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ABSTRACT | Reconfigurable architectures can bring unique

capabilities to computational tasks. They offer the perfor-

mance and energy efficiency of hardware with the flexibility of

software. In some domains, they are the only way to achieve

the required, real-time performance without fabricating cus-

tom integrated circuits. Their functionality can be upgraded

and repaired during their operational lifecycle and specialized

to the particular instance of a task. We survey the field of

reconfigurable computing, providing a guide to the body-of-

knowledge accumulated in architecture, compute models,

tools, run-time reconfiguration, and applications.
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I . INTRODUCTION

Field-programmable gate arrays (FPGAs) were introduced

in the mid-1980s (e.g., [1]) as a larger capacity platform for
glue logic than their programmable array logic (PAL)

ancestors. By the early 1990s, they had grown in capacity

and were being used for logic emulation (e.g., Quickturn

[2]) and prototyping, and the notion of customizing a

computer to a particular task using the emerging capacity

of these FPGAs became attractive. These custom compu-

ters could satisfy the processing requirements for many

important and enabling real-time tasks (video and signal
processing, vision, control, instrumentation, networking)

that were too high for microprocessors. On simulation and

optimization tasks, spatial computation and specialization

made it possible to achieve supercomputer-level perfor-

mance at workstation-level costs. Furthermore, by repro-
gramming the FPGA, a specialized computer could be

reconfigured to different tasks and new algorithms. In

2015, the use of FPGAs for computation and communica-

tion is firmly established. FPGA implementations of

applications are now prevalent in signal processing,

cryptography, arithmetic, scientific computing, and net-

working. Commercial acceptance is growing, as illustrated

by numerous products that employ FPGAs for more than
just glue logic.

Reconfigurable computing (RC)Vperforming compu-

tations with spatially programmable architectures, such as

FPGAsVinherited a wide body-of-knowledge from many

disciplines including custom hardware design, digital

signal processing (DSP), general-purpose computing on

sequential and multiple processors, and computer-aided

design (CAD). As such, RC demanded that engineers
integrate knowledge across these disciplines. It also

opened up a unique design space and introduced its own

challenges and opportunities. Over the past 25 years, a

new community has emerged and begun to integrate and

develop a body-of-knowledge for building, programming,

and exploiting this new class of machines.

How do you organize programmable computations

spatially? The design space of architecture and organiza-
tion for the computation is larger when you can perform

gate-level customization to the task, and when the

machine can change its organization during the computa-

tion. When you get to choose the organization of your

machine for a particular application or algorithm, or even a

particular data set, how do you maximize performance,

minimize area, and minimize energy?

How should you program these machines? How can
they be programmed to exploit the opportunity to

exquisitely optimize them to the problem? How can they

be made accessible to domain and application experts?
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Should they be programmed more like software or more
like hardware? It became clear that neither traditional

hardware nor traditional software forms of design capture

can exploit the full flexibility that these machines offer.

What abstractions are useful for these machines? for

programmers? for platform scaling? How do you manage

the resources in these machines during runtime?

How do we map and optimize to these machines? One

way to ease the programmer burden is to automate the
lower-level details of customizing a computation to the

capabilities of these reconfigurable computers. Again, off-

the-shelf CAD tools and software compilers did not address

the full opportunities. Many CAD challenges, at least

initially, were fairly unique to RC, including heteroge-

neous parallelism, hybrid space-time computations, an

organizational structure that can change during an

algorithm, operator customization, memory structure
tuning (e.g., cache, memory sizes, and placement), and

custom data encoding to the task. In some cases,

optimization problems that one would reasonably have

performed manually for custom designs (e.g., bitwidth

selection, cache sizing) became optimization problems to

solve for every application program and dataset, thereby

demanding a new level of automation.

What algorithms make sense for these machines, and
how does one tailor algorithms to them? The cost structure

is different, often enabling or demanding different

algorithms to solve the problem. Approaches that were

previously inconceivable (e.g., dedicating a set of gates or a

processing element to each data item) become viable and

often superior solutions to problems. How do we exploit

the massive level of fine-grained parallelism? These

demands encouraged the RC community to identify highly
parallel algorithms with regular communications before

Graphics Processing Units (GPUs) and multicore chips

became available with similar demands.

In this paper, we provide a guide to this accumulated

body-of-knowledge. We start by reviewing the exploration

of architectures for RC machines (Section II). Section III

reviews approaches to program these RCs. We then review

developments in tools to automate and optimize design for
RCs (Section IV) and models and tools for Run-Time

Reconfiguration (RTR, Section V). Section VI highlights

important application domains. We conclude with some

final observations in Section VII.

II . ARCHITECTURE AND TECHNOLOGY

The invention of FPGAs in the early 1980s [1] seeded the
field that has become known as reconfigurable computing.

FPGAs offered the lure of hardware performance. It was

well known that dedicated hardware could offer orders of

magnitude better performance than software solutions on

a general-purpose computer and that machines custom-

built for a particular purpose could be much faster than

their counterparts. However, building custom hardware is

expensive and time consuming. Custom VLSI was the
domain of a select few; the numbers that could profitably

play in that domain were already small in the 1990s and

have shrunk considerably since then. Microprocessor

performance scaled with Moore’s Law, often delivering

performance improvements faster than a custom hardware

design could be built. FPGAs provided a path to the

promise of hardware customization without the huge

development and manufacturing costs and lead times of
custom VLSI. It was possible to extract more computa-

tional throughput per unit silicon from FPGAs than

processors [3], and it was possible to do so with less

energy [4].

In the late 1980s it was still possible to provide

hardware differentiation by assembling packaged integrat-

ed circuits in different ways at the printed-circuit board

level. However, as chips grew in capacity and chip speeds
increased, the cost of accessing functions off chip grew as

well. There was an increasing benefit to integrating more

functionality on chip. Opportunities for board-level

differentiation decreased, increasing the demand for

design customization and differentiation on chip. FPGAs

provided a way to get differentiation without using custom

VLSI fabrication.

The challenge then is how should we organize our
computation and customization on the FPGA? How should

the specialized FPGA be incorporated into a system? How

can the computation take advantage of the FPGA

capabilities? As FPGAs grow in capacity and take on larger

roles in computing systems than their initial glue-logic

niche, how should FPGAs evolve to support computing,

communication, and integration tasks?

A. Pioneers
Just a few years after the introduction of FPGAs,

multiple pioneering efforts demonstrated the potential

benefits of FPGA-based RC. SPLASH arranged 16 FPGAs

into a linear systolic array and outperformed contemporary

supercomputers (CM-2, Cray-2) on a DNA sequence

matching problem with a system whose cost was compa-

rable to workstations [5]. Programmable active memories
(PAM) arranged 16 FPGAs into a two-dimensional (2-D)

grid and demonstrated high performance on a collection of

applications in signal and image processing, scientific

computing, cryptography, neural networks, and high

bandwidth image acquisition [6]. PAM held the record

for the fastest RSA encryption and decryption speeds

across all platforms, including exceeding the performance

of custom chips.

B. Accelerators
A key idea from the beginning was that FPGAs could

serve as generic, programmable hardware accelerators for

general-purpose computers. Floating-point units were well

known and successful at accelerating numerical applica-

tions. Many applications might benefit from their own
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custom units. The question is how should they be
interfaced with the general-purpose CPU, and how should

the RC be managed?

When floating-point co-processors were still separate

chips, PRISM showed how an FPGA added as an external

co-processor could accelerate bit-level operations that

were inefficient on CPUs [7]. As chip capacities grew,

research explored architectures that integrated an FPGA or

reconfigurable array on the same die with the processor
[8]–[10]. Key concerns included the visible architectural

model for the array, how state was shared with the

configurable array, how different timing requirements of

the processor and array should be accommodated, and how

to maximize the bandwidth and minimize the latency

required to communicate with the array. The reconfigur-

able logic could be integrated as a programmable

functional unit for a RISC processor [8], [11], share state
with the conventional register file, and manage the

reconfigurable array as a cache of programmable

instructions [12].

It was soon apparent that the processor would become

a bottleneck if it had to mediate the movement of all data

to and from the reconfigurable array. GARP showed how to

integrate the array as a co-processor and how the array

could have direct access to the memory system [13]. The
architecture for dynamically reconfigurable embedded

systems (ADRES) also provided direct memory access in

a co-processor model; ADRES combined a VLIW processor

core with the reconfigurable array, sharing functional

units between the VLIW core and the array [14]. Later

work explored interfacing the reconfigurable logic with

on-chip caches and virtual memory [15] and streaming

operations that used scoreboard interlocks on blocks of
memory [16].

Accelerators can also have an impact beyond raw

application performance. Offloading tasks to a reconfigur-

able array can be effective at reducing the energy required

for a computation [17], as is important for embedded

systems. For a survey of both fixed and reconfigurable

accelerators and estimates of their energy and perfor-

mance efficiency, see [18]. To simplify design represen-
tation, mapping, and portability, the Queue Machine [19]

showed how a processor and an array could run the same

machine-level instructions.

These designs at least anticipated and perhaps helped

motivate commercial processor-FPGA hybrids. Xilinx

offered a PowerPC on the Virtex2-Pro and now integrates

ARM cores on their Zynq devices. Altera includes ARM

cores on Cyclone V and Arria V SoC FPGAs. Stretch
provided an integrated processor and FPGA device [20].

Intel integrated an Atom processor and an Altera device

in a multichip package for embedded computations and

also integrates a Xeon with an FPGA for server

applications.

Multiprocessors may also benefit from attached

accelerators. The logic could be used for custom acceler-

ation, similar to its use in single node machines, or for
improving communication and synchronization [21], [22].

