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ABSTRACT | In their early days, brain–computer interfaces

(BCIs) were only considered as control channel for end users

with severe motor impairments such as people in the locked-in

state. But, thanks to the multidisciplinary progress achieved

over the last decade, the range of BCI applications has been

substantially enlarged. Indeed, today BCI technology cannot

only translate brain signals directly into control signals, but

also can combine such kind of artificial output with a natural

muscle-based output. Thus, the integration of multiple biolog-

ical signals for real-time interaction holds the promise to

enhance a much larger population than originally thought end

users with preserved residual functions who could benefit from

new generations of assistive technologies. A BCI system that

combines a BCI with other physiological or technical signals is

known as hybrid BCI (hBCI). In this work, we review the work of

a large scale integrated project funded by the European

commission which was dedicated to develop practical hybrid

BCIs and introduce them in various fields of applications. This

article presents an hBCI framework, which was used in studies

with nonimpaired as well as end users with motor impairments.

KEYWORDS | Assistive technology; communication; electroen-

cephalogram; hybrid brain–computer interface (hBCI); neuro-

prosthesis

I . INTRODUCTION

The research field of noninvasive brain–computer interac-

tion [1], [3], [5]–[7] has matured now for more than 20 years.

Since the early studies in the beginning of the 1990s, many

new research groups have been established and a multitude
of brain–computer interface (BCI) systems has been

implemented and tested, mainly in healthy young subjects.

This variety mainly reflects the brain signal used for control,
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Neuroprosthetics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne,

Switzerland (e-mail: jose.millan@epfl.ch).

Digital Object Identifier: 10.1109/JPROC.2015.2411333

0018-9219 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

926 Proceedings of the IEEE | Vol. 103, No. 6, June 2015



the signal processing tools employed and eventually the
application areas.

A classic approach has been the establishment of a BCI

system for communication purposes (e.g., [8]) in patients

with severe motor impairment affecting speech and other

means of communication. Later on, BCI systems have been

extended for control purposes, either for neuroprosthetic

devices to restore hand function in spinal cord injured

persons [9], [10] and for motorized wheelchair to replace
mobility in case of lost limb control [11], [12]. The devel-

opment of new computer graphics interfaces and their in-

tegration with the BCI technology has also allowed to

investigate the subjects behavior in virtual worlds [13]–

[15]. Finally, as the field matures, BCI systems have ex-

plored the enhancement of natural brain functions beyond

communication such as for entertainment and other non-

medical applications [12], [16]–[21]. In this regard, the
gaming industries have been recently attracted by the field

of brain–computer interaction and a marketing endeavor

has begun.

The advent of the machine learning approach in the

BCI field has led to a remarkable improvement in system

performance. As a direct impact of such advancement, the

previously long lasting subject training protocols have been

significantly shortened [4], [25]–[30], [32]–[37]. Finally,
the last 20 years have also witnessed the technological

development of both small and light weight multichannel

amplifiers that can now be easily connected to small laptop

or portable computers [38] as well as the emergence of a

new generation of sensors such as dry electrodes [39]–

[41]. These recording hardware advancements represent

some essential steps to allow researchers to be mobile with

their systems.
The vast majority of BCI studies involve healthy users,

but the recent technological and neuroinformatics

achievements have boosted the number of clinical studies

conducted with real end-users and patients [42], [43],

[76]. This overall progress and studies are creating a

unique opportunity to harness the BCI technology for

effective usage in real-life contexts to support people in

their daily activities [44] as well as professional caregivers
of end-users [46], [47], [66].

In their early days, BCIs were considered as the only

control channel whose targeted end-users were severely

impaired individuals such as those in a locked-in state [48].

But, thanks to the multidisciplinary progresses achieved

over the last decade, these originals goals are being sub-

stantially enlarged. Indeed, today BCI technology cannot

only translate brain signals directly into new outputs, but
also can combine such kind of artificial output with a na-

tural muscle-based output. Thus, the integration of multi-

ple biological signals for real-time interaction holds the

promise to enhance a much larger population than ori-

ginally thought from end-users with preserved residual

functions who could benefit from new generations of

assistive technologies to healthy people who could improve

their neuromuscular performance beyond their normal
abilities.

A system that merges a normal BCI together with other

physiological signals has been termed ‘‘hybrid BCI’’ (hBCI)

[2], [49]. Müller-Putz et al. [50] provides the following

definition, which is used in this article:

A hybrid BCI combines existing input devices

with a BCI. The BCI should be available if the user
wishes to extend the types of inputs available to an

assistive technology system, but the user can also

choose not to use the BCI at all. Here it is of impor-

tance that the BCI itself is active, which means

online EEG analysis is performed all the time. On

the one hand, the hBCI might decide which input

channel(s) offer the most reliable signal(s) and

switch between input channels to improve informa-
tion transfer rate, usability, or other factors. On the

other hand, the hBCI could be used to fuse various

input channels.

This work, intends to contribute to standardization of

BCIs, namely to establish a general framework for hybrid

BCIs, which includes interface and architecture definitions

(see [50], [51]). It is meant to be the basis for easily ena-
bling researchers to include functional modules from

others into their own system, independently of the respec-

tive design choices, such as operating systems and devel-

opment languages. The new hybrid BCI concept also offers

the possibility to include not only biosignals from one

modality (for example, EEG) but also from other input

devices like standard mice and keyboards, and most im-

portantly assistive devices and intelligent devices.
The hybrid BCI concept includes also two new impor-

tant features, namely, information fusion and shared con-

trol logic. While fusion is necessary to form the hybrid

control signal out of several possible inputs, the shared

control logic uses this control signal as well as information

from the application environment to improve the applica-

tion control depending on the context.

