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ABSTRACT | Brain-computer interfaces (BCIs) have been ex-

plored in the field of neuroengineering to investigate how the

brain can use these systems to control external devices. We

review the principles and approaches we have taken to develop

a sensorimotor rhythm electroencephalography (EEG)-based

brain-computer interface (BCI). The methods include develop-

ing BCI systems incorporating the control of physical devices to

increase user engagement, improving BCI systems by inversely

mapping scalp-recorded EEG signals to the cortical source

domain, integrating BCI with noninvasive neuromodulation

strategies to improve learning, and incorporating mind-body

awareness training to enhance BCI learning and performance.

The challenges and merits of these strategies are discussed,

together with recent findings. Our work indicates that the

sensorimotor-rhythm-based noninvasive BCI has the potential

to provide communication and control capabilities as an alter-

native to physiological motor pathways.

KEYWORDS | Brain–computer interface (BCI); brain–machine

interface (BMI); electroencephalography (EEG); motor imagery;

neural interface; sensorimotor rhythm

I . INTRODUCTION

Using thought alone to communicate with others and

interact with the environment around us has been a theme

mentioned frequently in science fiction. Recent scientific
findings and emerging technologies over the last two de-

cades have begun to make these ideas a reality. In parti-

cular, advances in neuroscience and signal processing have

enabled thought-control of external devices.

Brain-computer interfacing is an emerging technology

that connects our natural brain with man-made devices,

providing a new output channel for brain signals to com-

municate or control external devices without using the
natural neuromuscular pathways [1]–[7]. A brain-

computer interface (BCI) recognizes the intent of the

user through electrophysiological or other signals from the

brain, decodes the ongoing neural activity, and translates it

into output commands that accomplish the user’s goal. BCI

technology has the potential to restore lost or impaired

functions of people severely disabled by various devas-

tating neuromuscular disorders or spinal cord damage, and
to enhance or supplement functions in healthy individuals.

Fig. 1 illustrates the general concept of a BCI system, based

upon the principles of sensorimotor rhythms generated via

motor imagery (MI) tasks, a framework that we will dis-

cuss in this paper.

Various kinds of brain signals have been used as the

basis for decoding user intent in BCI research. Direct

neuronal recordings using implanted sensors have led to
precise control and fast learning in animals, and recently

also in a few severely paralyzed human subjects [5], [8]–

[11]. Similarly, noninvasive BCIs have been widely pursued
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with the hope of developing a BCI system that can decode

and interpret users’ intentions without requiring invasive

surgical procedures and implantation, such that the system
can be used in daily life [12]–[25]. Electroencephalography

(EEG) has been widely used for this purpose due to its

noninvasiveness, ease of use, and low cost. EEG-based BCI

signal types include stimuli-evoked potentials, slow cortical

potentials, and sensorimotor rhythms (SMRs). Of these,

while the steady-state visual evoked potential (SSVEP)-

based BCI can provide many commands [26], the SMR-

based BCI offers a high level of control in terms of degrees
of freedom as initiated by the intent of users [7]. SMRs are

readily detectable in healthy [6], [27] as well as disabled

individuals with neuromuscular diseases or injuries, in-

cluding spinal-cord injury, amyotrophic lateral sclerosis

(ALS), and stroke (see [7] for review). SMR signals can be

modulated through MI tasks, which have been shown to

provide a robust paradigm for generating noninvasively

detectable and usable EEG signals.
In this paper, we describe an SMR-based BCI approach,

focusing on our efforts with this paradigm at the University

of Minnesota. Compared with other approaches, a unique

feature of our approach is to leverage neuroscience knowl-

edge to maximize the performance of BCIs. With respect to

this, we have investigated BCIs for controlling an external

device in virtual and physical spaces to engage human

subjects in a highly interactive manner, developed the
source-analysis-based BCI technique to improve the spatial

resolution of scalp-recorded EEG signals, integrated trans-

cranial direct current stimulation (tDCS) with MI to im-

prove BCI performance, and pursued mind-body awareness

training (MBAT) to improve the learning rate and appli-
cability of BCI to a greater population of human subjects.

This body of work reflects our approach of focusing on the

brain aspect of the BCI, including user engagement, brain

source imaging, brain stimulation, and mind-body aware-

ness training. We will review research efforts in these four

thrust areas, including our latest findings, and then discuss

the challenges and future perspectives to establish a

noninvasive BCI system for broad use in daily life.

II . BCI CONTROL OF PHYSICAL DEVICES

BCIs have the potential to provide two key benefits to

disabled users: an alternate means of communication, and

the ability to independently move around in and interact

with their environment. Past BCI research has primarily

focused on the communication aspect with spelling sys-

tems utilizing P300 responses [28]–[31], SSVEPs [32]–

[35], and sensorimotor-rhythms (SMRs) [19], [36], [37].

However, there is great potential for BCI systems to pro-
vide a means of physical interaction that can restore criti-

cal aspects of autonomy for disabled users and eventually

to offer alternate output pathways for healthy users [6].

The bulk of BCI research has focused on simplified

tasks confined to a 2-D computer monitor, such as text

entry or movement of a virtual cursor [18]. However, in

recent years an increasing amount of effort has been

Fig. 1. General concept diagram of a motor imagery-based brain-computer interface (BCI). A user imagines some motor action, but performs no

actual physical movement. The imagery produces a measurable signal that can be recorded with EEG, filtered, and decoded to determine the

user’s intent. Once an estimate of user intent is obtained, a variety of physical devices can be controlled as an artificial substitute or replacement

for the user’s natural motor movement.
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devoted to using BCIs to interface with physical devices, real
or virtual. This includes BCI control of virtual helicopters

[25], [38], physical quadcopters [15], wheelchairs [39]–[42],

limb orthoses [43], and telepresence robots [44].

The common paradigm of a paced, cued virtual cursor

task is suited for characterizing fundamental BCI charac-

teristics such as classification accuracy and subject per-

formance, but its practical utility in assisting users with

activities of daily living is limited. BCI control of physical
devices encourages translational research, advancing tech-

nologies that can be useful in real-life conditions. BCI

experiments with physical devices are important for dis-

covering practical issues that these systems will face in

real-life environments [45] and can better inform how to

design rigorous and useful virtual experiments in the fu-

ture [15]. Additionally, BCI tasks involving physical device

control have been observed to increase research subject
motivation [25], [38], which may influence BCI perfor-

mance [46].

A. Control Paradigms
A variety of input signals, classification methods, and

task paradigms are available for BCI systems. There are

several key considerations when using a BCI to control a

physical device.

1) Continuous Control: The system must be able to re-

spond quickly and smoothly to changes in both dynamic

neural processing as well as the external environment.

Discrete selection methods and synchronous (cued) trial

structures may not be adequate for attaining fast response

times in some applications. Some work has been done ex-

amining P300 and SSVEP-based humanoid robots [47],

robotic arms [48], and wheelchairs [34], [49]. However,
the P300 response does not allow for continuous control,

and both P300 and SSVEP require focusing of visual at-

tention on a presented stimulus, which may distract a user

from observing their surroundings. Distraction in an

SSVEP paradigm could be minimized by incorporating

flashing stimuli into a virtual environment while still

allowing for continuous control [50], [51], however this is

not likely to be feasible in nonvirtual settings. For these
reasons, BCIs based on SMRs have been pursued for control

of physical devices [6], [15], [40], [52]. SMR-based BCIs

allow for continuous, asynchronous control paradigms,

although challenges still exist because of the limited infor-

mation transfer rates associated with these systems.

