
INV ITED
P A P E R

Hardware Trojan Attacks:
Threat Analysis and
Countermeasures
This paper is a survey of the state-of-the-art Trojan attacks, modeling,

and countermeasures.

By Swarup Bhunia, Senior Member IEEE, Michael S. Hsiao, Fellow IEEE,

Mainak Banga, Member IEEE, and Seetharam Narasimhan

ABSTRACT | Security of a computer system has been tradition-

ally related to the security of the software or the information

being processed. The underlying hardware used for information

processing has been considered trusted. The emergence of

hardware Trojan attacks violates this root of trust. These

attacks, in the form of malicious modifications of electronic

hardware at different stages of its life cycle, posemajor security

concerns in the electronics industry. An adversary can mount

such an attack with an objective to cause operational failure or

to leak secret information from inside a chipVe.g., the key in a

cryptographic chip, during field operation. Global economic

trend that encourages increased reliance on untrusted entities

in the hardware design and fabrication process is rapidly

enhancing the vulnerability to such attacks. In this paper, we

analyze the threat of hardware Trojan attacks; present attack

models, types, and scenarios; discuss different forms of

protection approaches, both proactive and reactive; and

describe emerging attack modes, defenses, and future research

pathways.

KEYWORDS | Hardware intellectual property (IP) trust; hard-

ware obfuscation; hardware Trojan attacks; self-referencing;

side-channel analysis; Trojan detection; Trojan taxonomy;

Trojan tolerance

I . THE THREAT

Hardware Trojan attacks have emerged as a major security

concern for integrated circuits (ICs) [1]–[5]. These attacks

relate to malicious modifications of an IC during design or

fabrication in an untrusted design house or foundry, which

involve untrusted people, design tools, or components.

Such modifications can give rise to undesired functional

behavior of an IC, or provide covert channels or backdoor
through which sensitive information can be leaked. An

adversary is expected to make a Trojan stealthy in nature

that evades detection through conventional postmanufac-

turing test, but manifests during long hours of field

operation. For an IC with moderate complexity, the

number of possible Trojans can be inordinately large with

varying activation mechanisms (referred to as triggers) and

effects (referred to as payloads). Fig. 1 shows a simplified
block diagram of a hardware Trojan, which causes a

malfunction (by modifying signal S to S0), when

triggeredVi.e., when the activation condition realized by

the trigger logic is true. Such malicious inclusions

effectively act as ‘‘spies or terrorists’’ on chip and can be

extremely powerful, potentially leading to catastrophic

consequences in diverse applications [15].

These malicious circuits have been popularly referred
to as ‘‘hardware Trojans’’ similar to the software Trojans,

which attack the operating system (OS) of a computer. The

nomenclature is derived from a mythological incident

attributed to the ancient Greeks in the Trojan war, where a

wooden horse was gifted to the Trojan army who took it

into their city walls without realizing that the enemy

(Greek) soldiers were hidden inside the hollow horse. The

seemingly trustworthy horse conditionally turned into a
powerful and malicious weapon that drastically affected

the course of the Trojan war. Similar to its mythical

analogy, the two main features of a hardware Trojan are as

Manuscript received October 30, 2013; revised May 20, 2014; accepted June 24, 2014.

Date of publication July 15, 2014; date of current version July 18, 2014. This

research was supported in part by the National Science Foundation (NSF) under

Grants CNS-1054744 and DUE-1245756.

S. Bhunia is with the Case Western Reserve University, Cleveland, OH 44106 USA

(e-mail: skb21@case.edu).

M. S. Hsiao is with the Virginia Polytechnic Institute and State University, Blacksburg,

VA 24061 USA (e-mail: hsiao@vt.edu).

M. Banga is with Intel Corporation, Folsom, CA 95630 USA

(e-mail: mainak.banga@intel.com).

S. Narasimhan is with Intel Corporation, Hillsboro, OR 97124 USA

(e-mail: seetharam.narasimhan@intel.com).

Digital Object Identifier: 10.1109/JPROC.2014.2334493

0018-9219 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1229

follows: 1) it should have a malicious intent; and 2) it
should evade detection under conventional postmanufac-

turing test/validation process.