Our motivation is a wider and easier integration of BCI
components (i.e., software modules) and collaboration of

different labs involved in BCI research, as well as better

simpler hardware accessibility. In addition, a standardized

BCI system could potentially facilitate the comparison of

different systems and therefore also the results produced

with these systems making a first step toward standardized

BCI metrics. Applying the principle of standardized inter-

faces used for interconnection is one step to bring current
BCI technology closer to the end-user market. Further-

more, new applications, based on hybrid BCI technology,

can be created for end-users improving their abilities to

manage their daily lives. This article provides a state-of-art

review of the hybrid BCI work done in the EU funded

collaborative project TOBI (Tools for brain-computer

interaction (http://www.tobi-project.org).
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II . HYBRID BRAIN–COMPUTER
INTERFACING: A COMMON
IMPLEMENTATION FRAMEWORK

The design (see Fig. 1) of the common implementation

platform is based on the model already suggested by Mason

and Birch [52]. The model consists of modules like data

acquisition, different signal processing modules, multi-
modal fusion, and shared control with the application in-

terface. All these modules are interconnected with

different interfaces. The signal flow can be explained in

the following way: signals (either from EEG, other bio-

signals like electromyogram (EMG), or from assistive de-

vices) are acquired via different hardware and hardware

interfaces (USB port, data acquisition cards, etc.) and

provided for further use. This is realized with a special
software called SignalServer [51], which implements TiA,

the first interface explained later. From here, data can be

processed (e.g., in a common BCI signal processing chain,

mental state monitoring, error potential recognition, EMG

artifact detection, switch signal quality check, etc.) and

different control signals are fed to the multimodal fusion

module. The task of this module is to decide which control

signal (or classification result) is best suited to controlling
the application. This means that, having 1) a BCI based on

SMR (sensorimotor rhythm) for left-/right-hand motor

imagery (MI) classification, 2) an artifact detection algo-

rithm, and 3) a external control signal from an assistive

device, the fusion decides which control signal is used for

control of the application. Actual implementations are

based on static rules, however, dynamic rules can be

implemented when suited. The final control signal then

goes to the shared control block. This module also receives

information from the environment and helps to control the

application in the most appropriate way.

A. Interfaces
The interfaces are the most important parts of the

common implementation platform facilitating a standard-

ized communication between different blocks indepen-

dently from the chosen platform and software language.

Currently, many BCI laboratories have their own techni-

ques for performing data processing, so common methods

to exchange data between different components have to be

established. However, a specification which only describes

the format of the data to be exchanged between compo-
nents is not adequate in this case. To achieve true modu-

larity, three methods to transmit and exchange data have

been identified: 1) exchange of data within the same prog-

ramming language, without any compatibility to other

components; 2) exchange within the same computer but

between different programming languages can be achieved

by shared memory; and 3) exchange between different

computers to allow distributed processing. Data can be
sent over the network using TCP or UDP, or even support

local data exchange.

1) TOBI Interface AVTiA: TiA represents an interface

mainly developed to transmit raw biosignals (e.g., EEG)

and data from simple user driven devices like buttons and

joysticks. It is a client-server based system with one server

Fig. 1. Schematic overview of the general structure of the common implementation platform for the hybrid BCI system (modified from [50]).
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and the possibility to attach multiple clients. The client-
server communication is divided into 1) a control con-

nection and 2) a raw data transmission stream. The control

connection is only used to transmit meta information from

the server to the client and to exchange control commands,

both using XML messages. The raw data connection is

unidirectional from the server to the client and is used to

transmit acquired data in a binary form as a continuous

data stream. Up to now, the whole client-server commu-
nication is done using network sockets [51].

Although foreseen in the concept, interface TiB was

not realized, because feature extraction and classification

is often very closely linked, usually in the same thread.

2) TOBI Interface CVTiC: The Interface C was initially

designed to connect the classifier-like modules of the hBCI

to multimodal fusion or other higher level modules. The
classifier outputs are pairs of values and labels. The possi-

ble value types used are:

• a vector of distances (e.g., MI);

• a vector of probabilities (e.g., MI);

• a scalar (e.g., regression for MI);

• binary selections (e.g., P300).

Therefore, this interface handles only high-level data

that is routed through different modules at reduced speed
(typically below 50 Hz). For the reasons above, this inter-

face uses a more general, platform independent and high-

level communication based on XML messages over a TCP/

IP network than the interface TiA. In this context trans-

mitting XML messages does not cause any significant

overhead, while at the same time it ensures that high-level

communication follows a human readable format. The

main advantage of the TiC implementation has to be found
in the portability and scalability of its codebase.

3) TOBI Interface DVTiD: Markers and events are han-

dled with this so called TiD. TiD is a network based pro-

tocol which delivers messages in XML via a bus-like system

via TCP connections. Such an interface has to be provided

to ensure the current flexibility of today’s BCI system.

Every TiD message is equipped with a timestamp to
allow a proper association between an event and the pro-

cessed data.

4) Fusion: Generally, the fusion module receives classi-

fication information (probabilities, class labels, regression

values, etc.) from a set of processing modules. Several BCI

classifiers or even several different BCIs (e.g., motor

imagery, P300, error potential, . . .) together with the esti-
mation of other bio-signals (like EMG, etc.) and even

assistive devices (like switches) can be merged. Conse-

quently, the output of the fusion isVlike the inputVbased

on the interface TiC and is used as input to the shared

control or to control the BCI feedback (if no shared control

is used). Several examples of fusion will be described in

the following sections. Currently, a static approach is used,

but the weights could also dynamically update based on the
reliability of these input channels, or the confidence/

certainty the system has on its outputs. Generally, these

weights can be estimated from supervision signals such as

cognitive mental states (e.g., fatigue, error potentials) and

physiological parameters (e.g., muscular fatigue). Another

way to derive the weights is to analyze the performance of

the individual channels in achieving the task (e.g., stability

over time, influence of noise, etc.).

5) Context Awareness: The main question is how the

subject might control a complex application by means of an

uncertain channel such as a BCI. An answer to this fun-

damental issue is the well-known shared control approach

[53], [54]. The cooperation between a human and an in-

telligent device allows the subject to focus his attention on

his final target and ignore low-level details related to the
execution of an action. For instance, in the case of a BCI-

based telepresence robot the introduction of the shared

control helps the user to reach the target in less time with a

lower number of commands. In this case the role of shared

control is to take care of the low-level details related to the

navigation task (e.g., obstacle detection and avoidance)

[55]. The role of the shared control module is to contex-

tualize the user’s intents in the current environment in
order to support him in the control of an external appli-

cation. To do that, the first task of the shared control is to

manage all the high-level information coming from the

user and the application (environment related messages).

For the user-shared control connection, the message’s for-

mat is defined by the TiC. For the application-shared con-

trol interface, the format is strictly application dependent.