2) Multidimensionality: A single dimension of control, or

a single degree of freedom, is typically not sufficient for
complex real-time physical interaction with the environ-

ment. Therefore, most BCI systems controlling physical

devices employ methods to interpret multiple simulta-

neous control signals from the user. For example, in [15]

users performed MI of left or right hands individually to

rotate left or right, imagery of both hands to move up, and

rest to move down, as illustrated in Fig. 2. Users could

modulate these control signals independently and use
them to simultaneously induce movement in multiple

dimensions.

3) Level of Control: A system designer must carefully

consider how outputs will be controlled by user input. At

the lowest level, a user’s filtered SMR signal may control

the position, velocity, or acceleration of the physical device.

Alternatively, users could provide higher level abstract
instructions and rely on an intelligent semi-autonomous

system to manage the details of low-level control.

Absolute control of position may make sense for a

manipulator such as a robotic hand, in which a user per-

forms MI to open the hand to a desired position and rests

to return the hand to a closed position. However, with a

noisy input signal, this control paradigm may produce

abrupt movements and could make it difficult to hold a
device in a given position. Additionally, nonstationarities

in the control signal [53] may make it difficult to consis-

tently map a user’s intent to absolute positions or orien-

tations over extended periods of time.

Because of these difficulties, velocity control is more

common. With this paradigm, a user performs MI to

change the position of an object, whereas the position is

held when the user rests. This control method has been

Fig. 2. Schematic diagram of an example control paradigm. As described in [15], a user controls a wireless quadcopter to fly through

target hoops in three-dimensional space by imagining movement of left or right hands to turn left or right respectively, both hands to

move up, or resting to move down.
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used widely in the traditional virtual cursor task [18] and is
relatively well established. Studies show that SMR EEG

signals can be used to decode users’ intention of velocity in

an MI paradigm [54], which could help to make BCI velo-

city control more intuitive. However, velocity control can

produce some unrealistic movement commands (e.g., sud-

den changes in speed) that are not physically feasible [15].

Acceleration control, or force control, can provide a

more intuitive experience [15]. For these paradigms, a user
performs MI to change an object’s velocity, resulting in

relatively smooth changes in position over time. By cou-

pling a user’s intent to applied force (or change in velo-

city), objects appear to move according to more natural

physical principles. Typically some damping force is ap-

plied to counteract the user’s ‘‘applied’’ force, bringing the

device to a halt gradually when the user rests.

A noninvasive SMR-BCI effectively bypasses much of
the closed-loop neural circuitry responsible for smooth

motor actions (e.g., proprioceptive sensory feedback, cere-

bellar circuitry, etc.), and instead solely bases movement

off of a gross increase or decrease in energy of specific

neural oscillations. As a result, the hardware and software

of the BCI system must provide a significant amount of

smoothing and other intelligent processing to convert

user-generated signals into functional and safe actuator
outputs. Some simpler safety measures are to limit maxi-

mum acceleration and maximum velocity. However, there

are many more possibilities for safeguards with more ad-

vanced systems. For example, a quadcopter may perform

automatic takeoff and landing [15], or a wheelchair may

perform automatic obstacle avoidance [52].

As these systems become more complex, the concept of

shared control arises. In these setups, the human user is no
longer the only entity providing input. An ‘‘intelligent’’

automated controller is also employed to provide input or

some cooperative assistance to help the user accomplish

the desired task [38], [55], [56]. The level of assistance

provided by this intelligent controller can vary: a novice,

untrained user may require significant support, while an

experienced user may be allowed more dexterous manual

control of the system. At the highest level, a user may
select a predetermined action (e.g., ‘‘go to kitchen’’) and

allow the system to carry out all the necessary steps to

complete that action automatically (navigate through sev-

eral rooms, open any doors, etc.). Because these higher

level commands require only sporadic input from the user,

they may reduce fatigue associated with long-term conti-

nuous control tasks [57]. Additionally, if a system can

operate with infrequent discrete commands from the user,
a smaller number of robust control signals can be utilized

with a decision tree structure to select from many high-

level commands [58].

4) Noncontrol State: During the practical use of a BCI

system, the user needs to be able to focus on activities

other than controlling the device. There are several ways to

implement robust noncontrol states in which the BCI
system does not respond to the user’s stray control signals.

The most straightforward approach is to choose strong

control signals that are easily discriminated from a rest

condition, such as foot or hand MI [40]. If the rest state

can be reliably recognized, it can facilitate self-paced ope-

ration of the BCI, in which the system can immediately

respond to new input from the user while also tolerating

periods of inactivity [59]. However, this method does not
lend itself to rejecting user input for long periods of time

due to noise in the control signal and minimal time needed

to trigger an action. A more practical method is to imple-

ment some type of brain-controlled ‘‘switch’’ that activates

or deactivates physical device control [60]–[62]. This

switch does not need as fast of a response time as the

primary BCI control method because it will be toggled

infrequently. A longer response time allows a system de-
signer to choose a much more robust signal which will

have a low false positive rate [63]. For example, a pre-

specified sequence of mental tasks (MI or others) could be

used to enable and disable system control [64]. Alterna-

tively, a hybrid BCI could employ other signal types, such

as SSVEPs, P300 responses, heart rate [65], or even a

different modality such as near-infrared spectroscopy

(NIRS) [66], to enable and disable full device control.

B. Training
Unlike other paradigms such as P300 and SSVEP-based

BCIs that require minimal training, SMR-based BCIs typi-

cally require much longer training periods. In order to

attain high levels of performance, the user and the BCI

system both need time to adapt to each other. The user is

not expected to be able to achieve competent control im-
mediately upon interacting with the device. Instead, a

prescribed training process is often employed, both to in-

troduce the user to the system and to provide calibration

data for the system’s classifier(s).

When working with multidimensional BCIs, users may

begin with independent single dimension control, then

progress to more dimensions as they achieve competency

[15], [18], [25], [38], [67]. This approach has several be-
nefits. Single dimension tasks are generally perceived to be

easier, which helps to maintain subject motivation during

the early learning stages, whereas a multidimensional task

may excessively frustrate new users. Initial training in a

single dimension may also give the user clearer or more

obvious feedback on individual control signals. In one

training paradigm, subjects begin with simple 1-D and 2-D

cursor tasks, progress to a virtual task mimicking real
physical control, and then progress to an actual physical

control task [15].

In contrast, it is also possible to have new users begin

immediately with full multidimensional control [68].

These systems typically rely on an initial calibration of a

data-driven machine learning algorithm with minimal user

training required. However, starting untrained users with
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a more difficult task with higher failure rates risks increas-
ing frustration and limiting learning [69]. A variety of

methods for optimizing training have been described in

the literature [69]. User-centered training approaches may

be employed in which control tasks and signal processing

algorithms are highly customized to individual users [70].

Alternate forms of feedback can provide users with sup-

plementary or redundant information to aid learning [71],

[72]. Motivation can be enhanced by biasing feedback [73]
or adaptively adjusting task difficulty [74] to reduce user

frustration. Novel or entertaining tasks can help to main-

tain user interest. In particular, game-like structures and

virtual environments can have a significant impact on user

learning and performance [63], [75]–[78].

