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ABSTRACT | In this paper, we explicate the suggested benefits

of Clifford’s geometric algebra (GA) when applied to the field of

electrical engineering. Engineers are always interested in

keeping formulas as simple or compact as possible, and we

illustrate that geometric algebra does provide such a simplified

representation in many cases. We also demonstrate an addi-

tional structural check provided by GA for formulas in addition

to the usual checking of physical dimensions. Naturally, there is

an initial learning curve when applying a new method, but it

appears to be worth the effort, as we show significantly sim-

plified formulas, greater intuition, and improved problem

solving in many cases.
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I . INTRODUCTION

Following Hamilton’s invention of the quaternions in 1843

and his promotion of the idea that quaternions were a
fundamental building block of the universe [1], Maxwell

was inspired to write his set of electromagnetic equations

in terms of the quaternions [2]. Unfortunately, it turned

out that they were poorly suited to this task, and

HeavisideValong with Gibbs and HelmholtzVwas then

motivated to develop a different system of vector analysis.

This new system was readily adopted by both physicists

and engineers due to its relative simplicity in comparison

to quaternions [3].
Heaviside was to comment on his opposition to the use

of quaternions in his book on electromagnetic theory: ‘‘I

came later to see that, as far as the vector analysis I

required was concerned, the quaternion was not only not

required, but was a positive evil of no inconsiderable

magnitude; and that by its avoidance the establishment of

vector analysis was made quite simple and its working also

simplified, and that it could be conveniently harmonized
with ordinary Cartesian work’’ [4, p. 134].

Utilizing this vector notation, Heaviside was able to

reduce Maxwell’s ten field equations to the four equations

now seen in modern textbooks [5] and shown below in SI

units

r �E ¼ �

�
(Gauss’ law)

r�B� 1

c2

@E

@t
¼ �0J (Ampère’s law)

r� Eþ @B

@t
¼ 0 (Faraday’s law)

r �B ¼ 0 (Gauss’ of magnetism) (1)

where E is the electric field vector, B is the magnetic field

vector, and c ¼ ð�0�0Þ�1=2 is the speed of light in vacuum.

However, while Heaviside achieved considerable success

in encoding Maxwell’s set of ten equations in just four

equations (refer to Appendix A), looking at these four

equations from a notational perspective, we can still iden-

tify several significant shortcomings.
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First, both the electric field E ¼ ðE1; E2; E3Þ and the

magnetic field B ¼ ðB1; B2; B3Þ are described by three

component vectors. At first inspection, this notation

appears reasonable as both fields are directional fields in

a 3-D space. Investigating more thoroughly, however, we
find that the magnetic field has different transformational

properties than the electric field. This is normally taken

into account through referring to the electric field as a

polar vector and the magnetic field as an axial vector. This

distinction is shown visually in Fig. 1 that shows under a

reflection of the coordinate system that the electric field is

inverted whereas the magnetic field is invariant. Hence, an

ambiguity is introduced with the conventional Heaviside
vector notation, in that, two quantities with different

physical properties are both represented with the same

mathematical object. As stated by Jackson ‘‘We see here . . .
a dangerous aspect of our usual notation. The writing of a

vector as ‘a’ does not tell us whether it is a polar or an axial

vector’’ [6, p. 270].

Second, as noted by Einstein, the relative strength of

electric and magnetic fields depends on the relative speed
of the observer. For a magnet being moved relative to a

conductor, or the same conductor being moved relative to

the magnet, the resulting current produced in the con-

ductor is the same in both cases. However, for the case

where the magnet is stationary clearly then there are only

magnetic fields present, whereas for a moving magnet,

using Faraday’s law r� E ¼ �ð@B=@tÞ, then an electric
field is assumed to be present. As Einstein commented:

‘‘The observable phenomena here depend only on the re-

lative motion of the conductor and the magnet, whereas

the customary view draws a sharp distinction between the

two cases . . .’’ [7, p. 891]. Hence, rather than writing the

electric and magnetic fields as independent vector objects,

ideally we would have a single electromagnetic field

variable that transforms in a consistent way depending on
the relative motion. We will indeed find such an object

through combining the electric and magnetic fields into a

single field variable Eþ jcB, as detailed in Section II.

The third issue relates to the extensive use of complex

numbers in electrical engineering theory [8]. Their

widespread use is due to the fact that they allow a simple

representation of sinusoidal waves and alternating current,

as well as applications to complex permittivity and per-
meability, etc. However, complex numbers are not part of

Cartesian space and so lack physical justification.

As the fourth and final issue, Maxwell’s equations using

Heaviside vector notation require four separate equations

whereas most physical laws can be written as a single

equation as in general relativity or Newton’s law of univer-

sal gravitation, and so we would prefer to have a single

equation describing electromagnetic effects.
The outline of the paper is as follows. After completing

the main objective of the paper, of resolving four nota-

tional issues with the Gibbs’ vector notation through the

introduction of Clifford’s geometric algebra (GA), we then

go on to show other benefits of this approach when applied

to calculation of areas and volumes as well as reflections

and rotations. We then look at specific benefits of GA as

applied to electromagnetism, such as dipoles, the electro-
magnetic potential, electromagnetic waves, the Liénard–

Wiechert potential and circuit analysis. We then conclude

with a final section showing how special relativity (SR)

also naturally integrates with the formalism and how the

ability in relativity to change reference frames provides

new solution paths to electromagnetic problems.

II . DEFINITION OF CLIFFORD’S
GEOMETRIC ALGEBRA

In 1637, Descartes developed the Cartesian coordinate

system celebrated as one of the key mathematical develop-

ments in the progress of science that allows geometrical

curves to be described algebraically and forms the founda-

tion for both Heaviside’s and Clifford’s vector notation.

The heart of geometric algebra is to extend the vector

space <n with an associative and anticommuting multipli-
cation operation, along with new elements formed by the

products of vectors. Letting e1, e2, and e3 be an ortho-

normal basis for <n, we first define

e1
2 ¼ e2

2 ¼ e3
2 ¼ 1 (2)

Fig. 1. Distinction between polar and axial vectors. It can be seen

that the sense of rotation remains the same for the mirror image

(axial vector). In contrast, the direction of motion of a particle, shown

by the straight arrow, is inverted (polar vector). This illustrates the

different natures of the E (polar) and B (axial) vectors. This ambiguity

is resolved in geometric algebra (GA) where they are represented as

vectors and bivectors, respectively.
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fixing them as unit elements and where we now form 3-D
vectors as linear combinations of these three elementary

quantities. For example, the electric field vector can be

represented as the object E ¼ E1e1 þ E2e2 þ E3e3. While

this indeed succinctly expresses the three components of

an electric field in 3-D space as a single object, as already

discussed, it fails to provide a completely appropriate re-

presentation for the magnetic axial vector field.

We now proceed to expound Clifford’s geometric al-
gebra and see how it provides a solution to these notational

dilemmas. In 1878, Clifford extended Descartes basic co-

ordinate system in a straightforward way through simply

allowing compound quantities to be formed from the three

basis elements forming three bivector quantities e1e2, e3e1,

and e2e3 as well as a trivector quantity e1e2e3. We can then

enforce orthogonality of the unit vectors with the rule that

they anticommute, that is

e1e2 ¼ �e2e1 e3e1 ¼ �e1e3 e2e3 ¼ �e3e2: (3)

Defining the Clifford algebra through assuming an ortho-

normal basis1 for <3 allows us to view the basis elements

e1; e2; e3 as ordinary algebraic variables with additional

properties such as a unit square and an anticommuting

property rather than as Heaviside-type vectors that are

subject to either the dot or cross products. This implies

that mathematical manipulation of vector quantities is
significantly simplified as it is now based on utilizing the

well-known rules of elementary algebra [9], [10] rather

than utilizing separately defined vector products.

Clifford’s elegant generalization of Descartes’ system

also produces several other important advantages.

First, not only directed line segmentsVtypically called

vectorsVbut also oriented areas and oriented volumes can

now be represented, that is, the bivectors e1e2, e3e1, and
e2e3 and the trivector e1e2e3, respectively. Furthermore,

this expanded vector space, denoted C‘ð<3Þ, contains all of

the linear combinations of scalars, vectors, bivectors, and

the trivector.

The second significant consequence of Clifford’s idea is

that the bivectors and the trivector square to minus one.

Using the anticommutivity rule shown in (3), we find that

ðe1e2Þ2 ¼ e1e2e1e2 ¼ �e1e2e2e1 ¼ �e1e1 ¼ �1. It then fol-
lows that trivectors also square to minus one because

ðe1e2e3Þ2 ¼ e1e2e3e1e2e3 ¼ �e1e2e3e1e3e2 ¼ e1e2e3e3e1e2 ¼
e1e2e1e2 ¼ �1. This is significant in that we can now

provide a replacement for the unit imaginary. This has the

advantage in that, while the conventional unit imaginaryffiffiffiffiffiffi
�1
p

is purely abstract, the bivectors and trivectors of GA

have a precise geometrical meaning in a Cartesian framework.

We will now adopt the symbol j for the trivector
quantity

j ¼ e1e2e3 (4)

for the reasons that the trivector squares to minus one and

commutes with all other elementsVand so has the two key

properties of the unit imaginary
ffiffiffiffiffiffi
�1
p

. Hence, the symbol j
can continue to be used in all electromagnetic calculations

exactly as before, while its extra structure as a trivector can

be further exploited. For example, if we are multiplying

the trivector j with the basis element e1, we find je1 ¼
e1e2e3e1 ¼ e2

1 e2e3 ¼ e2e3. This produces what are called the
dual relations between vectors and bivectors

e1e2 ¼ je3 e3e1 ¼ je2 e2e3 ¼ je1: (5)

This extra structure of the trivector is particularly useful in
some contexts and not available with the conventional unit

imaginary. Hence, within Clifford’s system, complex-like

numbers become a natural extension of physical Cartesian

space rather than an ad hoc extension.

In order to assist the reader’s intuition, we note an

isomorphism with matrix algebra that C‘ð<3Þ ffi
Matð2; CÞ, where C‘ð<3Þ describes Clifford’s vector sys-

tem over <3 that we are describing. This isomorphism also
implies that Clifford algebra shares the noncommuting and

associativity properties of matrix algebra. However, it

should be noted that the Clifford algebra we have defined

over <3 has a greater degree of structure than the matrix

definition, for example, we have a graded structure in

C‘ð<3Þ of scalars, vectors, bivectors, and trivectors. It

should be noted that we have chosen one particular ap-

proach in defining a Clifford algebra over <3 through as-
suming an orthonormal basis e1; e2; e3 but alternative2

approaches are possible.

Regarding the product of two vectors within Clifford’s

system, we define two vectors as v¼v1e1 þ v2e2 þ v3e3 and

w ¼ w1e1 þ w2e2 þ w3e3, and we find, using the law of the

distribution of multiplication over additions (that is, ex-

panding the brackets), the algebraic product of two vectors

vw ¼ðv1e1 þ v2e2 þ v3e3Þðw1e1 þ w2e2 þ w3e3Þ
¼ v1w1 þ v2w2 þ v3w3 þ ðv1w2 � w1v2Þe1e2

þ ðv1w3 � w1v3Þe1e3 þ ðv2w3 � w2v3Þe2e3 (6)

1While we have assumed an orthonormal Cartesian basis, Clifford’s
system can be readily extended to more general coordinate systems, such
as nonorthogonal as well as polar, cylindrical, or spherical coordinates, for
example. An example using nonorthogonal basis vectors with its associated
reciprocal basis is shown in Appendix B.