Cray integrated FPGAs into their XD1, SRC offered a

parallel supercomputer with FPGA accelerators, and

Convey Computer now ships a supercomputer with an

FPGA acceleration board.

C. Fabric
Using FPGAs as computing substrates creates different

needs and opportunities for optimization than using

FPGAs for glue logic or general-purpose register-transfer

level (RTL) implementation engines. As a result, there is a

significant body of work exploring how reconfigurable

arrays might evolve beyond traditional FPGAs, which we

highlight in this section. For the evolution of FPGAs for

traditional usage, including the impact of technology, see

the companion article [23]. For a theoretical and
quantitative comparison of reconfigurable architectures,

see [24].

1) Organization: Fine-grained reconfigurable architec-

tures, such as FPGAs, give us freedom to organize our

computation in just about any way, but what organizational

patterns are actually beneficial for use on the FPGA? This

freedom fails to provide guidance in how to use the FPGA.
As a result, there has been considerable exploration of

computing patterns to help conceptualize the computa-

tion. These ideas manifest as conceptual guides, as tools, as

overlay architectures, and as directions for specializing the

reconfigurable fabric itself. Overlay architectures are

implemented on top of existing FPGAs and often support

tuning to specialize the generic architecture to the specific

needs of a particular application.
Cellular automata is a natural model for an array of

identical computing cells. On the FPGA, the cellular

processing element can be customized to the application

task. The CAL array from Algotronix was designed

specifically with this model in mind [25]. Others showed

how to build cellular computations on top of FPGAs [26]

including how to deal with cellular automata that are

larger than the physical FPGA available [27]–[29].
Dataflow models are useful in abstracting spatially

communicating computational operators. Dataflow hand-

shaking can simply be used to synchronize data- or

implementation-dependent timing [30], but it can also be

used to control operator sharing [31].

When you must sequentialize a larger graph onto

limited resources, very long instruction word (VLIW)

organization provides a straightforward model for operator
control. As an overlay architecture, the composition of

operators can be selected to match the needs of the

application [32], [33]. As we will see later (Section II-C4

and C5), when we time-switch the fabric itself, the result is

essentially a VLIW organization.

Highly pipelined vector processors can be efficient for

data parallel tasks [34]. The vector lanes provide a model
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for trading area and time [35] and can be extended with
custom accelerators [36].

Some have found multicore and manycore overlays to

be useful models for mapping applications onto FPGAs

[37]–[39].

2) Coarse-Grained Blocks: While the gate-level configur-

ability in FPGAs allows great customization, it also means

that common computing blocks used in DSP and
numerical computations are inefficient compared to

custom building blocks (e.g., multipliers, floating-point

units). Would it be better to provide custom elements of

these common computing blocks alongside or inside the

FPGA fabric? When FPGAs were small, it was reasonable

to consider adding dedicated chips for floating point at the

board level [40]. The virtual embedded block model was

introduced to explore hard logic integration in an FPGA
array and illustrated the benefits of coarse-grain hardware

to support floating-point computations [41]. Embedded

multipliers and memories help narrow the performance,

energy, and area gap between application-specific inte-

grated circuits (ASICs) and FPGAs [42]. The modern

extensions to Toronto’s FPGA CAD flow supports explo-

ration of customized blocks [43]. Both Altera and Xilinx

now embed hard logic DSP blocks that support wide-
word addition and multiplication inside their fine-grained

logic arrays.

3) Synchronous, Asynchronous: Processors and ASICs are

typically designed around a fixed clock. This allows the

integrated circuit (IC) designer to carefully optimize for

performance and means the user of the processor does

not have to worry about timing closure for their designs.
As we consider high throughput computational fabrics,

fixed-frequency, clocked arrays can offer similar advan-

tages to spatial computing arrays like FPGAs, as shown by

the high-speed, hierarchical synchronous reconfigurable

array (HSRA) [44] and SFRA [45]. A different way of

avoiding issues with timing closure is to drop the clock

completely for asynchronous handshaking, as shown in

[46]–[48].

4) Multicontext: Since FPGAs started out as gate array

replacements, they contained a static configuration to

control the gates and interconnect. The fact that this

configuration could be changed opened up new opportu-

nities to change the circuit during operation. However,

FPGA reconfiguration was slow. Adding multiple config-

urations to the FPGA allows the FPGA to change rapidly
among a set of behaviors [49], [50]. By time-multiplexing

the expensive logic and interconnect, this effectively

allowed higher logic capacity per unit silicon, often with

little performance impact. Tabula now offers a commercial

multicontext FPGA [51]. The companion paper [24]

identifies conditions under which a multicontext FPGA

can be lower energy than a single-context FPGA.

5) Coarse-Grained: Early FPGAs contained fine-grained
logic largely because of their limited capacity, their gate

array roots, and their use as glue logic. As their application

domain moved to address signal processing and computing

problems, there was interest in more efficiently supporting

larger, wide-word logic. Could we have flexible, spatially

configurable, field-programmable machines with wide-

word, coarse-grained computing blocks? Would a small

amount of time-multiplexed sharing of these units be
useful?

Designed to prototype DSP algorithms, PADDI [52]

was one of the first coarse-grained reconfigurable

architectures. It essentially used a VLIW architecture,

with 16b words and 8 contexts per processing element.

Other VLIW-style architectures have been used for low-

power multimedia processing, including the 16b ALU-

register-file Reconfigurable Multimedia Array Coprocessor
(REMARC) array [53], the 32b-word ADRES [54] with

32 local contexts and 8 entry register files, and the

8b-word, 16 entry register file dynamically reconfigurable

processor (DRP) [55].

The reconfigurable datapath architecture (rDPA) used

32b-wide ALUs in a cellular arrangement with data

presence flow control [56]. The reconfigurable pipelined

datapath (RaPiD) arranged coarse-grain elements, 16b
ALUs, multipliers and RAM blocks in a one-dimensional

(1-D) datapath for systolic, pipelined computations, using

a parallel, configurable bit-level control path for managing

the dynamic behavior of the computation [57]. PipeRench

also used the model of a directional pipeline, adding a

technique to incrementally reconfigure resources and

virtualize the depth in the pipeline, allowing developers to

be abstracted from the number of physical pipe stages in
the design and allowing designs to scale across a range of

implementations [58].

To reduce the cost of reconfiguring the cells during a

multimedia computation, MorphoSys used a single

instruction, multiple data (SIMD) architecture to control

a coarse-grained reconfigurable array with tiles composed

of 16b ALUs, multipliers, and 4 element register files [59].

Morphosys uses a 32-context instruction memory at the
periphery of the array that is as wide as a side of the 2-D

array. Instructions can be shared across rows or columns in

the 2-D array, and the memory is wide enough to provide

separate control for each row or column.

Graphics processors evolved from fixed-function ren-

dering pipes to general-purpose computing engines in the

form of general-purpose graphics processing units

(GPGPUs) around the same time that FPGAs moved into
computing and Coarse-Grained Reconfigurable Arrays

(CGRAs) were developing. At a high-level, GPGPUs share

many characteristics with CGRAs, providing a high-density

spatial array of processing units that can be programmed

to perform regular computing tasks. GPGPUs were

initially focused on SIMD, single-precision, floating-point

computing tasks, and do not support the spatially local
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communications typical of FPGAs and CGRAs. The
companion paper [24] shows why locality exploitation

can be a key advantage for reconfigurable architectures.

For compiled CUDA, the native language of many

GPGPUs, the GPGPUs provide 1–4� higher throughput

than FPGAs, but at a cost of over 4–16� the energy per

operation [60]. The peak, single-precision, floating-point

throughput of GPGPUs exceeds processors and FPGAs, but

the delivered performance on applications can be lower
than FPGAs and the energy per operation can be higher

[61]. FPGAs can outperform GPGPUs [62] for video pro-

cessing, depending on the nature and complexity of the task.

A key differentiator in the architectures we have seen

so far is whether the reconfigurable resources are

controlled with a static configuration, like FPGAs, or

with multicontext memories, like the VLIW-style CGRAs

above. A second differentiator is how many resources can
share the same instructions as the SIMD designs exploit.

This motivated a set of designs that made it possible to use

configuration to select between these choices. MATRIX

[63] explored configuring instruction distribution to

efficiently compose a wide range of architectures (systolic,

VLIW, SIMD/Vector, MIMD) using a coarse-grain archi-

tecture based around an 8b ALU-multiplier cell that

includes a local 256 � 8 RAM. The RAMs could be used
either as embedded data memories (e.g., register files,

FIFOs) or instruction stores and the programmable

interconnect could carry both data streams and instruction

streams, including streams that could control the inter-

connect. The CHESS reconfigurable arithmetic array used

4b ALUs and datapaths with local 32 � 4 memories where

the ALUs could be configured statically or sequenced

dynamically from local memories, but the routing could
not [64].

If the domain is large enough, it makes sense to create a

custom reconfigurable array specialized for a specific

domain. The Totem design showed how to optimize a

reconfigurable array for a specific domain and illustrated

the area savings in the DSP domain [65], how to perform

function allocation for a domain-customized architecture

[66], how to provide spare capacity for later changes [67],
how to automate the layout of domain-optimized reconfi-

gurable arrays, and how to compile applications to a

specialized instance of the architecture.

Some of the ideas from the MATRIX CGRA led to the

array of SpiceEngine vector processors in Broadcom’s

Calisto architecture [68]. The Samsung reconfigurable

processor (SRP) is a derivative of the ADRES CGRA

architecture [69], [70].