Current economic trend plays a major role in enhancing

the vulnerability to Trojan attacks [1]–[3]. IC design and

manufacturing practices increasingly rely on untrusted

parties and entities in the IC life cycle. Economic factors

dictate that most of the modern ICs are manufactured in

unsecured fabrication facilities. Moreover, modern IC
design often involves intellectual property (IP) cores

supplied by untrusted third-party vendors, outsourced

design and test services, as well as electronic design

automation (EDA) software tools supplied by different

vendors. Such a business model has, to a large extent,

relinquished the control that IC design houses had over the

design and manufacture of ICs making them vulnerable to

malicious implants. Fig. 2 illustrates different steps of a
typical IC life cycle and the possibility of Trojan attacks in

these steps [3]. Each party associated with the design and

fabrication of an IC can be a potential adversary who can

tamper it [5]. Such tampering can be accomplished through

add/delete/alteration of circuit structure or through
modification of manufacturing process steps that causes

reliability issues in ICs. From an attacker’s perspective, the

objective of such attacks can be manifold, e.g., to malign

the image of a company to gain competitive edge in the

market; disrupt major national infrastructure by causing

malfunction in electronics used in mission-critical systems;

or leak secret information from inside a chip to illegally

access a secure system. Concerns about this vulnerability
and the resultant compromise of system security have been

expressed globally [3], [10], [11], especially since recent

discoveries point to feasibility of such attacks [12]–[14].

Moreover, several unexplained military mishaps in the past

have been attributed to the presence of malicious hardware

modifications [1], [35]. Recent investigations have shown

that an intelligent adversary can mount a hard-to-detect

Trojan attack using just a few transistors or logic gates in a
large multimillion transistor system-on-chip (SoC) design,

or by selectively changing specific process steps, e.g., the

doping profile, to affect the operational reliability of a

circuit [14].

Ideally, any undesired modification made to an IC

should be detectable by pre-silicon verification/simulation

or post-silicon testing. However, pre-silicon verification or

simulation requires a completely specified golden model of
the entire IC. This might not be always available, especially

for IP-based designs where IPs can come from third-party

vendors. Besides, a large multimodule design is usually not

amenable to exhaustive verification [6]. Post-silicon, the

design can be verified either through destructive depacka-

ging and reverse engineering of the IC [3], or by comparing

its functionality or circuit characteristics with a golden

version of the IC [4], [7], [8]. However, state-of-the-art
approaches do not allow destructive verification of ICs to

be either cost effective or scalable [6], [9]. Moreover, as

pointed out in [3], it is possible for the adversary to insert

Trojans in only some ICs on a wafer, not the entire

population, which limits the usefulness of a destructive

approach. Traditional postmanufacturing testing is not

suitable for detecting hardware Trojans. This is due to the

stealthy nature of hardware Trojans and the vast spectrum
of possible Trojan instances an adversary can exploit.

Hardware Trojan attacks raise a new set of challenges

for trusted operation of electronics in field [15]. It

demands trust validation of ICs with respect to malicious

design modification at various stages of the IC lifecycle,

where untrusted components/personnel are involved. In

particular, it introduces the requirement for reliable

detection of any malicious design modification during
postmanufacturing test. It also imposes a requirement for

trust validation in hardware IP cores obtained from

untrusted third-party vendors.

A. Trojan Versus Fault
Postmanufacturing test, both structural and functional,

is targeted to detect different types of manufacturing

Fig. 1. General structure of a hardware Trojan in a design.

Fig. 2. Hardware Trojan attacks by different parties at different stages

of IC life cycle.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1230 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

defects. Faults such as stuck-at-faults or path delay faults

are logical models of physical defects (e.g., resistive short

or open). Table 1 compares the properties of hardware

Trojans with those of faults. Unlike faults in a design,

which occur due to imperfections introduced during the

manufacturing process, hardware Trojans are deliberately

inserted by an adversary to serve a specific malicious
purpose. While a fault is activated at a known functional

state of a circuit (e.g., a stuck-at-0 fault at the output of an

inverter can be activated by sensitizing its input to a logical

value of 0), a Trojan can be designed to activate at an

arbitrary complex condition, including a sequence of

events at internal circuit nodes.

B. Software Versus Hardware Trojans
Table 2 distinguishes hardware Trojans from its

software counterparts in terms of key properties. A

software Trojan horse (STH) is a type of malware program

with malicious code that gains privileged access to the OS

and may steal information or cause harm to the host

computer (e.g., erase or corrupt data) [16], [67]. An STH

attack can often be cured in the field by running an anti-

Trojan program (such as the one in [76]) that monitors and
removes the Trojan [68], [69]. Hardware Trojans are

inserted into an IC before it is fabricated. Unlike an STH, a

hardware Trojan is virtually impossible to remove from a

chip after fabrication and hence can be extremely difficult

to remedy during field operation.