2More generally, Clifford algebras C‘n are an associative algebra with
unity 1 of dimension 2n where n ¼ dim< V. These algebras can also be
either simple, hence isomorphic to matrix algebras over the reals, complex
numbers, or quaternions, or semisimple, isomorphic to the direct sum of
two matrix algebras over the reals or quaternions. These algebras have
been extensively classified and studied [13]–[16].

Chappell et al. : Geometric Algebra for Electrical and Electronic Engineers

1342 Proceedings of the IEEE | Vol. 102, No. 9, September 2014



where we use the fact that the three unit elements square
to unity and anticommute. In order to present it in a form

that is more readily identifiable in terms of Heaviside

notation we can use the dual relation, shown in (5), to

write

vw ¼ v1w1 þ v2w2 þ v3w3 þ jðv1w2 � w1v2Þe3

� jðv1w3 � w1v3Þe2 þ jðv2w3 � w2v3Þe1

¼v �wþ jv�w: (7)

Hence, we find that the algebraic product of two Clifford

vectors produces a combination of the dot and cross pro-
ducts3 into a single complex-like number. This equation

also illustrates the fact that parallel vectors commute and

perpendicular vectors anticommute. From (6), we define

the last three terms as the components of the wedge

product, that is

v ^w ¼ ðv1w2 � w1v2Þe1e2 þ ðv1w3 � w1v3Þe1e3

þ ðv2w3 � w2v3Þe2e3: (8)

Hence, from (6) and (7), we can write the following

relation:

v ^w ¼ jv�w: (9)

The expression in (7), generated by expanding the brackets

defining two vectors, thus provides an alternative calcu-

lation tool to the conventional method of using the deter-

minant of two vectors embedded in a 3 � 3 matrix. Hence,
there is no need to construct special definitions for pro-

ducts of vectors, such as the dot and cross products, as they

both follow naturally from a straightforward algebraic

expansion of Clifford vectors [11]–[13].

The wedge product is, in fact, more general than the

cross product and is to be preferred for several reasons.

First, the wedge product is associative and is easily exten-

dable to any dimension, whereas the cross product4 is
nonassociative and is essentially only defined for three

dimensions. The greater generality is provided because the

wedge product is defined within the plane of the two

vectors being multiplied, whereas the cross product re-

quires an orthogonal vector, as shown in Fig. 2. Hence, in

two dimensions, we can now define axial vector quantities

such as angular velocity jW ¼ r ^ v or torque jT ¼ r ^ F

using the wedge product, whereas the cross product is

technically not defined in this 2-D situation.
As can be seen from (6), for the case of a vector multi-

plied by itself, the wedge product will be zero and hence

the square of a vector v2 ¼ v � v becomes a scalar quan-

tity. Hence, the Pythagorean length or norm of a vector is

kvk ¼
ffiffiffiffiffi
v2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2 þ v2

3

p
. This now allows us to

define the inverse of a vector v as

v�1 ¼ v

v2
(10)

where the inverse will fail to exist for v ¼ 0. Checking this

result we find vv�1 ¼ vv=v2 ¼ 1 as required.

Now, because in Clifford algebra we are dealing with

purely algebraic elements, we can form compound quan-
tities called multivectors such as

M ¼ aþ vþ jwþ jb (11)

where a and b are real scalars, v and w are vectors, and j is

the trivector. Therefore, more generally, we can also de-

fine the inverse of a multivector as

M�1 ¼
�M

M �M
(12)

where we define the conjugation operation �M ¼ a� v�
jwþ jb, that is, inverting the sign of the vector and

bivector components. We can then define the magnitude

of a multivector as jMj ¼
ffiffiffiffiffiffiffiffi
M �M
p

.

3We are working with the Clifford algebra C‘ð<3Þ over the reals, and
so we adopt the number 1 as the unity element for the algebra. That is, in
(7), we have implicitly assumed that v �w is defined as ðv �wÞ1.

4It is possible to define an analogous vector cross product in seven
dimensions though it fails to satisfy the Jacobi identity [13].

Fig. 2. The distinction between the cross product and the wedge

product. While the cross and wedge products have the

same scalar magnitude, calculated from (12) for the wedge product,

i.e., kr� vk ¼ krkkvk sin � ¼ jr ^ vj, where � is the angle between the

two vectors, the wedge product describes an oriented plane defined

by the two vectors, and so applies for any two vectors in any number

of dimensions. The cross product, however, requires an orthogonal

direction, and so is not defined in two dimensions and in four

dimensions and higher there is an ambiguity between an infinity

of possible orthogonal vectors.
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Thus, Clifford’s system of vectors allows a general in-
verse operation to be defined. Hence, we can now divide by

vectors; an operation that is not possible with either the dot

or the cross product of Heaviside vectors. The reason for

the noninvertibility of the dot product is that it produces a

single scalar implying a loss of information. For a general

cross product u ¼ v�w, there are an infinite number of

vectors5 wVlying within the plane perpendicular to

uVthat gives the same resultant vector u, and hence
there is no unique inverse. The Clifford geometric product,

on the other hand, as shown in (7), consisting of a com-

bined dot and cross products, in general does have a unique

inverse and so vector expressions can now be inverted.

A. Notation
In this paper, we attempt to use notation that is as close

as possible to current usage in electrical engineering, while
still seeking to faithfully represent quantities in the forma-

lism of Clifford’s geometric algebra. As the first principle,

we write all vectors in bold font, and in accord with normal

usage they can be either uppercase or lower case font, such

as the electric field E or velocity v, for example. Vectors

are the only quantities that are given bold face so that there

can be no confusion with other types of quantities. Bivec-

tors are written as the trivector multiplied by a vector, as in
the magnetic field bivector jB, for example. Technically,

the three basis vectors e1; e2; e3 should be bold font and

being constant should also be in upright Roman font,

however, for the sake of readability, we write them as

ordinary algebraic variables, as shown in italic unbolded

font [11]. The trivector j ¼ e1e2e3 is also written in italic

font for the same reasons of readability. All scalars are in

lower case font, whether Latin or Greek characters, for
example, the electric potential � and the field energy u.

Complex numbers are not used in Clifford’s systemVbeing

replaced with algebraic quantities such as the trivector

jVand so all scalars are therefore real numbers. All up-

percase letters that are not bold are composite multivector

quantities found in GA, such as the electromagnetic field

F ¼ Eþ jcB or electromagnetic sources J ¼ �=�0 � c�0J.

We also represent phasors with uppercase letters and tilde,
such as eV, eI, and eR.

We believe this allows a clear and self-consistent set of

notation when using GA in electromagnetism, that is

mostly compatible with current usage and consistent with

international standards.

III . AREAS AND VOLUMES

For two vectors u ¼ u1e1 þ u2e2 and v ¼ v1e1 þ v2e2,

shown in Fig. 3, we might wish to know the area swept

out by these two vectors. This can be calculated, using a

variety of geometrical constructions, to be u1v2 � u2v1.

Now, from (7), we can write the product of the two

vectors

uv ¼ u � vþ u ^ v
¼ u1v1 þ u2v2 þ ðu1v2 � u2v1Þe1e2: (13)

We can see that the required area is the coefficient of the

bivector term e1e2 that is produced from the wedge product

u ^ v. The bivector e1e2 represents a unit area as men-

tioned earlier, and so it is natural to expect this component

to represent an area. Therefore, we can write for the en-

closed area

A ¼ huvi2 ¼ ðu1v2 � u2v1Þe1e2 (14)

where the notation huvi2 means to retain the second grade

or bivector terms and discard the rest. Also, dimensionally,

this makes sense because we are looking for a result with

dimensions of area6 or squared length. This dimensional

argument also applies to three dimensions, where the vol-

ume will, therefore, need to be grade 3, that is, for a set of

three vectors we find the enclosed volume V ¼ huvwi3 as

expected. Thus, a routine calculation of the algebraic pro-
duct, followed by the selection of the desired components

dimensionally, allows the relevant information to be ex-

tracted. For the special case where the three vectors u, v,

and w are mutually orthogonal, we can dispense with the

grade selection and simply write for the volume V ¼ uvw.

Note that the value of the area and volume calculated in

this way can return a positive or negative value that refers

to their two possible orientations in space.
These examples serve to illustrate the natural way that

GA models the geometry 3-D physical space, as shown in

Fig. 4.

5The vector cross product can be written as u ¼ ûjvjjwj sin �, where
û is the unit vector in the direction of u and � is the angle between the
two vectors. Hence, provided the product jwj sin � is kept fixed, jwj and
sin � can be independently varied, allowing an infinite number of vectors
w producing the same cross product result u.

Fig. 3. Calculating areas using the geometric product A ¼ huvi2.

6The wedge product, in general, defines the area swept out by a
vector moving along a second vector [9].
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IV. GENERALIZING COMPLEX NUMBERS
TO INCLUDE CARTESIAN VECTORS

Complex numbers have been found useful in a wide range

of engineering applications, such as for phasors and com-

plex refractive indices, for example. They have also been
combined with Cartesian vectors to represent electromag-

netic waves, as in the Jones vector formalism, where the

vector is used to represent the polarization direction and

the complex number to contain the phase [17]. While this

is effective in modeling polarization, it is a somewhat

ad hoc construction, and so it is preferable to use GA that

more naturally integrates complex-like numbers and

Cartesian vectors. In 2-D, the full Clifford space C‘ð<2Þ
can be represented as the set of elements

aþ v1e1 þ v2e2 þ be1e2 (15)

where a; v1; v2; b are real-valued scalars. This Clifford

algebra turns out to be isomorphic to the matrix algebra

C‘ð<2Þ ffi Matð2;<Þ. We find that the even subalgebra

aþ be1e2 is isomorphic to the complex numbers7 and

v1e1 þ v2e2 is a representation for Cartesian vectors, and so
both types of quantities can be represented within the

same space.

One of the main properties of complex numbers is

when represented on an Argand diagram and multiplied

by the unit imaginary they experience a rotation of �=2

radians. We can duplicate this property of the unit

imaginary using the bivector of the plane e1e2. For

example, to rotate the Cartesian vector ae1 (lying on the
e1-axis) through �=2 radians, we can multiply from the

right with the bivector e1e2. That is, ae1ðe1e2Þ ¼ ae2,

which is a �=2 rotation as required. Multiplying from the

left will produce a rotation by ��=2. More generally,

any complex number on an Argand diagram can be

rotated by an angle �, through acting with the operator

e�
ffiffiffiffi
�1
p

. We can write this in GA, for a Cartesian vector

v ¼ v1e1 þ v2e2, as

v0 ¼ e�e1e2v ¼ ðcos �þ e1e2 sin �Þðv1e1 þ v2e2Þ: (16)

While isomorphic to the rotation of complex numbers on

the Argand plane, this formula allows us to rotate real

Cartesian vectors while still utilizing the efficient rotation

properties similar to the unit imaginary that we duplicate

with the bivector of the plane.