6) Configuration Compression and Management: While

FPGAs are in-field reconfigurable, the slow reconfigura-

tion times limit the use of reconfiguration during the

execution of a task. One key reason configurations are slow

is the large number of configuration bits required to

specify the FPGA. Consequently, one way to accelerate

reconfiguration is to compress the transfer of configura-
tion data. By adapting ideas from covering in two-level

logic minimization, the wildcard scheme on the Xilinx

XC6200 could be effectively used to reduce bitstream size

and load time [71]. When the sequence of configurations is

not static, a cache for frequently used configurations can

be used to accelerate FPGA reconfiguration [72].

7) On-Chip Dynamic Networking: The load-time config-
ured interconnect in FPGAs is suitable for connecting

together gates or performing systolic, pipelined, and

cellular computations. However, as FPGAs started hosting

more diverse tasks, including computation that used

interconnect less continuously, it became valuable to

explore disciplines for dynamically sharing limited on-chip

FPGA communication bandwidthVto provide network-

on-chip (NoC) designs on FPGAs. This prompted the
design of packet-switch overlay networks for FPGAs [73],

[74]. Often a time-multiplexed overlay network can be

more efficient than a packet-switched network [75].

Because of the different cost structure between ASICs

and FPGAs, overlay NoCs on FPGAs should be designed

differently from ASIC NoCs [76], [77]. Ultimately, it may

make sense to integrate packet-switched NoC support

directly into the FPGA fabric [78].

D. Emulation
Since FPGAs are programmable gate arrays, an obvious

use for them was to emulate custom logic designs.

However, since FPGA capacity is lower than contemporary

and future ASICs, there is typically a need to assemble

large numbers of FPGAs to support an ASIC design [2].

The lower density I/O between chips compared to on-chip
interconnect meant that direct partitioning of gate-level

netlists onto multiple FPGAs suffered bottlenecks at the

chip I/O that left most FPGA logic capacity underutilized.

To avoid this bottleneck, Virtual Wires virtualized the pins

on the FPGA, exploiting the ability to time multiplex the

I/O pins many times within an ASIC emulation cycle [79].

FPGA-based Veloce logic emulators sold by Mentor

Graphics are based on these techniques. Today’s FPGAs
include hardware support for high-speed serial links to

address the chip I/O bandwidth bottleneck.

As FPGAs grew in size, natural building blocks could fit

onto a single FPGA, including complete processors [80].

The emulation focus turned to the system level. Boards of

FPGAs were used to directly support algorithm develop-

ment [81]. With an FPGA now large compared to a

processor core, single FPGAs and boards of FPGAs have
been used to support multicore architecture research [82],

[83]. Nonetheless, directly implementing one instantiated

processor core on the FPGA for one emulated processor

core can demand very large multi-FPGA systems. Since

these designs include many, identical processor cores, an

alternative is to time-multiplex multiple virtual processor

cores over each physically instantiated core [84].
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Furthermore, infrequently exercised core functionality
can be run on a host processor, allowing the physically

instantiated core to be smaller and easier to develop.

While it is possible to simulate the entire processor on

an FPGA, defining and maintaining the model for the

FPGA and keeping it running at high frequency can be

difficult. FPGA-accelerated simulation technologies

(FAST) observes that cycle-accurate simulation on a

processor is dominated by the timing modeling, not the
functional modeling. Consequently, one can move the

timing model logic to the FPGA and achieve significant

simulation speedups without significantly changing the

design and reuse flow for the functional simulator [85].

A-Port networks provide a generalization for explicitly

modeling the simulated timing of a structure where the

FPGA primitive clock cycles do not necessarily corre-

spond directly to the modeled timing cycles in the
emulated system [86].

E. Integrated Memory
As FPGA capacity grew, it became possible to integrate

memory onto the FPGA die, and it became essential to do

so to avoid memory bottlenecks. This created opportuni-

ties to exploit high, application-customized bandwidth and

raised questions of how to organize, manage, and exploit

the memory.
Irregular memory accesses often stall conventional

processor and memory systems. Consequently, an FPGA

accelerator that gathers and filters data can accelerate

irregular accesses on a processor [87]. Similarly, conven-

tional processors perform poorly on irregular graph

operations. The GraphStep architecture showed how to

organize active computations around embedded memories

in the FPGA to accelerate graph processing [88].
When it is not possible to store the entire dataset on

chip, it is often useful to stream, buffer, or cache the data

in the embedded memories. Windows into spatial regions

are important for cellular automata [27] and many image

and signal processing and scientific computing problems

[89]. CoRAM provided an abstraction for using the on-chip

memories as windows on a larger, unified off-chip memory

and a methodology for providing the control and
communication infrastructure needed to support the

abstraction [90].

The embedded memories in FPGAs are simple RAMs,

often with native support for dual-port access. It is

straightforward to build scratchpad memories, simple

register files, FIFOs, and direct mapped caches [91] from

these memories. Recent work has demonstrated efficient

ways to implement multiported memories [92] and (near)
associative memories [93].

F. Defect and Fault Tolerance
We can exploit the homogeneous set of uncommitted

resources in FPGA-like architectures to tolerate defects.

Because of this regularity, FPGAs can use design-indepen-
dent defect-tolerance techniques such as row and column

sparing, as is familiar from memories. Nonetheless, the tile

in an FPGA is much larger than a memory cell in a RAM,

so it may be more efficient to spare resources at the level of

interconnect links rather than tiles [94]. However, this

kind of sparing builds in two levels of reconfigurability:

one to tolerate fabrication defects and one to support the

design. It is more efficient to unify our freedom for design-
mapping and defect-avoidance. With today’s cluster-based

FPGAs, it is simple to reserve a spare lookup table (LUT) in

a cluster to tolerate LUT defects [95]. When a natural

cluster does not already exist, it is possible to overlay a

conceptual cluster and reserve one space within every

small grid of compute blocks so that it is easy to

precompute logic permutations that avoid any single

compute block failure within the overlay grid [96].
Interconnect faults can be repaired quickly by consulting

precomputed alternate paths for nets that are disrupted by

defects [97]. These techniques repair the design locally,

avoiding the need to perform a complete mapping of the

design; the cost for this simplicity is the need to reserve a

small fraction of resources for spares even though most

will not be used.

If we must tolerate higher defect rates or reduce the
overhead for spares, we can map around the specific

defects in a device. TERAMAC pioneered the more

aggressive, large-scale approach of identifying defects,

both in the FPGA and in the interconnect between FPGAs,

and mapping an application to avoid them [98]. This style

of design- and component-specific mapping can be used to

tolerate defects in Programmable Logic Arrays (PLAs),

even at the high defect rates expected in molecular-scale
designs [99]. The TERAMAC [100] and nanoPLA [101]

designs show how reconfigurable architectures can

accommodate messy, bottom-up fabrication technologies.

In order to perform this device-specific mapping, it is

necessary to map out the defects in the design.

Reconfigurability can also be exploited to efficiently test

for defects in an FPGA or molecular-scale interconnect

[102]. Xilinx’s EasyPath program exploits the ability to
map around defects by matching partially defective FPGAs

with specific bitstreams and offers them at a reduced price.

As feature size continues to scale down and we explore

post-silicon technologies, variation increases, potentially

degrading FPGA performance [103]. At modest variation

levels, the worst-case effects from variation-induced

slowdown on a few paths can be avoided using multiple

precomputed configurations [104]. For larger variation,
the defect-avoidance techniques reviewed above can

minimize the impact of variation [105]. This will require

that we characterize the delays of FPGA resources, which

we can also do by exploiting FPGA reconfigurability

[106], [107].

Shrinking feature sizes also make components more

susceptible to failures during operation due to wear-out
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effects. Partial reconfiguration can be used to interleave
tests for failures during operation with quick reconfigura-

tions to mask the new failures [108]. Resources in a design

will not be used uniformly, both this and the fact that not

all resources will be used opens up an opportunity to

remap the design during operation to even out the wear on

resources, extending the component’s lifetime [109].

Soft errors can change the configuration bits in SRAM-

based FPGAs, leading them to perform incorrect functions.
The impact of these upsets is quantified in [110]. The

expected upset rates from radiation for systems varies

based on size and location; while it has traditionally been a

concern primarily for space-based systems, it is becoming a

real concern for airplanes and large ground-based systems

[111]. The Cibola Flight Experiment provides useful

statistical information for radiation upsets in satellite

systems [112]. Triple modular redundancy (TMR) is a
common solution for systems that cannot tolerate outage

periods. Partial TMR reduces the cost of TMR protection

when transient errors are acceptable but persistent state

errors must be avoided [113]. To avoid single points of

failure and minimize performance degradation for TMR,

additional care is needed during placement [114]. To

minimize the impact of configuration upsets, Xilinx

provides designs to scrub an FPGA bitstream and identify
and correct configuration bit upsets.

G. Energy
As noted, many scenarios have been identified where

reconfigurable architectures use substantially less energy

than processors and GPGPUs. Instruction and data

memory consume most of the energy in processors, while

spatial architectures eliminate instruction energy and

reduce data memory energy using smaller, distributed

memories local to the computation. The companion paper

shows how the locality exploitation in spatially distributed
computations fundamentally allows them to achieve lower

energy than sequential computations [24].

H. Looking Forward
As technology continues to scale towards the atomic

scale, energy and reliability are emerging as some of the

biggest challenges facing the electronics landscape. In

today’s environment, a reconfigurable architecture’s ability

to reduce energy is often as important as its ability to reach

new levels of performance. Power concerns have slowed

processor clock frequency scaling, making spatial archi-

tectures that exploit parallelism increasingly attractive.
Furthermore, power concerns are driving increasing

interest in specialized accelerator architectures and

heterogeneous computational organizations on a single

chipVboth areas that have seen significant development

within this community. Reconfiguration remains a prom-

ising way to address the reliability challenges of highly

scaled CMOS, ultra-low voltage CMOS, and post-CMOS

computing substrates. These trends suggest that the body-
of-knowledge developed for RC architecture is increasingly

valuable to the design of all kinds of future computing

systems.