C. Trojan Attacks Through Hardware IP or CAD
Tools

SoC design based on reusable hardware IP is now a

pervasive practice in the semiconductor industry due to the

dramatic reduction in design/verification cost and time it

offers. This growing reliance on reusable preverified

hardware IPs and a wide array of design automation tools

during SoC designVoften gathered from untrusted third-

party vendorsVseverely affects the security and trustworthi-

ness of SoC computing platforms [17]. The possibility of

Trojan attacks in third-party IP poses a major integrity

concern to SoC designers. Verification of trust of an IP

acquired from untrusted third-party sources can be extremely

challenging due to lack of golden models. Conventional
verification approaches, which rely on the presence of a

golden or reference design, do not work in case of third-party

IPs. On the other hand, functional simulation or emulation

does not provide adequate coverage due to often incomplete

functional specifications. Thus, even though simulation can

validate the correctness of a design with respect to functional

specifications, it cannot provide assurance against additional

functionality due to a Trojan. For example, if a processor IP
core triggers a malicious memory write for an ‘‘add’’

instruction with a specific rare combination of operand

values, both simulation and emulation are very likely to fail,

since they may not excite all rare conditions. Similarly,

untrusted computer-aided design (CAD) tools can potentially

cause malicious inclusions in a design [18]. Such attacks can

be introduced early in the design cycle, so that they can evade

subsequent verification steps. Often, a designer uses a CAD
tool suite from the same vendor. In that case, a verification

tool from a vendor can potentially ignore a malicious

insertion by the synthesis engine from the same vendor.

D. Complex Attack Mode
Malicious collusion between multiple parties at differ-

ent stages of the design, manufacturing, and deployment

can make a hardware Trojan attack more potent. One such
example is presented in [19], where the inserted Trojan

circuitry leaks information through a covert side channel

that allows conspiring malicious parties to discover the

encryption key. Another example is presented in [20],

where focused ion beams help insert a dormant Trojan to a

Table 1 Comparison Between Faults and Hardware Trojan Attacks

Table 2 Software Versus Hardware Trojan Attacks

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1231

functional unit in the fabrication facility. A general model
of such an attack, referred to as multilevel attack, is

described in [21]. Using a crypto module as a case study, it

analytically shows that the resultant attack poses a

significantly stronger threat than that from a single

adversary. Such attacks can easily bypass both pre-silicon

verification as well as postmanufacturing test. An example

would be a fault attack in an advanced encryption system

(AES) module, which enables only the malicious parties,
who are part of the conspiracy, to retrieve the cipher key.

The Trojan could also be a passive hardware entity, which

simply serves to help malicious software circumvent the

hardware protection mechanisms. Moreover, a Trojan

circuit can be localized or distributed in a chip, and a

trigger condition or the payload of a Trojan can be digital

or analog, e.g., a Trojan can be triggered by changes in

temperature [15]. Becker et al. [60] have demonstrated
that by selectively changing the dopant level in the

transistors, they are able to create Trojans that are resistant
against existing detection techniques. These Trojans are

nonintrusive and difficult to detect since they do not alter

any functionality and are not optically observable.

II . TROJAN MODEL, INSTANCES, AND
CLASSIFICATION

A. Trojan Models and Examples
An intelligent adversary is expected to hide such

tampering with an IC’s behavior in a way that makes it
extremely difficult to detect with conventional postmanu-

facturing testing [5]. Intuitively, it means that the

adversary would ensure that such tampering is manifested

or triggered under very rare conditions at the internal

nodes, which are unlikely to arise during testing but can

occur during long hours of field operation [22], [23]. Fig. 3

Fig. 3. Hardware Trojan attacks in different forms: (a) combinational and sequential Trojans; general model of (b) combinational and

(c) sequential Trojan, which can facilitate test generation for Trojan detection; (d) Trojans with capability of leaking secret information from

inside a crypto chip through power side channels [19].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1232 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

shows some examples of different types of hardware
Trojans. The combinational Trojan, as shown in Fig. 3(a),

does not contain any state element (e.g., flip-flop or latch)

and depends only on the simultaneous occurrence of a set

of rare node conditions (e.g., a predefined value on node

sets a and b) to trigger a malfunction (by flipping signal

ER). The sequential Trojan shown in Fig. 3(a), on the other

hand, undergoes a sequence of state transitions before

triggering a malfunction. Fig. 3(a) shows a synchronous
k-bit counter, which activates when the count reaches

2k � 1, by modifying the node ER to an incorrect value at

node ER�. Fig. 3(b) and (c) show general models of

combinational and sequential Trojans, respectively. These

abstract models of Trojans are useful for studying the space

of possible Trojans, and, similar to fault models, help in

test vector generation for Trojan detection.