The use of (16) that rotates Cartesian vectors in 2-D

also helps elucidate Euler’s intriguing mathematical

formula e�
ffiffiffiffi
�1
p
¼ �1. Equation (16) shows that rotating a

Cartesian vector v by � radians produces v0 ¼ �v, or a

flip in direction, thus enabling Euler’s formula to be de-

monstrated on the real Cartesian plane.

V. ELECTROMAGNETISM IN
CLIFFORD NOTATION

Now, equipped with this basic knowledge of GA, we can

address specifically some of the notational problems with

Heaviside vectors described earlier. The first notational

problem, regarding the correct representation of the mag-

netic field as an axial vector, can be solved by representing
this quantity not as a traditional vector but as a three-

component bivector

B1e2e3 þ B2e3e1 þ B3e1e2 ¼ e1e2e3ðB1e1 þ B2e2 þ B3e3Þ
¼ jB (17)

that now has the required transformational properties,

which is immediately clear from the notation. That is, if we

represent the polar vector E ¼ E1e1 þ E2e2 þ E3e3, then if

we invert the orientation of the coordinate system (parity

transform) through e1 ! �e1; e2 ! �e2; e3 ! �e3, then

we see that E! �E whereas B! B giving the required

7The subalgebra of C‘2 spanned by 1 and e1e2 is isomorphic to C,
however, unlike C‘ð<3Þ, the element e1e2 is not commuting with other
elements of the algebra and so does not belong to the center CenðC‘2Þ.

Fig. 4. The geometry of 3-D space modeled with Clifford’s geometric

algebra. In Clifford’s system, 3-D space consists of linear combinations

of lines, areas, and volumes. The three orthogonal lines represent

Cartesian vectors, and the three orthogonal planes are isomorphic

to Hamilton’s quaternions, and the volume element producing

complex-like numbers, thus unifying these three systems.
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distinct transformational properties8 between the electric
and magnetic fields. This notational improvement also

allows us to remove the second notational defect in that we

can now represent the electromagnetic field as a single

field variable F ¼ Eþ jcB. In order to combine two

quantities like this, clearly, the units must agree and we

can achieve this by multiplying B by the speed of light c
because B has dimensions of force per charge per unit

velocity. This representation of the electromagnetic field is
a considerable simplification over tensor notation that

requires a 4� 4 antisymmetric matrix in order to provide a

similar unification, as shown in (66).

Now that we have the ability to appropriately represent

axial vectors as bivectors we can now catalog these types of

vectors found in electromagnetism. In 3-D, as well as being

able to identify the distinction between polar and axial

vectors, we can also identify scalar as well as trivector
quantities. Hence, these four types of algebraic quantities

can be used to categorize the various physical quantities

found in engineering in the form of a ‘‘periodic’’ table, as

shown in Table 1.

We can now first inspect the list of vector type quan-

tities and recognize linear motion such as velocity, mo-

mentum, acceleration (including force), and the electric

field as vectors (polar), while rotational type quantities,
angular velocity, torque, and the magnetic field as bivector

(axial) type quantities. Using the conventional formula,

the Poynting vector S ¼ ð1=�0ÞE�B, while at first sight

appears to be an axial or bivector-like quantity due to the

presence of the cross product, in fact is a vector quantity.

This situation is clarified in GA when we realize that the

magnetic field is a bivector not a vector quantity as as-

sumed in the conventional formula for S. Indeed, in GA,

we write for the Poynting vector S ¼ ð1=�0ÞjB ^ E,
which under a parity transform now correctly produces

S! �S. The same issue arises in the Lorentz force law

qðEþ v�BÞ, where because the magnetic field is a

bivector quantity and not a vector one, the magnetic force

component v�B will be a polar vector rather than an

axial one. Writing the Lorentz force in GA as qðE þ
jB ^ vÞ, we see that the magnetic force now transforms as

a polar vector, as required.
This insight that the magnetic field is a bivector or areal

quantity as opposed to a linear vector quantity also answers

a common question regarding the Lorentz force law. Why

is the magnetic force not in the direction of the magnetic

field vector as it is for the electric field vector? The answer

is that the Lorentz force for the magnetic field lies in the

plane defined by the bivector magnetic field jB, and or-

thogonal to the velocity. The actual direction of deflection
in the plane of the magnetic field will be given by one of

the two possible orientations of the bivector field. This will

turn out to be the direction of deflection conventionally

calculated with the right-hand side rule.

Table 1 also has a column for scalar quantities that

contains the nondirectional quantities such as energy and

mass as well as the electric potential. The vector potential

is a vector quantity as expected, but of interest is the fact
that magnetic monopole currents and charges appear as

bivectors and trivectors, respectively. While magnetic mo-

nopoles have never been confirmed to exist in nature, it is

interesting in theory to note their intrinsic trivector na-

ture, as explored further in Appendix C. If we consider

other physical quantities that might have a trivector na-

ture, we can identify the magnetic flux and the helicity of

magnetic field lines as further examples. These examples
serve to illustrate the extra level of verification that can be

applied to formulas with reference to the four types of

quantities. For example, if we are calculating the angular

momentum of an object, then we would expect a bivector

result from our calculations.

We also need to keep in mind that some physical

quantities, such as the electromagnetic field, for example,

are composite quantities consisting of both vector and

8First, ‘‘It is an experimental fact that electric charge is invariant under
Galilean and Lorentz transformations and is a scalar under rotations . . .
charge is also a scalar under spatial inversion . . .’’ [6]. Using this as a starting
point, it then follows from the Maxwell equation r �E ¼ �=�0 that E is a
polar vector as both sides must transform in the same way. Then, Faraday’s
law r�Eþ ð@B=@tÞ ¼ 0 implies that B is an axial vector, due to the
presence of the cross product. Note that for a vector constructed from the
cross product of two other vectors w ¼ u� v, then under spatial inversion
w0 ¼ ð�uÞ � ð�vÞ ¼ u� v ¼ w, and so w is invariant.

Table 1 A Periodic Table of Physical Quantities Used in Electromagnetism Categorized According to Their Scalar, Vector, Bivector, or Trivector Nature.

We Have the Classical Electromagnetic Force Vector F ¼ qEþ qv�B, With the Vector Field E ¼ �r�� ð@A=@tÞ, Bivector Field jB ¼ r ^A, and the

Poynting Vector S ¼ ð1=�0ÞjB ^E
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bivector components. A list of these composite quantities

is shown in Table 2, which includes the field potential

A ¼ �� cA and an electromagnetic source J ¼ �=�0 �
c�0J. A second useful transformation on the multivector

M shown in (11), in addition to Clifford conjugation, is

called reversion and defined as My ¼ aþ v� jw� jb that
inverts the sign of the bivector and trivector components.

Both of these operations are antiautomorphisms, that is,

ðMNÞy ¼ NyMy. If we apply both operations, we produce

space inversion �My ¼ a� vþ jw� jb. The use of a single

multivector variable to represent a set of related quantities,

such as J to represent electromagnetic sources, will be

shown to lead to more compact notation for many equa-

tions, and a comparison of the conventional Heaviside–
Gibbs vector notation and Clifford’s GA for a range of

electromagnetic equations is shown in Table 3.

The Poynting vector in electromagnetism is typically

defined as S ¼ ð1=�0ÞB�E. However, in a true 2-D

space, the cross product is not defined, although clearly a

Poynting energy flow must still exist. This is typically dealt

with by assuming an embedding in 3-D so that we then

have access to an orthogonal direction that can be used to

represent the magnetic field. However, we would prefer to

be able to calculate the Poynting vector dealing only with

elements defined within the plane itself. Now, in GA, the

electromagnetic field is represented as F ¼ Eþ jcB,

where for an electromagnetic field in 2-D, we have F ¼
E1e1 þ E2e2 þ jce3B ¼ E1e1 þ E2e2 þ e1e2cB, which is de-

fined only in terms of planar elements. The Poynting vec-

tor is also well defined as S ¼ ð1=�0ÞjB ^E ¼ ð1=�0Þ
e1e2BE. As can be seen, this equation only uses elements

defined within the plane, the elements e1e2, the scalar B,

and the planar vector E ¼ E1e1 þ E2e2, thus allowing the

electromagnetic field and the Poynting vector to be

defined with only planar elements. This approach could,
therefore, be utilized when analyzing coplanar wave-

guides, for example.

Now we address the third issue, regarding the forming

of a single field equation for electromagnetism. Inspecting

the result of the product of two Clifford vectors we can see

that if we define a gradient vector r ¼ e1ð@=@xÞ þ
e2ð@=@yÞ þ e3ð@=@zÞ, then we have the algebraic product

Table 2 Composite Electromagnetic Variables. The Field Is a Composite Quantity F ¼ Eþ jcB, With the Field Potential A ¼ �� cA and a Source

J ¼ �=�0 � c�0J. We Have Used @ ¼ ð1=cÞð@=@tÞ þ r and Velocity Multivector V ¼ c� v. We Have @F ¼ J as Well as the Conservation Law of Charge

@ � J ¼ 0, Lorenz Gauge @ � A ¼ 0, and the Conservation of Energy @ � U ¼ 0

Table 3 Comparison of the Heaviside–Gibbs Vector Notation Versus Clifford’s Notation, Where We Have Used the Potential Multivector A ¼ �� cA,

Velocity Multivector V ¼ c� v, and Source Multivector J ¼ ð�=�Þ � c�0J
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rE ¼ r � Eþ jr�E, from (7). Hence, inspecting (1),
we can see that we can add Maxwell’s first and third

equations, after multiplying through by j, and the second

and fourth equations to give

rEþ j
@B

@t
¼ �

�0

cjrBþ @E

c@t
¼ � c�0J (18)

which eliminates the need for the dot and cross products.

These two equations can now be added to give

1

c

@

@t
þr

� �
ðEþ jcBÞ ¼ �

�0
� c�0J (19)

thus combining Maxwell’s four equations into a single

equation [10], [18]. If we now define a four-gradient ope-

rator that includes time @ ¼ ð1=cÞð@=@tÞ þ r and a

source term combining charge and current into J ¼
ð�=�Þ � c�0J, along with a field variable F ¼ Eþ jcB,

Maxwell’s equations are reduced to a single equation

@F ¼ J: (20)

This is, in fact, one of the simplest possible first-order

differential equations that can be written. This now allows

an intuitive interpretation of Maxwell’s equations, namely

that the gradient of the field F is proportional to the elec-
tromagnetic sources J that are present. This equation is

also easily generalized to linear media, substituting �0 !
�, �0 ! �, and where the speed of transmission of electro-

magnetic signals is, therefore, modified to c ¼ 1=
ffiffiffiffiffi
��
p

.

Maxwell’s equations in a completely general medium using

GA require a more sophisticated treatment as found in [19].

