

context. PicoSAT [10] enables the removal of a clause C by

adding an activation literal a to C. The literal a is initially
set to F using an assumption; accordingly, C _ a corre-

sponds to C. If a is later set to T, C _ a is satisfied and

effectively ignored by the solver.

D. Clausal Refutation Proofs
Contemporary solvers are sophisticated artifacts of

engineering and therefore not necessarily free of errors.

Accordingly, certificates enabling the efficient validation
of the output of a solver are desirable. A satisfying assign-

ment provided by a solver is evidence of the satisfiability of

the input instance and can be checked easily. To certify

unsatisfiability, solvers are required to log additional infor-

mation to enable the construction of a refutation proof.
Propositional refutations comprise a sequence of reso-

lution steps. The resolution rule states that an assignment

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2024 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

satisfying the antecedents ðC _ xÞ and ðD _ xÞ (where x is
called the pivot) also satisfies the resolvent ðC _ DÞ

C _ x x _ D

C _ D
½Res�:

We use ResððC _ xÞ; ðD _ xÞ; xÞ to denote the resolvent of

the clauses ðC _ xÞ and ðD _ xÞ with the pivot x.

Each learned clause in a CDCL solver is the conse-

quence of a sequence of resolution steps, as illustrated by

the following example. Consider the conflict graph in

Fig. 3. By subsequently resolving on the conflicting literals

in the reverse order in which they were assigned (as wit-

nessed by the trail), we obtain

C5 ¼ResðC4; C3; x7Þ ¼ ðx5 x6Þ
C6 ¼ResðC5; C1; x6Þ ¼ ðx4 x5 x9Þ:

The clause C6 disagrees with C2 on the implied literal x5.

The resolvent of these clauses is C7 ¼ ResðC6; C2; x5Þ ¼
ðx2x4x9Þ. C7 contains a single literal ðx4Þ assigned at deci-

sion level 5 while still conflicting with the current partial

assignment. Stopping to resolve at this point yields the

learned clause corresponding to the first UIP.

The learned clause in the example above is a conse-

quence of clauses of the original instance and previously
learned clauses. This sequence of resolution steps can be

represented as a directed acyclic graph (DAG), as

illustrated in Fig. 4.

Since each learned clause is justified by a sequence of

resolution stepsVincluding the final empty clauseVlog-

ging all resolution steps and intermediate consequences

during the execution of the solver results in a refutation

proof [88]. This approach, however, results in a relatively
high overhead since not all learned clauses are reused.

Alternatively, it is possible to reconstruct a resolution

proof offline from the sequence of learned clauses [44].

Each resolution sequence generated by a CDCL solver has

the following properties [6]:

• Regularity: Each pivot is resolved upon at most

once.

• Linearity: Each intermediate clause in a sequence is
obtained by resolving the preceding intermediate

clause with an initial or previously learned clause.

• Tree-likeness: Each intermediate clause is used

exactly once in the sequence and never outside.

A resolution derivation with these properties is called

trivial [6]. The properties of trivial resolution derivations

enable us to discard the intermediate clauses. Since each

learned clause is a consequence of initial and learned
clauses, its negation is inconsistent with the learned clauses

preceding it and the original formula. Negating C7 in the

example above yields the unit clauses ðx2Þðx4Þðx9Þ, for

instance. By propagating these literals, BCP can efficiently

establish the inconsistency with the clauses C1, C2, C3, and

C4, and reconstruct the proof in Fig. 4. Note that neither

the order of the pivots nor the intermediate clauses of the

sequence are required for the proof construction.
Proofs of unused learned clauses can be pruned by

starting the reconstruction process with the final (empty)

clause [44] and propagating unit clauses backwards.

(Conversely, forward checking validates each learned

clause.) This process can be accelerated by augmenting

clauses discarded by the solver with deletion information

[48] since clauses, once discarded, can be ignored during

proof construction.
Clausal proofs [44], (D)RUP proofs [48], and proofs

stored in the TraceCheck-format1 retain only learned

clauses and the order in which they were encountered.

Full-resolution proofs can then be constructed by means

of BCP.

Restrictions on the order of pivots or the structure of

resolution proofs can have a significant impact on the size

of the resulting proofs. Notably, different solving algo-
rithms simulate proof systems of different power.

• The original DP algorithm [35] results in ordered

resolution proofs (imposing a fixed ordering on the

variables along any path to the empty clause in

the proof).

• The DPLL algorithm [34] yields tree resolution

proofs, i.e., it does not reuse any previously derived

clauses.
• CDCL (given the right heuristics and unlimited

restarts) is capable of generating proofs that are at

most polynomially larger than the smallest proofs

obtained by general resolution [71], i.e., the proof

system underlying CDCL in combination with the

above-mentioned restrictions p-simulates general

resolution.

Accordingly, CDCL deploys a proof system that is ex-
ponentially more powerful than the system underlying

DPLL [6], [50] since none of the above-mentioned re-

stricted systems p-simulates general resolution.

Besides validating the output of solvers and generating

resolution proofs, the trimming techniques discussed

Fig. 4. Resolution proof for learned clause.

1http://fmv.jku.at/tracecheck/README.tracecheck

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2025

above [44], [48] also enable the extraction of unsatisfiable
cores (UCs). A UC is a subset of the clauses of the original

instance for which there is no satisfying assignment. A UC

is minimal if removing any of its clauses makes it satisfia-

ble. Given a resolution refutation of a formula, the set of all

initial clauses in the refutation forms a UC. Algorithms for

deriving minimal UCs from clausal proofs are presented in

[7] and [48]. Intuitively, a (minimal) UC provides a con-

cise reason for the unsatisfiability of a SAT instance, which
can be exploited to derive abstractions of circuits (see

Section III-D).

E. Craig Interpolation
Craig’s interpolation theorem [33] is a seminal theo-

retical result combining model and proof theory. Interpola-
tion is a prime example of a theoretical result that has found

numerous unexpected practical applications in computer

science, such as the approximation of reachable states in

model checking (see Section III-E). The theorem states that

for every pair of first-order logic formulas A and B such that

A) B, there exists a formula I (the interpolant) with the

following properties: 1) A) I; 2) I) B; and 3) the

function and predicate symbols occurring in I occur in A as
well as in B. In the context of verification and propositional

logic, McMillan’s formulation [64] is more common.

Definition 1 (Interpolant): Let A and B be quantifier-free

propositional formulas whose conjunction A ^ B is un-

satisfiable. An interpolant is a quantifier-free propositional

formula I such that A) I is valid, I ^ B is unsatisfiable,

and the variables occurring in I are a subset of the variables
common to A and B.

Intuitively, if A represents reachable states and B
unsafe or bad states, then the interpolant I safely overap-

proximates A, a property frequently used in the context of

fixed-point detection (as discussed in detail in Section III-E).

The existence of propositional interpolants as defined

in Definition 1 is an immediate consequence of Craig’s

theorem. Moreover, Huang, Krajı́ček, and Pudlák [49],
[56], [74], and later McMillan [64], showed that proposi-

tional interpolants can be derived from resolution refuta-

tions in polynomial time. While their interpolation

algorithms have subsequently been generalized and

unified [37], we restrict our presentation to the algorithm

by Huang, Krajı́ček, and Pudlák, which is sufficient for all

practical purposes.

Pudlák [74] presents interpolants as ‘‘separators’’; the
interpolant I evaluates to T under assignments that make A
true, and to F under assignments making B true (in ac-

cordance with Definition 1). This intuition is illustrated in

Fig. 5. The refutation on the left in Fig. 5 proves that

conjunction of the formulas A ¼def ðx0Þðx0 x2Þðx1 x2Þ and

B ¼def ðx2Þðx1 x2Þ is unsatisfiable. I ¼def
x1 is an interpolant

for A and B. I is F if x1 ¼ T, and if we replace x1 accordingly

in the original proof, we obtain a refutation for A under the
chosen substitution (second subfigure from the left in

Fig. 5). Similarly, substituting F for x1 in the proof and B
yields a refutation. The value of the shared variable x1 acts

as a switch between these two proofs (illustrated by the

multiplexer on the right of Fig. 5). This insight allowed

Pudlák to formulate an interpolation that annotates each

node in the proof with a partial interpolant.