Control of devices within a virtual reality (VR) environ-

ment plays an important part in training users to control

physical devices. A virtual environment is not subject to
the physical, mechanical, or economic constraints of real

devices; this freedom allows simulation of a greater range

of experimental protocols and facilitates the exploration of

new types of hardware without added expense or design

work. Importantly, a virtual environment does not risk

compromising the safety of a subject controlling a prosthe-

tic or wheelchair system [40], [79]. Virtual experiments

can be much more rigorously controlled, allowing for re-
peated trials with highly consistent conditions in a virtual

environment. Additionally, VR facilitates measurements of

user and system performance. For instance, a simulated

quadcopter’s position, orientation, and velocity can be

easily measured in a virtual environment, whereas com-

plex specialized hardware would be required to make sim-

ilar measurements in reality. Despite these advantages, VR

experiments cannot fully capture all of the practical issues
that will be encountered in real-world use. For example, a

wheelchair simulation cannot provide the user any pro-

prioceptive sensation of acceleration in a way that mimics

actual wheelchair movement.

C. Measuring Performance
Robust performance metrics are critical in assessing

the performance of online BCI systems. Task-specific me-
trics can be used for quantitative comparisons within sub-

jects over time and between subjects within a study. More

general metrics, often founded in information theory, can

facilitate comparison of performances between studies

with slightly different conditions or even drastically differ-

ent task structures.

Simple task-specific metrics can provide some practical

information on user performance. Metrics such as percent
valid correct (PVC) and percent total correct (PTC) are

used in BCI tasks with fixed targets. PVC compares the

number of correct target hits to total number of target hits

(correct or incorrect). PTC compares the number of cor-

rect target hits to the total number of trials, including

timeouts or aborts where no target was hit. While these

metrics are easy to compute and provide intuitive mea-

sures of user performance, they do not provide meaningful
quantitative comparisons between different tasks.

Many conventional BCI performance metrics, such as

information transfer rate (ITR) [80], [81], have been es-

tablished in the context of very controlled, simple fixed

choice tasks such as 1-D cursor control. With physical de-

vice control and other complex BCI paradigms, these me-

trics are often no longer suitable for characterizing system

performance [74], [82], [83]. Targets may not have equal
probabilities of being hit, trial length may not be highly

controlled, or there may not even be any distinct trials

built in to the task paradigm.

Another common performance metric, particularly

suited for cursor movement or similar tasks, is the index

of difficulty (ID) based on Fitts’ law, initially developed to

characterize human motor movement [84]

ID ¼ log2

D

W
þ 1

� �
(1)

where D is net movement distance from starting position

to the target, and W is the width of the target [85]. This

can be converted to an approximation of ITR simply by
dividing ID by the time taken to reach the target [15].

However, as described in detail in [74], there are several

limitations to this metric, particularly with regard to its

inability to facilitate quantitative comparisons between

different tasks.

One common method for characterizing complex BCI

system performance is to compare user BCI control to

random chance control and ‘‘ideal’’ (manual) control con-
ditions [15], [25], [38], [52], [74], [86]. The random con-

trol condition provides a baseline measure of worst case

performance, in which a subject has no influence on the

experiment outcome. The manual control condition, often

implemented as keyboard or joystick control, provides a

measure of the best case performance. It is also possible to

perform an additional reference measurement to charac-

terize how much a given signal processing pipeline de-
grades system performance, using manual control to

generate a pseudo-BCI signal [74].

In general, it is difficult to apply generalizable perfor-

mance metrics to a given task without making assumptions

about various statistical parameters of that task (e.g., that

all targets are presented with equal probabilities). Because

of this, it is important to choose a suitable performance

metric early and incorporate its constraints into the expe-
rimental task design.

D. Future Directions
BCIs have great potential for providing assistive solu-

tions to disabled individuals and eventually also providing

general-purpose interfaces for healthy users. However,

there remains a significant amount of work to be done
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before BCI physical device control systems will be practical
for widespread real-world use.

Higher dimensional control is critical for complex

physical interaction with the environment. One possible

way to increase dimensionality is to decode additional MI

tasks, such as using an inverse-solution-based BCI to dis-

criminate between imagery of different hand gestures [87].

This high-resolution decoding could potentially allow for

more naturalistic MI tasks, such as using finger MI for
dexterous control of the fingers of a prosthetic hand. Con-

ceivably, naturalistic MI would be more intuitive for users

and thus require less training time.

If these systems are going to be used in the real world

as assistive devices, they will need to be much more than

just single-purpose systems. A multifunctional BCI system

would provide integrated control of multiple devices (e.g.,

wheelchair and robotic arm) and allow for dynamic
switching between output tasks (e.g., slower fine move-

ment control for grasping a utensil, and faster gross control

for opening a door).

Future advances in robotics, including autonomous

navigation and environmental interaction, will drive a

transition towards control of more intelligent systems with

higher level user input. Users may not need to dexterously

control individual joints in a robotic hand, but instead
robustly communicate their intent to grasp a specific ob-

ject and allow an intelligent BCI-controlled system to per-

form the task.

Finally, a major future aim is to improve the quality of

the MI signal generated by users. There are many possible

methods for enhancing a user’s control capability. We will

discuss several approaches in the following sections.

III . SOURCE ANALYSIS-BASED BCI

EEG is well known to have excellent temporal resolution

in tracking neural dynamics across the scalp but suffers

from the drawback of limited spatial resolution. The low

spatial resolution of EEG is attributed to the smearing of

electrical signals as they travel from the brain, through the

skull and meningeal layers, to the scalp. This phenome-
non, referred to as the volume conduction effect, results in

the detection of mixed signals at individual electrodes on

the scalp [88]. Historically, a number of efforts have been

made to correct for the volume conduction effect of EEG

by solving the so-called ‘‘inverse problem’’ which projects

the scalp EEG back into the source domain, over the brain

surface or within the brain [88], [89]. In such source

analysis, the relationship between neural sources and the
scalp EEG is established by a forward model which leads to a

transfer matrix that maps brain electrical activity to the

scalp EEG [90], [91]. Neural activation, in terms of mem-

brane excitation of neurons, results in transmembrane

currents, which generate current flow within the brain.

The resulting electrical potential, as sensed by electrodes,

is the observed scalp EEG. The activity of a single neuron,

or the random firing patterns of multiple neurons, is too
weak to be detectable at the scalp. Rather, only synchro-

nized neural networks involving a large number of neurons

generate strong enough signals to be detected by the EEG

electrodes. Since brain function is encoded by networks

involving a number of neurons firing in a synchronized

manner, EEG provides a noninvasive manifestation of the

underlying synchronized neural networks’ activities, thus

revealing brain function or dysfunctions. The superposi-
tion of neurons firing simultaneously and synchronously

amplifies the signal produced by a local population and can

be modeled by a single dipole on the macroscopic scale.

The scalp EEG can then be considered as the result of a

distribution of equivalent dipoles located within the head

volume conductor.