Generally, these messages are named events. Secondly, the
shared control has to compute the events received in order

to send the final command to the application. Static rules

inside the module (application dependent) are in charge of

this task. It is important to note that the same concept of

shared control may be used for different kinds of appli-

cations (e.g., communication, neuroprosthetic control).

III . HYBRID BCI SYSTEMS IN USE:
APPLICATIONS TESTED WITH
HEALTHY SUBJECTS

A. Hybrid BCI Based on Fusion of Brain and
Muscular Activities

End-user have varying remaining functionalities as

possible control signals and practical hybrid BCIs should
allow them to use all of them, whenever these control

channels are available. For example, these people have

sometimes residual activity of their muscles, most likely in

the morning when they are not exhausted, but maybe loose

this functionality during the day. Hence, in this presented

hybrid BCI framework activities from the brain (measured

via the EEG) and from the muscles (measured via the
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electromyogram, EMG) are combined [65]. Both channels

are fused to produce a more robust and stable control

signal compared to the single modalities [see Fig. 2(a)].

1) Participants and Methods: Twelve healthy subjects

participated in standard synchronous BCI recordings,
whereby repetitive left and right hand motor execution

(depending on a visual cue) was carried out over a period

of 5 s (resulting in 60 trials per class). The recorded brain

and muscular activities were separately processed, classi-

fied and finally fused.

The brain activity was acquired via 16 EEG channels

over the motor cortex. From the Laplacian filtered EEG the

power spectral density was calculated and the selected
features were classified with a Gaussian classifier. The

evidence about the executed task was temporary accumu-

lated (exponential smoothing), provided the confidence

was above a rejection threshold [66].

The muscular activities were recorded over the flexor

and extensor of the left and right forearm. The prehensile

EMG activities were rectified and averaged (0.3 s) to get

the envelopes. The resulting features were subject-specific
thresholded, normalized and classified based on maximum

distance.

Finally the two classifier probabilities were fused to-

gether in order to generate one control signal. Two classi-

fier fusion techniques were explored: In the first approach

the fusion weights were equally balanced between the two

classifiers, while in the second one we adopted a naBve

Bayesian fusion approach [67].

2) Results: The performances of either one modality

alone (EEG or EMG) or the fusion of both were compared

based on the correctly classified samples over the task pe-

riod (0–5 s after the cue). Furthermore, to simulate fatigue

of exhausted muscles, the amplitudes of the EMG channel

were degraded over the run time (attenuation from 10% up

to 100%) [68], so that the EEG activity became more and

more important in the fusion. Importantly, however, the

same classifier weights for EEG and EMG and the same

fusion rules were kept over all conditions. This simulates

the realistic situation of a patient who becomes more and

more fatigued over the day.
Fig. 2(b) shows that the subjects could achieve a good

control of their hybrid BCI independently of their level of

muscular fatigue. Furthermore, although EMG alone

yields good performance, it is outperformed by the hybrid

fusion of EEG and EMG, since we focused on the correctly

classified samples over the task period. Remarkably,

thanks to the fusion, increasing muscular fatigue led to a

moderate and graceful degradation of performance. Such a
system allows a very reliable control and a smooth hand-

over, even though the subjects is getting more and more

exhausted or fatigued during the day. In more detail, the

Bayesian fusion outperformed the simple fusion method,

except in the case of 90% attenuation [65]. The reason is

that the assumption of stable input patterns while setting

up the Bayesian confusion matrices were violated and the

performance dropped.

3) Discussion: In summary, the experiment demon-

strated the benefits of a hybrid BCI. 1) Multimodal fusion

techniques allow the combination of brain control with

other residual motor control signals and thereby achieve

better and more reliable performances. 2) Increasing mus-

cular fatigue led only to a moderate and graceful degra-

dation of performance compared to the non-fatigued case.
3) The Bayesian fusion approach led to a very constant

behavior over a wide range of muscular fatigue, compared

to the steadily decreasing performance in case of the

simple fusion.

In future work, a dynamical adaptation of the fusion

and weighting the contribution of the single modalities

should be done.

Fig. 2. (a) Fusion principle of muscular and brain activities. Both channels are processed separately and the classifier probabilities are fused

together. (b) Performance result over the six conditions (mean� SD of correctly classified samples over the task period). The outer bars represent

the single modalities (EMG: leftmost/red; EEG: rightmost/yellow). The middle bars correspond to the fused modalities with different levels

remaining EMG amplitude (100%–10%). For each of these conditions we provide two performances according to the fusion modality: simple

fusion (left/light grey) and Bayesian fusion (right/black). Modified from [65].
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Finally, patients with progressive loss of muscular acti-

vity (as in muscular dystrophy, amyotrophic lateral

sclerosis and spinal muscular atrophies) could benefit

from such a hybrid BCI with dynamic fusion. For example,

during early hybrid BCI training the user could still exploit

her/his residual motor functions, while with increasing

long-term use of the assistive device the transition between

the hybrid control and pure BCI control (when muscular
activity is too weak to operate them) would be smooth.

B. Multi-Modal Game Control
Transferring BCI technologies outside the laboratory

environments and towards real applications, requires that

the BCI users are not restricted to focus only on the BCI

task, but should be able to perform other secondary tasks

partly in parallel. Such multitasking is needed when real
world applications are controlled with a BCI.

A multimodal approach of using an asynchronous BCI

in parallel with a manual joystick control signal, while

playing a game in virtual reality (VR) was recently demon-

strated [74]. A subject sitting in the virtual environment

controls the main character of a virtual reality game: a

penguin that slides down a snowy mountain slope. While

the subject can trigger a jump action via the BCI, additional
steering with a game controller as a secondary task was

tested [see Fig. 3(a)]. The experiment profits from the game

as an attractive task where the subject is motivated to get a

higher score with a better BCI performance. A BCI based on

the so-called brain-switch (a short-lasting event-related

synchronization (ERS) recorded during imagination of

brisk dorsi-flexions of the feet [75]) was applied, which al-

lows discrete asynchronous actions. Fourteen subjects par-
ticipated, of which 50% achieved the required performance

to test the penguin game in four different conditions.