Clauses from A or B respectively constitute the base
case and are annotated with the partial interpolants T and

F accordingly. Resolution steps with a shared pivot x oc-

curring in both A and B introduce a ‘‘multiplexer’’ choosing

the partial interpolant I1 as interpolant if x is false, and I2

otherwise. The graph on the far right of Fig. 5 is the ori-

ginal proof with all clauses replaced by their respective

partial interpolants. The annotation of the sink node

(corresponding to the empty clause) constitutes an inter-
polant for the formulas A and B.

In the context of software verification, interpolants

have been generalized to sequences of formulas [65] re-

presenting subsequent transition. An interpolation se-

quence overapproximates reachable states at the respective

points in such a formula (see Section III-E2).

Definition 2 (Interpolation Sequence): Let hA1; A2; . . . ; Ani
be an ordered sequence of propositional formulas such that

the conjunction
Vn

i¼1 Ai is unsatisfiable. An interpolation

sequence is a sequence of formulas hI0; I1; . . . ; Ini such that

all of the following conditions hold.

1) I0 ¼ T and In ¼ F.

2) For every 0 � j G n, Ij ^ Ajþ1) Ijþ1 is valid.

3) For every 0 G j G n, it holds that the variables in Ij

are a subset of the common variables of hA1; . . . ;
Aji and hAjþ1; . . . ; Ani.

Interpolation sequences can be computed in an itera-

tive manner by computing the interpolants Ij ð1 � j � nÞ for

A ¼def
Ij�1 ^ Aj and B ¼def Vn

i¼jþ1 Ai using Pudlák’s algorithm.

Alternatively, a sequence interpolant can also be computed

Fig. 5. Interpolant x1 acts as a ‘‘separator’’ for the resolution refutation (left); partial interpolants for the refutation proof (far right).

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2026 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

more efficiently by a single traversal of a given refutation
proof [23], [76], [81].

Interpolants are not unique, and the interpolants com-

puted by different algorithms are not necessarily equiv-

alent. Properties of the interpolants (such as logical

strength) generated by different algorithms have been

studied extensively in [37], [54], [76], and [84]. The

generation of interpolants from resolution proofs and

clausal proofs in CNF has been addressed in [45] and [83],
respectively. Which logical or structural properties of

interpolants are desirable is highly application-dependent,

however, and in many cases an open research problem.

III . APPLICATIONS OF SAT IN
MODEL CHECKING

Model checking [26], [27], [75] is an automated verification
technique for checking whether a given system satisfies a

desired property. The system is usually described as a finite-

state model in the form of a state transition graph. The

specification is given as a temporal logic formula. Unlike

testing or simulation-based verification, model checking

tools are exhaustive in the sense that they traverse all
behaviors of the system, and either confirm that the system

behaves correctly or present a counterexample.
Model checking has been successfully applied to

verifying hardware and software systems. Its main

limitation, however, is the state explosion problem that

arises due to the huge state space of real-life systems. The

size of the model induces high memory and time

requirements that may make model checking not applica-

ble to large systems. Much of the research in this area is

dedicated to increasing model checking applicability and
scalability.

The first significant step in this direction was the in-

troduction of BDDs [16] into model checking. A BDD is a

data structure representing a propositional formula, and

the use of BDDs to symbolically (rather than explicitly)

represent sets of states led to a significant performance

improvement. BDD-based symbolic model checking (SMC)

[17] enabled model checking of real-life hardware designs
with several hundred state elements. Current design

blocks with well-defined functionality, however, typically

have many thousands of state elements. To handle designs

of that scale, researchers deployed SAT solvers, starting

with the invention of SAT-based BMC [12], a technique

that targets the detection of counterexamples.

In this section, we focus on SAT-based model check-

ing algorithms that are based on abstraction, inter-
polation, and IC3. We show how the advancements in SAT

led to the development of state-of-the-art model checking

algorithms and to the applicability of model checking to

large design blocks. It is safe to say that due to these

advancements, SAT-based model checking is nowadays a

part of the design methodology applied by industry [1],

[8], [43].

Before describing some of the most successful SAT-
based model checking algorithms, we introduce some basic

definitions and notation.

A. Preliminaries
In this paper, we discuss hardware verification and

focus on finite-state transition systems that can be used to

model sequential circuits. Given a set of Boolean variables

V, V induces a set of states S ¼def BjVj, and a state s 2 S is

an assignment to V and can be represented as a conjunc-

tion of literals that are satisfied in s. More generally, a

formula over V represents the set of states in which it is
satisfiable.

Definition 3: A finite-state transition system is a tuple

M ¼def hV; I; T; Pi, where V is a set of Boolean variables, IðVÞ
and PðVÞ are formulas over V describing the initial states

and safe states, respectively. The transition relation TðV; V 0Þ
is a formula over the variables V and their primed count-

erparts V 0 ¼ fv0jv 2 Vg, representing starting states and
successor states of the transition, respectively.

Given a formula F over V, we use F0 to denote the

corresponding formula in which all variables v 2 V have

been replaced with their counterparts v0 2 V 0. In the con-

text of multiple steps of the transition system, we use Vi

instead of V 0 to denote the variables in V after i steps.

Given a formula F over Vi, the formula F½Vi Vj� is iden-

tical to F except that for each variable v 2 V, each occur-
rence of vi in F is replaced with vj. This substitution allows

us to change the execution step to which a formula refers.

We also use substitution for formulas and subformu-

las. Let FðVÞ and HðVÞ be formulas over V and let GðVÞ be

a subformula of F. F½G H� denotes the formula ob-

tained by replacing all occurrences of the subformula G in

F with H.

A path of length k in a transition system M ¼ hV; I;
T; Pi is described by the following formula:

Formula 1. pathi;j ¼def
TðVi; Viþ1Þ ^ . . . ^ TðVj�1; VjÞ

where 0 � i G j and j� i ¼ k. An initial path of length k is

defined using the formula IðV0Þ ^ path0;k.

The notation introduced above illustrates how a tra-

versal of the state space of a transition system M can be

reduced to satisfiability. In essence, an initial path formula

of a transition system describes all possible executions of

length k of the circuit when starting from the initial con-

dition. Thus, it also represents all states that can be

reached in k transitions of M.

Most SAT-based model checking algorithms are,
explicitly or implicitly, based on a traversal of the state

space using the above formula. Central to all these algo-

rithms is the notion of a Forward Reachability Sequence,

defined in the following:

Definition 4: A forward reachability sequence (FRS) of

length k with respect to a transition system M ¼ hV; I; T; Pi,

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2027

denoted �F½k�, is a sequence hF0; . . . ; Fki of propositional
formulas over V such that the following holds.

• F0 ¼ I.
• Fi ^ T) F0iþ1 for 0 � i G k.

A reachability sequence �F½k� is monotonic if Fi) Fiþ1 for

0 � i G k, and is safe if Fi) P for 0 � i � k. The individ-

ual propositional formulas Fi are called elements or frames
of the sequence.

An element Fi in an FRS �F½k� represents an overapprox-
imation of states reachable in i steps of the transition

system. If the FRS is monotonic, then Fi is an overap-

proximation of all states reachable in at most i steps.

Monotonic FRSs arise: 1) in the context of BDD-based

model checking [17], where the set of reachable states is

iteratively increased until either a fixed point is reached or

a counterexample is detected; and 2) in the IC3 algorithm

[14], discussed in detail in Section III-F.

Definition 5 (Inductive Invariant, Consecution): A set of

states characterized by the formula F is inductive (satisfies

consecution, respectively) if F ^ T) F0 holds. F is induc-

tive relative to a formula G if G ^ F ^ T) F0 holds. F sa-

tisfies initiation if I) F, i.e., if F comprises all initial

states. F is safe with respect to P if F) P.

We say that F is an inductive invariant if it satisfies
initiation and is inductive.

Lemma 1: Let M ¼ hV; I; T; Pi be a transition system and

let F be a propositional formula representing a set of states.

If F is an inductive invariant that implies P (i.e., F) P is

valid), then P holds in M and M is said to be safe.

The following lemma highlights the relationship

between inductive invariants (Definition 5) and FRS
(Definition 4).

Lemma 2: Let M be a transition system hV; I; T; Pi and let
�F½k� be an FRS. Let us define F ¼def Wi

j¼0 Fj where 0 � i G k.

Then, F is an inductive invariant if Fiþ1) F. In addi-

tion, if �F½k� is safe, then F)P holds, and thus M is safe.