Conventional relativistic treatments produce the equa-

tion @�F�� ¼ J� for Maxwell’s equations. While there is a
superficial resemblance with (20), this equation uses ten-

sor contraction of indices labeled � equivalent to matrix

multiplication of a four-vector and 4 � 4 matrix, where J�

represents the four current. This can be compared with

(20) and an expanded form in (19) that uses straightfor-

ward vector notation and elementary algebraic operations,

thus providing more transparent notation for the engineer.

The four boundary conditions across an interface with
surface normal n̂ are typically given by

E?2 � E?1 ¼
1

�0
	 E

k
2 �E

k
1 ¼ 0

B?2 �B?1 ¼ 0 B
k
2 �B

k
1 ¼ �0K� n̂ (21)

where n̂ is the normal vector to a boundary defining per-
pendicular and parallel field components. Now, using a

single field variable �F ¼ �Eþ jc�B, we can write

�F ¼ n̂K (22)

where the surface current multivector K ¼ 	=�0 � c�0K.

This provides a single easy to remember the expression to

calculate the field discontinuities across an interface, as

opposed to four separate equations. This equation can be
interpreted as a discrete form of Maxwell’s equations,

shown in (20).

The fourth complaint we had was in regard to the

extensive use of imaginary quantities in electromagnetism.

We have already seen how in 2-D the unit imaginary can be

replaced with the bivector of the plane e1e2 that allows us

to continue to work in a real Cartesian space while still

having the benefits of complex-like numbers. In 3-D, the
unit imaginary can be replaced with the trivector j ¼
e1e2e3. Hence, rather than imaginary numbers being an

ad hoc addition creating an unphysical complex space, we

can now generate algebraic equivalents to the unit imag-

inary allowing us to stay within real physical Cartesian space.

Incidentally, we find an isomorphism between Hamil-

ton’s quaternions i; j; k and the three Clifford bivectors

e1e2, e3e1, and e2e3. Hence, the basis of the dispute between
the followers of Hamilton’s quaternions and the Cartesian

vectors of Heaviside can now be clarified, namely that

Hamilton misinterpreted his three quaternions to be a

basis for the three translational freedoms of physical space,

whereas, in fact, they represented the three orthogonal

rotational freedoms of 3-D space. Therefore, Clifford’s

vector system perhaps helps us resolve the dispute be-

tween the followers of Gibbs–Heaviside vectors and those
of Hamilton’s quaternions through identifying the

Heaviside–Gibbs vectors with the three vectors e1; e2; e3

and the three quaternions as the three bivectors

e1e2; e3e1; e2e3. Hence, Clifford’s systems allow us to unify

vectors, quaternions and complex numbers into a unified

real algebraic space C‘ð<3Þ.

VI. APPLICATIONS OF GA TO
ELECTROMAGNETISM

After covering the general topic of how reflections and

rotations are handled in GA, we then present five ap-
plications of GA to electromagnetism: 1) dipoles; 2) the

electromagnetic potential; 3) electromagnetic waves;

4) the Liénard–Wiechert potentials; and finally 5) circuit

analysis and complex power [20], [21].

A. Reflection and Rotation of Vectors
Defining the bivector N̂ ¼ jn̂ that represents a unit

plane orthogonal to the unit vector n̂ and then defining the
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following bilinear transformation:

v0 ¼ N̂vN̂ ¼ �n̂vn̂ (23)

we produce a reflection of the vector v in the mirror plane

N̂, as shown in Fig. 5. This can be seen by writing v ¼
v? þ vk as the sum of perpendicular and parallel compo-
nents with respect to the unit vector n̂ and then we find

v0 ¼ �n̂ðv? þ vkÞn̂ ¼ v? � vk (24)

using the fact that perpendicular vectors anticommute

ðv?n̂ ¼ �n̂v?Þ and parallel vectors commute ðvkn̂ ¼
n̂vkÞ and that n̂2 ¼ 1. Hence, the component of vk

parallel to the vector n̂ (and perpendicular to the plane jn̂)

is reflected, and the component of v? perpendicular to the
vector n̂ (and parallel to the plane jn̂) is unchanged.

Therefore, (23) describes the reflection of a light wave of

initial direction v from a plane mirror N̂ ¼ jn̂; see Fig. 5.

If we now produce an additional reflection from a

second mirror M̂ ¼ jm̂ acting on the reflected light ray v0,
then we produce the vector

v00 ¼ M̂v0M̂ ¼ M̂N̂vN̂M̂ ¼ m̂n̂vn̂m̂: (25)

Now, using associativity we can inspect the product

m̂n̂ ¼ m̂ � n̂þ m̂ ^ n̂ ¼ cos �� B̂ sin � ¼ e�B̂� (26)

where � is the angle between the two unit vectors, and the

unit bivector, describing the plane of the two vectors m̂
and n̂, is B̂¼�ðm̂ ^ n̂=jm̂ ^ n̂jÞ ¼ �ðm̂ ^ n̂= sin �Þ with

the property that B̂
2 ¼ �1. We use here the result that

jm̂ ^ n̂j ¼ km̂kkn̂k sin � ¼ sin �.

Substituting (26) back into (25), we find

v00 ¼ e�B̂�veB̂� (27)

where we have opposite signs in the exponential due to the

fact that for the wedge product m̂ ^ n̂ ¼ �n̂ ^ m̂. If we

now split v into components parallel and perpendicular to
the plane B̂, then we find

v00 ¼ e�B̂�ðv? þ vkÞeB̂� ¼ v? þ vke2B̂�: (28)

We see that the perpendicular component to the plane B̂ is

unchanged, and the parallel component to the plane is

rotated by an angle 2�. We can see that the operation e2B̂�

rotates the vector vk by an angle 2� by analogy with ro-

tations in the Argand plane, as both B̂ and vk lie in the
same plane. This behavior is, in fact, exactly what we re-

quire of a rotation in 3-D, that is, the parallel components

to the plane are rotated and the perpendicular components

unaffected. Hence, we can conclude that to rotate a vector

v by an angle � using the rotation plane B̂, we act with

v0 ¼ e�B̂�=2ve
B̂�
2 ¼ e�jâ�=2ve

jâ�
2 : (29)

We have included the dual form of the rotation operation
that utilizes the unit vector â that is perpendicular to the

plane B̂ ¼ jâ. This can then be interpreted as rotating the

vector v about the axis â by an angle �. This derivation

confirms the well-known result that two reflections create

a rotation [11]. We can thus write this equation as

v0 ¼ RvRy ¼ e�ja=2ve
ja
2 (30)

with the rotation operator R ¼ e�ja=2. The bivector ja sets
the plane of rotation, with a perpendicular axis a, that

rotates all vectors � ¼ kak radians within this plane.

B. Dipoles
We have an electric dipole moment p ¼ qdr that is

categorized as a polar vector and the magnetic moment

m ¼ IdA, where I is a current around a loop of cross
section A. We know bivectors represent unit areas, so as

anticipated the magnetic dipole is a bivector. Hence, for a

charge configuration consisting of both electric and

magnetic dipoles, we can write a dipole multivector

Q ¼ p� jm (31)

Fig. 5. A light ray incident on a plane mirror N̂ ¼ jn̂. We find the

reflected ray b ¼ N̂aN̂.
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acting on a field F, we can form the product, and retaining
just the scalar and bivector terms of interest, we find

hQFi02 ¼ ðp� jmÞðEþ jcBÞh i02
¼ðp � Eþ cm �BÞ þ ðp ^Eþ cm ^BÞ (32)

where the first two terms give the stored energy and the
second two terms give the applied torque.

For example, for a compass needle direction, denoted

by the dipole multivector Q ¼ �jm, oriented in the

Earth’s magnetic field vector F ¼ jcB, we find

QF ¼ cm �Bþ cm ^B ¼ cm �Bþ jcm�B (33)

where the scalar represents the stored energy and the bi-
vector represents the applied torque. The units also match

as required as both energy and torque are measured in

Joules.

C. Potential Formulation in GA
Defining a multivector potential

A ¼ �� cA (34)

where A is the vector potential, we find

1

c

@

@t
�r

� �
ð��cAÞ ¼ 1

c

@�

@t
þ cr �A

� �
þ �r�� @A

@t

� �
þ cr ^A
¼ lþEþ jcB (35)

where we have made the correspondence E ¼ �r��
ðA=@tÞ and jB ¼ r ^A ¼ jr�A with l ¼ ð1=cÞ �
ð@�=@tÞ þ cr �A. If we set l ¼ 0, then we are adopting
the Lorenz gauge. Coincidentally, this is the unique gauge

that puts the potentials and the fields onto a causal basis

with the sources. We thus can write F ¼ �@A, where �@ ¼
ð1=cÞð@�=@tÞ � r. Substituting this into Maxwell’s equa-

tion in (20), we produce

@ �@A ¼ @2
ct �r2

� �
A ¼ J: (36)

This naturally splits into four copies of Poisson’s equation

that have known solutions

A ¼ �0

4�

Z
Vol

J0

r0
d
 0 (37)

where the primes indicate that we evaluate the influence
of the sources at a retarded time, which allows for the

propagation of electromagnetic effects at the speed of light

c. This solution, of course, is known but we have the ad-

vantage that we can provide the solution to Maxwell’s

equation in a single formula not needing to be split into

separate equations for the electric and magnetic potential.

The field is then recovered from F ¼ �@A.

D. EM Wave
The field variable F ¼ Eþ jcB in general can describe

electromagnetic fields varying in both space and time and
so can be used to describe electromagnetic wave propa-

gation. For a plane electromagnetic wave, we will describe

an initial field as F0 ¼ E0 þ jcB0 defined at some point in

space and time, selected here as r ¼ 0 and t ¼ 0. Now, for

a sinusoidal variation in this field, propagating in the di-

rection k from this point, we can write

F¼F0ejðk�r�!tÞ ¼F0 cosðk�r�!tÞþj sinðk�r�!tÞð Þ (38)

where ! is the angular frequency of the sinusoidal varia-

tion. We should first check that this indeed satisfies
Maxwell’s source free equations, finding

@F¼ 1

c

@

@t
þr

� �
F0ejðk�r�!tÞ ¼ �!

c
þk

� �
F0ejðk�r�!tÞ: (39)

For a source free solution @F ¼ 0, we, therefore, require

0 ¼ �!
c
þ k

� �
ðE0 þ jcB0Þ

¼k �E0�
!E0

c
þck�B0

� �
�j !B0�k�E0ð Þ (40)

where we have bracketed the product into scalar, vector,
and bivector components. Now, each of these components

must equal zero separately, for this solution to be valid.

Therefore, by inspection, we have the scalar component

k �E0 ¼ 0 implying that k and E0 are orthogonal, and

from the bivector component !B0 � k�E0 ¼ 0, we see

that B0 is orthogonal to k and E0. Hence, we have pro-

duced the conventional result that the vectors k, E, and B
are mutually orthogonal for an electromagnetic wave.