The forward solution determines the contribution of

each dipole within the brain model to each electrode
located on the scalp. The forward conduction from equiv-

alent current dipoles to the scalp potential has been mod-

eled using spherical models, realistic geometry boundary

element models [90], [91], and finite element models [92],

[93]. The forward conduction from the dipole distribution

to the scalp electrodes can be represented by a transfer

matrix A. The system equation of EEG generation can then

be written as

b ¼ Axþ n (2)

where x is the source activity, b the EEG measurements,

and n the measurement noise.

The source analysis entails solving (2) seeking x, given

EEG measurement b, and anatomical information A,

which can usually be obtained from subjects’ structural

MR images. The concept of source analysis-based BCI is

illustrated in Fig. 3, in comparison with the traditional
sensor-based BCI approach. Since source signals more

closely reflect neural activation, we hypothesized that the

use of source analysis will improve the performance of

BCI and have demonstrated its merits in classifying MI

tasks [94]–[96].

A. Source Analysis and BCIs
Sensor-based SMR BCIs take advantage of the event-

related phenomena observed at specific electrodes located

along the motor cortex. Large numbers of neurons in the

motor cortex maintain an idling firing rate in the alpha/mu

band (8–13 Hz) and synchronize within focal regions
based on the type of task being performed. Upon executing

or imagining movement, the cortical processing of neurons

encoded for different movements disrupts that idle state

and results in a desynchronization of certain local popula-

tions. These phenomena are termed event-related syn-

chronization (ERS) and event-related desynchronization

(ERD), respectively, [27] and are visualized in Fig. 4.
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Fig. 3. Concept of EEG source imaging-based BCI. Source signals can be estimated from scalp EEG measurements in conjunction with the

head conduction model and used to control a computer cursor.

Fig. 4. Source imaging of right and left hand MI tasks in (s) source space and (b) sensor space. (c) Time-frequency representation of the

C3 and C4 electrode waveforms capture the ERD and ERS phenomena occurring during these two tasks. Localization of this event-related

activity to the motor cortex indicates that neural processes responsible for the BCI control signal originate in the sensorimotor cortex [96].
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Because of the brain’s contralateral motor control, when
an individual executes a motor movement or motor imagi-

nation, ERD is usually observed in the contralateral hemi-

sphere, whereas ERS is often observed in the ipsilateral

hemisphere and/or along the brain’s midline. SMR BCIs

exploit this neurophysiological phenomenon by detecting

different spatiotemporal patterns of increased or decreased

activity to determine which motor task a user is perform-

ing; however, traditional BCIs rely only on those patterns
recognized from signals collected from a limited number

of electrodes on the scalp.

EEG source analysis, on the other hand, has revealed

additional information regarding the source generators of

these fundamental control signals. Yuan et al. [96] applied

linear inverse methods to prerecorded 1-D BCI data to

show not only that the ERD/ERS in response to right and

left hand MI tasks have unique anatomical traces within
the sensorimotor cortex [Fig. 4(a)], but also that the event-

related activity from the source domain was better corre-

lated with the BCI task than that from the scalp electrodes.

Qin et al. [94] first reported the connection between

MI tasks and equivalent dipole modeling by separating, in

an offline setting, left and right MI tasks on a trial-by-trial

basis. Equivalent dipole modeling has been shown to lo-

calize neuronal sources with high accuracy [90], [97], [98].
In this approach, multiple signal processing techniques, in

addition to data-driven signal separation algorithms,

including independent component analysis (ICA) [99],

[100], were used to isolate the signal generated in response

to MI. Components accounting for high levels of variance

within the EEG envelope are thought to represent dynamic

on–off processes relative to a specific task, which in this

case is the activation or deactivation of cortical regions
responsible for performing MI. By fitting a single equiva-

lent dipole to selected component maps at time points of

maximal activation, a simple classification scheme was

derived. Each trial was classified as a right-hand MI trial if

the dipole localized to the right hemisphere and was clas-

sified as a left-hand MI task if the dipole localized to the left

hemisphere. This work was soon after explored with a two

equivalent dipole analysis in a similar fashion; however,
both dipoles were required to localize to one hemisphere in

order to classify the trial as either left- or right-hand MI

[95]. In both of these studies, classification rates of > 80%

were achieved, making these source analysis techniques

highly competitive with sensor-based methods.

Despite the promising results using equivalent dipole

analysis for classifying MI tasks, such parametric methods

need to solve a nonlinear inverse problem and thus may
not be suitable for real-time implementation of online BCI.

Nonparametric solutions, on the other hand, not only

provide more distributed activation patterns but also have

the capability of being applied in real time using simple

matrix algebra [101].

Nonparametric inverse solutions can offer additional

information over parametric methods in the sense that

these techniques estimate the current density over the
entire cortex. These methods involve minimizing the norm

of the residual between the model-predicted and recorded

scalp EEG distributions, as shown by the first term in (3).

For this discussion, only the L2 norm will be discussed

although in principle other norms may be applied as well.

Nonparametric solutions involve many more equiva-

lent dipoles than the scalp electrodes and are thus ill-posed

inverse solutions which require regularization [88], [102].
In the conventional minimum norm solution, in addition

to minimizing the residual [first term of (3)], constraints

are applied to minimize the norm of the solution [second

term of (3)] in a minimal energy sense. To balance the

influence of these two terms, a regularization parameter �
is introduced to control the impact of each term on the

final solution. The optimal value of � can be found using

various techniques including the generalized cross-valida-
tion and L-curve methods [103], [104]

minx kAx� bk2
2 þ �kxk

2
2: (3)

When the penalizing term in (3) is quadratic, this for-
mulation is known as Tikhonov regularization and allows

(3) to be solved analytically in the form of (4), where I is

the identity matrix [105]

x ¼ ATðAAT þ �IÞ�1
b: (4)

This solution, termed the minimum norm estimate
(MNE), can be further generalized into forms where

a priori knowledge of source and sensor correlation can be

integrated into the solution [88].

The MNE and its variations have become much more

popular than parametric inverse solutions in the BCI com-

munity in order to quickly localize and image brain activa-

tion patterns that are responsible for controlling these

systems. For many of these studies, the inverse solution was
used to map the scalp data onto a higher dimensional cor-

tical space so that the activity of specific dipoles, rather

than signals recorded by scalp electrodes, could be exa-

mined for MI task classification. Common statistical mea-

sures, including information theoretic metrics, were used

to identify regions of interest (ROIs) on the cortex that

contained dipoles which best separated MI tasks [106],

[107]. Single-trial signal dynamics from the preselected ROIs
were then broken down into time-frequency features, in a

similar fashion to [108] and fed into a linear classifier.

A simulation study with similar ROI selection methods

compared the classification between source and sensor

space using both time-frequency and phase-locking fea-

tures from multiple ROIs [109]. In this study, sensor

clusters on the scalp were selected to resemble those ROIs
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on the cortex; with the same features taken from both the
electrode groups and cortex ROIs, reconstructed source

activity yielded binary classification results up to 12%

higher than classification from scalp activity. In particular,

this study found that the phase-locking value between

different cortical ROIs produced better accuracies than

time-frequency features. This result indicates that infor-

mation from multiple brain regions can significantly

improve the identification of different brain states and
that this information can be more precisely extracted in

the source domain than in the sensor domain.

It should be noted that various other spatial filtering

techniques have been implemented for the classification of

MI tasks with comparable results to EEG inverse solutions.