B. Overview of Model Checking Algorithms
As mentioned above, model checking algorithms aim to

establish the safety of a given transition system, or provide

a counterexample if the system is not safe. A model

checking algorithm is complete if it is able to either provide

a counterexample or prove the absence of counterexam-

ples of any length, and sound if it does not provide a wrong

answer.

In the following, we provide a brief overview of the
principles and mechanics underlying a number of widely

used model checking techniques (illustrated in Figs. 6–9).

The technical details are provided in Section III-C–G.

a) BMC: The success of BMC [12] is based on its

ability to find counterexamples. BMC is based on the ex-

ploration of bounded paths in a transition system M. To

this end, BMC unwinds the transition relation TV

illustrated in Fig. 6 and explained in Section III-CVin
order to determine whether the property P can be violated

after k steps.

Complete SAT-based model checking algorithms, on

the other hand, are predominantly based on a search for an

Fig. 6. BMC checks whether a property P can be violated in k steps by

encoding reachable sets of states ðR1; . . . ;RkÞ as a SAT instance. BMC

does not identify repeatedly visited states and can therefore not

determine whether the property holds for arbitrarily many steps.

Fig. 7. Interpolation-based model checking partitions an unsatisfiable

BMC instance into a formula A representing initial states and the

first step, and a formula B representing the states from which a

property P can be violated within k � 1 steps. The interpolant Ik
1 safely

overapproximates all states reachable in a single step and is used to

extend the FRS.

Fig. 8. Interpolation sequence-based model checking partitions an

unsatisfiable BMC instance into k þ 1 partitions (with the last one

representing the ‘‘bad’’ states), resulting in the interpolants Ik
1 ; . . . I

k
k.

Each Ik
i overapproximates the states reachable in i steps, and states in

Ik
iþ1 are reachable from Ik

i in a single step.

Fig. 9. IC3 maintains a monotonic sequence of frames F1; . . . ;Fk

that overapproximate the states reachable in up to k steps. The

approximation is iteratively refined by eliminating from frame Fi

states t that are predecessors of a state in :P, but have themselves

no predecessor in Fi�1 (i.e., :t is inductive relative to Fi�1 and

Fi�1 ^ :t ^ T) :t0 holds).

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2028 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

inductive invariant. A popular approach is k-induction
[77], which aims to find a bound k such that all states

reachable via an initial path IðV0Þ ^ path0;k are safe, and

that whenever P holds in k consecutive steps of the tran-

sition system, then P also holds in the subsequent step. The

model checking algorithms discussed below search for

inductive invariants by means of FRS computation and the

use of Lemma 2. In case an inductive invariant that implies

P is found, M is reported to be safe.
b) Interpolation-based model checking: Interpolation-

based model checking algorithms [64] also explore

bounded paths in M, but use interpolation to synthesize

an inductive invariant during the exploration. As illustrated

in Figs. 7 and 8, interpolants Ik
i derived from unsatisfiable

BMC instances safely overapproximate reachable states (as

suggested in Section II-E). The resulting formulas Ik
i are

then incorporated into a safe FRS that is maintained by the
model checker and gradually refined until either an induc-

tive invariant or a counterexample is found. The strength of

interpolation-based model checking is in its ability to com-

pute concise overapproximations of reachable states, thus

accelerating fixed-point convergence.

c) IC3: The IC3 [14] technique (where IC3 is short

for Incremental Construction of Inductive Clauses for In-

dubitable Correctness) and Property Directed Reachability
[39] (PDR) differ from the above-mentioned algorithms in

so far as they do not unroll the transition relation. IC3

maintains a monotonic safe FRS (as illustrated in Fig. 9),

which is incrementally refined by eliminating states that

can be proven unreachable by means of consecution checks

(Definition 5) over subsequent frames. IC3’s focus on

single steps of the transition relation enables the efficient

and targeted generation of relatively inductive clauses.
Unlike interpolation-based techniques, IC3 does not de-

pend on the unpredictable result of an interpolation engine.

Proof-based Abstraction (PBA), while in itself not a

model checking algorithm, uses cores of unsatisfiable BMC

instances to remove unnecessary details from M, thus

simplifying the transition system for a subsequent com-

plete model checking step (see Section III-D).

We now describe each of the above algorithms in
detail.

C. Bounded Model Checking
As explained in Section II, a SAT solver either finds a

satisfying assignment for a propositional formula or proves

its absence. Using this terminology, BMC [12] determines

whether a transition system has a counterexample of a

given length k or proves its absence. BMC uses a SAT
solver to achieve this goal. Given a transition system M,

BMC translates the question ‘‘Does M have a counterex-

ample of length k?’’ into a propositional formula and uses a

SAT solver to determine if the formula is satisfiable or not.

If the solver finds a satisfying assignment, a counterex-

ample exists and is represented by the assignment. If the

SAT solver proves that no satisfying assignment exists,

then BMC concludes that no counterexample of length k
exists.

Given a transition system M ¼ hV; I; T; Pi, BMC is an

iterative process for checking P in all initial paths up to a

given bound on the length. Given a bound k, BMC either

finds a counterexample of length k or less for P, or

concludes that there is no such counterexample. In order

to search for a counterexample of length k, the following

propositional formula is built:
Formula 2. ’k ¼def

IðV0Þ ^ path0;k ^ ð:PðVkÞÞ:
’k is then passed to a SAT solver that searches for a

satisfying assignment. If there exists a satisfying assign-

ment for ’k, then the property is violated since there exists

a path of length k violating P. In order to conclude that

there is no counterexample of length k or less, BMC

iterates all lengths from 0 up to the given bound k. In each

iteration, a SAT procedure is invoked.
The formula ’k represents all paths of length k in the

transition system that reach a bad state at step k. Recall

that a formula of an initial path of length k represents,

implicitly, all states reachable up to k steps. Since this

representation is only implicit, BMC cannot compute an

FRS and therefore cannot find an inductive invariant.

Verification is obtained only if k exceeds the length of the

longest path among all shortest paths from an initial state
to some state in the transition system. In practice, it is hard

to compute this bound, and even when known, it is often

too large to handle [30]. Thus, the main drawback of this

approach is its incompleteness. BMC can only prove the

absence of counterexamples of length up to k, but cannot

guarantee that there is no counterexample of arbitrary

length.

D. Proof-Based Abstraction
Abstraction [25] is a widely-used method to mitigate the

state explosion problem. Since the root of the problem is

the need of model checking algorithms to exhaustively

traverse the entire state space of the system, abstraction

aims at reducing the state space by removing irrelevant

details from the system. The irrelevant details of the sys-

tem are usually determined by analyzing the checked
property and finding which parts of the system are not

necessary for the verification or refutation of that property.

A well-known SAT-based abstraction technique is PBA

[66]. One of the main advantages of SAT solvers is their

ability to ‘‘zoom in’’ on the part that makes a CNF formula

unsatisfiable. This part is referred to as the unsatisfiable

core (UC) of the formula (see Section II-D). If an unsatis-

fiable CNF formula is a set of clauses, then its UC is an
unsatisfiable subset of this set of clauses. PBA uses the UC

of an unsatisfiable BMC formula to derive an abstraction.

Let us assume that the formula’k is unsatisfiable. Let us

define the set Va ¼ fvjvi 2 VarsðUCð’kÞÞ; 0 � i � kg as

the set of variables from the transition system that appears

in the UC of ’k. Clearly Va � V. The abstract transition

system Ma is derived from M by making all variables

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2029

v 2 V n Va nondeterministic (i.e., leaving them uncon-
strained). This abstraction, in the above context, is usually

referred to as a ‘‘visible variables’’ abstraction [57].

PBA is based on the BMC loop. At each iteration, a

BMC formula ’k is checked. If the formula is satisfiable,

then a counterexample is found. Otherwise, a UC is ex-

tracted, and an abstract transition system Ma is computed.

This abstract model can then be passed to a complete

model checking algorithm, e.g., a BDD-based algorithm
[67], for verification. If the property is proved using the

abstract model, then the algorithm terminates concluding

that the property holds. Otherwise, a counterexample is

found. Note that if a counterexample is found in Ma, it may

not exist in M (due to the abstraction). A counterexample

that exists in Ma but not in M is referred to as spurious. In

the case of a spurious counterexample, PBA executes the

next iteration of the BMC loop with a larger k.