Now, because we have removed the abstract imaginary

quantity from a representation of the electromagnetic

wave, as shown in (38), we can provide a more geometrical

depiction in 3-D space, as shown in Fig. 6. Typically, we

visualize a propagating electromagnetic wave in the direc-

tion k as consisting of three mutually orthogonal vectors

E;B;k. However, once we recognize that the magnetic
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field is a bivector quantity represented by an oriented
plane, and the vector B represents the orthogonal vector

to this plane, we generate the picture shown in Fig. 6 that

shows that the electric field vector E in fact lies on the

plane of the magnetic field jB. This also helps clarify a

historical debate on whether to use the magnetic field

vector or the electric field vector to characterize the plane

of polarization for light [17]. Referring to Fig. 6, we can see

clearly that it is more reasonable to use the electric field
vector as it also simultaneously represents the plane of the

magnetic bivector field.

Consideration of Fig. 6 also leads to an alternative

source free solution to Maxwell’s equations

F ¼ E0ð1� k̂Þejk̂ð!t��k̂�rÞ: (41)

The magnetic field now no longer appears explicitly as the

magnetic field appears through E0ð1� k̂Þ ¼ E0 � E0k̂,

where jB0 ¼ k̂E0=c. The rotating electric field vector at a

specified location is now given by the rotation operator

ejk̂!t that rotates E0 in the plane jk̂ perpendicular to k̂. A
generalized version of (41) is given in Appendix D for

conductive media.

E. Liénard–Wiechert Potentials
We illustrate the efficient representation in GA with a

specific example. Given a particle of charge q is moving in

a circle of radius a at constant angular velocity !. Assume
that the circle lies in the xy-plane, centered at the origin,

and at time t ¼ 0, the charge is at ða; 0Þ, on the positive x-

axis. Find the Liénard–Wiechert potentials for points on

the z-axis. The trajectory of the particle is, therefore,

defined as wðtrÞ ¼ a cosðwtrÞe1 þ a sinðwtrÞe2.

Using conventional vector analysis, we can find the

Liénard–Wiechert potentials from the well-known

expressions

Vðr; tÞ ¼ 1

4��0

qc

r0c� r0 � v
Aðr; tÞ ¼ v

c2
Vðr; tÞ (42)

where r0 ¼ r�wðtrÞ and jr0j ¼ r0 ¼ cðt� trÞ where tr is

the retarded time allowing for the propagation speed of

light. After significant algebra, we can find

Vðz; tÞ ¼ 1

4��0

q

s

Aðz; tÞ ¼ 1

4��0

akq

sc
cosðwt� ksÞe2 � sinðwt� ksÞe1ð Þ (43)

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2
p

and k ¼ w=c.

In GA, first the trajectory is described in a simpler form
as wðtrÞ ¼ ae1e

e1e2wtr , and we also achieve a single unified

expression for the potential as

Aðz; tÞ ¼ 1

4��0

q

sc
c� ake2ee1e2ðwt�ksÞ
� �

: (44)

Comparing this expression with (43), we can see a signi-

ficant advantage in compactness.

F. Circuit Analysis and Complex Power
In order to calculate the apparent power in an electri-

cal circuit, we typically use the relation P ¼ VI�. For ex-

ample, for a series RLC circuit, we have Z ¼ R þ ð1=
j!CÞ þ j!L, where j ¼

ffiffiffiffiffiffi
�1
p

and the asterisk is a complex

conjugate,9 and given a source RMS voltage V ¼ Vrms, we

can find

I ¼ V

Z
¼ VZ�1 (45)

where Z�1¼Z�=jZj2, with jZj2¼ZZ�. This gives the power

P ¼ VI� ¼ VV�Z

jZj2
¼ V2Z

jZj2
: (46)

However, students typically ask why the power is now

P ¼ VI� rather than simply P ¼ VI as it is for purely

resistive circuits.

9Notice that just for Section VI-F we have reverted to using j to
denote the traditional unit imaginary. Elsewhere throughout this paper j
should always be understood to mean the trivector e1e2e3.

Fig. 6. Visual depiction of a circularly polarized plane electromagnetic

wave in GA. The electric field is represented by a vector E, lying on a

rotating plane representing the magnetic field jB. This figure is

adapted from [18].
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In terms of GA, we will represent I and V as vectors and
the impedance as an operator, so that we have first the

vector V ¼ Vrmse1. So impedance will be interpreted as a

rotation operator for the vector phasors, so that we replace

the unit imaginary
ffiffiffiffiffiffi
�1
p

with e1e2. We now have

I ¼ 1

Z

� �
V: (47)

This allows us to indeed write P ¼ VI for the power for an

alternating current (ac) circuit, where for a source at zero
phase V ¼ Vrmse1. Checking this relation, we have

P ¼ VI ¼ VZ�V

jZj2
¼ V2Z

jZj2
¼ V2

jZj
Z

jZj (48)

that produces the correct relation.

Hence, GA allows us to write the general relation P ¼
VI that now corresponds with the calculations with simple

resistors, as well as instantaneous power calculations with

ac circuits. Also, we have I ¼ Z�1V, where V ¼ Vrmse1 or
V ¼ Vrmse

e1e2� for a source at a phase angle �. The formula

corresponds closer to the elementary expression S ¼ V2=R
and the phase angle of the power equal to the phase angle

of the impedance, which as we know is now interpreted as

a rotation operator given by Z=jZj.

VII. RELATIVITY

It is generally believed that special relativistic effects are

important only when studying objects moving at speeds

close to that of light. This belief leaves many practicing
scientists and engineers with the impression that an un-

derstanding of relativity is not necessary for their day jobs.

This impression is wrong on two counts. First, the prin-

ciples of relativity are often useful even for slow moving

objects, such as deriving the Doppler effect formula [22],

and second, modern atomic clocks can easily measure the

time dilation effects of satellites in orbit about the EarthV
in fact the understanding of this time dilation effect is
crucial to the operation of the global positioning system

(GPS) [23].

The postulate of SR is simple to state10 ‘‘The laws of

physics are identical in all inertial frames . . .’’11 [24], but

the consequences that include time dilation, length

contraction, and mass increase are counterintuitive.
Aside from GPS, applications of relativity include: ring

laser gyroscopes in aircraft navigation systems, which use

the Einstein velocity addition formula [25], nuclear

energy ðE ¼ mc2Þ [24], signal processing properties of

the light cone [26], and positron emission tomography

(PET; relativistic quantum mechanics). From this list, it

is clear that the modern engineer working in either signal

processing, navigation, or nuclear energy can be expected
to have a reasonable working knowledge of relativity

theory.

Now, one of the first principles of SR is that each ob-

served particle has its own space and a time coordinate.

This is in distinction to Newtonian physics which, while it

assigns each particle a spatial coordinate, it assumes a

single global time coordinate. In GA, therefore, for each

observed particle, we will write a particles’ coordinate
multivector as

X ¼ ctþ x (49)

with x ¼ x1e1 þ x2e2 þ x3e3 representing its position vec-

tor and t the time observed on the particles clock. The

approach we have adopted of adding a scalar quantity to a

spatial vector in order to represent space–time is com-

monly referred to as the paravector formalism [9], [11],

[27], [28]. We then find the space–time interval to be
jXj2 ¼ X �X ¼ c2t2 � x2 and because it is a scalar, it is an

invariant measure of distance under observer transforma-

tions that will be defined shortly.

We have from (49) the multivector differential

dX ¼ cdtþ dx: (50)

For the rest frame of the particle ðdx ¼ 0Þ, we have

jdX0j2 ¼ c2d
2, where we define in this case t to represent

the proper time 
 of the particle. We have assumed that

the speed c is the same in both the rest and the moving
frame, as required by Einstein’s second postulate regarding

the invariance of the speed of light.

To elaborate further the conceptual framework, we see

that an observer (such as a terrestrial laboratory) will as-

sign his own unique set of coordinates X to each event that

he observes, which in general will not agree with some

other observing laboratory while looking at the same

events but measuring his own set of coordinates X0. How-
ever, the space–time distance will be the same for each

event jointly observed, that is, jXj2 ¼ jX0j2. Each observer

will have his own clock that represents his proper time,

that will in actuality tick at the same rate as other ob-

servers’ clocks, nevertheless when an observer’s clock is

viewed by some other observers, he will consider their

clocks to be running slow. That is, if we assume that the

10Often two postulates are given for the special theory of relativity;
the second is that the speed of light in a vacuum is a constant. This second
postulate is a consequence of Maxwell’s equations and so it not strictly
necessary, though often stated for historical reasons.

11Inertial frames (or equivalently observers) are those moving at a
constant velocity, i.e., not accelerating.
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space–time interval is invariant under the Lorentz trans-
formations defined in (60), then we can equate the rest

frame interval to the moving frame interval, giving

c2d
2¼c2dt2 � dx2¼c2dt2 � v2dt2

¼ c2dt2 1� v2

c2

� �
(51)

with dx ¼ vdt, and hence, taking the square root, we find

the time dilation formula

dt ¼ �d
 (52)

where

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p : (53)

This is, in fact, one of the key results from SR that moving

clocks will appear to tick at a slower rate than clocks at rest

with respect to the observer. This general principle has

indeed been extensively verified experimentally, for exam-

ple, in the increased decay times of fast moving unstable

particles in particle accelerators and in decay products

from cosmic ray showers, where their extended lifetimes
are given by dt ¼ �d
 where the � factor approaches

infinity as the relative velocity v! c. Time dilation effects

have also been confirmed in orbiting satellites such as the

GPS satellites, for example, which require a correction of

7.2 �s daily in order to correct for the relativistic time

dilation effect. Another example is the Doppler effect of

electromagnetic radiation: it turns out the transverse

Doppler effect is due solely to relativistic time dilation,
where the measured frequency f ¼ �f0, where f0 is the

frequency of the source when at rest [29]. An important

corollary of time dilation is that the � factor depends only

on the relative speed and not on the instantaneous accel-

eration of the object. For example, high-speed particles

trapped in circular rings using magnetic fields are subject

to very high radial accelerations, however this accelera-

tion does not affect their time dilation as it is only a
function of the magnitude of the relative velocity, as

shown by (53).

From (50), we can now calculate the proper velocity,

differentiating with respect to the proper time, giving the

relativistic velocity multivector

U ¼ dX

d

¼ dx

dt

dt

d

þ c

dt

d

¼ �cþ �v (54)

where we use dt=d
 ¼ � and define v ¼ dx=dt. We
then find

jUj2 ¼ 1

1� v2=c2

� �
ðc2 � v2Þ ¼ c2: (55)

We define the momentum multivector

P ¼ mU ¼ �mcþ �mv ¼ E

c
þ p (56)

with the relativistic momentum p ¼ �mv and the total

energy E ¼ �mc2. This is one case where we break our rule

of using lower case for scalars, in order not to deviate from
such widespread usage of using E for the scalar valued total

energy.

Now, as jUj2 ¼ c2, then jPj2 ¼ m2c2 is an invariant

between frames, which gives

jPj2c2 ¼ E2 � p2c2 ¼ m2c4 (57)

the relativistic expression for the conservation of momen-

tum energy. We can, therefore, write the total energy as

E2 ¼ p2c2 þ m2c4, and so for a particle at rest ðp ¼ 0Þ, we
have the energy E ¼ mc2, Einstein’s formula for the energy

contained in matter.

The Lorentz force for charges in electromagnetic fields

needs to be modified to account for relativistic effects, and

in tensor notation written as K� ¼ ðq=mcÞF��P� , where

P� ¼ ð�mc;��mvÞ is the 4-momentum. An equivalent

expression using geometric algebra is K ¼ ðq=mcÞhPFi01.