1) Trojans in Cryptographic Engines: A possible Trojan

attack in a crypto engine can try to subvert the security

mechanisms. The payload could range from a mechanism

that presents dummy keys, predefined by the attacker,

instead of the actual cryptographic keys used for sensitive

encryption or signature verification operations, to leaking

the secret hardware keys via covert side channels, e.g.,

information leaked through a power trace. Fig. 3(d)
provides an example of such a Trojan that attempts to

leak a secret key from inside a cryptographic IC through

power side-channels using a technique called malicious off-

chip leakage enabled by side channels (MOLES) [19]. Even

if the IC has been designed to minimize side-channel

information leakage, a hardware modification could help

overcome the protection under specific circumstances

where the attacker is in possession of the system or
physically near the system to extract the secret informa-

tion. Other targets could be a random number generator

used for deriving random session keys for a particular

operation or the debug passwords used for unlocking test-

mode access to security-sensitive signals. Researchers have
also proposed leaking such secret information over wireless

channels [77] by using low-bandwidth modulation of the

transmitted signal.

2) Trojans in General-Purpose Processors: In general-

purpose processors, an attacker at the fabrication facility

can implement a backdoor, which can be exploited in the

field by a software adversary [23]–[26]. For example,
modern processors implement a hardware chain of trust to

ensure that malware cannot compromise the hardware

assets such as secret keys and memory range protections. By

using different stages of firmware and boot code authen-

tication, one can ensure that the operating system (OS)

kernel and lower levels (such as hypervisor) are not

corrupted. However, in such systems, the attacker at an

untrusted fabrication facility could implement a backdoor
which disables the secure booting mechanism under certain

rare conditions or when presented with a unique rare input

condition in the hands of an end-user adversary [23].

Similarly, other objectives which could be realized with the

help of hardware Trojans would be to bypass memory range

protections using buffer overflow attacks or to gain access to

privileged assets by evading the access control protection

mechanisms implemented in the hardware.

B. Trojan Taxonomy
The taxonomy of Trojan circuits has been presented in

various forms, and it continues to evolve as newer attacks and

Trojan types are discovered. Here, we will present a high-level

classification, as shown in Fig. 4, based on variations in

activation mechanism and Trojan effect. Based on the trigger

condition, the hardware Trojans can be classified into analog

and digital Trojans. The former are activated by analog

conditions such as temperature, delay, or device aging effect,
whereas the latter are triggered by some Boolean logic

function. Digitally triggered Trojans can again be classified

Fig. 4. Trojan taxonomy based on trigger and payload mechanisms.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1233

into combinational and sequential types. Analog Trojans
include attacks on process steps that compromise reliability of

all or select chips. These Trojans, referred to as reliability

trojans by some researchers, may cause accelerated aging of

the devices [27]. The reduction in reliability is caused by

acceleration of the wearing out mechanisms for complemen-

tary metal–oxide–semiconductor (CMOS) transistors, such

as negative bias temperature instability (NBTI) or hot

carrier injection (HCI). Selective malicious changes in
the manufacturing process, such as variation in nitrate

concentration in the gate oxide layer or the temperature

used during the nitrate layering process [27] can result in

creation of infected ICs with a much shorter lifetime. What

makes it challenging to detect such tampering is that it can

be local to a particular functional circuit block or even to a

small section of a block that can potentially evade standard

postfabrication reliability characterization steps.
In terms of the payload, the Trojan can cause functional

failure upon triggering or have a passive effect such as

heating of the die or leaking of information. A Trojan can

cause an ‘‘information leakage’’ attack, where secret

information is leaked by a Trojan via a transmitted radio

signal or serial data port interface such as the RS-232-C

port. It could also involve a side-channel attack where the

information is leaked through the power trace [19] or
through thermal radiation or through optical modulation

of an output light-emitting diode (LED) [28]. Another type

of Trojan payload would be unauthorized alteration in

system behavior, e.g., a denial-of-service (DoS) attack,

which causes a system’s functionality to be unavailable.

Other parameters used to define and compare different

Trojans include the hardware overhead and activation

probability [5]. The area and power overhead relative to
the design in which the Trojan is inserted has to be an

undetectable fraction, in order to evade detection by

obvious means [29]. One can reuse existing logic and

unused states in existing finite state machines (FSMs) to

reduce the overhead. Moreover, the layout of complex ICs

typically contains unused space which can be used for

inserting extra gates without affecting the die footprint.

The activation probability is also a tradeoff between
avoiding detection and malicious impact.