1) Other Abstraction Techniques: PBA can be viewed as a

top–down approach. It first considers the concrete tran-

sition system M, and after verifying that no counter-

example exists up to a specific length, it derives an

abstract model. A different approach is Counter-Example

Guided Abstraction Refinement (CEGAR) [28], [29].

Unlike PBA, this approach can be viewed as bottom–up.
It starts with a coarse abstract model Ma and then uses

spurious counterexamples and M to refine Ma. This process

continues until either Ma is proved safe or a real count-

erexample is found.

In the description above, we show how abstraction is

used to remove state variables from M. If we consider a

circuit, this amounts to removing state elements from that

circuit. Other approaches suggest targeting the internal
gates of a circuit rather than its state elements (see [68],

for instance).

E. Interpolation and Model Checking
In this section, we introduce two complete SAT-based

model checking algorithms that use interpolation. The two

algorithms use interpolation [32] and interpolation sequences
[54] (as described in Section II-E) that, when combined with
BMC, can provide complete model checking algorithms.

1) Interpolation-Based Model Checking (ITP): ITP [64] is a

complete SAT-based model checking algorithm that relies

on interpolation to compute the FRS. More precisely, in-

terpolation is used to overapproximate the reachable states

in a transition system M. Like PBA, ITP is based on BMC.

When a BMC query is unsatisfiable, an interpolant is ex-
tracted from the proof of unsatisfiability. The interpolant

represents an overapproximation of reachable states.

Before going into details, let us first revisit BMC. As we

have shown, BMC formulates the question: ‘‘Does M have

a counterexample of length k?’’ as a propositional formula

’k (Formula 2). In a similar manner, BMC can also be

formulated using the question ‘‘Does M have a counter-

example of length i such that 1 � i � k?’’ by using the
following propositional formula:

Formula 3. k ¼def
IðV0Þ ^ path0;k ^ ð

Wk
i¼1 :PðViÞÞ:

In the original description of ITP [64], the above formula

is used. ITP uses nested loops where the inner loop computes

a safe FRS by repeatedly checking formulas of the form k

with a fixed k, and the outer loop increases the bound k when

needed. The safe FRS is computed inside the inner loop by

extracting interpolants from unsatisfiable BMC formulas. Let
us now describe the nested loops in more detail.

• Inner Loop: In general, the inner loop checks a

fixed-bound BMC formula. At the first iteration,

 k is checked. If this BMC formula is satisfiable,

then a counterexample exists and the algorithm

terminates. If it is unsatisfiable, then the following

ðA; BÞ pair is defined:

/ A ¼def
IðV0Þ ^ TðV0; V1Þ;

/ B ¼def
path1;k ^ ð

Wk
i¼1 :PðViÞÞ.

Following Definition 1, an interpolant Ik
1 is extracted

(cf. Fig. 7). The interpolant represents an over-

approximation of the states reachable from I after one
transition ðA) Ik

1Þ. In addition, no counterexample

can be reached from Ik
1 in k� 1 transitions or less

(Ik
1 ^ B is unsatisfiable), which also guarantees that

Ik
1) P. (Note that if instead of k, ’k would have

been used, the interpolant would not necessarily

satisfy P.) Thus, the sequence hI; Ik
1½V1 V�i is a

valid safe FRS. In the subsequent iterations, the

formula k½I Ik
j�1� is checked, where j is the

iteration of the inner loop. Thus, in the jth iteration, if

 k½I Ik
j�1� is unsatisfiable, an interpolant Ik

j is

extracted with respect to the ðA; BÞ pair where

A ¼ Ik
j�1ðV1 V0Þ ^ TðV0; V1Þ and B is as before.

Following this definition, Ik
j is an overapproximation

of states reachable from Ik
j�1 in one transition and

hI; Ik
1; . . . ; Ik

j i is a safe FRS. The inner loop terminates

either when the BMC formula it checks is satisfiable,
or when an inductive invariant is found. In the latter

case, the algorithm terminates concluding that the

transition system is safe. In the former case, there are

two cases to handle: If the BMC formula is satisfiable

in the first iteration, a counterexample exists and the

algorithm terminates, otherwise, the control is passed

back to the outer loop, which increases k.

• Outer Loop: After the first iteration of the inner

loop, overapproximated sets of reachable states

are used as the initial condition of the checked

BMC formulas. Thus, in case such a BMC formula
becomes satisfiable, it is not clear if it is due to

the existence of a counterexample or due to the

overapproximation. When a BMC formula that

uses an overapproximated set of states as the set

of initial states becomes satisfiable, the control

goes back to the outer loop that increases the

bound k used for the BMC queries. Increasing k

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2030 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

helps to either find a real counterexample or to
increase the precision of the overapproximation.

Note that B represents all bad states and all states

that can reach a bad state in k� 1 transitions or

less. Therefore, when k is increased, the precision

of the computed interpolant is also increased. For

a sufficiently large k, the approximation obtained

through interpolation becomes precise enough

such that the inner loop is guaranteed to find an
inductive invariant if the system is safe [64],

leading to the termination of the algorithm.

2) Interpolation Sequence-Based Model Checking: In [81],

an interpolation sequence-based (ISB) algorithm is sug-

gested for the computation of a safe FRS as part of the main

BMC loop. Unlike ITP, ISB is integrated in BMC’s main

loop (avoiding nested loops). ISB starts with a hF0 ¼ Ii as
an FRS. It then operates just like BMC. In its first iteration,

it solves ’1. If the formula is satisfiable, a counterexample

is found and the algorithm terminates. Otherwise, an in-

terpolation sequence is extracted for A1 ¼ I ^ T and A2 ¼
:P0. In this case, the sequence contains the interpolant I1

1.

ISB then defines F1 ¼ I1
1½V1 V�, and the result is a safe

FRS hF0; F1i (recall Definition 2).

Let us assume that the algorithm now executes the kth
iteration. At the kth iteration, the FRS is hF0; . . . ; Fk�1i
and ’k is checked. The goal of the kth iteration is to

extend the FRS with a new element Fk. If ’k is satisfiable,

a counterexample is found and the algorithm terminates.

In case it is unsatisfiable, an interpolation sequence hIk
1;

. . . ; Ik
ki is extracted with respect to A1 ¼ IðV0Þ ^ TðV0;

V1Þ, Ai ¼ TðVi�1; ViÞ for 2 � i � k and Akþ1 ¼ :PðVkÞ
(see Fig. 8). This interpolation sequence is used to extend
the FRS. The ith element of the existing FRS is updated

by defining Fi ¼ Fi ^ Ik
i ½Vi V� for 1 � i G k and Fk to be

Ik
k ðFk ¼ Ik

k½Vk V�Þ. The result is a safe FRS of length k.

At the end of the kth iteration, if an inductive invariant is

found (Lemma 2), the algorithm terminates concluding

that M is safe. Otherwise, the next iteration is executed.

A detailed description of ISB appears in [19] and [81],

and a detailed comparison to ITP appears in [81].

F. IC3
The introduction of IC3 [14] has signified a change in the

way SAT-based model checking is perceived. Usually referred

to as the ‘‘monolithic’’ approaches, interpolation-based

techniques, and even PBA, use the SAT solver as a blackbox

that can either find a satisfying assignment or generate a proof

of unsatisfiability. The proof of unsatisfiability represents a
generalization of a bounded proof into a candidate inductive

invariant. While this allows these approaches to utilize the

strength of state-of-the-art SAT solvers, it gives them no

control over the performed generalization and no way to

control the ‘‘inductiveness’’ of the generated candidate.

IC3, however, waives some of the strengths of the SAT

solver and, in return, gains control over the generation of

the candidate inductive invariant. This is achieved by em-
ploying a very specific search strategy. IC3’s search strate-

gy is based on a backward search that starts from the

unsafe (or ‘‘bad’’) states in :P. The algorithm maintains a

monotonic safe FRS F0; . . . ; Fk, where each frame Fi

overapproximates the set of states reachable from I in up to

i steps of T. In addition, IC3 maintains a queue of states s
occurring in the FRS from which a bad state is reachable

(via a sequence of steps from s to a state in :P, which we
call a bad suffix). At each iteration, IC3 picks a state s from

the queue, prioritizing states in frames with lower indices.