III . LANGUAGES AND COMPUTE
MODELS

In the early days of RC, programming for general-purpose

computers and FPGAs was split into two very different

domains. While procedural languages like C were gener-

ally used to target microprocessors, most FPGA application
designers were still burdened with drawing schematics and

writing Boolean equations. Hardware description lan-

guages (HDLs), such as Verilog and VHDL, were gaining a

footing, but HDL synthesis at the time tended to produce

designs that were larger and slower than hand-crafted

designs. In general, achieving reasonable design perfor-

mance using the limited logic and routing resources in

most devices required hand tuning and an understanding
of the basic FPGA architecture.

For RC machines to be accessible to the masses, new

programming environments and models of computation

would be needed. Since the manycore era was still a

human generation away, the massive parallelism available

in RC required designers to consider succinct ways of

expressing and exploiting massive parallelism long before

these issues were mainstream in the general-purpose
computing community. However, a desire to maintain

familiarity for programmers of microprocessors created a

dilemma: Should familiar processor-based languages and

compute models be migrated to reconfigurable platforms

or should whole new models be created?

Languages and compute models for RC must serve two

goals. First, they must allow designers to express

applications in a succinct fashion that can be verified
prior to hardware implementation. Second, and perhaps

more importantly, application representations must be

amenable to efficient compilation to the target hardware

platform to take advantage of the fine-grained parallelism

and specialization offered by reconfigurable devices.

Since not every type of application requires the same

type of parallelism (fine-grained, coarse-grained, memory-

intensive, etc.), a range of languages and models are
needed. These domain-specific languages and compute

models often are not unique to RC. In fact, as hardware

synthesis and parallel computing methodologies have

improved, many of the techniques from these domains

have been directly applied to RC, with a series of required

changes.

A. C-to-Hardware
A key goal in the early days of RC was to make the

programming environment for RC systems as similar as

possible to microprocessor-based systems to increase
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accessibility for a large population of programmers. Since
C was the primary language of the day, it was natural that

this procedural language was a starting point. In many

respects, C is not an ideal choice for hardware develop-

ment since it does not have explicit support for clock

domains, fine-grained parallelism, or synchronization. An

initial C-to-hardware compiler [115] converted simple

chains of C operations (e.g., add, shift) into HDL code that

was then compiled to the gate-level using synthesis tools.
This work demonstrated the benefit of specialization as

multiple sequential C operations could be combined into a

single specialized hardware unit. The idea was then

extended [116] to consider the use of a simple state

machine to execute multiple sequential hardware opera-

tions for each extracted C block.

Since C syntax is limiting for hardware design, features

were added to the language to better express parallelism
and synchronization. Early compilers often relied on users

to manually identify parallelism in C programs using

pragma statements [117]. Expressions or whole subrou-

tines could be selected for synthesis to target hardware.

User-defined program annotation to support bitwidth

specification and communication between the synthesized

hardware and the rest of the circuit provided a mech-

anism for designers to guide the C-to-FPGA compilation
process.

Over the past decade, advancements in C-to-hardware

synthesis for both ASICs and FPGAs have moved this

design style into the mainstream. Modern systems can

automatically extract parallelism from C source code [118]

and consider the interface between the synthesized

hardware and memory [119]. Application code can also

be profiled using software execution [120] to determine
target code for hardware acceleration. An important aspect

of C-to-FPGA compilers is the estimation of functional unit

area and performance [121], an issue made easier by the

recent inclusion of hard macro blocks in FPGAs. For most

contemporary systems [120], [121], all C constructs are

supported, including pointers, recursion, and subroutines.

Specialized systems have also been created to target

synthesis for floating point [122].
The research associated with RC has spawned a

number of commercial procedural language-to-hardware

offerings over the years, including Xilinx’s Vivado (based

on AutoESL’s AutoPilot), Calypto’s Catapult C, and

Cadence’s C-to-Silicon. A demand for higher productivity

in the broader design automation community has also

fueled a push to C- and system-level design and synthesis.

Extensive improvements have led to increasing acceptance
and a slow FPGA designer migration from design

specification in HDL to specification in these higher-level

languages.

B. MATLAB-to-Hardware
As the use of FPGAs in commercial products increased,

so did the range of languages targeted to the devices. By

the end of the 1990s, the use of MATLAB for developing
and testing signal processing (SP) applications had become

widespread. Since many of these SP designs were

ultimately targeted to FPGAs, it was only natural that

techniques to compile MATLAB to FPGA-based systems

would be created. The loop-based nature of many

MATLAB programs makes them amenable to paralleliza-

tion with minimal control overhead. An initial effort [123]

focused on the development of an FPGA library of
common MATLAB functions, such as matrix multiplica-

tion and filtering. The compiler identifies these modules,

adjusts bit widths and control (e.g., loop counters), and

makes inter-module connections. Later work [124] exam-

ined techniques for implementing MATLAB functions in

FPGAs in a power-efficient manner using parameterized

designs. A MATLAB mapping approach that models data

flow control as a Kahn process network [125] provided
relaxed inter-module control synchronization. Inter-mod-

ule buffering is used to support distributed control.

MATLAB support is now a staple in FPGA development

tools (e.g., Altera’s DSP Builder, Xilinx’s System Gener-

ator, and Mathwork’s HDL Coder) and is widely used for

the implementation of SP blocks in FPGA systems.

C. Pipelined Computation and Communication
Since their introduction in the 1980s, LUT-based

FPGAs have been recognized as desirable platforms for

repetitive, datapath-oriented applications due to their

inclusion of numerous flip flops. Early FPGA designers

realized that a flip flop requires so little silicon area

compared to a LUT and associated routing that it makes

sense to include one flip flop per LUT in the FPGA. This

design choice provides the opportunity for pipelining at
both the fine- and coarse-grain levels. Perhaps the best

example of the potential of FPGAs for fine-grain pipelining

was demonstrated by von Herzen [126] who showed that

an FPGA was able to deliver a raw clock speed 2 to 3�
faster than a microprocessor in the same technology on

heavily pipelined SP applications. This performance is only

achieved through careful consideration of logic placement

and interconnection. In general, common SP algorithms
for image, audio, and radar processing algorithms that

require little synchronization can take advantage of a

systolic compute model where computation and commu-

nication take place in lockstep (see Section VI-A).

RC platforms are also amenable to coarse-grain systolic

computation, especially when all compute blocks perform

the same function. SIMD computing on the Splash 2

architecture [127] provided an early demonstration of
this compute model. In this architecture, an instruction

was globally distributed to 16 FPGAs, all performing

the same operation. Data was then transferred between

the devices in a systolic fashion. The repetitiveness of the

computation also helped scalability; one optimized com-

pute block could be created, optimized and replicated

many times.
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More sophisticated pipelined approaches followed as
parallelizing compilers were developed for the general-

purpose computing community and were migrated for use

in RC platforms. One approach [128] automatically

generated pipelined co-processors using loop unrolling

that allowed for the execution of multiple loop iterations in

parallel. This compiler focused on the removal of loop

dependencies, a limitation in unrolling. As the systems

matured, access to external memory became a bigger issue
to keep the relevant pipelines full. A parallelizing com-

piler [129] explicitly considered memory access time in

the generation of pipelines. The compiler algorithms are

able to trade off communication and computation in

different stages of the pipeline. More recent work [130]

examined the use of dynamic data dependency analysis in

allowing multiple pipelines to proceed simultaneously. A

limitation in many pipelined implementations is the
separation of pipeline datapath and control. VLIW-

SCORE [131] overcomes this issue by distributing control

across the pipeline.

Although the pipelining of data computation in RC

machines is still important in today’s systems, newer

systems can also be bound by the time required for

accesses to the memory hierarchy. In general, contempo-

rary commercial C-to-hardware compilers support pipelin-
ing operations involving loop unrolling and tiling.

D. Support for Integrated and External Memory
As compiler technologies advanced and embedded

memory blocks were added to FPGAs, more sophisticated

design mapping systems were developed. In many cases,

access to memory internal to the FPGA devices became the

limiting factor in the high-performance implementation of
compute models. Even though internal FPGA block

memories are multi-ported, prioritizing memory accesses

is a necessity, especially when programmable interconnect

delays are taken into account. In response, a parallelizing

compiler [37] that efficiently assigned unrolled loop data

to on-chip block memories was developed. Data and

computation were tightly clustered into small tiles to

minimize time-consuming inter-tile communication using
FPGA interconnect. An alternative approach [132] used a

precedence graph to assign data arrays to multiple memory

banks located in both internal and external FPGA memory.

This type of dependency analysis is particularly important

for the support of loop unrolling. Although block RAMs are

attractive and necessary compilation targets, their on-chip

quantities are limited. In some cases, it is desirable to

consider the tradeoffs of storing data in banks of flip flops
rather than block RAM [133]. This compilation approach

has been shown to reduce overall execution time while

limiting block RAM bandwidth. Recent work [134] focuses

on mapping for systems that contain multiple reconfigur-

able accelerators, each of which has a memory interface

including a cache. Memory accesses are optimized based

on predetermined accelerator access patterns.

Advances in the use of memories by compiler
technologies have encouraged FPGA companies to include

specialized DRAM interfaces and large numbers of block

RAMs in their devices. Convey Computer offers special-

ized scatter-gather external memory configurations for its

multi-FPGA systems in an effort to accelerate random

external memory accesses.