The experiment was performed in two navigation mod-

alities: first the participant played the game while pressing

a push-button to trigger the jumps. In the second modality

they used the brisk foot motor imagery detected by the BCI

to trigger the jump. Furthermore, two levels of difficulty

were created and the fish were placed appropriately. In the

first level, all fish are placed in a straight line and can be

collected without steering the penguin. In the second level,

steering with the joystick is necessary in parallel to the

jump to be able to collect all the fish [see Fig. 3(b)].

The task performance in the penguin game can be cal-

culated as the ratio of successfully collected fish to the

possible maximum. The performance in the manual push-
button conditions [mean of 97.22% (straight) and 93.52%

(steering)] are much better than in the BCI conditions

[mean of 44.68% straight) and 47.69% (steering)], sta-

tistically significant within each navigation condition [74].

The result that manual control is better than BCI control is

obvious and was expected from the beginning. More inter-

esting are the results within the same navigation condition

(push-button or BCI), showing that the usage of the
joystick did not interfere with the jump control.

Furthermore, that work wanted to demonstrate that a

transfer of the BCI skills to the hybrid application is possible,

while showing that the secondary task does not influence

the BCI performance. Comparing the BCI performance

during the training phase and the game showed not differ-

ence, resulting in that a transfer of skills is possible, in spite

of the changes in visual complexity and task demand.
Summing up, learned BCI control can be transferred

from simple standard training paradigms towards more

complex control tasks. More importantly, the results showed

that the use of a secondary motor task, in this case the

joystick control, did not deteriorate the BCI performance

during the game. This implies that the visual complexity and

the more demanding task had no impact on the user’s success

rate. These findings conclude that the chosen approach is a
suitable multimodal or hybrid BCI implementation, in which

the user can even do other tasks in parallel.

C. Control of Robotic Devices via Shared Control and
Context Awareness

In a traditional BCI fashion, controlling complex

devices such as brain-controlled wheelchair or mobile

Fig. 3. (a) The subject observes the scene from a point following the penguin. (b) Intended flight path of penguin. It is necessary to trigger the jump

well in advance, otherwise the penguin will not catch the fish (modified from [74]).
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telepresence platform in natural office environments

would be a complex and frustrating task, especially since
the timing and speed of interaction is limited by the BCI.

Furthermore, the user has to share his attention between

the BCI and the device, and also remember the place

where he is and where he wants to go. In contrary, com-

bining the above mentioned principles of BCI with context

awareness and hybrid approaches allow subjects to control

such complex devices easily.

Both types of BCI, either based on evoked or induced
activity, have been used to control such devices. In a syn-

chronous evoked P300 based BCI for wheelchair control

the system flashes the possible predefined target destina-

tions several times in a random order [79]. The stimulus

that elicits the largest P300 is chosen as the target and

then, the intelligent wheelchair reaches the selected target

autonomously. Once there, it stops and the subject can

select another destination.
More natural and suitable in unknown environments is

the use of an asynchronous spontaneous BCIs [80]. There-

by, a BCI based on motor imagery is used to extract com-

mands to turn the wheelchair to the left and right. In

addition, the participant can intentionally decide not to

deliver any mental commands to maintain the default be-

havior of the wheelchair, which consists of moving forward

and avoiding obstacles with the help of a shared control
system using its on-board sensors. For controlling, the user

asynchronously sent high-level commands for turning to

the left or right (with the help of a motor-imagery based

BCI) to achieve the desired goals, while short-term low-

level interaction for obstacle avoidance was done by the

context awareness. In the applied context awareness para-

digm, the wheelchair proactively slows down and turns to

avoid obstacles as it approaches them.

In an experiment four healthy subjects (aged 23–28)

participated successfully in driving the wheelchair [81].
The task was to enter an open-plan environment, through a

narrow doorway, dock to two different desks, while navi-

gating around natural obstacles and finally reach the

corridor through a second doorway.

It could be demonstrated that both naive and expe-

rienced BCI wheelchair users are able to complete the

navigation task successfully. Furthermore, in terms of path

efficiency, no significant difference between the manual
benchmark condition and the BCI condition could be

found, although the participants needed longer to finish

the task with the BCI.

It is important to highlight that, in this study not only a

complex task had to be performed, but also the potential

stressfulness of the situation, since the user was co-located

with the robotic device that he or she was controlling and

was subject to many external factors. This means the user
had to put trust in the context awareness system and ex-

pected that negative consequences (e.g., a crash) could

result in the system failing.

D. Hybrid BCI via the Simultaneous Usage of Motor
Imagery and Error Potential

Unfortunately, motor imagery based BCIs are prone to

errors in the recognition of subject’s intent. In contrast to

the other physiological interaction modalities, a unique
feature of the ‘‘brain channel’’ is that it conveys not only the

information from which we can derive mental control

commands to operate, but also information about cognitive

signals like the awareness of erroneous responses [69].

Therefore, an elegant approach to improve the accuracy

consists in fusing both sources of brain signals. In parti-

cular, the latter can be exploited to design BCIs that consist

Fig. 4. (a) Picture of a healthy subject sitting in the BCI controlled wheelchair. The main components on our brain-controlled robotic wheelchair

are indicated with close-ups on the sides. The obstacles identified via the web-cams are highlighted in red on the feedback screen and will be

avoided by the context awareness system. (b) Trajectories of a subject during BCI control reconstructed from the odometry. The start, end and

target positions as well as the BCI triggered turnings are indicated (modified from [81]).
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of a verification procedure directly based on the presence of

error-related potentials (ErrP) in the EEG recorded right

after the occurrence of an erroneous recognition by the BCI

of the user’s mental command [70].
Such a simultaneously detection of erroneous responses

of the interface and classification of motor imagery at the

level of single trials in a real-time BCI system was presented

in [71], [73]. Two subjects had the task to bring a squared

cursor to targets located 3 steps away. Left and right move-

ments of the cursor were achieved via MI, analyzed over the

last second. After the response of the BCI (i.e., a step

bringing the cursor closer to or farther away from the tar-
get), a 400 ms window was used to detect the presence of

an ErrP. If an ErrP was detected the last erroneous step was

cancelled. Fig. 5 shows the used features of both BCIs, the

discriminant power of the frequencies and channels in case

of the MI-BCI and the time course and topographic average

in case of the ErrP-BCI. The analysis showed that the BCI

error rate without the integration of ErrP detection was

around 32% for both subjects. However, when integrating
ErrP detection, the averaged online error rate dropped to

7%, which would yield an increase of the bit rate above

200%. For more details, see [71].