Of these, the common spatial pattern (CSP) algorithm is

widely accepted as a technique known to yield successful

separation of different MI tasks [110]–[112]. Despite the
fact that EEG inverse solutions and CSP are both used to

generate spatial filters that are then applied to the scalp

recorded data, the two techniques have key differences.

Where the EEG inverse solutions derive the filter based on

the geometric constraints introduced by the head’s anato-

my to remedy the distortions introduced by the physical

process of volume conduction, CSP is a data-driven ap-

proach that produces sensor weights based on statistical
measures that best separate the different MI tasks. Even

though some studies have implemented CSP-based classifi-

cation with more than two tasks [68], [113], this technique

is difficult to implement for a multi-class MI-based BCI and

thus limits the dimensionality of sensor-based BCIs. Fur-

thermore, since the CSP and inverse solutions are based

upon different principles, these two methods can be used in

combinationVthat is, CSP can be applied in the source
domain.

A study conducted by Congedo et al. [114] attempted to

combine these two methods for a two-class MI paradigm

by projecting the scalp potentials onto a template brain and

applying CSP in different frequency bands. This study

found that the combination of these two methods yielded

results similar to those previously described and greater

than that of the tradition sensor-only paradigms. Of greater
importance though is the fact that this study further sup-

ports the idea that by working in the source domain, more

spatially specific information can be extracted to better

determine a user’s motor intent. Additionally, the im-

provement of distributed nonparametric solutions over

parametric methods verifies the idea that current density

source imaging provides increased information related to

the distinct cortical patterns generated by different MI
tasks and is more suited for possible online paradigms.

B. Online Applications and Future Directions
The previous discussion has focused solely on offline

classification of different MI tasks; however, most of these

studies include information from limited time points to

test their methods. Nevertheless, the activity generated in

response to MI tasks is a dynamic process which fluctuates
over time. Therefore, even though BCIs utilize MI tasks, a

subject must be able to sustain focus in order to generate

distinct patterns and control an output device. Studies

[115] and [116] were conducted to determine if inverse

solutions could be used in an online paradigm to gain bet-

ter control of a BCI than when using sensor data from the

scalp. In these studies, a linear inverse solution was integ-

rated into the BCI2000 [117] platform’s filtering module
with ROIs selected from those regions dedicated to control

of different body parts [118]. Waveforms from multiple

dipoles within these ROIs were then used to control the

BCI rather than the waveforms from selected electrodes.

These studies found that control signals arising from the

EEG inverse solution were better correlated with the mo-

tor intent of the subjects and therefore provided improved

control for the user. This finding was corroborated by the
offline analysis in [96] comparing the source and sensor

signal correlations with the BCI task and the comparative

study of EEG source imaging and BOLD functional MRI for

movement and MI tasks [119].

With the recent development of additional real-time

source imaging platforms, various online paradigms have

utilized linear inverse methods to investigate the ability of

subjects to modulate signals generated in specific regions
of the brain for training of BCI control [120]–[122]. The

aforementioned offline analysis of cursor control indicates

that the underlying control signal for these systems is di-

rectly based on the event-related activity generated in the

sensorimotor cortex during different MI tasks. Therefore,

the strength of the control signal for these systems depends

on the ability of a user to voluntarily modulate activity

within specific populations of neurons. By estimating cor-
tical activity during these tasks, the information subspace

expands from tens of electrodes to thousands of dipoles,

which better represent the geometry of the brain and its

neural processes. By incorporating this anatomical infor-

mation, the inverse solution provides a means to better

constrain the information used for interpretation of motor

intent. When in the form of ROIs, these constraints can

provide subjects direct neurofeedback regarding their per-
formance of a MI task and can strengthen the control

signal needed for BCI control [123], [124]. Using source-

level neurofeedback, it can be seen that the neural re-

sponse to MI tasks converges to focal regions on the cortex,

indicating that sensor space may be a limiting factor in BCI

control [125]. In the larger information subspace of the

inverse solution these regions can be better isolated for

interpretation, whereas the signals collected in sensor
space contain mixed information from expanded cortical

regions, incorporating noise or activity that is irrelevant to

the task being performed.

We have recently begun to extend the source level

ideology, which we have proposed since 2004 [94], by

investigating the unique dynamics, on the cortical level, of

more downstream MI tasks of the hand [87]. We have
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investigated the discriminability of MI tasks of right hand

flexion, extension, supination, and pronation in three

human subjects. After an inverse transform, an ROI located

over the left motor cortex was selected as the estimated

right hand dedicated cortical region similar to [116]. Using
time-frequency features from dipoles within this ROI, we

aimed to determine how distinct the traces of each MI task

were by performing four one-versus-all classifications. The

most discriminable features in source and sensor space

were separated using a linear classifier. The source analysis

yielded > 85% classification accuracy for two of the four

tasks, whereas the sensor analysis was not able to achieve

> 85% for any of the tasks (Fig. 5). Furthermore, the
source analysis improved the classification accuracy by up

to 15% over the sensor analysis across the four tasks. When

considering a chance level of 50%, this advancement re-

presents a noteworthy upgrade in the ability to indepen-

dently decode the different MI tasks. These results further

suggest that a source level feature space provides more

discriminable information, in terms of motor intent, than

the sensor domain and warrants further investigation.

IV. TDCS AND SMR-BASED BCI

The use of inverse source imaging allows us to spatially and

temporally locate the regions on the cortex involved in MI-

based BCI and with this information we can turn our at-

tention towards the use of emerging neuromodulation

technologies to alter the activity at these sites. Such nonin-

vasive neuromodulation technologies are being increas-

ingly investigated for targeting learning and behavior [126].
Of particular interest are reports that applying anodal

transcranial direct current stimulation (tDCS) during mo-

tor tasks results in improved learning and performance

[127]. As MI and motor execution proceed from similar

neural correlates [119], [128], it may be possible to combine

tDCS with BCI to improve BCI learning and performance

by directly modulating the brain.

A. tDCS, Motor Learning, and Motor Imagery
tDCS, a noninvasive neuromodulation technology, was

first investigated in its modern form less than two decades

ago [129], [130]. tDCS consists of a current source con-

nected to the scalp via electrodes, through which a low

level of current is applied and passed into the brain [131].

The amplitude of tDCS stimulation is generally set be-

tween 0.5–2 mA for between 5–30 minutes; this current is

gradually increased over 5–30 s to a constant current
which is held for the duration of stimulation and then

ramped down at the end of stimulation. tDCS does not

result in direct neuronal firing but rather modulates the

membrane potentials of affected neurons to increase or

decrease excitability. tDCS suffers from the fact that the

skull is much less conductive than the skin and cerebro-

spinal fluid, which reduces the focality of stimulation.

However, it is inexpensive, mobile, easy to apply, and has
been suggested to be functionally targeted [132] due to its

effect on neuronal excitability and influence on ongoing

task-specific neural activity.

Traditional tDCS consists of two electrodes: an anode,

which generally increases the excitability of underlying

cortical tissue, and a cathode, which generally decreases

the excitability of underlying cortical tissue. In high-

definition systems, multiple electrodes are used in
combination as anodes or cathodes to allow for controlled

current during the stimulation. Initial evaluation of tDCS

effects were performed by delivering anodal stimulation

over the primary motor cortex and using transcranial

magnetic stimulation (TMS) to induce a motor evoked

potential (MEP), the activation of a peripheral motor

neuron by stimulation of descending motor neurons in the

brain. Following anodal tDCS over the motor cortex, the
MEP was increased, suggesting greater cortical excitability

following the stimulation, while cathodal stimulation

decreased MEP amplitude [133]. This modulation has

been found to last up to an hour following stimulation and

improvements in task learning can remain up to 3 months

poststimulation [134].