E. Object-Oriented and Streaming Compute Models
The similarity between instantiated hardware modules

and objects in object-oriented programming languages has

led to a number of attempts to represent RC as parallel

collections of communicating objects. A key aspect of these

models is predictable communication flow and limited

communication dependencies. Although similar to pipe-

lined implementations, streaming applications typically

have coarse-grain compute objects that communicate with

adjacent blocks via buffers or synchronized communica-
tion channels. Results are often sent along predetermined

communication paths at predictable rates. This model is

particularly useful for series of SP blocks that require

minimal control flow or global synchronization. PamBlox

focused on the ability to define hierarchies of C++ objects

[135] and the use of embedded block memories. These

blocks could then be organized into streams. The Streams-

C model [136] introduced a series of communicating
sequential processes that used small local memories.

Streams-C tools were later commercialized into the

Impulse-C compiler. Perhaps the most comprehensive

stream-based, object-oriented environment to date was the

commercial Ambric model [137]. In this model, a simple

processor executed one or more user-defined objects that

communicated with objects in other processors via self-

synchronizing, dataflow channels. The commercial Blue-
spec SystemVerilog hardware synthesis system is also

based on the manipulation of objects.

An attractive aspect of stream-based environments is

the ability to abstract away details of the reconfigurable

implementation platform from the user’s application

specification. Several projects have considered the possi-

bility of combining stream-oriented computation with

run-time reconfiguration. JHDL [138] allowed for the
definition of objects whose functionality can be dynami-

cally changed. Development tools allowed for evaluation of

system performance using both simulation and in-circuit

execution. The SCORE project [139] explored swapping

stream-based objects on-demand at run-time. If the

number of objects in an application is too large to fit in

the hardware, objects can be swapped in and out as

needed. As a result, the same application could be mapped
to hardware platforms of many different sizes.

F. Many-Threaded Models
The emergence of manycore processors and GPGPUs

has allowed for the crossover of computing models from
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these domains to RC. A defining aspect of these systems is
the presence of large numbers of threads of control in a

single processor or across many processors. An initial

effort in this space [140] examined the cost/benefit

tradeoffs for multithreaded soft processor implementa-

tions on FPGAs. This work was later extended [141] to

consider implementation issues associated with multiple

multi-threaded soft processors on an FPGA. Since control-

oriented threads are often better-suited for fixed-silicon
microprocessors, a run-time system which distributes

threads across heterogeneous resources (FPGA or CPU)

[142] is desirable. Abstract data types can be passed

between the threads, expanding flexibility. The recent

popularity of OpenCL and CUDA GPGPU languages that

facilitate thread creation and management has led to

increased interest in the compiler systems that will map

these languages to multiple FPGA compute kernels.
FCUDA [60] translates CUDA threads to register-transfer

level code that can be efficiently synthesized into FPGA

logic. Altera has developed a similar, more comprehensive

synthesis system based on OpenCL [143].

G. Looking Forward
Many of the challenges in terms of the automatic

extraction of parallelism facing the manycore computing
community are the same ones that have been present for

RC for the past 25 years. Continued advances in both fields

will help better define languages and compute models. The

emergence of extreme levels of thread-level parallelism in

manycores and GPGPUs will provide new insights into

opportunities to leverage the massive fine-grained paral-

lelism of RC. As hardware design continues to migrate

from HDL to the behavioral level, reconfigurable resources
will be more accessible to programmers with limited

hardware backgrounds.

Over the past few years, massively distributed

computing using thousands of processors in a ‘‘cloud’’

has gained increasing attention. It has been demonstrated

that FPGA resources deployed in a cloud environment can

be accessed with the same OpenStack software technology

used to access virtual machines [144]. Although no
commercial products are yet available, Microsoft has

remained an active investigator in examining the use of

FPGAs in the cloud. A recent paper examined the use of

1 632 servers equipped with Stratix V FPGAs to accelerate

the Bing search engine. A throughput increase of 95% is

achieved for a fixed latency distribution [145]. In 2011,

Maxeler introduced MaxCloud, based on multiple Virtex 6

FPGAs, as an on-demand, high-availability cloud comput-
ing environment.

IV. TOOLS

The strength of FPGAs and other reconfigurable archi-

tectures is their flexibility. Unfortunately, this flexibility

can make design, optimization, and debug of RC designs a

challenge for designers who are not hardware experts.
While most general-purpose computer systems have long

been supported by advanced profilers and debug infra-

structures with single-stepping and breakpoints, design

and test tools for FPGA-based systems have evolved to this

point from humble beginnings. Early designers used gate-

level design manipulation to achieve desired performance

and gate-level simulation to isolate design bugs. Today’s

advanced tools allow for a broad range of design options in
different languages, simulation at multiple design levels,

and in-circuit testing with near 100% visibility of internal

logic signals. The evolution of design, test and debug tools,

in concert with language and compiler development, has

moved RC into the mainstream computing community.

Although standard FPGA synthesis and physical design

tools are often a core component of this tool environment,

an additional layer of tools that customizes the mapping of
designs to the reconfigurable platform and bridges the

debug gap between intermediate design results and the

original design specification is needed to fully support a

broad range of designers.

A. Design Environments
The development of an RC application requires a

number of steps including design specification, profiling,

performance estimation, compilation, deployment, and

testing. A number of design environments have been

developed that support the initial three tasks in this set.

A comprehensive design environment, such as [146],

often includes graphical design tools, a floorplanner, a

schematic generator, and a simulation interface. This

type of environment can be used to evaluate perfor-
mance tradeoffs in SP applications related to data sample

rate, pipelining, and bit width [147]. As blocks are added

to or removed from the system, estimates are dynami-

cally updated. Simply measuring the performance and

area of the functional units is generally not sufficient in

design exploration. Interconnect speed, required data

precision, and power consumption must also be estimat-

ed [148] to provide accurate results. Contemporary
design environments have moved beyond simple esti-

mates of performance, area, and power based on stored

parameters for library components. A regression analysis

of tradeoffs can be performed [149] that considers

different combinations of functional units and intercon-

nect. This approach can determine the optimal high-level

structure of an application for a given target hardware

platform without the need for time-consuming synthesis
and physical design.

Today’s commercial CAD packages, such as Xilinx

Vivado and Altera Qsys, contain an integrated series of

tools, similar to the systems described above. These tools

allow for design expression, simulation, power analysis,

compilation, and in-circuit testing, often using on-chip

JTAG interfaces.
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B. Debugging Tools
Since FPGAs generally have high logic capacity and

often are difficult to analyze once they have been compiled

to LUTs and flip flops, the need for effective test and debug

tools are critical for application development. In many

cases, debugging can be performed at a high level via

simulation, but in cases where it is difficult to isolate

specific bugs, analysis is needed at the hardware level after

a bitstream has been loaded into the FPGA device. Most
debug strategies combine a graphical waveform viewer, a

simulator, and on-chip circuitry which can dynamically

collect debug information from an executing design.

Similar to software debuggers, a source-level debugger

can be used to correlate circuit-level debug information

with the original behavioral-level source code and allow for

hardware breakpoints, watchpoints, and single-stepping

[150]. In some cases, a per-application customized debug
controller is instrumented on-chip [151] to allow for rapid

debug response. Users can interact with the FPGA under

test via an application programming interface (API). This

approach has recently been extended [152] to include an

entire debug infrastructure on chip (controller, trace

buffer, and overlay network for collecting debug data).

An alternative approach to dynamically updating

circuitry on-chip for debugging purposes involves direct
modification of the design bitstream [153]. Small changes

to features in previously compiled and implemented logic

cores (e.g., constant values, pipeline registers) can be

made via bitstream manipulation, providing specialization

while avoiding long compilation, place, and route times.

Over the years, many debug features have been incorpo-

rated into Xilinx and Altera products. The availability of

Xilinx ChipScope and Altera SignalTap allows for run-time
downloading and analysis of FPGA design values.

C. Hardware/Software Co-Design
Hardware/software co-design is a broad field which

addresses the identification and management of applica-

tion portions that are assigned to microprocessor, DSP,

and custom hardware resources. Typically, the most

challenging part of hardware/software co-design is the
high-level area, performance, and energy estimations of

the portions that are assigned to hardware. Determining

which computation should be migrated to logic in such

systems depends on many factors including the logic

capacity of the target reconfigurable hardware, the amount

of its attached memory, and the speed of the communi-

cation interface to the microprocessor. This challenge can

be addressed by precompiling hardware and software
components of common functions and storing the bit-

streams and component statistics in a database [154]. The

hArtes co-design system [155] targets microprocessors,

FPGAs and digital signal processors. All hardware/software

decisions are made at compile time, with designer input. A

comprehensive back-end system individually targeting all

three target technologies produces accurate performance

estimates which can be used for additional partitioning
iterations.

FPGAs provide the additional opportunity to support

the dynamic migration of tasks from software to hardware

during execution, if run-time conditions warrant the

exchange. A self-contained approach [156] implemented

the decision-making hardware/software partitioner on the

FPGA and dynamically created and instantiated hardware

circuits as needed. The amount of time required for
synthesis and physical design limited the size of the

identified tasks to circuits with a small number of LUTs.

FPGAs have also been instrumented with logic that can

very accurately determine the cycle counts of soft

processors implemented in FPGA logic [157] at run-time.

This information can be used to dynamically evaluate

which tasks should be implemented in hardware. Although

significant research has taken place in developing
hardware/software co-design techniques over the past

25 years, most FPGA designers still manually select the

computation which will be mapped to reconfigurable

resources in heterogeneous systems. As designers move to

more behavioral-level specification for designs, the

situation may change.