Assume that s occurs in Fk (as in Fig. 9). Then, IC3 tries to

find a one-step predecessor to s in Fk�1 (e.g., state t in

Fig. 9) in an attempt to extend the bad suffix until an initial

state is reached. If the bad suffix is found to be unreachable

(i.e., no predecessor t exists), then IC3 blocks the suffix

using a process called inductive generalization. The gene-
ralization technique yields a clause that is inductive rela-

tive to Fk�1 and blocks s, which is then used to strengthen

the frames F0; . . . ; Fk of the FRS. The algorithm terminates

if either a counterexample is found or a frame is deter-

mined to be an inductive invariant that proves the

property.

Notably, the SAT queries made by IC3 involve only a

single step of the transition relation. Each state s is repre-
sented by a conjunction of literals over V whose only sa-

tisfying assignment corresponds to s; accordingly, its

negation :s is a clause. Consequently, the SAT queries

performed by IC3 are computationally cheap (in compa-

rison to ITP). In addition, IC3 relies heavily on incre-

mental solving (see Section II-C).

In the following, we describe IC3 in more detail. Given

a transition system M ¼ hV; I; T; Pi, the IC3 algorithm [14]
iteratively refines and extends a monotonic safe FRS where

the frames are in CNF.

In each iteration, the algorithm performs one of two

actions.

• If no unsafe state is reachable from Fk (i.e.,

Fk ^ T) P0), the algorithm extends the sequence

with an additional frame Fkþ1 ¼ P. Fkþ1 becomes

the new frontier, and the resulting sequence is a
monotonic safe FRS. In addition, for each frame Fi,

0 � i � k, IC3 propagates clauses c in Fi forward to

Fiþ1 if Fi ^ T) c0 (where c0 is obtained by replac-

ing all variables in c with their primed counter-

parts). IC3 ensures that the clauses in each frame

Fiþ1 (for 0 � i G k) are a subset of the clauses of its

predecessor Fi, enabling efficient syntactic checks

for the equality of frames. If during the propaga-
tion it is discovered that Fiþ1 ¼ Fi for some i, the

algorithm terminates since Fi is an inductive inva-

riant proving the safety of the transition system.

• If Fk ^ T 6) P0, an unsafe state is reachable from Fk.

A predecessor s of an unsafe state can be extracted

from a satisfying assignment of Fk ^ T ^ :P0 (see

Fig. 9). The state s constitutes a counterexample to

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2031

induction (CTI) since it demonstrates that Fk is not
inductive. Note that Fk�1 does not contain s since its

unsafe successor state would otherwise be reach-

able from Fk�1, violating the properties of a mono-

tonic safe FRS. Subsequently, IC3 will try to prove

the unreachability of s from Fk�1 and adds the tuple

hs; k� 1i to a priority queue used to store proof

obligations, accordingly.

A proof obligation hs; ii with i ¼ 0 and a prede-
cessor of s in I represents a violation of the property P
and is reported. Otherwise, the algorithm checks

whether the clause :s is inductive relative to Fi by

means of the consecution query Fi ^ :s ^ T) :s0. If

this attempt fails, a new CTI t (a predecessor of s, as

illustrated in Fig. 9) can be extracted from a satisfy-

ing assignment of Fi ^ T ^ s0. Since the query t ^
T) s0 holds by construction, t can be generalized to
a partial assignment u by obtaining an unsatisfiable

core of t ^ T ^ :s0 and dropping all literals of t not

contained in the core [22]. The resulting lifted cube is

added as a new proof obligation hu; i� 1i. A similar

optimization can be achieved using ternary simula-

tion [39].

If :s is inductive relative to Fi, on the other hand,

s and its successors are unreachable and can be
removed from the priority queue. To accelerate

convergence, IC3 deploys a generalization algorithm

[47] to f ind a clause c � :s such that

Fi ^ c ^ T) c0, which is added to all frames Fj,

0 � j � iþ 1.

IC3 owes its performance to numerous optimizations

implemented in addition to its clever inductive generali-

zation technique. For instance, IC3 attempts to push
clauses c blocking a CTI that surfaced in frame Fi forward

to frames Fj with j > i, in an attempt to avoid a reen-

counter with the same CTI in later frames. Furthermore,

inductive invariants can be detected syntactically thanks to

the CNF structure of the frames.

G. Bringing Interpolation and IC3 Together
Interpolation-based model checking and IC3, described

in the previous sections, are two of the most successful

methods for SAT-based model checking. The generaliza-

tion techniques deployed in interpolation-based model

checking and IC3, however, are very different: interpola-

tion relies on a proof of unsatisfiability of a BMC instance

and is usually referred to as a ‘‘monolithic’’ approach, while

IC3 uses single-step queries and is referred to as

‘‘incremental.’’
The interpolation-based approach does not pose re-

strictions on the SAT solver’s search strategy, thus lever-

aging advances in SAT and in interpolation. As a result,

however, the technique does not offer much control over

generalization. It is at the mercy of the choices made by

the SAT solver, which provides a particular resolution

proof, and of the procedure used to generate the interpo-

lant. Furthermore, interpolants tend to be large, which
poses additional limitation on their use.

Unlike interpolation-based methods, IC3 manages both

the search for the counterexample as well as generalization

[47] directly. Conceptually, IC3 is based on a backward

search and can be seen as a SAT solver with a specific

search strategy that is based on the BMC structure of the

problem [5]. Execution traces are extended step by step,

and inductive generalization is used to block suffixes that
cannot be extended further.

While IC3 offers many advantages compared to the

interpolation-based methods, including incremental solv-

ing and fine-grained control over generalization, it is

limited to a fixed local search strategy that can be ineffi-

cient. The work in [5] tries to overcome the locality of IC3

by applying unit propagation (BCP) to all frames in a global

manner. Yet, it still maintains IC3’s backward search by
forcing a specific decision order.

To remedy the weaknesses of each approach, some

techniques [82], [83] combine ideas from both interpola-

tion and IC3. We briefly discuss two recent approaches

here and refer the reader to the papers for a more detailed

description.

1) Interpolation With CNF Interpolants: As mentioned in
Section II-E, interpolants are not unique and can vary in

structure. In [83], the authors describe an efficient algo-

rithm for computing interpolants in CNF. The algorithm

uses both the resolution refutation generated by the SAT

solver, and IC3-style inductive generalization to compute

an interpolant. At first, a formula Iw that approximates an

interpolant is derived from a resolution refutation. Due to

the approximation, a second phase is needed to transform
the approximated interpolant into an actual interpolant.

Recall from Section III-E that in the context of ITP the

following partitioning is used:

• A ¼def
FðVÞ ^ TðV; V1Þ, where FðVÞ is a proposition-

al formula representing a set of states;

• B ¼def
path1;k ^ ð

Wk
i¼1 :PðViÞÞ representing bad

states and their pre-image up to k� 1 steps.

The approximated interpolant Iw is guaranteed to be in
CNF, and satisfies all properties of an interpolant except

that it is not necessarily inconsistent with B. Iw is then

iteratively refined by eliminating all states s that satisfy

Iw ^ B. Since A ^ B is known to be unsatisfiable, these

states can be blocked using IC3’s generalization mecha-

nism. The resulting formula is an interpolant in CNF,

which is then used in the context of interpolation-based

model checking [64] to compute a monotonic FRS in CNF.
The model checking algorithm (called CNF-ITP) is

modified to take advantage of the fact that the monotonic

FRS is in CNF by incorporating ideas of IC3 (such as

pushing clauses forward in the FRS).

2) AVYVAn Interpolating IC3: The authors of [82] com-

bine sequence interpolation [81] with IC3 to create Avy.

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2032 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

Like IC3 and CNF-ITP, Avy computes a monotonic FRS
in CNF, but starts from an interpolation sequence obtained

from a BMC query (as in Fig. 8). Avy then uses IC3 to

transform the interpolants into CNF. Intuitively, the inter-

polant Ik
1 can be used to form a transition system M1 ¼def

hV; I; T; ðI _ Ik
1Þi, such that the first frame F1 of the corre-

sponding IC3 instance satisfies I) F1 and F1) ðI _ Ik
1Þ.

F1 is then in turn used to construct transition system M2 ¼
def

hV; F1; T; ðF1 _ Ik
2Þi, and IC3 is used to construct a formula

F2 with F1) F2 and F2) ðF1 _ Ik
2Þ, and so on.