These results confirm that it’s possible to simulta-

neously control a brain-controlled device (via motor

imagery) as well as to extract the error-related potentials

of this interaction and combined the outcome of both. The

combined (hybrid) BCI approach improves the quality of

the brain-computer interaction, although neither of these

two input channels is perfect. Furthermore, it would also

be possible to think about retraining the motor imagery
classifier based on the labels extracted from the ErrP de-

tection to allow and online adaptation.

IV. HYBRID BCI SYSTEMS IN USE WITH
MOTOR DISABLED END USERS

A. Neuroprostheses in Spinal Cord Injured End Users
For individuals with tetraplegia, restoring limited or

missing grasping function is the highest priority [56], [57].

In patients with high spinal cord injury (SCI), restricted

upper extremity function can be improved with the use of

grasp neuroprostheses based on functional electrical stimu-

lation (FES). With current neuroprostheses, relevant im-

provements can be achieved in end users with preserved

shoulder and elbow, but missing hand function [58]–[60].
In case of a very high lesion with restricted hand and elbow

movements, hybrid systems combining FES with orthoses

hold promise for restoring completely lost upper extremity

function. However, novel user interfaces integrating bio-

signals from several sources are needed to make full use of

the many degrees of freedom of hybrid neuroprostheses.

Motor imagery (MI)-based brain-computer interfaces

Fig. 5. (a) Features relevance for motor imagery classification (one subject): discriminant Power of frequencies (top left) and of electrodes

(top right). (b) Error Potential detection (one subject): Grand averages (bottom left) of error trials, correct trials and the difference between them

(channel Cz). Scalp potential topography (bottom right) at the peak occurring 350 ms after the feedback presentation (modified from [72]).
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(BCIs) are an emerging technology that may serve as a
valuable adjunct to traditional control interfaces [9].

1) Patient and Methods: The individual in a proof-of-

concept single case study within the TOBI project [61] is a

right-handed 41-year-old man who sustained a traumatic

SCI in 2009 and has a complete motor and sensory lesion

at the level of C4. He is unable to generate functionally

relevant movements of the elbow, hand and fingers on
both sides. To restore relevant movements for all day living

situations, a so-called hybrid neuroprosthesis consisting of

a combination of FES and a personalized orthosis with an

actively driven joint is proposed [62]. The system was de-

signed in a modular fashion including an intelligent con-

trol approach encompassing two input modalities, namely

a single-axis shoulder position sensor and an MI-BCI

[see Fig. 6(c)]. With upward/downward movements of the
shoulder, the user controls the degree of elbow flexion/

extension or of hand opening/closing. The routing of the

analog signal from the shoulder position sensor to the

control of the elbow or the hand and the access to a pause

state is determined by a digital signal provided by the MI-

BCI [see Fig. 6(a)]. The user uses short imagination of a

hand movement to switch from hand to elbow control or

vice versa. A longer imagination leads to a pause state with
stimulation turned off or reactivates the system from the

pause state [see Fig. 6(b)].

2) Results: After one year of intense training at the end

user’s home (415 BCI runs on 43 days; 24 trials and around

200 s for each run, the end user’s MI-BCI performance

ranged from 50% to 93% average: 70.5%). For most of the

runs, right hand versus feet MI was employed. The perfor-
mance of the system was evaluated with different func-

tional assessments. The severely paralyzed end user was

able to perform several activities of daily living, among

them eating a pretzel stick, signing a document and eating

an ice cream cone, which he was not able to perform

without the neuroprosthesis.

3) Conclusion: It was shown that with the application of a
hybrid FES upper extremity neuroprosthesis consisting of

FES and a semiactive orthosis, restoration of not only hand

and finger, but also elbow function is possible in a ‘‘normal’’

high tetraplegic SCI individual. He succeeded in perform-

ing different functional tasks. Shared control principles

have been effectively used to allow for an adequate control

of this hybrid FES system, despite the fact that even after

extensive training, only moderate BCI performance was
achieved. This is, in particular, important in users with a

potentially low and/or varying BCI performance.

4) Outlook: The ultimate goal of our work based on the

combination of a hybrid BCI-controlled hybrid FES

orthosis would be to establish a technical bypass around

the lesion of the spinal cord and to provide neuroprosthetis

users with an intuitive control that would enable them to

accomplish movement in a fluid and transparent manner.

Fig. 6. Subfigure (a) Overview of the hBCI control of the upper

extremity neuroprosthesis. Subfigure (b) Control scheme of the

neuroprosthesis: A short imagination of a movement of the right hand

switches between shoulder and elbow control. A long imagination

switches to or from a pause state. Subfigure (c) End user with high

cervical spinal cord injury and no voluntary finger, hand, and elbow

function uses the hBCI-controlled hybrid neuroprosthesis to eat a

pretzel stick. Subfigure (d) Same end user eating an ice cream cone.
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The first steps in this direction involving individuals with
SCI have already been taken [63], [64].

B. Clinical Evaluation of a Motor Imagery Based
Hybrid BCI Speller

1) Introduction: Among all demonstrated BCI applica-

tions, text-entry systems hold a special place as improving

or restoring communication channels is the top priority of
severely disabled people. Nevertheless, the writing speed is

still very slow, but could be improved by hybrid approaches.

Recently, a novel MI-based hybrid BCI spelling prototype,

called BrainTree, was clinically evaluated with end-users

[76]. The key ingredients for the successful operation of such

a speller are the embedded data-compression, human–

computer interaction (HCI) mechanisms as well as the

implementation of error-handling through a hybrid BCI
approach.

2) Methods: BrainTree is a binary, code-based speller.

Character selection relies on the speller’s underlying bi-

nary tree structure, masked behind a serial, alphabetical

visualization. Given a typed prefix, the speller generates a

new binary tree, in which characters are leaf nodes. A

binary command codeword is thus associated to each
character. The user descends the tree with left/right tran-

sitions through a two-class MI BCI.