D. Tools for Precision Analysis
Unlike fixed microprocessors, FPGAs offer the flexi-

bility of implementing arithmetic hardware with bitwidths

that exactly match the desired precision of the application.

Over the years, many papers have examined automated

techniques to determine appropriate operand word lengths

and intermediate compute value bitwidths to maintain a

user-specified level of accuracy. These optimizations

generally take place in the context of implementation of
digital signal processing applications. The design time use

of precision analysis [158] considers the selection of

intermediate computation bitwidths in integer-based

FPGA designs to maintain a desired precision. The effect

of roundoff errors in intermediate bit-limited computa-

tions is also a consideration [159]. Since FPGAs can be

used to implement both fixed- and floating-point arithme-

tic, bitwidth tradeoffs for both types of implementations
can be simultaneously considered [160] even if deviations

from standard floating-point formats are required. In some

cases, it makes sense to design bitwdiths to handle the

precision of common-case rather than worst-case compu-

tations. If an operation requires precision that is greater

than can be implemented in the hardware, it can be

migrated to software [161].

E. Fast Application Mapping
A limiting issue for RC based on FPGAs has been the

long compile times of the FPGA designs (often more than

an hour per device). For small amounts of logic, a simple

horizontal alignment of LUTs and a greedy routing of

wiring can be performed at run-time on the FPGA [156].

An underlying theme of most fast application mapping
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approaches is the use of the design hierarchy and regularity
in performing FPGA synthesis, placement and routing.

Design macroblocks can be aligned in a single dimension,

accelerating subsequent routing [162]. Newer, routing-

plentiful FPGAs can use prerouted macroblocks [163] so

that only interblock routes are needed, albeit at a cost of

design clock cycle performance. Several open-source

FPGA tool flows [164], [165] are available which allow

designers to create their own customized tools to
accelerate FPGA design compilation, including bitstream

manipulation.

F. Tools for Specialization
A significant benefit of FPGAs is the ability of the

designer to specialize a specific FPGA circuit. For example,

the multiplier hardware for a finite impulse response filter

can be reduced if the filter coefficients are known and can

be synthesized into the multiplier logic, reducing multi-

plier area and power consumption. Tool sets have been

developed to assist specialization for applications such as
text search [166], logic simulation [167], and automatic

target recognition [168], among others. These tools use

compile-time information about application data sets to

optimize functional units and memory accesses in the

generated hardware. Although today’s powerful FPGA

logic synthesis tools take advantage of data-dependent

specialization when constants are specified by the user at

compile time, standard interfaces for specializing compu-
tation at run time have not yet been developed.

G. Tools for Coarse-Grained Architectures
Even though coarse-grained architectures (Section II-

C5) have more function-constrained compute blocks than

LUT-based FPGAs, sophisticated tools are still needed for

application mapping. Basic mapping operations include

the scheduling of computation to coarse-grained compute

blocks (typically ALUs) and placement and routing. These

operations for 1D datapaths were shown to be linear time

in terms of number of block computations [58]. For 2-D

coarse-grained architectures, the placement of computa-
tion on blocks and the routing of interconnect is more of a

challenge. The DRESC compiler [169] performed sched-

uling, placement, and routing for an application as part of a

single simulated annealing search, a time-consuming

approach for even small numbers of compute blocks. If

the compute problem is constrained to computation with

repetitive communication (e.g., unrolled loops accessing

memory), computation, interconnect use, and memory
accesses can be scheduled simultaneously following

placement [170]. The SPR compiler [171] takes mapping

a step further by performing each step independently.

After computation is placed in blocks and inter-block

connections are routed, both compute blocks and inter-

connect are scheduled at the cycle level. The availability of

a pipelined and time-switched interconnect between

neighboring blocks allows for this level of scheduling
control.

H. Looking Forward
Although RC tools have improved dramatically, signif-

icant work remains in several areas. The movement of

programming environments to the behavioral level

provides ample opportunity for improved estimation of

low-level resource use without the need for complete
design synthesis. Compilation time is still a source of pain,

and in some cases it may make sense to forgo full device

resource usage to dramatically reduce compile times. The

recent strong interest in GPGPUs makes it likely that an

intermediate architectural point between these thread-

parallel devices and the fine-grained parallelism, special-

ization, and reconfigurability of FPGAs will be developed.

A fundamental approach to energy-efficient design is
shutting down resources that are not currently in use.

Although contemporary FPGAs do not currently support

dynamic intra-device region shutdown, future devices that

do include this feature may provide a path for increased

energy efficiency. The use of heterogeneity will require

additional tools beyond the current state of the art. At the

same time, energy efficiency is driving increased interest

in heterogeneous accelerator architectures. Such hetero-
geneity will provide new challenges regarding hardware/

software co-design and identifying which compute func-

tions should be mapped to which resources.

V. RUN-TIME RECONFIGURATION

SRAM-configured FPGAs can change their functionality

during operation. To distinguish this use of reconfigura-
tion from the cases where the configuration remains

constant during an application, the former case has been

termed run-time reconfiguration (RTR). RTR fully exploits

the hybrid nature of FPGAs, allowing for hardware

organization changes as needed during different phases

of the computation. As a result, RTR creates a distinct re-

quirement for application mapping to coordinate these

changes. The potential benefit of the approach is the
specialization of the computation to the near-instantaneous

needs of the application, reducing the size and energy

required for the design. These benefits must be weighed

against the additional space required to hold extra

configuration information and the time and energy needed

to transfer the information.

The broad usefulness and practicality of RTR remains

an open question. For some applications, it is possible to
gain the advantage of customization without the need for

run-time logic modification simply by reprogramming data

memories or stopping computation and statically loading

one of multiple precomputed configurations. Additionally,

as described in this section, the use of RTR requires

additional design compilation steps and run-time execu-

tion management. Applications that are well-suited for
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RTR often require clearly defined blocks of computation
that can be dynamically modified during execution.

A. Run-Time Reconfiguration Design Tools
A number of tools have been created to help designers

identify and extract portions of applications that are

amenable to RTR. An initial effort [172] identified portions

of an artificial neural network that are subject to run-time

update. These changes were limited to multiplier bitwidth
modifications and constant value updates. Since there may

be overlap in the logic used by several different versions of

the reconfigurable circuitry, configuration sharing may be

possible. Software can be used to identify the overlap and

minimize the amount of circuitry that must be loaded into

the FPGA during reconfiguration [173]. Rather than relying

on tools to extract and create versions of circuitry that can

be reconfigured, it is often easier for designers to predefine
the circuits with the assistance of tools. Reconfigurable

circuitry can be compiled into placed and routed blocks

[174] after designer-identified regions are extracted from

the netlist and evaluated via simulation [175].

In general, FPGA architectures constrain the interface

between static and dynamic regions (e.g., both Altera

Stratix V and Xilinx Virtex devices require that this

interface be made through fixed-location LUTs). Tools can
be used to assist in the floorplanning of modules [176] that

are then synthesized and stored in a module library [177].

A benefit of this approach is the creation of standard

interfaces that make the modules physically interchange-

able inside the FPGA [178]. This type of module creation is

particularly beneficial for application-specific instructions

implemented in reconfigurable logic to extend a micro-

processor’s instruction set [179]. These application-specif-
ic instructions can be swapped into the reconfigurable

fabric on a per-application basis. If numerous candidate

application-specific instructions exist, a selection can be

made based on frequency of instruction use and overall

expected application performance improvement [180].

Since RTR is often applied to stream-oriented applica-

tions with predictable computation and communication

demands, tools can be used to determine when hardware
swapping should take place. A comprehensive design cycle

includes simulation of the computation, inter-module

communication, and reconfiguration [181]. Scheduling

algorithms are often used to determine the optimal

sequence of reconfiguration under expected data loads.

This scheduling can be expanded [182] to consider both

configuration swapping and functional unit sharing to

reduce the amount of required configurations. For devices
with multiple, independent configuration contexts, the

ordered swapping of entire tasks can be considered in an

effort to reduce overall application latency [183].

FPGA companies have been slow to develop easy-to-use

tools and interfaces that could aid an FPGA designer’s use

of RTR on a per-application basis. Recent Virtex devices do

support a configuration interface (ICAP) [174] that is

writable from inside the device. To some extent, the
limited RTR support to date may be a result of a perceived

lack of consumer demand and the slow identification of

applications that could benefit from the approach. The

application space that can benefit from RTR has recently

grown to the point that both Altera and Xilinx are

producing devices with partial RTR capabilities.

B. Operating System Support
The need to swap specialized reconfigurable circuits at

run time requires software management beyond what is

required for a static hardware implementation. Such

management must consider the size of the reconfigurable

resources and the likely performance benefit and over-

heads of performing run-time circuit swapping. Typically,

software components must be added to the operating

system of a companion microprocessor to dynamically
manage available hardware resources. As interest in RTR

has grown, a number of operating system components that

attempt to satisfy this need have been developed. Virtual

hardware managers that allowed for the scheduled run-

time swapping of preplaced macro blocks in an FPGA

provided a first step [184], [185].

Operating system support for dynamically placing

portions of an application in FPGA logic appeared later
[186]. The FPGA was viewed as a co-processor in a

microprocessor-based system and its configuration was

scheduled considering multiple software threads of

execution. This type of dynamic scheduling is particularly

difficult for embedded systems that have strict real-time

constraints [187]. Task scheduling for these systems can

also consider the assignment of tasks to either hardware or

software based on available resources and latency require-
ments [188]. Operating system components for RC can

also serve other functions beyond RTR. For example, Linux

has been enhanced to allow for new FPGA-based hardware

modules to be available to the thread scheduler [189] and

to have access to the Linux file system [190]. Recently,

operating systems for platforms that include one or more

microprocessors and reconfigurable resources have gained

in popularity (e.g., MicroC/OS), although commercial
operating system support for RTR management is very

limited.