III . COUNTERMEASURES

A. Challenges
Conventional postmanufacturing tests using functional/

structural/random patterns perform poorly to reliably detect
hardware Trojans. This is because manufacturing test

generation and application attempt to detect defects or

unacceptable variations in device parameters that cause

deviation from functional or parametric specifications. They

do not identify additional functionalities due to a Trojan or

deviation in circuit behavior triggered by arbitrary rare

events. There are several important challenges with respect

to reliable detection of Trojans using a post-silicon test/
validation process. First, an adversary can exploit inordi-

nately large number of Trojan instances of varying forms

and sizes [30]. These Trojans vary widely in structural and

functional properties including trigger conditions and

payloads, which makes it difficult to develop a logical

model of Trojans. The number of possible Trojan instances

has a combinatorial dependence on the number of circuit

nodes. As an example, even with the assumption of
maximum of four trigger nodes and a single payload, a

relatively small ISCAS-85 benchmark circuit c880 with 451

gates can have �109 triggers and �1011 distinct Trojan

instances, respectively [8]. Thus, it is not practical to

enumerate all possible Trojan instances to generate test

patterns or compute test coverage. Second, due to their

stealthy nature, activating arbitrary Trojan instances and

observing their effects can be extremely challenging. Hence,
deterministic and exhaustive testing approaches appear

infeasible. Third, with respect to observing Trojan effects in

physical parameters, e.g., delay and supply current, process

and measurement noise pose a major challenge. In

particular, increasing process variations in advanced tech-

nologies can mask minuscule Trojan effects in a physical

parameter.

Fig. 5. Overview of different protection approaches against hardware Trojan attacks.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1234 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

B. Class of Protections
Research efforts on protection against Trojan attacks

have focused on three broad classes of solutions: 1) Trojan

detection approaches; 2) design for security (DFS)

approaches; and 3) runtime monitoring approaches.

Fig. 5 shows a broad classification of the countermeasures

against hardware Trojans. Trojan detection approaches

typically attempt to detect the existence of Trojans at an IP

level using pre-silicon techniques or using nondestructive
techniques during post-silicon manufacturing test through

a trust validation process. They can be further classified

into logic testing approaches, which focus on generating

appropriate test patterns for Trojan detection, and side-

channel analysis approaches where a measurable param-

eter such as power, delay, temperature, or electromagnetic

(EM) radiation profile can be used to isolate a Trojan-

infected IC from the golden ones. The DFS approaches
attempt to make insertion of hard-to-detect Trojans

difficult or facilitate detection during post-silicon valida-

tion. However, the DFS or trust validation approaches

usually are not capable of providing complete confidence

against diverse forms of possible Trojan attacks. To

safeguard against potentially undetected Trojans, runtime

validation approaches can be employed based on online

monitoring of circuit operation [15], [31]. Such approaches
provide a last line of defense against Trojan attacks and

often attempt to contain the effect of an activated Trojan

(e.g., by entering a fail-safe mode).

C. Why Destructive Reverse Engineering Is Not
Effective

Once the fabrication and packaging of an IC is

complete, we have limited visibility into the components
inside it. One can, however, use destructive reverse-

engineering techniques to depackage an IC and obtain

microscopic images of each layer to reconstruct the design

for trust validation of the end product. The destructive

techniques [9], [32] use a sample of the manufactured ICs

which are subject to demetallization using chemical

mechanical polishing (CMP) followed by scanning elec-

tron microscope (SEM) image reconstruction and analysis
[3]. Though it would take several weeks to months to do

this for an IC of reasonable complexity, it has the potential

of giving 100% assurance that any malicious modification

in the IC will be detected. However, at the end of this

invasive process, the IC cannot be used, and we only get

the information for a single IC. It is possible for the
attacker to have infected only some samples in an entire lot

of ICs by manipulating the layout masks. Hence, in

general, destructive approaches are not considered viable

for Trojan detection. However, destructive reverse engi-

neering on a limited number of samples can be attractive

in order to obtain the characteristics of a golden batch of

ICs. This information can be useful for trust validation

through side-channel analysis, as discussed in Section IV.

IV. TROJAN DETECTION

Table 3 provides a comparison of advantages and

disadvantages of two major Trojan detection paradigms:

logic testing and side-channel analysis. Logic testing

approaches, both functional and structural, attempt to

develop directed test patterns to activate unknown Trojan
instances and propagating their effects to output ports [7].

Although robust under process and measurement noise,

these approaches are likely to fail to activate large Trojans

consisting of large numbers of trigger inputs. An alternative

approach is to measure a side-channel parameter, such as

supply current or path delay, which can be affected due to

unintended design modifications. However, the effective-

ness of side-channel analysis is limited by large intrinsic
device parameter variations in modern nanometer technol-

ogies. These detection approaches typically require a golden

design or a set of golden ICs to compare the measured values

in order to identify the Trojan-infected ones. Table 4

provides a comparison of the Trojan detection capability of

alternative approaches. Logic testing and side-channel-

analysis-based validation approaches provide complemen-

tary capabilities in detecting Trojans of different types and
sizes. Hence, a postmanufacturing validation solution that

combines the benefits of both approaches can be effective in

maximizing the level of confidence. For applications, which

require the highest level of trust against Trojan attack, one

can combine postmanufacturing validation with online

monitoring. Finally, validation approaches, both postma-

nufacturing and online, can be complemented with low-

cost DFS solutions, which harden a design with respect to
Trojan insertion or help in the validation process.