An ‘‘undo’’ functionality complements the primary

control modality, allowing a user to return to the previous

state (ascend to the parent node) after an erroneous BCI

command. This third command implements a hybrid ap-

proach (hBCI component) employing a single, bipolar

EMG channel and relies on the user’s eventual residual
muscle abilities. Hu-Tucker entropy coding empowered by

a prefix-based language model provides minimum average

codeword length (i.e., number of BCI commands needed),

thus speeding up spelling, while also respecting the

alphabetic ordering (context-awareness-CA-component).

A total of six end-users and ten able-bodied users have

participated in BrainTree’s evaluation, after undergoing

conventional MI training for a maximum of five sessions.
The BrainTree evaluation protocol consisted of fixed copy-

spelling tasks repeated across three different conditions:

1) hBCI+CA; 2) hBCI (CA disabled); and 3) CA (‘‘undo’’

command disabled).

3) Results: BrainTree’s text-entry usability as error-free

task-completion rates was evaluated [76]. The most re-

markable finding is the 100% task completion success for
both user categories in the hBCI+CA condition. The added

value of hBCI and CA in terms of usability are reflected by

a 3.1% overall increase in task completion rate thanks to

CA and, most importantly, a 18.2% overall increase thanks

to hBCI. Concerning efficiency, users were able to type on

average at 1.68 characters per minute (cpm) in hBCI+CA,

1.34 cpm in hBCI and 1.76 cpm in CA. These results

suggest that hybrid error-handling has a greater impact on
usability, while context-awareness on spelling efficiency.

Additionally, by means of sensitivity analysis on a validated

model for code-based BCI applications, we have shown

that an overall command accuracy of 80% seems to be

practically necessary for creating a usable, purely BCI-

actuated code-based application, thus revising upwards the

70% requirement suggested in [78] and frequently used as

a rule of thumb thereafter, a finding in line with [66].

4) Discussion and Conclusions: This study demonstrates

the usability potential of code-based MI spellers, with

BrainTree being the first to be evaluated by a substantial

number of end-users, establishing them as a viable, compe-

titive alternative to other popular BCI spellers.

C. Hybrid P300-EMG BCI for Communication in
Severely Disabled End-Users

1) Background and System Overview: Within the life-span
of the TOBI project we developed a prototype which

allowed the users to control the QualiWorld Assistive

Technology software (QW; QualiLife Inc., Switzerland) by

means of an P300-based BCI. This prototype offered BCI-

controlled communication functionalities such as text-

editing, internet browsing, etc. [83]. After initial testing

with potential end-users, and considering their feedbacks

[43], we endowed the system with an hybrid control, which
allowed users to cancel an unintended selection by means

of any residual muscular activity detected through their

electromyographic (EMG) signal. In severely disabled end-

users, such EMG activity can be unreliable or subject to

fatigue. Consequently it is often ineffective to operate by

itself a conventional assistive device. Though, its sporadic

use to cancel an error issued by the P300-based BCI is viable.

The visual stimulation of the P300-BCI was overlaid on
top of the QW window. The hybrid system was designed to

adapt to several degrees of residual motor activity. In order

to reduce the occurrence of false positives, the EMG

classification process was enabled only within a certain

time window after the presentation of the feedback of the

P300 classification. Constraints aimed at discarding mus-

cular activity not intentionally related to the user’s need to

cancel a wrong P300-BCI selection, were introduced.
Fig. 7 illustrates the system.

2) Proof-of-Concept Study With End-Users: Three end-

users (50.3 � 3.2 years; 1 female, 2 males) with severe

motor impairment participated in the evaluation of the

hybrid-P300-QW prototype. They all had a severe impair-

ment of the communication capacity, with one communi-

cation channel still preserved. Their Barthel Index scores1

[84] were 0, 35, and 35, respectively. The users’ motor

1The Barthel Index ranges from 0 (completely dependent) to 100
(completely autonomous).
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disability was the consequence of brainstem stroke, haemor-

rhagic stroke and amyotrophic lateral sclerosis, respectively.

EEG and EMG signals were recorded by eight elec-

trodes, (Fz, Cz, Pz, Oz, P3, P4, PO7, PO8; right earlobe

referenced and grounded to the left mastoid) and 2 active

electrodes, respectively. Both signals were amplified using
a g.tec (Graz, Austria) USB amplifier.

EMG activity was detected on the most reliable muscle

of each user (flexor carpi radialis, extensor carpi radialis
longus, and the flexor digitorum superficialis). In fact, the

most preserved movements of each user were, respectively:

slight extention of the wrist, wrist extention, and incom-

plete flexion of the fingers.

For the purpose of evaluation, end-users were required
to spell three predefined words (21 letters in total) using

the P300-BCI speller and deleting incorrect selections by

means of the EMG control.

3) Results: The system was evaluated in terms of three

usability domains: effectiveness, efficiency and satisfac-

tion. The three end users controlled the system with a

mean accuracy of 86% (96%, 78%, and 83%) and the ITR
was on average 8.5 bit/min. End users performed in total

15 correct deletions by means of EMG. Only one end-user

missed the deletion with EMG 3 times (out of 11) and

in those cases she deleted the wrong selection by means

of a P300-based BCI selection. The overall workload, as

measured by the NASA-tlx-questionnaire [85], was of 40.5

on average (scores from 0 to 100). All participants rated

high levels of satisfaction with the hybrid system; on a visual
analogue scale (VAS; ranging from 0 to 10), they indicated

7.9, 8.2, and 7.2 as level of satisfaction, respectively.

4) Conclusions: The proposed hybrid BCI control mod-

ality potentially provides end-users with severe motor dis-

ability with an option to exploit some residual muscular
activity that could not be fully reliable for a proper control

of an assistive technology (AT) device. The findings re-

ported in this feasibility study have encouraged the imple-

mentation of a clinical trial involving a large cohort of

end-users.

D. Severely Paralyzed Patients Control a Gaming
Application With Motor Imagery

When setting up a BCI system for paralyzed patients,

the technical setup needs to satisfy various requirements.

First, the BCI needs to be stable and robust against a va-

riety of experimental factors such as interferences with

other medical devices. Second, the attention span of the

user might be variable and the BCI system needs to tolerate

frequent pause requests, restarts and recalibrations at any

time. Third, the BCI system must be flexible enough to
exploit rather unusual features of the recorded brain sig-

nals. Even for healthy subjects, discriminative neuronal

features for the task at hand [e.g., event-related desyn-

chronization (ERD)/ERS effects in the oscillatory domain]

do show a significant degree of variance between BCI

users. State-of-the-art BCI systems tackle this by calibrat-

ing the system individually to each user. Brain features of

patients, however, regularly deviate substantially from ty-
pical features known from studies with healthy subjects.