C. RTR Applications
A number of applications have not only shown the

benefits of using dynamic reconfiguration, but have also

demonstrated novel techniques for implementing it. Many

computations, like image processing, go through distinct
phases. A device that implements this type of computation

can be reconfigured between phases to fit a large task onto

a small FPGA [191]. Another approach [192] demonstrated

that constant search values could be dynamically updated

to accelerate the search of the human genome. Data

sorting was accelerated by dynamically updating the

sorting algorithm for large data sets [193]. For a
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communication system, the parameters and circuitry of an
adaptive Viterbi decoder were modified on the fly to adapt

to changes in channel noise [194]. These updates improved

performance while maintaining a consistent data transfer

quality level.

The reuse of modules for applications can be supported

by developing interfaces that allow for straightforward

inter-module interconnect. This approach was demon-

strated for networking applications for protocol and packet
filtering modules in the context of virtual networking

[195]. Similarly, entire modules used for SQL database

query operations were dynamically configured in milli-

seconds to enhance application performance [196].

After many years of slow growth in the research

community, FPGA RTR is gaining traction in the

commercial networking and telecommunications domains

where hardware configurations must change to match
protocol needs. In these applications, portions of the

design must stay active while reconfiguration takes place,

encouraging revitalized vendor support for partial FPGA

reconfiguration.

D. Looking Forward
For RTR to gain in popularity, standard models for

describing or automatically extracting opportunities for
RTR at higher levels of application design must be

developed. Advanced tools that can identify, synthesize,

and deploy similarly sized design regions of an application

for use in RTR will be needed as the RTR application space

expands. Modifications in device architecture to allow

easier access and interpretation of device configuration

information are likely to positively influence this effort.

The use of heterogeneity will also push the need for more
complex operating systems to manage both resource

mapping and accompanying run-time reconfiguration.

VI. APPLICATIONS

The pioneers showed that RC was good for something

(Section II-A). Accumulated experience has generalized

and broadened this understanding. Application-focused
research shows us what can be done and what kinds of

benefits reconfigurable architectures offer. This charac-

terizes the space to help people understand what classes of

applications and what application characteristics are likely

to benefit from RC. They also show us how to solve

problems on RC. Often the best formulation and algorithm

for a reconfigurable architecture are very different from

counterparts for a processor architecture. Many of these
solutions point the way to exploiting the massive

parallelism that Moore’s Law scaling continues to make

available to us.

A. Signal and Image Processing
Signal and image processing tasks require high

throughput, regular computations. The same operations

are performed repeatedly on sample inputs, usually with
simple communication structure. As a result, they are

amenable to high speed, pipelined implementations on

FPGAs, exploiting operation parallelism and nearest-

neighbor communication (Section III-C). The ability to

place large numbers of, perhaps specialized, multipliers on

the FPGA allows them to outperform sequential DSPs and

achieve real-time performance levels that, at one time,

were only possible with dedicated ASICs, particularly for
the key finite-impulse response (FIR) filter kernel [197].

FPGAs can also provide high throughput on the key fast

Fourier transforms (FFT) kernel [198] and matrix-matrix

multiply [199]. Many basic SP operations can be

implemented efficiently on FPGAs using CORDIC algo-

rithms [200]. The ability to exploit local, spatial computa-

tions also allows reconfigurable architectures to support

energy-efficient, real-time signal processing for wireless
communications [201].

The high throughput that FPGAs could deliver on

regular applications allowed them to achieve real-time

performance on image processing applications [202]. They

have been applied to image compression, including

hyperspectral imaging [203], wavelet compression [204],

and adaptive decoding [205] and real-time vision, includ-

ing face detection [206], stereopsis [207], and background
identification for object tracking [208].

B. Financial
Calculating the price of financial instruments is also a

very regular, compute intensive task. There is a direct

monetary advantage to producing more accurate estimates

faster than competitors. There is also a premium for speed

and density (both ops=m3
and ops/W) so the calculations

can be done in server rooms close to financial trading hubs.

Derivative pricing uses Monte Carlo simulations to

estimate risk, and these simulations are effectively

accelerated with RC [209]. RC is also useful for credit

risk management [210] and option pricing [211].

C. Security
Bit-level manipulation is supported efficiently on

FPGAs, and bulk encryption is often amenable to

streaming data through a highly pipelined datapath.

Because of drastically higher performance versus micro-

processor implementations, encryption and decryption

have often been used to demonstrate the potential benefits

of FPGA accelerators [13], [58].

1) Private Key Encryption/Decryption Acceleration: Early
papers displayed the benefits of reconfigurable implemen-

tations of the Data Encryption Standard (DES) [212].

Exploiting FPGA reconfigurability, it is possible to

specialize the DES circuit around a particular key schedule

to reduce area and increase throughput [213]. Once AES

was standardized to replace DES, 7 Gb/s encryption

throughput with an FPGA was demonstrated [214]. It was
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later shown [215] that dedicated DSP and memory blocks
in modern FPGAs could be exploited to achieve AES

encryption throughput over 55 Gb/s on a Virtex 5. Others

have shown high performance on International Data

Encryption Algorithm (IDEA) encryption [15], [216].

2) Public Key: FPGAs have also been heavily used for

public key encryption. FPGA co-processors have been

used to accelerate modular multiplication and RSA en-
cryption and decryption [217], [218]. The implementa-

tion of Galois Field multipliers for elliptic curve

cryptography has also been explored [219]. Compact

microcoded [220] and pipelined and specialized [221]

elliptic curve cryptography (ECC) implementations

appeared subsequently.

3) Breaking Encryption: The high throughput of FPGAs
on regular tasks makes them efficient at the kinds of brute

force search necessary to attack encryption. FPGAs were

used for brute force key search for Rivest Cipher 4 (RC4)

[222], as used in the secure sockets layer (SSL), secure

shell (SSH), and wired equivalent privacy (WEP). The

paper showed that a single 2002-era FPGA could recover a

40b key in 50 hours and that the approach could be

trivially parallelized onto multiple FPGAs. Highly efficient
FPGA hardware implementations of sieve operations that

factor large numbers were developed [223]. Subsequent

work attacking ECC [224] showed that 160b ECC keys

were probably still safe, but 112b ECC keys were

potentially vulnerable.

The Workshop on Cryptographic Hardware and Embed-
ded Systems collects a wealth of additional work on

implementing cryptographic functions on FPGAs.

D. NP-Hard Optimization Problems
Optimization problems are a large class of applications

that require sizable amounts of computation. This is

particularly true when the optimization is NP-hard. For

these problems, the ability to evaluate options in heavily

pipelined, parallel computations makes them attractive

candidates for FPGAs. Furthermore, the problem state-
ment and state for optimization problems is often small

compared to the computation required, so they avoid

memory or data transfer bottlenecks.

Boolean satisfiability (SAT) is the canonical NP-

complete problem. Both because of its own importance

and the fact that other NP-hard problems can be reduced

to SAT, it is an important application target. It is

particularly attractive because the evaluation of formulas
can be cast directly as a combinational circuit that can be

efficiently evaluated on an FPGA. Consequently, there is

considerable parallelism and bit-level mapping efficiency

to be exploited even before exploring pipelined, parallel

evaluation [225]. Three orders of magnitude speedup were

demonstrated on many problem instances [226]. The time

to place-and-route the instance-specific design for the

FPGAs presented a potential bottleneck that might
undermine the performance gains. By partitioning the

design into a fixed portion and a variable portion that is

customized for the specific SAT expression under exam-

ination, it is possible to avoid this bottleneck [227]. In

these early designs, the size of the SAT instance that an RC

could attack was limited by the size of the platform.

Later work [228] showed how to decompose large SAT

problems into smaller ones that could be sequenced on
the limited FPGA resources. The kind of pruning and

state-enumeration search used in efficient SAT was

extended [229] to solve the problem of explicit-state

model checking.

Outside of SAT, several other NP-hard problems have

been directly attacked. FPGA-accelerated genetic algo-

rithms were used to solve Traveling Salesman Problem

(TSP) instances [230], and a 2-approximate solution to the
Euclidean TSP was found [231] that was six-fold faster than

the best known software solution at the time for small

problem instances. Set covering, specifically as it shows up

in logic synthesis, was also addressed [232].

E. Pattern Matching
Pattern matching tasks, where it is necessary to identify

specific patterns within a large data set, require a
considerable amount of computation, but the computa-

tional tasks are generally very regular, exploiting the

natural strengths of FPGAs. Matching applications that

support target recognition within images, packet filtering

in network data streams (Section VI-F2), and biological

sequence identification in large genomic databases have all

proven to be rich application classes for RC.

1) Automatic Target Recognition: ATR uses image

matching to locate and identify specific target objects.

The ATR task demands a large amount of regular, bit-level

computation that could not be performed in real-time on

the leading microprocessors of the mid-1990s. Typical

ATR implementations search for any of a large set of

shapes within an image. The FPGA’s ability to rapidly

modify its gate-level logic through fast RTR was exploited
to support ATR [168]. The FPGA could be specialized to

allow a search through a series of match templates. New

templates could be dynamically loaded into the FPGA as

needed. As a result, the approach was able to achieve real-

time matching on hundreds of 16 � 16 pixel target images.