A. Logic Testing
In order to detect the existence of a Trojan using logic

testing, it is not only important to satisfy the trigger

Table 3 Comparison of Logic Testing and Side-Channel-Analysis-Based Trojan Detection

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1235

condition, but also to propagate the effect of such an event

to an output node and observe it. Due to the inordinately

large space of possible Trojans, as mentioned earlier, it is

not practical to enumerate all possible Trojan instances to

generate deterministic test patterns or compute test
coverage. It indicates that, instead of an exact approach,

a statistical approach for test vector generation can be

computationally more tractable. This has motivated efforts

to develop a statistical approach for Trojan detection. One

such effort, referred to as multiple excitation of rare

cccurrence (MERO) is reported in [8]. The main objective

of this methodology is to derive a set of test patterns that is

compact (minimizing test time and cost), while maximiz-
ing the Trojan detection coverage. The basic concept is to

detect low probability conditions at the internal nodes and

then derive an optimal set of vectors than can trigger each

of the selected low probability nodes individually to their

rare logic values multiple times (e.g., at least N times,

where N is a user-defined parameter). By increasing the

toggling rate of nodes that are random-pattern resistant, it

improves the probability of activating a Trojan compared
to purely random patterns.

Fig. 6 illustrates the concept with two examplesVone

combinational and one sequential Trojan. The combina-

tional Trojan in Fig. 6(a) is activated when a ¼ 0, b ¼ 1,

and c ¼ 1 are satisfied, while the sequential Trojan in

Fig. 6(b) requires occurrences of a ¼ 1 and b ¼ 0 in

several clock cycles to trigger. Hence, if we can generate a

set of test vectors that induce these conditions at these

nodes individually N times where N is sufficiently large

(e.g., > 100), then a Trojan with a triggering condition
composed jointly of these nodes is highly likely to be

activated by the application of this test set. The MERO

methodology is conceptually similar to the N-detect test

used in stuck-at automatic test pattern generation (ATPG),

where the test set is generated to detect each single stuck-

at-fault in a circuit by at least N different patterns in order

to improve test quality and defect coverage. Another

approach of logic testing is to develop guided tests for
detecting Trojan attacks in small but critical parts of a

design [33]. For example, one can generate test vectors to

observe undesired writes into a memory array or

unjustifiable activity in the key-dependent logic of a crypto

system. Waksman et al. [64] have used the stealthiness

property of Trojan-affected nets to isolate them from a

given design. Their tool, called FANCI, uses a scalable,

Boolean functional analysis to detect these nets.

1) Coverage Metric: A metric similar to fault coverage,

that provides a measure of confidence against arbitrary

Trojan attacks, can be attractive for quantifying the

effectiveness of a Trojan detection approach. Due to

difficulties in enumerating all possible Trojan instances, it

is infeasible to deterministically measure Trojan coverage.

Statistical measures of confidence have been developed to
address this issue. A random sampling approach can be

used to compute both Trigger and Trojan coverage [8].

From the Trojan population, a representative set of Trojans

with specific structure (e.g., number of trigger nodes) is

randomly selected. From this set of sampled Trojans, ones

with false trigger conditions that cannot be justified with

any input pattern are eliminated. Then, a circuit under test

is simulated for each vector in the given vector set and
checked whether the triggering condition is satisfied. For

an activated Trojan, if its effect can be observed at any

primary output or scan flip-flop input, the Trojan is

considered detected. The percentages of Trojans activated

and detected constitute the trigger coverage and the Trojan

coverage, respectively. To make such measures effective,

however, it is important to consider an adequate number

Table 4 Capability of Trojan Detection Schemes to Identify Different Hardware Trojan Types

Fig. 6. Logic testing approach for hardware Trojan detection based on

multiple excitation of rare conditions [8]: (a) for combinational Trojan;

(b) for sequential Trojan.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1236 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

of Trojans in the sample (as dictated by the principles of
sampling theory) from the universal Trojan space.

B. Side-Channel Analysis
In order to overcome the limitations of logic testing

approaches, the use of side-channel analysis during post-

silicon testing has been widely investigated [30], [34]–

[42]. A malicious inclusion during design or fabrication is

bound to have an effect on the power consumed by the
circuit. In most cases, it is also likely to affect the delay of

certain circuit paths. The impact on power is expected to

be due to addition/alteration of circuit elements used in

realizing the Trojan. It can cause deviation in the static

(i.e., current drawn at idle state of a circuit) as well as in

the transient (i.e., switching) current profile of the circuit

under test. Most Trojans constantly monitor their activa-

tion condition. The act of monitoring consumes power,
even if the change in power consumption is minimal;

indeed that would be the goal of an adversary [4]. A delay

impact can be due to either addition of extra logic level in a

path (as in Fig. 6) or increase in capacitive load in a path.