The result of this process is a safe monotonic FRS

hI; F1; F2; . . .i that is identical, in characteristics, to the

monotonic FRS computed by IC3. Thus, Avy can make use

of all enhancements that make IC3 efficient without im-

posing any restrictions on the SAT solver’s search strategy.

Reference [82] shows that Avy is complementary to IC3.

H. Hardware Model Checking Competition
The hardware model checking competition (HWMCC)

annually evaluates contenders for the best (academic)
model checking tool. The Web page http://fmv.jku.at/

hwmcc provides an up-to-date empirical evaluation of

verification algorithms.

In the single safety property track of the recent edition

of the HWMCC,2 the winning verification tools were ABC

[15] and V33 (both of which incorporate a range of

techniques including BDD-based model checking, BMC,

interpolation, and IC3), followed by IImc,4 which is based
on IC3. nuXmv [21], which also incorporates multiple

algorithms including sequence interpolation, k-induction,

and IC3, and Avy,5 ranked second in the UNSAT category

and described in Section III-G, were tied sixth.

The prevalence of tools implementing multiple algo-
rithms shows that there is no clear-cut winner in terms of

model checking techniques. While IC3 certainly stands out

(considering the fact that IImc implements only this ap-

proach), no single algorithm can typically solve all problem

instances [20]. This gives rise to portfolio solvers, which in

the domain of SAT solvers have proven very successful [87].

Portfolio solvers either run different algorithms in parallel,

or use heuristics to select a promising algorithm. We refer
the reader to [18] for details.

IV. CONCLUSION

SAT solving and hardware model checking have a history of
mutually beneficial development. Techniques such as

CDCL and efficient BCP developed by the EDA community

revolutionized the field of satisfiability checking. In turn,

the resulting performance boost of SAT solvers arguably

marked the coming of age of model checking, enabling its

application to industrial-size designs. Driven by initiatives

such as the SAT competition and the HWMCC, and vivid

exchange and collaboration between academia and the in-
dustrial research community, the trend of ever-improving

performance and scalability in both fields seems unbroken.

Recent work, for instance, combines abstraction and IC3

for model checking word-level designs [58], [85]. One of

the frontiers in both fields not addressed in this paper is

parallelismVthe IC3 algorithm ‘‘lends itself to a parallel

implementation’’ [14] (realized in IImc), and parallel SAT

solving is a promising field that still holds significant
challenges [46]. We are confident that 10 years from now

we will get to report on another decade of successful

symbiosis of SAT solving and model checking. h

Acknowledgment

The authors thank A. Biere, M. Chan, U. Egly, and the

anonymous reviewers for their helpful comments.

RE FERENCES

[1] N. Amla, X. Du, A. Kuehlmann, R. P. Kurshan,
and K. L. McMillan, ‘‘An analysis of
SAT-based model checking techniques
in an industrial environment,’’ in Correct
Hardware Design and Verification Methods,
vol. 3725, LNCS. New York, NY, USA:
Springer-Verlag, 2005, pp. 254–268.

[2] G. Audemard, L. Bordeaux, Y. Hamadi,
S. Jabbour, and L. Sais, ‘‘A generalized
framework for conflict analysis,’’ in Theory
and Applications of Satisfiability Testing,
vol. 4996, LNCS. New York, NY, USA:
Springer-Verlag, 2008, pp. 21–27.

[3] G. Audemard and L. Simon, ‘‘Predicting learnt
clauses quality in modern SAT solvers,’’ in
Proc. IJCAI, 2009, pp. 399–404.

[4] G. Audemard and L. Simon, ‘‘Refining restarts
strategies for SAT and UNSAT,’’ in Constraint
Programming, vol. 7514, LNCS. New York,
NY, USA: Springer-Verlag, 2012, pp. 118–126.

[5] S. Bayless, C. G. Val, T. Ball, H. H. Hoos, and
A. J. Hu, ‘‘Efficient modular SAT solving for
IC3,’’ in Proc. FMCAD, 2013, pp. 149–156.

[6] P. Beame, H. Kautz, and A. Sabharwal,
‘‘Towards understanding and harnessing
the potential of clause learning,’’ J. Artif. Intell.
Res., vol. 22, no. 1, pp. 319–351, Dec. 2004.

[7] A. Belov, M. Heule, and J. Marques-Silva,
‘‘MUS extraction using clausal proofs,’’ in
Theory and Applications of Satisfiability Testing,
vol. 8561, LNCS. New York, NY, USA:
Springer-Verlag, 2014, pp. 48–57.

[8] S. Ben-David, C. Eisner, D. Geist, and
Y. Wolfsthal, ‘‘Model checking at IBM,’’
Formal Methods Syst. Design, vol. 22, no. 2,
pp. 101–108, 2003.

[9] A. Biere, ‘‘Adaptive restart strategies for
conflict driven SAT solvers,’’ in Theory
and Applications of Satisfiability Testing,
vol. 4996, LNCS. New York, NY, USA:
Springer-Verlag, 2008, pp. 28–33.

[10] A. Biere, ‘‘PicoSAT essentials,’’ J. Satisfiability,
Boolean Modeling Comput., vol. 4, no. 2–4,
pp. 75–97, 2008.

[11] A. Biere, ‘‘Preprocessing and inprocessing
techniques in SAT,’’ in Proc. HVC, vol. 7261,
LNCS, 2011, p. 1.

[12] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu,
‘‘Symbolic model checking without BDDs,’’ in

Tools and Algorithms for the Construction
and Analysis of Systems, vol. 1579, LNCS.
New York, NY, USA: Springer-Verlag, 1999,
pp. 193–207.

[13] A. Biere, M. J. H. Heule, H. van Maaren, and
T. Walsh, Eds., Handbook of Satisfiability,
vol. 185, Frontiers in Artificial Intelligence
and Applications. Amsterdam,
The Netherlands: IOS Press, Feb. 2009.

[14] A. R. Bradley, ‘‘SAT-based model checking
without unrolling,’’ in Verification, Model
Checking and Abstract Interpretation, vol. 6538,
LNCS. New York, NY, USA:
Springer-Verlag, 2011, pp. 70–87.

[15] R. K. Brayton and A. Mishchenko, ‘‘ABC:
An academic industrial-strength verification
tool,’’ in Computer Aided Verification, vol. 6174,
LNCS. New York, NY, USA: Springer-Verlag,
2010, pp. 24–40.

[16] R. E. Bryant, ‘‘Graph-based algorithms for
Boolean function manipulation,’’ IEEE Trans.
Comput., vol. C-35, no. 8, pp. 677–691,
Aug. 1986.

[17] J. R. Burch, E. M. Clarke, K. L. McMillan,
D. L. Dill, and L. J. Hwang, ‘‘Symbolic model

2http://fmv.jku.at/hwmcc14cav/
3http://dvlab.ee.ntu.edu.tw/Èpublication/V3/
4http://ecee.colorado.edu/wpmu/iimc/
5http://arieg.bitbucket.org/avy/

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2033

checking:1020 states and beyond,’’ in Proc.
LICS, 1990, pp. 428–439.

[18] G. Cabodi, S. Nocco, and S. Quer,
‘‘Benchmarking a model checker for
algorithmic improvements and tuning for
performance,’’ Formal Methods Syst. Design,
vol. 39, no. 2, pp. 205–227, 2011.

[19] G. Cabodi, S. Nocco, and S. Quer,
‘‘Interpolation sequences revisited,’’ in
Proc. DATE, 2011, pp. 316–322.

[20] G. Cabodi, M. Palena, and P. Pasini,
‘‘Interpolation with guided refinement:
Revisiting incrementality in sat-based
unbounded model checking,’’ in Proc.
FMCAD, 2014, pp. 43–50.

[21] R. Cavada et al., ‘‘The nuXmv symbolic
model checker,’’ in Computer Aided Verification,
vol. 8559, LNCS. New York, NY, USA:
Springer-Verlag, 2014, pp. 334–342.

[22] H. Chockler, A. Ivrii, A. Matsliah, S. Moran,
and Z. Nevo, ‘‘Incremental formal verification
of hardware,’’ in Proc. FMCAD, 2011,
pp. 135–143.

[23] A. Cimatti, A. Griggio, and R. Sebastiani,
‘‘Efficient generation of Craig interpolants
in satisfiability modulo theories,’’ Trans.
Comput. Logic, vol. 12, no. 1, p. 7, 2010.