We have selected the scalar and vector components using
the angle brackets in order to correspond exactly with the

4-vector for force. The use of P in the force law, remem-

bering that the force K ¼ dP=d
 means we now have the

differential equation

dP

d

¼ q

mc

� �
hPFi01: (58)

For the cases where the field F ¼ Eþ jcB is independent

of time then we can integrate with respect to time 
 to

produce an analytic solution PðtÞ ¼ ektFy=2Pð0ÞektF=2,
where k ¼ q=mc, for a charge with an initial momentum

multivector Pð0Þ in a constant field F. Writing our solution

in full, we have

PðtÞ ¼ e
ktðE�jcBÞ

2 Pð0Þe
ktðEþjcBÞ

2 : (59)
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A detailed derivation is provided in Appendix E. The posi-
tion of the particle at any time XðtÞ is calculated by

integrating the momentum with respect to time.

A. The Lorentz Group
The Lorentz transformations describe the transforma-

tions for observations between inertial systems in relative

motion. We will find that the following operator:

L ¼ e
ð��v̂�jwÞ

2 (60)

which exponentiates the vector and bivector components

of a multivector, will produce the correct transformations

for both coordinates and electromagnetic fields, where � is

defined through tanh� ¼ v=c where v ¼ kvk and where

v is the relative velocity vector between the observers. The

operator e�v̂=2 defines boosts12 and ejw=2 allows for mea-

surements in a rotated frame. If we apply this operator to
the coordinate multivector X using the transformation

X0 ¼ LXLy ¼ e
ð��v̂�jwÞ

2 Me
ð��v̂þjwÞ

2 (61)

then we will find that we produce the correct transforma-

tion law for coordinates. To see this, we first write a space–

time coordinate as X ¼ ctþ xk þ x?, where we split the

spatial coordinate into components perpendicular and
parallel to the boost direction v̂. For pure boosts, we then

find from (61) that

X0 ¼ e�v̂�=2 ctþ xk þ x?
� �

e�v̂�=2

¼ cte�v̂� þ xke
�v̂� þ x?

¼ ctðcosh�� v̂ sinh�Þ þ xkðcosh�� v̂ sinh�Þ þ x?:

(62)

Now, the expression tanh� ¼ v=c can be rearranged to

give cosh� ¼ � and sinh� ¼ �v=c. Substituting these

relations, we find

X0 ¼ � ct�
vxk

c

� �
þ � xk � vt
� �

þ x? (63)

which thus gives the transformation x0k ¼ �ðxk � vtÞ,
x0? ¼ x?, and ct0 ¼ �ðct� ðvxk=cÞÞ, the correct Lorentz

boost of coordinates, where xk ¼ kxkk. Normally, due to

the complexity of conventional tensor notation, only spe-

cial cases are calculated, such as a boost along a particular
coordinate axis, however because of the simplicity of the

notation in GA, we are able to calculate immediately the
general case, giving the transformation of both the space

and time coordinates in a single equation (63).

The new space–time distance squared will be X0 �X0 ¼
LXLyðL �XLyÞ ¼ LXLy�Ly �X�L ¼ X �X, because L�L ¼ 1, thus leav-

ing the space–time distance invariant, and so part of the

restricted Lorentz group [30]. The transformation defined

in (61) was defined to transform coordinates, however the

transformation rule also gives the correct transformation
for momentum multivectors P as well as the field potential

multivector A.

For the transformation of the electromagnetic field

multivector F ¼ Eþ jcB, we require a slightly different

transformation rule

F0 ¼ LF�L ¼ e��v̂�jwðEþ jcBÞe�v̂þjw: (64)

The use of SR allows a new solution path when calcu-

lating fields of moving charges. We select the rest frame of

a moving charge, which implies only electric fields are

present, which are given by E ¼ qr=r3, and we then sim-

ply transform into a relatively moving frame using the

Lorentz transformations to give the electric and magnetic

fields, that is, F ¼ �LEL. However, we also need to allow for

the motion of the charge over time, substituting r!
�ðr� vtÞ, where v is the velocity of the charge. This then

gives the full electromagnetic field of a moving charge,

without the use of calculus. For example, for a purely

electric field E viewed from a moving observation frame

with a relative velocity v, if we split the field into compo-

nents parallel and perpendicular to the relative velocity

vector, given by E ¼ Ek þE?, then we find the observed

field

F0 ¼ e��v̂=2ðEk þ E?Þe�v̂=2 ¼ Ek þE?e�v̂

¼Ek þE? � þ �v=cð Þ ¼ Ek þ �E? þ �E? ^ v=c

¼Ek þ �E? þ jc�E? � v=c2: (65)

We can see, as expected, that the parallel field is unaf-

fected, the perpendicular field is strengthened by the �
factor, and a magnetic component now appears, with

B0 ¼ �E? � v=c2.

Typically, in order to represent the transformational

properties of the electromagnetic field, a second rank
tensor is used, given by

F�� ¼

0 Ex Ey Ez

�Ex 0 cBz �cBy

�Ey �cBz 0 cBx

�Ez cBy �cBx 0

0
BB@

1
CCA (66)

12Boosts are rotation-free Lorentz transformations relating the
measurements for observers in relative motion.
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with the transformed field given by

F
�� ¼ ��


��
	F
	 (67)

where � is the 4 � 4 orthogonal matrix representing the

Lorentz transformation.

Hence, the use of F ¼ Eþ jcB being a simple general-

ization of well-known vector notation, with its transfor-

mation properties transparently described by (47), appears

preferable to the mathematical overhead of tensors and

matrices, shown in (66) and (67).

B. Velocity Addition Rule
If we apply two consecutive parallel boosts, v1v̂ and v2v̂

in the direction v̂, then from (61), we have the combined
boost operation

e
�1 v̂

2 e
�2 v̂

2 ¼ e
ð�1þ�2Þv̂

2 (68)

where tanh�1 ¼ v1=c and tanh�2 ¼ v2=c. We are able to

combine the exponents here because parallel vectors com-

mute, as shown by (7). Therefore, we can see that we can

write two parallel boosts in terms of a single boost velocity

tanhð�1 þ �2Þ ¼ v=c. Hence, we have a new relative

velocity between observers of

v ¼ c tanhð�1 þ �2Þ ¼
tanh�1 þ tanh�2

1þ tanh�1 tanh�2
¼ v1 þ v2

1þ v1v2=c2

(69)

the relativistic velocity addition formula. Hence, with v1

and then v2 representing two transitions to a higher rela-

tive velocity between observers, we have therefore shown

in (69) that the relative velocity between them can never

exceed the speed c. That is, if v1 ! c and v2 ! c, then,

from (69), v! c. For low velocities v� c, we have in the

limit for v1 ! 0 and v2 ! 0, then v! v1 þ v2, the

classical velocity addition formula.

The velocity addition formula applies to all objects with
mass, whereas for massless electromagnetic radiation, the

speed will always be measured as c for all observers in

accordance with the principles of the special theory of

relativity.

C. Larmor Precession
The electron e� is the fundamental particle responsible

for the formation of electric currents, but besides its unit

electric charge 1.602176565(35)�10�19 C the particle has

a magnetic moment of �¼�9:284764� 10�24 Joule/

Tesla.

For the case of an electron orbiting a purely electric
positive charge, as in the classical model of an electron

orbiting a proton for the hydrogen atom, we might con-

clude that because the electron is moving through a purely

electric field, then the magnetic moment of the electron

will not come into play. This would, in fact, be a wrong

conclusion, however, as can immediately be seen through

an application of the principle of relativity. In this case, we

can move to an observer frame that is sitting on the
electron itself that we now consider to be at rest, and so

observe the positive charge now orbiting the electron.

Now, as we know, a moving electric field produces a mag-

netic field B ¼ �E ^ v=c2 and hence there will now be a

torque 
 ¼ ��B that will cause the electron to precess.

This effect is called Larmor precession observed to cause

the splitting of atomic spectral lines, although, when cal-

culated in this manner, we in fact produce an effect twice
that observed in atomic spectra. This is because we have

not yet allowed for a second relativistic effect called

Thomas precession that is discussed in Section VII-D.

D. Length Contraction
For a rigid rod moving directly toward us, we would

measure a space–time coordinate of the near end X1 ¼
ct1 þ x1 and for the far end X2 ¼ ct2 þ x2. Hence, we find

the space–time difference L ¼ X2 � X1 ¼ x2 � x1.

Using the Lorentz transformation, we find X0 ¼ �ðct �
ðvxk=cÞÞ þ �ðxk � vtÞ þ x?, where in this case we have

x? ¼ 0 and v is the velocity of the rod

X01 ¼ � ct1 �
vx1

c

� �
þ �ðx1 � vt1Þ

X02 ¼ � ct2 �
vx2

c

� �
þ �ðx2 � vt2Þ: (70)

Now, in order to measure meaningfully the length of a

moving stick, we need to measure each end at the same
time, that is, t1 ¼ t2, and so we find

L0 ¼X02 � X01 ¼ �cðt2 � t1Þ þ � ðx2 � x1Þ � vðt2 � t1Þð Þ
¼ �ðx2 � x1Þ ¼ �L: (71)

This result implies that an observer sees length contrac-

tion on moving objects. That is, L0 is interpreted as the

length you would be expected to measure if you slowed

the rod down and measured it in your own rest frame.
Hence, not only time but also length (in the direction of

motion) is shrunk by the � factor. Lengths perpendicular

to the direction of motion will be unaffected. Once again,

at first glance, it might appear that Lorentz contraction

has little to do with ordinary electromagnetic theory.

However, for the case of two parallel wires carrying a

current in the same direction, for example, from a special
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relativistic perspective, the moving electron in one wire
sees the positive charges in the other wire Lorentz

contracted closer together and so of higher density than

the electrons, and will experience an effective electric

attractive force. Coincidentally, this turns out to be the

same force calculated with the conventional approach

assuming that the wires all generate magnetic fields that

interact.

Now, returning to our application of an electron orbit-
ing a proton, and assuming a circular orbit, we can see that

the orbit is shrunk in the direction of motion due to

Lorentz contraction and so the electron will appear to an

outside observer to be turning a sharper angle than neces-

sary to orbit the proton. This special relativistic precession

effect is called the Thomas precession [31], which now

allows accurate prediction of spectral lines. Refer to

Appendix F for a detailed calculation of the Thomas
precession from the Lorentz contraction.

Now, because the Thomas precession is a geometrical

effect, it applies uniformly to all orbiting particles and so is

applicable to both atomic orbitals and satellite orbits such

as GPS satellites.