The mechanism of action of tDCS lies in altering the

membrane potential across all areas of affected neurons,
including dendrites, cell bodies, and axons. The distribu-

tion, connectivity, and geometry of these neuronal ele-

ments have been characterized and the effects of tDCS have

been investigated in vitro [135], [136], but the effects within

the human cortex are more difficult to determine due to the

lack of in vivo imaging of human tissue. Based on in vitro and

computational modeling studies, tDCS either depolarizes

or hyperpolarizes the membrane of neurons, but the cur-
rent flow and voltage changes induced by tDCS are complex

due to head anatomy and tissue geometry, including corti-

cal sulci and gyri and the neurons’ orientation within these

macrostructures [137], [138]. The resulting effects on

membrane potentials can thus be different in sign and

magnitude in a spatially localized area. Additionally, differ-

ent cortical layers can receive different polarity stimulation

Fig. 5. Average one-versus-all classification results from three

subjects comparing the source (ROI) and sensor data for the

different MI tasks (ExtVExtension, FlexVFlexion, SupVSupination,

ProVPronation).
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simultaneously based on cortical and neural geometry and
thus the actual behavioral results are difficult to predict

[139], [140].

tDCS has been used in humans to safely modulate neu-

ral tissues for over a decade [129], [130], [141]. There have

been a plethora of proposed targets for stimulation from

learning, in realms such as mathematics, and mental health

conditions such as schizophrenia, depression, attention

deficit hyperactivity disorder, and obsessive compulsive
disorder [131]. Of specific interest to the BCI field is the

work on motor learning to evaluate the behavioral effects of

tDCS both acutely and with respect to motor learning over

time. Anodal stimulation over the motor cortex has resulted

in a faster learning rate for implicit [142] and explicit [143]

motor learning as well as retention of the learned paradigm

[134], [144]. With cathodal stimulation, Nitsche and col-

leagues and Stagg and colleagues also found the opposite or
no effect in using the same motor learning paradigms.

These studies, and others [139], [145], suggest that anodal

tDCS can improve behavioral motor learning across impli-

cit and explicit motor tasks. The timing of tDCS application

in relation to task learning is of utmost importance. Phar-

macological and experimental evidence suggest tDCS ap-

plication during, as compared to prior to or after, learning

of a new motor task results in a faster learning rate and an
increased performance for up to six months post stimula-

tion when compared to controls [145].

The networks underlying MI overlap with those that

underlie motor execution [128], particularly within the

premotor and motor areas, but the effect of tDCS on MI

ability is not clear. Increased MI desynchronization has

been found in both healthy [146] and stroke [147] subjects.

With anodal stimulation of the primary motor cortex, both
studies found an increase in the ERD of the stimulated

hemisphere, suggesting that there is an increase in excita-

bility during MI following tDCS. More recently, Lapenta

and colleagues [148] investigated MI by following tDCS

stimulation of 2 mA for 20 minutes with MI and motor

observation and found an effect opposite of the initial MI

studies: that anodal stimulation decreased the ERD in the

same hemisphere as stimulation for both MI and during
motor observation. A recent study combining 64-channel

EEG recording of MI before and after high-definition

anodal tDCS found similar results: a decrease in beta band

ERD in the stimulated hemisphere [149]. With these dif-

fering results being reported, further work needs to be

done to clarify how tDCS affects MI ability acutely follow-

ing stimulation.

We hypothesized that simultaneous anodal tDCS over
the primary motor cortex can improve motor learning and

result in an enhanced outcome of MI-based BCIs. Despite

a number of efforts, SMR-based noninvasive BCIs face

challenges including long training time and the inability of

20% of healthy subjects to learn to self-modulate SMR-

based BCIs [150], [151]. As motor learning can be improved

with specific tDCS paradigms, the integration of tDCS and

SMR-based BCIs promises to improve BCI learning
through similar MI-based pathways.

B. tDCS and Online BCI
A key factor in the combination of tDCS with learning

is the timing of the stimulation with respect to the perfor-

mance of the task [145]. An initial study of anodal tDCS

followed by BCI has reported to increase ERD over the

stimulated motor cortex during BCI performance follow-
ing 15 minutes of 1 mA sponge electrode stimulation, but

this did not result in an increase in performance within a

single session [152]. With this setup, the sponge electrodes

interfere with the EEG recording electrodes due to their

relatively large size, and online BCI could not be per-

formed simultaneously with stimulation. More recently,

Soekadar et al. utilized trained SMR-BCI subjects to inves-

tigate acute BCI performance under stimulation conditions
[153]. All subjects initially underwent sham stimulation,

and on a second day, half of the subjects underwent sham

and the other half underwent anodal stimulation while

performing SMR-BCI acutely. There was no change in

performance for those who received anodal stimulation

compared to the sham stimulated group. This work paral-

lels the mixed results that have been found in the appli-

cation of tDCS followed by MI, but does not address the
ways in which tDCS could affect learning over time.

Recently, we have begun to evaluate changes in neural

activity and performance during BCI learning induced by

simultaneous BCI-tDCS in naBve subjects. As previous mo-

tor learning work suggests, simultaneous stimulation and

task performance optimizes the effect on task learning

(Fig. 6). We utilized high-definition tDCS combined with

64-channel EEG to evaluate the effect of simultaneous
anodal stimulation on BCI learning. NaBve subjects were

recruited and randomly assigned to either sham or anodal

stimulation for 20 minutes at 2 mA. Stimulation was deliv-

ered equidistant between C3 and CP3 with return elec-

trodes located at a radius of 3.5 cm from the center

electrode. Subjects performed 1-D left/right MI to control

the BCI within the BCI2000 environment. Each session

was divided into four blocks: before stimulation (72 trials),
during stimulation (90–108 trials), immediate poststimu-

lation (72 trials), and delayed poststimulation (72 trials).

The immediate poststimulation occurred from 0–12 min-

utes poststimulation and the delayed poststimulation oc-

curred from 25–37 minutes poststimulation, with a visual

oddball task between the immediate and delayed poststim-

ulation blocks. Power in the 11–13 Hz range at C3/C4 was

used to control the cursor, when possible. During anodal
stimulation, this was not possible on all experimental days;

therefore one of the nine surrounding electrodes was used

instead of C3 to minimize the stimulation artifact. We

evaluated the percent valid correct for each group of sub-

jects at the beginning of the experiment (start) compared to

the result after stimulation during the third experimental

session (end). With our initial group of subjects, anodal
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subjects ðn ¼ 7Þ demonstrated a trend for increased perfor-

mance with an increase in performance from 63% to 73%

resulting in an effect size (Hedges’ g) of 0.63. The sham

subjects ðn ¼ 6Þ showed no change in performance. These

pilot results suggest that simultaneous tDCS and BCI leads
to an increased learning rate over three sessions of 1-D left/

right BCI training (Fig. 6). These initial results show pro-

mise towards utilizing tDCS combined with online BCI to

improve subject learning of the MI task and to improve the

learning rate for this BCI setup, though more subjects are

needed to better understand the learning changes resulting

from tDCS application. In addition, future work will target

subjects showing BCI illiteracy to evaluate if increasing the
excitability of the motor cortex with tDCS during BCI

performance will allow subjects who could not previously

learn to control their SMR to begin to control them.