The deviations may be caused not only by a much weaker

expression of standard features, but also by a complete lack

of standard features. Instead, the system must be able to

deal with completely different and weak features. The

three requirements must be satisfied by the system setup,

in order to reach the overall goal within a short number of

calibration sessions and possibly for each individual
patientVan accurate BCI control. The software frame-

work of the BCI system must be prepared to deal with

these requirements. This requires substantial flexibility in

the data analysis pipeline containing pre-processing with

machine learning steps.

Data analysis procedures of synchronous BCI para-

digms (such as ERP-based spelling paradigms) are rather

established. This enables BCI systems which can be ap-
plied ‘‘out-of-the-box’’ [18]. For asynchronous paradigms

such as BCIs based on motor imagery/attempted motor

execution, there might be multiple relevant features con-

tained in the recorded brain data. This give rises to a va-

riety of analysis procedures. In a recent patient study by

[82], a hybrid approach was taken which aims for an

‘‘out-of-the-box’’ BCI system for motor imagery. Its main

characteristics were:
1) multiple spectral features (e.g., � ERD, � ERS, �

ERD, � ERS, brisk � rebound, etc.) features as

well as non-spectral features (lateralized readiness

potential (LRP), motor-related potentials) were

extracted from the EEG data;

2) a hybrid meta-classifier combined all features (cf.

also [77])Vsee Fig. 8(a).

Fig. 7. An end-user spelling text in the QW assistive software using

the hybrid BCI. Intermittent visual stimuli were overlaid on a virtual

keyboard to evoke a P300 potential, which was used to select the

intended letter. In case of wrong selection, the EMG generated by a

slight movement of the hand reverted the last selection.
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Using this approach, the BCI could be driven by any

combination of features in the data.

The strategic game ‘‘Connect-4’’ was implemented as

the feedback application of this study. It was chosen as it
provides a playful motivation. In addition it is flexible

enough to compensate being paused at any time, and the

game allowed a wide range of timing adjustments. Impor-

tantly, the degree of control provided by a BCI system was

sufficient to play the game.

a) Patients: Four severely paralyzed end-users partici-

pated in this study. They were characterized by individual

and severe brain damages due to stroke or cerebral palsy
(for details, please see [82]). Two of these end-users were

restricted to the extent, that their AT-based communica-

tion was slower than 5 bits/min. Therefore, these end-users

can be regarded as the ultimate target group for BCI-

support, as the BCI has the potential to directly improve

their primary communication abilities. In total, six BCI

sessions (with a duration of 1–3 h) were performed with

each subject.
b) Results: The flexible BCI framework enabled three

out of the four end-users to obtain a significant BCI control

after only three to five sessions. The results are shown in

Fig. 8(b). While � rebounds could be used for classification

for one of the patients, it is remarkable, that none of the

users showed exploitable ERD features in the � band (a

standard feature for healthy users). Instead, ERDs in the �

band as well as LRP features were found to be discrimi-

nable. In order to enable BCI control for the three patients,

it was essential to deviate from known ground and instead

exploit different features from the EEG. Surprisingly, the
most severely paralyzed end-user was performing best,

with more than 90% accuracy on a single-trial basis

(chance level: 50%). This good performance was obtained

during several sessions. For him, it could also be shown

that control via BCI was faster and more accurate than

what could be reached with his current AT-solution. The

latter was based on muscular control of the thumb.

c) Conclusion: The hybrid approach not only improves
the integration of BCI technology into other existing AT

platforms. This study reveals that the described within-

EEG hybrid approach also improves the classification per-

formance and the general usability of the BCI system for

motor-related tasks. The proposed flexible data exploita-

tion approach can allow a BCI to be driven by a combi-

nation of diverse and multiple featuresVa necessary

prerequisite for a successful application of one BCI system
for three out of four severely paralyzed end-users.

E. Hybrid BCI-Driven Tool to Support Hand Motor
Rehabilitation After Stroke

1) Background and System Overview: The major focus in

post-stroke rehabilitation research has been on motor

Fig. 8. A hybrid approach for a BCI based on motor imagery. Plot A illustrates the internal processing pipeline of the BCI system. A variety of

features were simultaneously extracted from the EEG. Plot B shows the results of the study. For each patient, the BCI performance as well as

the most discriminable feature is plotted.
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recovery of hemiplegic limbs, being the most common and
disabling consequence of stroke [88]. Present therapies

mainly consist of the repeated practice of motor tasks,

with the expectation that this task-specific training and

practice will induce neural plastic changes and thus im-

prove function [90]. Therapists encourage and reinforce

any residual (or recovered) execution of the hand move-

ments, yet ensuring that this does not induce unwanted

contractions and spasticity. Evidences from the neurosci-
ence of recovery and restoration are progressively chang-

ing the classical approach to stroke rehabilitation [87]. In

this respect, BCI technology can encourage motor training

and practice by offering an on-line feedback about brain

signals associated with mental practice, motor intention/

attempt and other neural recruitment strategies, and thus

helping to guide neuroplasticity to improve recovery [89].

To this aim, BCI design should incorporate principles of
current rehabilitative settings suitable to stimulate pa-

tients’ engagement during exercise, i.e., assist the practice

of a motor task and prevent reinforcement of pathological

motor synergies.

To comply with such requirements, a hybrid BCI-

driven rehabilitative device was developed within the

TOBI project aiming at enhancing motor recovery of the

upper limb in stroke patients. The ultimate goal is to let
the patients re-learn their motor scheme by having

voluntary (covert and/or overt) access to the paralyzed

limb.