The phenomenon of Thomas precession can be derived

more formally using the boost operators from (44), where

we have a sequence of radial boosts that keep the particle
in circular orbit. That is, for this sequence of nonparallel

radial boosts, we have

L ¼ e��2v̂2=2e��1v̂1=2

¼ cosh
�2

2
cosh

�1

2
þ v̂1 � v̂2 sinh

�2

2
sinh

�1

2

� v̂1 cosh
�2

2
sinh

�1

2
� v̂2 cosh

�1

2
sinh

�2

2

þ v̂1 ^ v̂2 sinh
�2

2
sinh

�1

2
(72)

which consists of scalar, vector, and bivector compo-

nents. We can see, therefore, that we cannot write this

as a single equivalent boost e�3v̂3=2 ¼ coshð�3=2Þþ
v̂3 sinhð�3=2Þ due to the presence of the bivector term

v̂1 ^ v̂2 sinhð�2=2Þ sinhð�1=2Þ. This bivector term repre-

sents a rotation and leads to the Thomas rotation, as

derived earlier.

E. Application: Doppler Shift
The Doppler shift of light refers to the change of fre-

quency caused by the relative velocity between the source

and the observer. In the rest frame of the source, we can

describe a single wavelength 
 of emitted light using (49),

setting up the e1-axis along the line of sight as

X ¼ cT þ 
e1 ¼ 
þ 
e1 (73)

where T ¼ 
=c is the period of the wave, which gives
jXj2 ¼ 0 as required for a photon. We can describe an

observer in relative motion with a boost in the v̂ ¼ e1

direction using tanh� ¼ jvj=c, and we find from (61)

X0 ¼ �
 1� v

c

� �
þ �
 1� v

c

� �
e1: (74)

So using the space (or alternatively time) component, we

find 
0 ¼ 
�ð1� ðv=cÞÞ, and using c ¼ f
, we find the

relativistic Doppler shift formula

f 0
f
¼ 1

� 1� v
c

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v=c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v=c

p : (75)

VIII . OUTLOOK

The development of GA is now expanding rapidly in many

areas of science with engineering applications including

terahertz spectroscopy, which allows efficient processing
of time domain signals [33], neural networks [34], nonsi-

nusoidal electrical power [35], [36], anisotropic materials

and metamaterials, providing a more general description

for metamaterials that may allow new innovations [19],

[37], quantum computing allowing a more intuitive under-

standing of quantum algorithms such as the Grover search

algorithm [38], support vector machines [39], quantum

game theory [40]–[42], perfect electromagnetic conduc-
tors [43], robotics using conformal geometric algebra [44],

[45], and computer vision [46].

Many problems in SR can often be reduced to a planar

framework that also significantly simplifies analysis [32].

It is important to note that two distinct transformation

rules have now been defined, one for fields and another

one for coordinates. For more advanced treatments, it is

often desirable to have a single universal transformation
law that transforms all quantities uniformly. One popular

approach is to increase the size of our algebra from C‘ð<3Þ
to C‘ð<1;3Þ where we now raise time to the status of a

fourth dimension. In this case, we can give the unit vector

for time as e0, say, we require e2
0 ¼ �1 as opposed to plus

one for space vectors. Also, with the addition of one more

dimension, the space doubles in size from 8 to 16 basis

elements. Provided this extra complexity is acceptable,
then we can adopt this space for full relativistic analysis

[13], [27], [28].

Clifford’s geometric algebra appears to be an idea

whose time has come with a recent article in Nature Physics
[47], suggesting that because of its superior geometric

intuition one day it will be taught in high schools in place

of Heaviside–Gibbs vector analysis.
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IX. CONCLUSION

Due to the difficulties of representing Maxwell’s equations
using quaternions, Heaviside rejected Hamilton’s algebraic
system and developed a system of vectors using the dot and
cross products, which is the conventional system used
today.

Through identifying Hamilton’s quaternions with the
three bivectors e1e2; e3e1; e2e3, it is now possible to resolve
the dispute between the champions of Hamilton’s quater-
nions and the supporters of Heaviside’s vectors, through
realizing that Heaviside vectors represent the three trans-
lational freedoms of physical space e1; e2; e3, and Hamil-
ton’s quaternions represent the three rotational freedoms
of space e1e2; e3e1; e2e3, as shown in Fig. 4. In addition, the
unit imaginary that is used to produce complex numbers
can be superseded with the trivector e1e2e3 of 3-D space.
Hence, these competing systems are now unified within
Clifford’s system.

Regarding the role of complex numbers and quaternions,
Baez has commented: ‘‘The real numbers are the dependable
breadwinner of the family, the complete ordered field we all
rely on. The complex numbers are a slightly flashier but still
respectable younger brother: not ordered, but algebraically
complete. The quaternions, being noncommutative, are the
eccentric cousin who is shunned at important family
gatherings’’ [48, p. 145]. With Clifford’s system, this
distinction dissolves with the complex numbers and
quaternions now both placed on an equal footing with
Cartesian vectors within a real algebraic system.

With the introduction of bivectors and trivectors in GA,
in addition to conventional vectors, we now have a more
appropriate representation for the magnetic field as a
bivector field, as well as allowing a single electromagnetic
field variable Eþ jcB. We can also represent planes di-
rectly as bivectors, rather than through the use of a per-
pendicular vector. The general notational simplification
found using GA is illustrated in Table 3. In engineering, we
are always taught to check a formula dimensionally; more-
over, GA provides an additional structural check, specif-
ically that the calculated quantity has to be the correct
algebraic order, whether a scalar, vector, bivector, or tri-
vector quantity.

Typically engineers look for the simplest formula to
produce results that are accurate enough for the task at

hand. Hence, the value of simplifying the representation of

Maxwell’s equations into a single equation and using

notation that naturally embodies the nature of the quan-

tities modeled produces compact representation and

increased intuition for the various physical relationships.

In conclusion, with the Clifford algebra of three di-

mensions C‘ð<3Þ, we find an elegant algebraic model of
physical 3-D space and time that completes Gibbs’ vector

formalism, removes the distinction between polar and

axial vectors, simplifies many formulas, allows a relativistic

treatment, and provides additional geometric insight to

many problems. h

APPENDIX A

MAXWELL’S ORIGINAL
ELECTROMAGNETIC EQUATIONS
Maxwell in his treatise of 1865 [49] collected together the

electromagnetic equations as follows:

0 ¼ eþ df

dx
þ dg

dy
þ dh

dz

�� ¼ dH

dy
� dG

dz
�� ¼ dF

dz
� dH

dx
�� ¼ dG

dx
� dF

dy

P ¼� �
dy

dt
� � dz

dt

� �
� dF

dt
� d�

dx

Q ¼� �
dz

dt
� � dx

dt

� �
� dG

dt
� d�

dy

R ¼� �
dx

dt
� � dy

dt

� �
� dH

dt
� d�

dz

d�

dy
� d�

dz
¼ 4� pþ df

dt

� �
d�

dz
� d�

dx
¼ 4� qþ dg

dt

� �
d�

dx
� d�

dy
¼ 4� rþ dh

dt

� �

0 ¼ de

dt
þ dp

dx
þ dq

dy
þ dr

dz

P ¼ kf Q ¼ kg R ¼ kH (76)

where the correspondence with modern vector notation is

E ¼ðP;Q;RÞ D ¼ ðf ; g; hÞ H ¼ ð�; �; �Þ
A ¼ðF;G;HÞ J ¼ ðp; q; rÞ (77)

and � ¼ �e, k ¼ 1=�, and � is the electric potential. Using
this vector notation, we can now write Maxwell’s

equations as

r �D ¼ �
�H ¼r�A

E ¼�v�H� dA

dt
�r�

r�H� 4�
dD

dt
¼ 4�J

r � J þ � ¼ 0

D ¼ �E: (78)

We notice that the Lorentz force law is included as part of

the third equation. However, Maxwell states that this term

disappears if there is no motion of the conductor, and
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hence we can ignore this for the microscopic case. The last
equation is normally kept separate from the main set of

equations as constitutive relations, along with B ¼ �H,

and also the fifth equation, being the continuity equation

for charge, can be recovered from the fourth equation

through taking the divergence, using the fact that the

divergence of a curl is zero. With the second equation,

after taking the divergence, we find r � ð�HÞ ¼ r �
B ¼ 0. Also, with the third equation, if we take the curl,
we findr�E ¼ ��ðdH=dtÞ, where the curl of a gradient

is zero. We now have the four equations

r �D ¼ �
r �H ¼ 0

r�D ¼ � �� dH

dt

r�H� 4�
dD

dt
¼ 4�J (79)

which are the conventional four equations for linear media

that can be compared with (1). Maxwell has also defined

the potentials through E ¼ �ðdA=dtÞ � r� and �H ¼
B ¼ r �A. It is interesting to note that Maxwell used

the full time derivative, whereas later on, he switched

to partial derivatives after analyzing the homopolar
generator.

APPENDIX B

MORE GENERAL COORDINATE SYSTEMS
For simplicity, this paper utilizes an orthonormal Carte-
sian system, however, different coordinate systems can be

defined.

Selecting a nonorthogonal basis, such as v1 and v2, we

produce a vector v ¼ av1 þ bv2, where v1v1 ¼ kv1k2 is

not necessarily equal to one and v1 is not necessarily

orthogonal to v2. We then produce

v2 ¼ ðav1 þ bv2Þ2
¼ a2v2

1 þ b2v2
2 þ abðv1v2 þ v2v1Þ: (80)

Now, for two vectors in GA, we have the general result that

v1v2 þ v2v1 ¼ 2v1 � v2 ¼ 2jv1jjv2j cos �, where � is the

included angle. Hence

v2 ¼ a2v2
1 þ b2v2

2 þ 2abjv1jjv2j cos � (81)

which is the cos rule for summing two vectors av1 and bv2,

and so this produces the correct vector length.

If we wish to employ a covariant basis to a nonortho-

gonal contravariant basis a1, a2, a3, then we can produce

the reciprocal basis

a1¼ a2 ^ a3

a1 ^ a2 ^ a3
a2¼ a3 ^ a1

a1 ^ a2 ^ a3
a3¼ a1 ^ a2

a1 ^ a2 ^ a3
:

(82)

The correspondence with conventional vector analysis is

a1 ^ a2¼ ja1� a2 and a1 ^ a2^ a3¼ ja1 � ða2� a3Þ, where

j is the trivector. The triple wedge product a1 ^ a2 ^ a3 is a

pure trivector and so is commuting with all other quan-

tities. In terms of the geometric product, we can write

a1 ^ a2 ¼ ð1=2Þða1a2 � a2a1Þ and a1 ^ a2 ^ a3¼ð1=2Þ�
ða1a2a3 � a3a2a1Þ. We can, therefore, write the reciprocal

basis in terms of the geometric product as

a1 ¼ a2a3 � a3a2

a1a2a3 � a3a2a1
a2 ¼ a3a1 � a1a3

a1a2a3 � a3a2a1

a3 ¼ a1a2 � a2a1

a1a2a3 � a3a2a1
: (83)

In this form, it is quick to verify that a1 � a1 ¼ a2 � a2 ¼
a3 � a3¼1 and ap � aq¼ap � aq¼0 for p 6¼ q. For example

a1 � a2 ¼ 1

2
ða1a

2 þ a2a1Þ

¼ 1

2

a1a3a1 � a1a1a3

a1a2a3 � a3a2a1
þ 1

2

a3a1a1 � a1a3a1

a1a2a3 � a3a2a1

¼ 1

2

a1a3a1 � a3 þ a3 � a1a3a1

a1a2a3 � a3a2a1
¼ 0 (84)

and

a2 � a2 ¼ 1

2
ða2a

2þa2a2Þ

¼ 1

2

a2a3a1�a2a1a3

a1a2a3�a3a2a1
þ1

2

a3a1a2�a1a3a2

a1a2a3�a3a2a1

¼ 1

2

ða2a3a1�a1a3a2Þþða3a1a2�a2a1a3Þ
a1a2a3�a3a2a1

: (85)