C. Issues and Approaches to Combining tDCS
and EEG

Motor evoked potentials have been used to initially

evaluate the effect of tDCS, and many groups have utilized

behavioral measures to examine the effect as well, but

simultaneous electrophysiological recordings in humans is
under-investigated due to issues with signal artifacts. Re-

cently, the electrophysiological network effects of tDCS

have begun to be evaluated using both simultaneous EEG

and MEG. These methods can record rapid oscillations and

neural activity altered by tDCS on the millisecond scale,

where these changes underlie reported behavioral changes

for a variety of tasks [126].

With recently developed high-definition tDCS systems

[154], electrodes are the same size as conventional EEG

electrodes and can be placed on a conventional electrode

cap adjacent to the EEG electrodes, which allows for on-

line recording of the EEG during stimulation [149], [154].
In addition, these allow a more localized stimulation area,

reducing current flow to a limited area and reducing po-

tential side effects to nontargeted areas. As anodal and

cathodal stimulation are predicted to affect neural tissue in

opposite ways and can improve or decrease performance in

directed tasks [155], it is important to understand and limit

current flow to areas of interest. Using noninvasive elec-

trophysiological recordings during stimulation is a prom-
ising way of further understanding the effects of tDCS

stimulation on brain networks, as without these online

recordings, we cannot understand the underlying physio-

logical changes that result in the vast number of behavioral

changes reported in the literature [126].

Multiple investigators have now examined neural

activity simultaneously with stimulation including high-

definition tDCS with EEG [149] and conventional tDCS
with MEG [156]. Both have examined stimulation acti-

vity with phantom models and healthy human subjects.

Roy et al. [149] identified tDCS artifacts utilizing phantom

experimental data and cleaned simultaneous data utilizing

maps of independent components. Soekadar et al. [156]

found wideband noise in MEG sensors up to 8 cm from

the stimulation electrodes, though at a greater distance

the noise was primarily below 20 Hz and, in more recent
work using EEG, found most of the induced noise to be

Fig. 6. Overview of conventional approach of stimulation followed by performance with online approach of simultaneous stimulation

and brain-computer interface learning. (bottom right) Subject performance change between beginning of first session and end of last session

(Session 3) for sham ðn ¼ 6Þ (dotted line) and anodal stimulation ðn ¼ 7Þ (solid line) subjects. Error bars represent standard error.
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below 8 Hz [156]. Soekadar et al. [153] also found no
difference in frequency spectra with or without stimula-

tion in the source space for task or baseline data and no

frequency shift in the recorded frequency in the phantom

due to stimulation.

As the tDCS system is maintained at a constant current,

any changes in impedance result in a voltage change that

can interfere with the EEG signals recorded by electrodes

adjacent to the stimulation electrodes. In order to examine
the recorded signal from the brain, these artifacts must be

removed. Multiple techniques have been used and sug-

gested from independent component analysis [149] to

frequency-based filtering or high-pass filtering [153]. This

also yields problems online; while low-pass filtering can be

implemented in a straightforward manner, there are resid-

ual power increases that can affect the ability of the subject

to utilize an affected electrode for BCI control. Future
progress for developing intercompatible tDCS and EEG

devices should aim at reducing or accounting for the noise

induced by the tDCS system.

The increasing investigation and integration of nonin-

vasive neuromodulation and BCIs is beginning to yield

new tools for the delivery of modulation based on brain

states. This concept has recently been introduced in the

field of invasive deep-brain stimulation in order to improve
the delivery of therapeutic electrical stimulation to deep

brain structures [157]. In all BCI techniques we are mea-

suring neural activity, be it invasive or noninvasive, direct

or indirect, and we can exploit this information to improve

our targeting of neuromodulation and the BCI tasks. As the

technical difficulties of EEG recording during the delivery

of electrical stimulation are addressed with online filtering

and artifact removal strategies, we can begin to develop
systems to deliver stimulation at an optimal time and am-

plitude to improve the targeted outcome in the subject or

patient. This closed-loop control will also allow us to better

understand the ability of stimulation technologies to mod-

ulate brain activity as well as to investigate cognitive and

behavioral psychology and neuroscience.

V. MIND-BODY AWARENESS AND BCI

In SMR-based BCI, a key factor is the subject’s ability to

intentionally modulate the SMR signal. SMR-based BCI

performance relies on a user’s concentration level and

ability to focus on modulating a SMR that can be detected

and translated into features controlling an external device.

Literature suggests that there is a portion of subjects who

have difficulty modulating their SMR signal to achieve
even a minimal level of control with a noninvasive BCI

[150], [151]. In order to move noninvasive BCIs towards

clinical application or daily use by the general population,

there is a need to shorten the lengthy training time that is

required by users to achieve satisfactory performance and

increase the proportion of BCI users that ever achieve

acceptable BCI control, even after training [158], [159].

Considerable progress has been made in algorithm,
sensor, and system development within the field of BCI.

While researchers are dedicating substantial effort into the

machine side of BCI utility, little effort has been focused

on enhancing the users’ control abilities. As such, there

exists a need for user-centered training techniques that

focus on the refinement of the mental practices to improve

the signal produced by the user. User-centered BCI train-

ing approaches have been attempted recently [160], [161]
focusing on the brain component of BCIs by emphasizing

early focus on the users, tasks, and environment with the

goal of improving the performance of BCIs. The investiga-

tion of both the ‘‘brain’’ and ‘‘computer’’ aspects will be

important to further improve BCI performance and contri-

bute to its translation for wide applications, considering

that both aspects are necessary for BCI control.

A. Mind-Body Awareness Training
Mind-body awareness training (MBAT), in the form of

yoga and meditation, has recently garnered interest due to

an increasing awareness of the potential health benefits

and improvements in concentration that this training can

provide to practitioners. A consistent and reliable EEG

pattern may depend on an undistracted mind and sus-

tained attention. Yoga and other meditation practices are
considered to be efficient techniques to reduce stress, an-

xiety, and frustration which may otherwise contribute to

an unstable EEG [162].

Meditation is a practice that involves a complex

process of self-regulation and inhibition of interfering

internal and external stimuli, which can enhance a practi-

tioner’s ability to sustain attention. There are many dif-

ferent types of meditation techniques. In general they
can be categorized into concentrative-based meditation or

mindfulness-based meditation. Both categories involve a

sense of nonjudgmental acceptance of single or multiple

stimuli [162]. What different meditation techniques have

in common is their ability to build concentration. It has

been shown that experienced meditators have more distin-

guishable EEG patterns than untrained subjects during MI

performance [163].