The impact of an unknown Trojan in physical parameters

can be observed and compared between golden and

Trojan-infected circuits to identify its existence.

Effectiveness of Trojan detection through side-channel
analysis largely depends on two major parameters:

1) signal-to-noise ratio (SNR); and 2) the Trojan-to-circuit

ratio (TCR). The signal of interest is the effect of a Trojan on

a side-channel parameter. Noise is introduced by process

and environmental variations. The effect of a Trojan on a

side-channel parameter such as current or delay can be

easily masked by the noise. Hence, simple comparison

techniques can lead to a large number of false detections.
This has led to a wide variety of postprocessing techniques

to statistically isolate the Trojan effect from noise. On the

other hand, the TCR indicates the gap between the original

and Trojan-affected parameter. In an ideal scenario of zero

noise, the detection sensitivity depends on the TCR. Hence,

amplifying Trojan effect compared to the original value

helps improving the confidence in identifying a Trojan

instance. Zhang et al. [62] have proposed a virtual probe
framework to get an accurate profiling of spatial variations

within the chip without incurring much overhead cost. The

problem is formulated as a maximum a posteriori (MAP)

estimation problem and linear programming is used to solve

it. Next, we present several side-channel analysis ap-

proaches based on different parameters such as transient

current, static current, and path delay, and discuss their

challenges and effectiveness.

1) Static Current Analysis: The presence of a Trojan

circuit will be reflected in the current drawn from the

power supply, even if no switching occurs in the Trojan

circuit. Static CMOS gates are subject to leakage current in

the idle mode, and this is more pronounced for

submicrometer technologies. Any extra gate will consume

extra leakage power, which is additive and can ideally be
used to distinguish golden circuits from ones with Trojan

[34]–[36]. However, the leakage current effect due to a

few extra gates often provides poor sensitivity when

measuring the total leakage current for a multimillion gate

SoC due to low TCR. Because of the exponential

dependence of leakage current on transistor threshold

voltage ðVTÞ variations, chip-to-chip variations in leakage

current can be very high, leading to low SNR. To increase
sensitivity, one can measure current from multiple power

pins, as shown in Fig. 7, thus effectively reducing the

problem to that of detecting a few gates in a fraction of the

total gates in the IC [34]. Since the leakage current of a

logic gate is sensitive to the value at its inputs, a region-

based approach using appropriate input vectors can also

help localize a small region of the IC, which is infected by

the Trojan.
Wei and Potkonjak [61] have employed a segmentation-

based diagnosis approach to isolate Trojans in affected

circuits. They use overall leakage current of the Trojan

gates to identify them, even when they are not activated.

The circuit under test is partitioned into a number of

segments and the segments that dissipate higher leakage

current are more closely inspected.

2) Transient Current Analysis: The goal of transient

current ðIDDTÞ analysis is to detect switching activity

inside a Trojan circuit [30]. A Trojan detection approach

based on this mechanism needs to carefully consider

natural variations in current flow and minimize its

influence. Fig. 8(a) illustrates device parameter variations,

both chip to chip (interdie) and within chip (intradie), in a

nanometer process. As observed from Fig. 8(a), variations
in a device parameter such as VT manifest themselves in

variations at circuit level and mask the effect of Trojan in

current and operating frequency ðFmaxÞ. Depending on the

threshold, we can trade off the number of false positives

Fig. 7. Region-based approach using current measurements from

multiple power ports can be used for isolating Trojan effect with high

sensitivity [40].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1237

(where we misclassify golden chips as Trojan-containing

ICs) and false negatives (where we fail to identify Trojan

ICs because they fall under the process noise margin).

Similar variations can arise due to temporal effects such as
voltage and temperature variations and measurement

noise during testing.

The variability in the measurement process can be

minimized by standardizing the measurement setup and

averaging over multiple measurements to cancel out

random noise. The choice of input vector set plays a

significant role in improving TCR, thus improving

detection sensitivity. Region-based partitioning [43] and
directed test vector generation [33] to induce switching

activity in possible Trojan instances can cause them to be

easily detected. On the other hand, the sensitivity can be

increased by decreasing the effect of process noise. Most of

the existing approaches try to achieve that through process

calibration by normalization and using statistical averaging

techniques [37]–[40].

The IC fingerprinting technique [4] uses signal
processing techniques such as the Karhunen–Loeve

expansion to calibrate the process noise and identify

subspaces from the transformed power trace signal, which

highlight the presence of the Trojan, as shown in Fig. 8(b).