[24] K. Claessen and N. Sörensson, ‘‘New
techniques that improve MACE-style
finite model finding,’’ in Proc. Model
Comput.VPrinciples, Algor., Appl., 2003.

[25] E. Clarke, O. Grumberg, and D. Long, ‘‘Model
checking and abstraction,’’ in Proc. POPL,
1992, pp. 343–354.

[26] E. Clarke, O. Grumberg, and D. Peled,
Model Checking. Cambridge, MA, USA:
MIT Press, Dec. 1999.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla,
‘‘Automatic verification of finite-state
concurrent systems using temporal logic
specifications,’’ Trans. Program. Lang. Syst.,
vol. 8, no. 2, pp. 244–263, 1986.

[28] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu,
and H. Veith, ‘‘Counterexample-guided
abstraction refinement,’’ in Computer Aided
Verification, vol. 1855, LNCS. New York,
NY, USA: Springer-Verlag, 2000, pp. 154–169.

[29] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith, ‘‘Counterexample-guided abstraction
refinement for symbolic model checking,’’
J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[30] E. M. Clarke, D. Kroening, J. Ouaknine, and
O. Strichman, ‘‘Completeness and complexity
of bounded model checking,’’ in Verification,
Model Checking and Abstract Interpretation,
vol. 2937, LNCS. New York, NY, USA:
Springer-Verlag, 2004, pp. 85–96.

[31] S. A. Cook, ‘‘The complexity of theorem-
proving procedures,’’ in Proc. ACM STOC,
1971, pp. 151–158.

[32] W. Craig, ‘‘Linear reasoning. A new form
of the Herbrand-Gentzen theorem,’’ J. Symb.
Logic, vol. 22, no. 3, pp. 250–268, 1957.

[33] W. Craig, ‘‘Three uses of the
Herbrand-Gentzen theorem in relating
model theory and proof theory,’’ J. Symb.
Logic, vol. 22, no. 3, pp. 269–285, 1957.

[34] M. Davis, G. Logemann, and D. Loveland,
‘‘A machine program for theorem-proving,’’
Commun. ACM, vol. 5, pp. 394–397, Jul. 1962.

[35] M. Davis and H. Putnam, ‘‘A computing
procedure for quantification theory,’’ J. ACM,
vol. 7, pp. 201–214, Jul. 1960.

[36] V. D’Silva, D. Kroening, and
G. Weissenbacher, ‘‘A survey of automated
techniques for formal software verification,’’
Trans. CAD Integrated Circuits Syst., vol. 27,
no. 7, pp. 1165–1178, Jul. 2008.

[37] V. D’Silva, M. Purandare, G. Weissenbacher,
and D. Kroening, ‘‘Interpolant strength,’’ in
Verification, Model Checking and Abstract
Interpretation, vol. 5944, LNCS. New York,
NY, USA: Springer-Verlag, 2010, pp. 129–145.

[38] N. Eén and A. Biere, ‘‘Effective preprocessing in
SAT through variable and clause elimination,’’ in
Theory and Applications of Satisfiability Testing,
vol. 3569, LNCS. New York, NY, USA:
Springer-Verlag, 2005, pp. 102–104.

[39] N. Een, A. Mishchenko, and R. Brayton,
‘‘Efficient implementation of property
directed reachability,’’ in Proc. FMCAD,
2011, pp. 125–134.

[40] N. Eén and N. Sörensson, ‘‘Temporal
induction by incremental SAT solving,’’
Electron. Notes Theor. Comput. Sci., vol. 89,
no. 4, pp. 543–560, 2003.

[41] N. Eén and N. Sörensson, ‘‘An extensible
SAT-solver,’’ in Theory and Applications
of Satisfiability Testing, vol. 2919, LNCS.
New York, NY, USA: Springer-Verlag, 2004,
pp. 333–336.

[42] A. V. Gelder, ‘‘Generalizations of watched
literals for backtracking search,’’ in Proc.
ISAIM, 2002. [Online]. Available: http://
rutcor.rutgers.edu/~amai/aimath02/;
http://rutcor.rutgers.edu/~amai/aimath02/
PAPERS/32.ps.

[43] R. Gerth, ‘‘Model checking if your life
depends on it: A view from intel’s trenches,’’
in Model Checking and Software Verification,
vol. 2057, LNCS. New York, NY, USA:
Springer-Verlag, 2001, p. 15.

[44] E. Goldberg and Y. Novikov, ‘‘Verification of
proofs of unsatisfiability for CNF formulas,’’
in Proc. DATE, 2003, pp. 886–891.

[45] A. Gurfinkel and Y. Vizel, ‘‘DRUPing for
interpolants,’’ in Proc. FMCAD, 2014,
DOI: 10.1109/FMCAD.2014.6987601.

[46] Y. Hamadi and C. M. Wintersteiger,
‘‘Seven challenges in parallel SAT solving,’’
AI Mag., vol. 34, no. 2, pp. 99–106, 2013.

[47] Z. Hassan, A. R. Bradley, and F. Somenzi,
‘‘Better generalization in IC3,’’ in Proc.
FMCAD, 2013, pp. 157–164.

[48] M. Heule, W. A. Hunt, Jr., and N. Wetzler,
‘‘Trimming while checking clausal proofs,’’ in
Proc. FMCAD, 2013, pp. 181–188.

[49] G. Huang, ‘‘Constructing Craig interpolation
formulas,’’ in Computing and Combinatorics,
vol. 959, LNCS. New York, NY, USA:
Springer-Verlag, 1995, pp. 181–190.

[50] J. Huang, ‘‘The effect of restarts on the
efficiency of clause learning,’’ in Proc. IJCAI,
2007, pp. 2318–2323.

[51] M. K. Iyer, G. Parthasarathy, and K. Cheng,
‘‘SATORIVA fast sequential SAT engine for
circuits,’’ in Proc. ICCAD, 2003, pp. 320–325.

[52] M. Järvisalo, M. Heule, and A. Biere,
‘‘Inprocessing rules,’’ in Proc. IJCAR, vol. 7364,
LNCS, 2012, pp. 355–370.

[53] R. Jhala and R. Majumdar, ‘‘Software model
checking,’’ Comput. Surveys, vol. 41, no. 4,
2009.

[54] R. Jhala and K. L. McMillan,
‘‘Interpolant-based transition relation
approximation,’’ in Computer Aided
Verification, vol. 3576. New York, NY,
USA: Springer-Verlag, 2005, pp. 39–51.

[55] H. A. Kautz, E. Horvitz, Y. Ruan, C. P. Gomes,
and B. Selman, ‘‘Dynamic restart policies,’’ in
Proc. AAAI/IAAI, 2002, pp. 674–681.

[56] J. Krajı́ček, ‘‘Interpolation theorems,
lower bounds for proof systems, and
independence results for bounded
arithmetic,’’ J. Symb. Logic, vol. 62, no. 2,
pp. 457–486, 1997.

[57] R. P. Kurshan, Computer-Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach. Princeton, NJ, USA: Princeton
Univ. Press, 1994.

[58] S. Lee and K. A. Sakallah, ‘‘Unbounded
scalable verification based on approximate
property-directed reachability and datapath
abstraction,’’ in Computer Aided Verification,
vol. 8559, LNCS. New York, NY, USA:
Springer-Verlag, 2014, pp. 849–865.

[59] M. Luby, A. Sinclair, and D. Zuckerman,
‘‘Optimal speedup of Las Vegas algorithms,’’
in Proc. ISTCS, 1993, pp. 128–133.

[60] S. Malik and G. Weissenbacher, ‘‘Boolean
satisfiability solvers: Techniques and
extensions,’’ in Software Safety and
SecurityVTools for Analysis and Verification.
Amsterdam, The Netherlands: IOS Press,
2012.

[61] S. Malik, Y. Zhao, C. F. Madigan, L. Zhang,
and M. W. Moskewicz, ‘‘Chaff: Engineering
an efficient SAT solver,’’ in Proc. DAC, 2001,
pp. 530–535.

[62] J. A. P. Marques-Silva and K. A. Sakallah,
‘‘GRASPVA new search algorithm for
satisfiability,’’ in Proc. ICCAD, 1996,
pp. 220–227.