Now, a2a3a1�a1a3a2¼2a2^ a3 ^ a1¼2a1^ a2^ a3 and

a3a1a2 � a2a1a3 ¼ 2a3 ^ a1 ^ a2 ¼ 2a1 ^ a2 ^ a3 using

the fact that the wedge product is antisymmetric and
associative. That is, a1 ^ ða2 ^ a3Þ ¼ ða1 ^ a2Þ ^ a3 and

a1 ^ a2 ¼ �a2 ^ a1. Hence

a2 � a2 ¼ 1

2

ða1a2a3 � a3a2a1Þ þ ða1a2a3 � a3a2a1Þ
a1a2a3 � a3a2a1

¼ a1a2a3 � a3a2a1

a1a2a3 � a3a2a1
¼ 1 (86)

Chappell et al. : Geometric Algebra for Electrical and Electronic Engineers

1358 Proceedings of the IEEE | Vol. 102, No. 9, September 2014



as required. Hence, even if neither the contravariant nor
the covariant basis is normed to one, their products

a1a1 ¼ a2a2 ¼ a3a3 will equal one. Hence, we can use

either (82) or (83) to define the reciprocal basis. For the

special case of a1; a2; a3 being the orthonormal basis

e1; e1; e3, we find using (83), the covariant basis vector for

example

e1 ¼ e2e3 � e3e2

e1e2e3 � e3e2e1
¼ 2e2e3

2e1e2e3
¼ je1

j
¼ e1 (87)

as expected. Therefore, writing a vector with contravariant

components X� ¼ x�a� and also with covariant compo-

nents using the reciprocal basis X� ¼ x�a
�, we find the

invariant quantity

X � X ¼ X�X� ¼ x�a�x�a
� ¼ x�x� (88)

using a� � a� ¼ 1.

APPENDIX C

MAGNETIC MONOPOLES IN GA
Inspecting the detailed form of Maxwell’s equations in

(19), we can see that the multivector variables are not fully

populated. For example, the source terms on the right-

hand side consist of just the scalar and vector components,

and we might, therefore, attempt to complete the

multivector by adding bivector and trivector sources as

follows:

1

c

@

@t
þr

� �
ðEþ jcBÞ ¼ �� c�0J� j�0J

m þ jc�0�
m:

(89)

Maxwell’s equations are now modified to r � B ¼ �m and

r� Eþ ð@B=@tÞ ¼ �Jm. This, in fact, is the form of

Maxwell’s equation if we include the presence of

monopoles, where �m represents magnetic charge and

Jm is the current of magnetic charge. No free monopoles

have yet been found, but we have illustrated how they can

be naturally added to Maxwell’s equations using GA and
perhaps how they are conspicuously absent.

Regarding fully populating the electromagnetic field to

F ¼ lþ Eþ jcBþ jc, we have already observed that l
represents the Lorenz gauge, which is set to zero for fun-

damental reasons of conservation of energy and causality,

however the trivector term may also potentially be

investigated.

APPENDIX D

ELECTROMAGNETIC WAVES IN
CONDUCTIVE MEDIA
We have a solution to the source free Maxwell equation in

conductive media as

F ¼E0 1þ jc

!
�

� �
ejk̂!t��k̂�r

¼E0 1þ �c

!

� �
j� �c

!

� �
k̂

� �
ejk̂ !t��k̂�rð Þe��k̂�r (90)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk̂!�ð	þ jk̂!�Þ

q
¼ �þ jk̂�. We have � ¼

ð!=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð	=!�Þ2

q
Þ

r
and � ¼ 	�!=ð2�Þ

@F ¼ 1

c

@

@t
þr

� �
E0

1�
�cj!

� �
ejk̂!t��k̂�r

�!
c

jk̂� �k̂
� �

E0 1� �c

j!

� �
vejk̂!t��k̂�r

E0
!

c
jk̂	 c

!
�k̂

� �
1� �c

j!

� �
ejk̂!t��k̂�r

E0
!jk̂

c
1	 �c

j!

� �
1� �c

j!

� �
ejk̂!t��k̂�r

E0
!jk̂

c
1þ �2c2

!2

� �
ejk̂!t��k̂�r: (91)

Now

1þ �2c2

!2
¼ 1þ jk̂!�ð	þ jk̂!�Þ

� � c2

!2

¼ 1þ jk̂!�	� !2��
� � c2

!2
¼ jk̂�	

c2

!
: (92)

Therefore

@F ¼E0
!jk̂

c
jk̂�	

c2

!

� �
e1pjk̂!t��k̂�r ¼ �E0 �	cð Þejk̂!t��k̂�r

¼ � �	cE0ejk̂!t��k̂�r ¼ ��c	E: (93)

Therefore, we have a generated current J ¼ 	E as as-

sumed in conductive medium with conductivity 	. So we

now satisfy the Maxwell equation

@F ¼ ��c	E (94)

where F ¼ Eþ jcB.
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For the lossless case with 	 ¼ 0, we find

F ¼ E0ð1� k̂Þejk̂ð!t��k̂�rÞ (95)

where � ¼ w=c. Hence, this solution implies that an elec-

tromagnetic wave consists of solely a propagating electric

field vector with the magnetic field only arising with re-

spect to massive observers. This idea can be supported by

the well-known relation for the magnetic field generated

by a moving electric field vector B ¼ �ð1=c2Þv� E. For

v having a speed of c, we find jB ¼ v̂E=c as we assumed
for the electromagnetic wave.

APPENDIX E

PROOF OF SOLUTION TO THE LORENTZ
FORCE EQUATION
From (58), we have the differential equation

dP

d

¼ q

mc

� �
hPFi01 ¼

q

2mc

� �
PFþ PFð Þy
� �

: (96)

The reversion operation, represented by the tilde, reverses
the sign of the bivector and trivector components and so

can be utilized to remove these components as shown.

Remembering that ðPFÞy ¼ Fy�P, we can, therefore, write

(96) as

dP

d

¼ q

2mc

� �
PFþ FyPy
� �

: (97)

Now, we have the proposed solution

Pð
Þ ¼ ek
FyPð0Þek
F (98)

where k ¼ q=2mc for a charge with an initial momentum

multivector Pð0Þ ¼ Eð0Þ=cþ pð0Þ, in a constant field

F ¼ Eþ jcB. We note first that Pð
Þ ¼ Pð
Þy because the

momentum multivector consists of just scalar and vector

components. Using our solution for Pð
Þ, we find

dP

d

¼ek
FyPð0Þek
FkFþkFyek
FyPð0Þek
F¼kðPFþFyPÞ (99)

using the product rule for differentiation and respecting

noncommutivity, thus satisfying (97), as required.

APPENDIX F

THOMAS PRECESSION
We now calculate the Thomas precession for an orbiting

object in a circular orbit. If we align the x-axis with the

instantaneous direction of motion of the satellite, then for a

small translation dx, the satellite will need to deflect some

distance dy toward the center in order to stay in orbit.

So we find in the rest frame of the satellite that

tan d� ¼ dy

dx
: (100)

However, when the orbiting object is viewed from the

center, then the length is contracted in the direction of

motion and so we have tan d�0 ¼ dy=ðdx=�Þ ¼ �dy=dx ¼
� tan d�. For infinitesimal angles, we have tan d� ¼ d�
and so we have the relation d�0 ¼ �d�. Hence, for a com-

plete orbit of � ¼ 2�, the satellite will be observed to ro-

tate an angle �2�. Hence, the excess rotation will be

� ¼ �2�� 2� ¼ 2�ð� � 1Þ (101)

which is the Thomas precession. If we expand this into a

power series we find to lowest order � ¼ 2�v2=c2. When

relativistic correction of the Thomas precession is added to

the Larmor precession calculated earlier, then we find a

near-exact correspondence with the observed spectral

emission from atoms.

APPENDIX G

SIMPLE ILLUSTRATIVE EXAMPLES OF
USING GA

1) An H field travels in the �e3 direction in free

space with a constant phase shift of 30.0 rad/m

and an amplitude of 1=3� A/m. If the field has the

direction �e2 when t ¼ 0 and z ¼ 0, then write

suitable expressions for E and H.We have the

wave propagation direction k̂ ¼ �e3 and in loss-

less free space ! ¼ �c0 ¼ 9 � 109 rad/s and
120Z0 
 ��. For linear polarization

Hðr; tÞ ¼H0 cosð!t� �k � rÞ
¼ � 1

3�
e2 cosð9�109tþ30zÞ A/m: (102)

The electromagnetic field is thus

Fðr; tÞ ¼ ðk̂þ 1ÞjZ0Hðr; tÞ
¼ 40ðe1 � je2Þ cosð9� 109tþ 30zÞ V/m
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from which the electric field is easily extracted

Eðr; tÞ ¼ Fðr; tÞh i1
¼ 40e1 cosð9� 109tþ 30zÞ V/m: (103)

2) A wire of length 2.5 m located at z ¼ 0, x ¼ 4 m

carries a current of I ¼ 12.0 A in the �e2 direc-

tion. Find the uniform B field in the region if the
force on the conductor is 1.20 N in the direction

ð�e1 þ e3Þ=
ffiffiffi
2
p

. Given that the wire is given as the

vector w ¼ 2:5e2 m, then we have the force

equation

F ¼ �Iw � ðjBÞ: (104)

This can be inverted to give

IwðjBÞ ¼ Iw ^ ðjBÞ � F (105)

giving the magnetic field explicitly as

jB¼w�1ðw ^ ðjBÞÞ �w�1F=I¼ jŵBk �w�1F=I (106)

that splits into a field parallel (represented by the

scalar Bk) and perpendicular to the wire. Note that
first the exterior product of a vector and bivector

is necessarily a volume or pseudoscalar so we can

replace it with j and that w�1 is parallel to w given

by the unit vector jŵ. The parallel component

does not contribute to the force so is, therefore,
not determinable. Hence, we can write the B field

vector as

B ¼ jw�1F=Iþ kŵ ¼ jwF=ðIw2Þ þ kŵ

that is now written only in terms of the geometric

product where k ¼ Bk is a parameter giving the

possible magnetic field parallel to the wire.Note

also that the dot product between the vector and

the bivector is equivalent to the negative of the
cross product between vectors and results in a

vector and that the geometric product is the sum

of the inner and generalized outer products.Given

that w�1 ¼ 0:4e2 m�1, then

jB ¼ 0:4e2ð2:5e2^ðjBÞÞ�0:4e21:2ð�e1þe3Þ=
ffiffiffi
2
p

=12:0

¼ jBye2 � 4� 10�2jðe1 þ e3Þ=
ffiffiffi
2
p

T (107)

where By is any scalar giving the field parallel to

the wire.
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