The device (see Fig. 9) was designed to monitor the

activity of the motor cortex and the residual muscular

patterns of the paralyzed arm-hand to assist the comple-

tion of the requested therapeutic exercise, in order to

close the loop between patients’ motor intention and sen-
sory perception. As such, the hybrid BCI uses electroen-

cephalography (EEG) and electromyography (EMG)

signals generated from the motor attempt to control a

FES device which boosts contraction of the target muscles,

thus reinforcing a voluntary flexion or extension of paral-

ized hand. In this hybrid approach, the motor intent of a

given patient is recognized from the EEG patterns and the

muscle contraction is produced via FES only if certain
EMG features of the patient’s voluntary motor attempt are

classified as ‘‘correct.’’ In this application, FES driven

movements are not meant to substitute the lost motor

function to perform daily life activ1ities. Rather, they

provide the patient with a natural visual and propriocep-

tive feedback in order to reinforce cognitive and muscular

patterns and thus, leading to a better recovery of these

functions.

2) Proof-of-Concept Single Case Study: Here, we described

a feasibility study conducted within the lifespan of the

TOBI project, involving one stroke patient. The proposed

system was tested by a chronic stroke patient in a one-

month training with three weekly sessions, in add-on to

standard rehabilitation therapy.

The patient was a 41-years old male who suffered from

a right hemisphere haemorrhagic stroke 18 months before

the training started. At the time of the training, he had no

cognitive or language impairment, he was able to walk

autonomously with a cane and had severe motor deficit in

the left arm (National Institute of Health Stroke Scale of 5;
upper limb section of the Fugl-Meyer Assessment ScaleV
FMA of 15/66).

During the training, the patient was asked to perform

attempted finger extensions of his left hand. EEG patterns

relative to the attempted movement (i.e., desynchroniza-

tion above the affected hemisphere on central and centro-

parietal electrodes at sensorimotor relevant frequencies)

were used to drive the FES device Fig. 10, left panel). The
EMG signals were employed as a gating system in order to

prevent FES activation in the case of pathologic co-con-

tractions or increased spasticity (see Fig. 10, right panel).

Each training session comprised from four to six runs of

20 trials each and lasted approximately 1 h (EEG cap

montage time excluded). The training was carried out in

a real rehabilitative environment (i.e., the hospital gym

facility).
At the end of the one-month training, we observed a

trend toward an increase of the arm section FMA score

(18/66). More relevantly, the patient reported to have in-

creased perception of his own affected left hand resulting

in an increased confidence in the attempt to use it during

daily life activities (despite the severity of the motor

Fig. 9.A BCI-assisted rehabilitation session. The system monitors both

the patient’s EEG sensorimotor rhythms from the affected hemisphere

and the pattern of residual EMG signals from flexor and extensor

muscles of the affected arm. Only when the motor intent of the patient

is detected from both signals, and no pathological (opportunistic)

patterns are present, the FES assists the motor act by inducing

contraction of either the flexor or extensor muscles, thus providing

positive reinforcement to the patient. Real time display of EEG and

EMG patterns are only available to the therapist, who can guide the

patient toward the most effective rehabilitation exercise.
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deficit). Though preliminary and qualitative, these results

are encouraging in terms of acceptability of the approach

by patients and of the professional end-users.

3) Conclusions: BCI appears a potential technology to
support post-stroke motor training and thus to facilitate

neuroplasticity phenomena. Nevertheless, the translation

of an approach from basic system neuroscience research

into clinical practice has just begun. Future studies should

anticipate some issues related to clinical trial design such

as optimization of components interventions, definition of

appropriate outcome measures and definition of who may

benefit.

V. GENERAL DISCUSSION, CONCLUSION
AND OUTLOOK

Due to enormous progress over the last years hybrid

BCIs nowadays represent practical and robust solutions

in the field of AT and neurorehabilitation. The present

paper has embedded the major hBCI activities into the

broader context of more than two decades of research in

noninvasive BCI and has proposed a standardized archi-

tecture of typical hBCI systems. The application of this

hBCI framework was successfully applied in a number of

studies involving both unimpaired users and individuals

with severe motor impairments. Clearly the systematic

harvesting of physiological signals (cf. [86]) and a priori or

context information that is fused in the respective hBCI

has shown immense progress in practice.

All presented single studies were based on the

architecture described in the beginning of this work.

More details can be found elsewhere (see [50]) and the

framework can be downloaded at http://tools4bci.source-

forge.net/. By using the interfaces described earlier, we

were able to combine our custom made signal processing

modules, independently from programming language and

platform, without reprogramming and thus, the frame-

work built a common basis for all collaborators in this

project and lead to successful implementations of new

paradigms tested with healthy subjects but also to novel

work with end users in need of new technology. It is clear

that not all ‘‘TOBI interfaces’’ will be used in every single

future study. However, we believe that our common

implementation framework is an important contribution

to the BCI field as it provides a unifying approach to

integrate in a principled way any potential component

necessary to design functional hybrid BCIs for long-term

operation.

A number of challenges remain. From the theoretical

perspective, the ideal fusion of heterogeneous informa-

tion sources needs to take into account variable inform-

ation content between the sources, different degrees of

nonstationarity (cf. [91]) finally robustness aspects (wrt.,

outliers, nuisance channels). In practice, all mentioned

issues are not easily accessible and need to be estimated

from limited data. Thus, methods that can help to adap-

tively reestimate the statistical properties of hBCI consti-

tuents will be a future focus of research. In practice, it is

clearly not trivial to find the ideal combination of bio-

signals or context information that can enhance and

enrich a hBCI. At this point we do not have a compre-

hensive user model and therefore need to rely on ex-

periments to explore how the ideal hBCI should be

configured for a novel paradigm and or a new end user.

Practically, when working with end users it is further-

more important to integrate personal needs, availabilities

and constraints into the design of a hBCI system, since

personal preferences for human machine interaction may

play a decisive role.

Fig. 10. Upper panel: head topography of significant changes (R2) in

the EEG spectral power at 21–22 Hz, during left (affected) hand finger

extension attempt. The hybrid BCI monitored the amplitude of EEG

desynchronization at the central and centroparietal electrodes on the

above the right affected hemisphere. Lower panel: Linear envelope

of the EMG signals collected from four arm muscles during a hand

extension exercise. Contraction of the distal extensor muscle

alone was the pattern to be reinforced in this exercise. Prolonged

adherence to this pattern was measured in real time through an

index (Rule Score).
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A clear outcome of the current research work is that in
the future BCI technology will evolve to an essential com-

ponent in the field of assistive technology. With the help of

the concept of the hybrid BCI, which allows additional
control inputs besides the ‘‘brain’’-channel become reality

in the near future. h
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