[63] K. L. McMillan, ‘‘Applying SAT methods in
unbounded symbolic model checking,’’ in
Computer Aided Verification, vol. 2404,
LNCS. New York, NY, USA:
Springer-Verlag, 2002, pp. 250–264.

[64] K. L. McMillan, ‘‘Interpolation and
SAT-based model checking,’’ in Computer Aided
Verification, vol. 2725, LNCS. New York, NY,
USA: Springer, 2003, pp. 1–13.

[65] K. L. McMillan, ‘‘Lazy abstraction with
interpolants,’’ in Computer Aided Verification,
vol. 4144, LNCS. New York, NY, USA:
Springer, 2003, pp. 123–136.

[66] K. L. McMillan and N. Amla, ‘‘Automatic
abstraction without counterexamples,’’ in
Tools and Algorithms for the Construction
and Analysis of Systems, vol. 2619, LNCS.
New York, NY, USA: Springer-Verlag,
2003, pp. 2–17.

[67] K. L. McMillan, ‘‘The SMV system,’’
Carnegie Mellon University, Tech.
Rep. CMU-CS-92-131, 1992.

[68] A. Mishchenko et al., ‘‘GLA: Gate-level
abstraction revisited,’’ in Proc. DATE,
2013, pp. 1399–1404.

[69] K. Pipatsrisawat and A. Darwiche, ‘‘A
lightweight component caching scheme
for satisfiability solvers,’’ in Theory and
Applications of Satisfiability Testing, vol. 4501,
LNCS. New York, NY, USA: Springer-Verlag,
2007, pp. 294–299.

[70] K. Pipatsrisawat and A. Darwiche,
‘‘On modern clause-learning satisfiability
solvers,’’ J. Autom. Reasoning, vol. 44, no. 3,
pp. 277–301, 2010.

[71] K. Pipatsrisawat and A. Darwiche, ‘‘On
the power of clause-learning sat solvers as
resolution engines,’’ Artif. Intell., vol. 175,
no. 2, pp. 512–525, 2011.

[72] D. A. Plaisted and S. Greenbaum,
‘‘A structure-preserving clause form
translation,’’ J. Symb. Comput., vol. 2, no. 3,
pp. 293–304, 1986.

[73] M. R. Prasad, A. Biere, and A. Gupta,
‘‘A survey of recent advances in SAT-based
formal verification,’’ Softw. Tools Technol.
Transfer, vol. 7, no. 2, pp. 156–173, 2005.

[74] P. Pudlák, ‘‘Lower bounds for resolution
and cutting plane proofs and monotone
computations,’’ J. Symb. Logic, vol. 62, no. 3,
pp. 981–998, 1997.

[75] J.-P. Queille and J. Sifakis, ‘‘Specification and
verification of concurrent systems in CESAR,’’
in Proc. Int. Symp. Programming, 1982,
pp. 337–351.

[76] S. F. Rollini, O. Sery, and N. Sharygina,
‘‘Leveraging interpolant strength in model
checking,’’ in Computer Aided Verification,
vol. 7358, LNCS. New York, NY, USA:
Springer-Verlag, 2012, pp. 193–209.

[77] M. Sheeran, S. Singh, and G. Stålmarck,
‘‘Checking safety properties using induction
and a SAT-solver,’’ in Formal Methods in
Computer-Aided Design, vol. 1954, LNCS.
New York, NY, USA: Springer-Verlag, 2000,
pp. 108–125.

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

2034 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

[78] J. P. M. Silva and K. A. Sakallah, ‘‘GRASP:
A search algorithm for propositional
satisfiability,’’ IEEE Trans. Comput., vol. 48,
no. 5, pp. 506–521, May 1999.

[79] C. Sinz and M. Iser, ‘‘Problem-sensitive
restart heuristics for the DPLL procedure,’’ in
Theory and Applications of Satisfiability Testing,
vol. 5584, LNCS. New York, NY, USA:
Springer-Verlag, 2009, pp. 356–362.

[80] G. Tseitin, ‘‘On the complexity of proofs
in propositional logics,’’ in Automation of
Reasoning: Classical Papers in Computational
Logic 1967–1970, vol. 2, J. Siekmann and
G. Wrightson, Eds. New York, NY, USA:
Springer-Verlag, 1983, Originally published
1970.

[81] Y. Vizel and O. Grumberg,
‘‘Interpolation-sequence based model
checking,’’ in Proc. FMCAD, 2009, pp. 1–8.

[82] Y. Vizel and A. Gurfinkel, ‘‘Interpolating
property directed reachability,’’ in Computer
Aided Verification, vol. 8559, LNCS.
New York, NY, USA: Springer-Verlag, 2014,
pp. 260–276.

[83] Y. Vizel, V. Ryvchin, and A. Nadel, ‘‘Efficient
generation of small interpolants in CNF,’’ in
Computer Aided Verification, vol. 8044,
LNCS. New York, NY, USA: Springer-Verlag,
2013, pp. 330–346.

[84] G. Weissenbacher, ‘‘Interpolant strength
revisited,’’ in Theory and Applications of
Satisfiability Testing, vol. 7317, LNCS.
New York, NY, USA: Springer-Verlag, 2012,
pp. 312–326.

[85] T. Welp and A. Kuehlmann, ‘‘QF_BV model
checking with property directed reachability,’’
in Proc. DATE, 2013, pp. 791–796.

[86] J. Whittemore, J. Kim, and K. A. Sakallah,
‘‘SATIRE: A new incremental satisfiability
engine,’’ in Proc. ACM DAC, 2001,
pp. 542–545.

[87] L. Xu, F. Hutter, H. H. Hoos, and
K. Leyton-Brown, ‘‘SATzilla: Portfolio-based
algorithm selection for SAT,’’ J. Artif.
Intell. Res., vol. 32, pp. 565–606, 2008.

[88] L. Zhang and S. Malik, ‘‘Validating SAT
solvers using an independent resolution-based
checker: Practical implementations and other
applications,’’ in Proc. IEEE DATE, 2003,
p. 10880.

ABOUT T HE AUTHO RS

Yakir Vizel received the Ph.D. degree in computer science from The

Technion, Haifa, Israel, in 2014.

He is a Postdoctoral Research Associate with Princeton University,

Princeton, NJ, USA, working under the supervision of Prof. Sharad Malik.

Previously, he worked in the electronic design automation (EDA) industry

for 10 years developing model checking and formal verification solutions.

His research interests include model checking, abstraction, satisfiability

solving, and interpolation.

Georg Weissenbacher received the doctorate degree in computer

science from the University of Oxford, Oxford, U.K, in 2010.

He is an Assistant Professor at TU Wien, Vienna, Austria. He spent two

years as a Postdoctoral Research Associate with Princeton University,

Princeton, NJ, USA. Funded by a Vienna Research Groups for Young

Investigators grant of the Vienna Science and Technology Fund (WWTF),

his research revolves around satisfiability solving and interpolation.

Further, it includes software model checking as well as the localization

and explanation of post-silicon faults and concurrency bugs.

Sharad Malik (Fellow, IEEE) received the B.Tech. degree in electrical

engineering from the Indian Institute of Technology (IIT), New Delhi,

India, in 1985, and the M.S. and Ph.D. degrees in computer science from

the University of California, Berkeley, CA, USA, in 1987 and 1990,

respectively.

Currently, he is the George Van Ness Lothrop Professor of Engineering

with Princeton University, Princeton, NJ, USA, and the Chair of the

Department of Electrical Engineering. Previously, he served as the

Director of the Keller Center for Innovation in Engineering Education,

Princeton University, from 2006 to 2011, and the Director of the multi-

university Gigascale Systems Research Center from 2009 to 2012. His

research focuses on design methodology and design automation for

computing systems. His research in functional timing analysis and

propositional satisfiability has been widely used in industrial electronic

design automation tools.

Prof. Malik is a Fellow of ACM. He has received the DAC Award for the

most cited paper in the 50-year history of the conference in 2013, the CAV

Award for fundamental contributions to the development of high-

performance Boolean satisfiability solvers in 2009, the ICCAD Ten Year

Retrospective Most Influential Paper Award in 2011, the Princeton

University President’s Award for Distinguished Teaching in 2009, as

well as several other research and teaching awards. In 2009, he received

the IIT Delhi Distinguished Alumni Award.

Vizel et al. : Boolean Satisfiability Solvers and Their Applications in Model Checking

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2035

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