The large compile time necessary to generate unique

bitstreams for a set of image operations was avoided by

using a generic architecture and specializing only the LUT
ROMs to the particular operation [233].

2) Bioinformatics: Deoxyribonucleic acid (DNA) se-

quence matching on FPGA accelerators has been of great

interest since Splash [5]. A classical, dynamic program-

ming (DP) approach to the problem of homologous series

detection (the matching of a target DNA sequence to a
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reference DNA sequence in a database) outperformed
conventional computers by several orders of magnitude

[234]. The DP approach was extended [192] to match

against the then-new Human Genome Database (3 billion

base-pairs) in real-time using specialized configurations

and RTR.

By the mid-2000s it was apparent that the GenBank

database of known DNA sequences was doubling in size

every 18 months and that conventional DP approaches
were too slow. The Basic Local Alignment Search Tool

(BLAST) arose as a new heuristic approach that used

approximate string matching to identify homologous

series. This approach became the de facto standard for

sequence matching. An RC hardware implementation of

both BLAST and the DP algorithm that scanned the

reference genomic data in a single pass was developed

[235]. Off-chip SRAMs can be used to process all stages of
the BLAST algorithm on a single FPGA even when larger

sequence queries are handled [236].

Recently, the focus in bioinformatics has shifted,

driven by the rise of high-throughput next generation

DNA sequencers that generate millions of DNA fragments

a day, each of which contain up to several hundred base-

pairs (‘‘short-read’’ sections). These sequencers are starting

to produce personal DNA genomes at a low cost
(thousands of dollars per genome) that identify genetic-

based disease markers and abnormalities for a given

individual. These short-read sequences are aligned against

a reference DNA sequence to get the best (and fastest)

alignment and to identify potential mutations (additions,

deletions and/or substitutions of base-pairs) in the target

DNA being analyzed. A combination of software and

reconfigurable hardware was used to achieve a two order
of magnitude speedup over a software-only solution [237].

Subsequent work [238] tackled the problem of matching

millions of short read sequences against a reference DNA

sequence through the hardware-based acceleration of the

popular BLAT-like Fast Accurate Search algorithm

(BFAST) software algorithm. The BLAST-Like Alignment

Tool (BLAT) is, itself, a variant of BLAST. The use of RNA

folding was also examined [239].
The rapid advances in DNA sequencers and the resul-

tant generation of terabytes of genomic data have set the

stage for many more RCs aimed at specific bioinformatics

problems.

F. Networking
Networking equipment must handle packet processing

at high and growing throughputs and adapt to rapidly

evolving standards. Reconfigurable hardware provides the

required high throughput on an adaptable, programmable

media.

1) Routers: FPGAs provide the bandwidth to serve as

line cards, in-line packet processing engines, switches,

and routers in modern networking systems. The Field-
Programmable Port Extender interposes between a line

card and a switch to provide flow-specific programmable

packet processing [240] and is able to monitor 8 million

TCP flows at 2.5 Gbps [241]. NetFPGA provides a

standard, open platform that supports gigabit networking

for experimenting with network services and network

switch and router implementations [242], including an

early implementation of the OpenFlow [243] archi-
tecture for software-defined networking. To make it

easier to design and specify novel networking designs,

a domain-specific language framework [244] was devel-

oped for composing CLICK modular router primitives into

a new reconfigurable hardware design. These designs

could be compiled to FPGAs achieving comparable

performance to contemporary, dedicated network pro-

cessors [245]. A 16 � 16 switch that supports 10 Gbps
link speeds was built in a Virtex-6 FPGA [246]. For more

on the use of reconfigurable architectures for software-

defined networking, see the paper on this topic in this

issue [247].

2) Network Intrusion Detection Systems: One specific use

of FPGAs for in-line packet processing is packet filtering

and network intrusion detection. Viruses, worms, Tro-
jans, and zombie bots use the network to attack host

machines. Network intrusion detection systems (NIDS)

use regular expressions to identify malicious packets and

prevent them from being delivered to host computers. A

technique for compactly implementing regular expression

nondeterministic finite automata (NFAs) on FPGAs was

introduced in [248]. This regular expression matching

was applied to the SNORT NIDS rule-set database to
implement hundreds of state machines on a single FPGA

[249]. The resulting acceleration engine ran at over 600

times the speed of SNORT in software. The rule

encodings were compressed to pack more simultaneous

rules onto an FPGA while sustaining a filtering rate of

over 3 Gbps [250]. Earlier work was furthered with a dual

reconfigurable processor approach [251]; one processor

optimized the rules database in real-time and the other
scanned each Internet packet against it. A software-based

front-end rule processor was developed to support all

the features found in the SNORT rules while handling

10 Gbps data rates [252].

G. Numerical and Scientific Computing
With limited gate count, the earliest FPGAs could not

support interesting floating-point (FP) datapaths. How-

ever, as FPGA capacity grew due to Moore’s Law scaling,

that soon changed. With the advent of modern, large

gate-equivalent FPGAs and FP libraries [253], FP

arithmetic on an FPGA has become much easier and

more practical to use. It cannot challenge the peak capacity

of GPGPUs, which contain hundreds of FP-capable
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processors, but FPGAs offer more raw floating-point
throughput than microprocessors [254] and the ability to

customize the datapath to the computation allows them to

use more of the peak capacity than processors in many

applications. As an example, it was shown [255] that FP

FPGA arithmetic could surpass the FP performance of a

conventional PC microprocessor on memory-bound,

double-precision (DP) FP dense matrix operations,

vector dot product, matrix-vector multiply, and matrix-
matrix multiply operations. This research sparked a flurry

of DP FP research on FPGAs and was extended to DP FP

FFT [256].

In practice, many important matrices are sparse,

meaning most of their entries are zeros. Exploiting this

sparsity means there are fewer entries to store and read

from memory and fewer multiplications to perform. Since

the locations of the nonzeros can be irregular, this often
makes the problem bound by the latency of memory

performance rather than by the raw floating-point

throughput. On these tasks, microprocessors are unable

to deliver near their peak performance. The high-

bandwidth and low latency of FPGA on-chip memories

can be exploited to accelerate sparse matrix-vector

multiplication [257], and the memory can be further

optimized for symmetrical and banded matrices [258].
Higher accuracy and sequential accumulation performance

can be achieved by avoiding normalizing shifts inside the

accumulator [259]. For larger, irregular matrices that

cannot fit in on-chip memory, efficient reduce circuits

can be used [260] to compute sparse matrix-vector

multiplication at the speed that the data can be retrieved

from off-chip DRAM.

At a higher level, FPGA FP has been used for solvers.
Conjugate gradient uses iterative matrix-vector multipli-

cation to solve systems of linear equations including dense

matrix problems [261] and sparse problems [262]. Mixed

precisions can be exploited to efficiently solve conjugate

gradient problems [263]. Other FPGA implementations

solved for the eigenvalues of a matrix [264] and provided a

direct solve of a system of linear equations using LU

factorization [265]. The acceleration of a SPICE circuit
simulator, which solves nonlinear device equations using a

model evaluation for small signal linearization and a direct

linear solver [266], has also been demonstrated.

H. Molecular Dynamics
The three-dimensional (3-D) modeling of physical

phenomena on a discrete, particle-by-particle basis is
another great challenge with an insatiable need for

computation. One particular area of attention has been

molecular dynamics (MD) simulations, where a large

number of particles (thousands) are modeled at the atomic

level using Newtonian mechanics. The forces on each

particle are summed and then integrated using the

classical equations of motion. Among the many applica-

tions of this technique is the modeling of biological
molecules, including protein folding. It was demonstrated

[267] that an FPGA clocked at 100 MHz had a 20-fold

performance advantage over a contemporary GHz micro-

processor. The design space of force computation pipelines

and particle-particle filtering was explored in [268]. The

simulation of molecular dynamics will continue to grow as

more focus is placed on protein folding and the more

Fig. 1. Timeline of a selection of commercial efforts with significant RC impact.
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general goal of understanding biological processes at the
molecular level.

VII. CONCLUSION

RC has become a viable alternative to ASICs and fixed

microprocessors in our computing systems. With increas-

ing energy and reliability concerns, there is every reason to

believe its importance will grow as technology scales. As
we move to larger chips with heterogeneous fabrics and

accelerators, reconfigurability will continue to merge into

the mainstream computing infrastructure.

Over the past 25 years, the RC community has

pioneered accelerator architectures, hardware specializa-

tion, and RTR models and support. A number of

commercial RC efforts, noted in this manuscript, have

appeared over this time frame (Fig. 1). The field has
accumulated ample evidence of the superior performance

and energy efficiency of FPGAs compared to processors

over a broad range of applications. It has made significant

strides in the capture of applications, C-to-gates compila-

tion, and streaming models and architectures. With the
possible exception of RTR, all of these contributions are

central to today’s mainstream computing trends.

There is still much to learn and a long way to go before

the field begins to mature. Ease-of-use, ease-of-debug,

accessibility, and a slow edit-compile-debug cycle remain

challenges that must be addressed to achieve broader

appeal. Hybrid architectures and RTR, while attractive,

need better abstraction models and support. Demonstra-
tions and patterns of effective use in large-scale, complex

applications are still needed, as is a better understanding of

the relative strengths and weaknesses of RC. Innovations

in all areas of RC are reported regularly at the leading

conferences (ACM/SIGDA International Symposium on
FPGAs (FPGA), IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM), Inter-
national Conference on Field Programmable Technology
(ICFPT), and International Conference on Field-Programma-
ble Logic and Applications (FPL)) and in the leading journal

(ACM Transactions on Reconfigurable Technology and
Systems) in the field. h
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