B. Mind-Body Awareness Training and BCI
Based upon the observation that some of our best

SMR-based BCI performers were meditation practitioners,

we hypothesized that MBAT would increase a subject’s

learning to control SMR signals and improve the overall

performance of noninvasive SMR-based BCI. The role of

experience with yoga and/or meditation in the initial
learning of an SMR-based BCI has been examined in a

group of human subjects [164]. Fig. 7(a) displays a concep-

tual diagram of the study and the potential role of MBAT

in the context of an SMR-based BCI. The study compared

the MBAT subject group (12 subjects) and control group

(24 subjects; little or no MBAT experience) in early learn-

ing of 1-D cursor movement using MI.
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All subjects were previously naBve to BCI and partici-
pated in three, two-hour BCI experiments. Fig. 7(b) illus-

trates the experimental paradigms. All subjects underwent

the same task progression starting with a left versus right

cursor task, and later with an up versus down cursor task.

Each experiment consisted of ten, three-minute trials using

the 1-D cursor movement task controlled by motor imagi-

nations. Subjects were first introduced to and trained in the

left versus right cursor task. All subjects were instructed to
use imaginations of either left or right hand movements to

move a computer cursor to hit a target on the left or right

side of a computer screen respectively. If subjects achieved

accuracies of � 80% over four consecutive three-minute

runs or an overall session (ten, three-minute runs) accuracy

of� 80%, subjects progressed to an up versus down control

task. This task consisted of imagining both hands versus a

volitional rest state to control the movement of the cursor

to targets located at the top or bottom of a computer screen,

respectively. If subjects achieved accuracies of �80% over

four consecutive three-minute runs or an overall session

accuracy of �80% for this up versus down task, subjects

were deemed proficient in 1-D BCI control. Fig. 7(b)

illustrates the experimental design of subject progression

for the MBAT and control groups and the proportion of
subjects completing each of the tasks.

Fig. 8 illustrates the ratios of weighted average slope

measures for MBAT subject left-right performance as com-

pared to control subject performance. This figure clearly

demonstrates the significantly improved performance of

the MBAT cohort in early learning of SMR-based BCI as

compared with the control cohort. Examination of SMR

EEG in all subjects revealed that for both left versus right
and overall 1-D control, the group-weighted average neural

power measures were greater for the MBAT cohort com-

pared to the control group. This supports the hypothesis

that users with MBAT are able to generate stronger SMR

control signals via motor imagination.

C. Discussion
Our work so far suggests that experience with MBAT,

such as yoga and meditation, can improve learning to

control an SMR BCI using the aforementioned MI para-

digm. Previously it was suggested that more distinguish-

able EEG patterns in terms of ERS could be observed in

human subjects with meditation experience as compared

with controls [163]. This offline study showed that the

classification rate in subjects with meditation is higher

than that in control subjects, although no online BCI ex-
periments were conducted to directly assess the effects of

MBAT on BCI performance. Our online BCI experiments

in 36 human subjects show that MBAT subjects not only

outperformed control subjects in various measures of BCI

control, but that these subjects also demonstrated the

ability to learn at a significantly faster rate than controls.

Such substantially stronger performance in the MBAT

Fig. 7. (a) Conceptual diagram of the study design and the potential

role of mind body awareness training (MBAT) in the context of a

sensorimotor-rhythm-based BCI. The EEG signal that is produced

from motor imaginations is depicted in the background of the figure.

The yellow target bars displayed on the left and right sides of the

figure, in addition to the red ball in the middle, represent the standard

left versus right cursor task that is used for initial 1-D BCI training.

(b) Experimental paradigms. Subjects belong to one of two

cohortsVMBAT practitioners and controls. All subjects undergo the

same task progression starting with a left versus right cursor task,

and later with an up versus down cursor task. Opaque dots on the

figure represent the percentage of subjects (drawn to scale) who have

passed each stage of the protocol. Translucent dots represent the

original pool of subjects. (The impact of mind-body awareness training

on the early learning of a brain-computer interface, K. Cassady,

A. You, A. Doud, and B. He, Technology, vol. 2, no. 3, Copyright @ 2014

World Scientific Publishing Co./Imperial College Press.)

Fig. 8. Ratios of weighted average slope measures for MBAT subject

left–right performance as compared to control subject performance.

The red, dashed line at 1 indicates no difference between the two

cohorts evaluated. A star indicates a statistically significant difference

between the MBAT and control cohorts. (Based on work from [164].)
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group may be due to the process of learning and refining
particular mental techniques that provide subjects with the

experience and practice of modulating their SMRs prior to

even participating in a BCI task. Several forms of yoga and

meditative practices utilize such specific mental tech-

niques that intentionally produce increases and decreases

in the spectral power of the EEG rhythms during training

[165], [166]. As can be seen from Fig. 8, the SMRs pro-

duced in the MBAT cohort are significantly stronger than
those in the control group.

Meditation involves functional and structural changes

of the brain [167]. Concentration is a key element in med-

itation and depends on the ability to focus. Since EEG re-

presents synchronized neural activity within the brain, the

enhanced ability to focus or concentrate may also increase

the ability to produce synchronized brain activity that trans-

lates into detectable rhythmic activity in the scalp EEG.
Through the self-regulation process of meditation, ‘‘neural

noise’’Vbackground nontask related brain activityVmay be

filtered out, leading to more stable EEG patterns.

This work suggests that mind-body awareness may be

considered a mental skill for human subjects, and MBAT

may serve as a means of acquiring such a skill that could be

translated to improved SMR BCI performance. Further

investigation is needed to explore the subtleties of how
mind-body awareness influences BCI performance.

VI. CONCLUDING REMARKS

Controlling computers or other devices using our brain is

no longer science fiction but is now a reality. Sensorimotor-

rhythm-based BCIs offer a noninvasive means of commu-

nicating and interacting with our environment directly
using brain signals based on mental intentions initiated

spontaneously and continuously. With ongoing advances in

wearable sensors, signal processing algorithms, and

‘‘brain’’-centered approaches, SMR-based BCIs may soon

become more common in our daily lives.

Notwithstanding the rapid progress in BCI develop-

ment in the past decade, challenges still exist with regard to

SMR-based noninvasive BCIs. Lengthy training is still
required before most users can use BCIs proficiently, and

there remains a portion of users who may not become pro-

ficient despite extended training. The approaches reviewed

in this paper, including integrating noninvasive neuromo-

dulation techniques to improve the learning of BCI control

and mind-body awareness training to enhance early skill

acquisition, display great promise towards addressing these

issues. Directly targeting a user’s ability to modulate corti-
cal oscillations and attention using mind-body awareness

training or targeting a user’s motivation using robotic de-

vices may allow more users to learn to control BCIs faster.

Furthermore, there are possible benefits to combining

many of these methods to optimize the realization of high-

level BCI control. EEG source imaging is a powerful tool

that can identify the origins of BCI control signals as well as

identify brain regions responsible for motor learning. Crea-
tive study designs targeting these regions with noninvasive

neuromodulation technologies may unlock doors to over-

coming inherent user deficits in regards to obtaining BCI

control.

Integrating noninvasive BCIs into clinical and daily use

is the ultimate objective of the field [168], [169]. The

techniques and technologies we have used have the possi-

bility of being integrated into standard BCI training para-
digms as well as combined with traditional EEG devices.

For the BCI field to progress towards use in everyday ap-

plications, continuous innovation in system design and

optimized signal detection techniques are needed to in-

crease the speed and utility of noninvasive BCIs. Despite

these challenges to the implementation of everyday BCI

use, the field continues to move forward in identifying

novel approaches to improve user training, understanding
the underlying psychological factors influencing learning,

and developing tools to address these challenges. h
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