From the analysis of power traces, it is possible to identify

reasonably small Trojan instances, e.g., one with an

equivalent area of 0.01% of the total size of the circuit,

in the presence of �7.5% random parameter variations.
Region-based approaches have been explored where

careful selection of test vectors causes switching activity

in a smaller functional region of the chip, thus decreasing

the denominator of TCR equation. Such a divide-and-

conquer method can also take advantage of the different

power pins of the chip having more sensitivity to different

structural regions of a chip. By calibrating the power

profile of these different pins, the effect of process noise
can be reduced while highlighting the Trojan contribution

to transient current. The interdie process variations can

also be neutralized by comparing transient currents from

different regions in a chip using a self-referencing matrix

[42]. It also helps to localize a Trojan by pinpointing which

region of an IC is infected with Trojan circuit. Such a

diagnosis can be useful for tracing the source of a Trojan

attack.

3) Path Delay Analysis: Another parameter of interest for

Trojan detection is the path delay [38], [39]. Activating a

Trojan may sensitize a functional path whose propagation

delay is adversely affected by the malicious inclusion.

However, impact of a Trojan in path delay can be small. In

particular, for large path delays, a minor change in delay is

likely to be masked by process variations. Hence,
appropriate vector selection that leads to sensitization of

paths affected by Trojans is of great importance. For

sequential circuits without full scan, one needs to adopt

design-time techniques for measuring all path delays,

including short paths.

To isolate the Trojan effect from a side-channel

parameter, the Trojan detection problem can be formu-

lated as a linear programming problem (LPP) with process
variation of each gate represented as a constant scaling

factor for its leakage or delay under various input

conditions [36]. This technique is capable of detecting a

single extra gate in benchmark circuits. It can be further

Fig. 8. (a) Die-to-die and within-die variation in a device parameter (threshold voltage or Vt) and corresponding impact in side-channel

parameters: transient supply current ðIDDTÞ and maximum frequency ðFmaxÞ [30]. (b) Side-channel transient current signal from a Trojan can be

separated and identified from the statistical distribution of process noise using Karhunen–Loeve expansion [4].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1238 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

refined with the effect of thermal variations on the leakage
to break all correlations. Statistical measures are used to

improve the detection accuracy and obtain a high degree of

separation between golden and Trojan-affected instances.

Like most other side-channel analysis approaches, howev-

er, the scalability of such an approach to large designs and

its effectiveness in actual measurements require further

study.

4) Multiple-Parameter Analysis: In order to reliably

isolate the Trojan effect in the presence of process noise,

one can use multiple side-channel parameters such as IDDT

and Fmax together to make the Trojan effect more

prominent [30]. The measured Fmax values can be used

to calibrate the interdie process corner of a chip. Any

variation in IDDT, which does not follow the expected

trend due to process variations, may indicate presence of a
Trojan. The detection sensitivity can be further improved

through proper test vector selection or by using another

parameter such as static current. One can also formulate it

as a multimodal Trojan detection solution [41] to

systematically consider the different parameters and

increase the Trojan detection sensitivity.

5) Test Generation for Trojan Detection: Trojans are hard
to detect using conventional testing mechanisms, since

100% scan-based fault coverage or full functional coverage

cannot guarantee full manifestation of hidden Trojans. In

software, methods that use a digital signature to validate

the authenticity of the software before running it on the

machine are popular [43]. However, at a chip level, there

are no efficient notions of static signatures that can detect

malicious intrusions. Hence, there is a need for test
pattern generation techniques that can effectively detect

Trojans of various forms and sizes. Next, we describe two

vector generation techniques that exploit the properties of

Trojans to detect them with high confidence.

The sustained vector technique [44] tries to drastically

reduce the original circuit activity so that any incremental

activity in the triggered portion of the Trojan can be
highlighted. However, one also needs to ensure that there

is at least some kind of activity going on inside the circuit.

In other words, the circuit should not be allowed to enter

some sleep mode, which can make the Trojan dormant. On

the other hand, in the statistical test generation approach,

the circuit is first partitioned into smaller subcircuits,

which are called regions [45]. The radius defines the

extent of a region. Fig. 9 illustrates the concept of region
and radius in a circuit. For a gate, the region around it

comprises all the transitive fan-in and fan-out gates that

are within the defined radius. Thus, a single gate

constitutes a region of radius zero, immediate fan-in and

fan-out gates along with the original gate constitutes a

region of radius one, and so on. The regions are restricted

across clock boundaries, i.e., no gates crossing flip-flops

are included in a region. Once the regions have been
defined, the technique attempts to create a minimal test

set that maximizes the activity on a per-region basis.

6) The Need for a Golden Model: Side-channel-analysis-

based Trojan detection typically depends on the existence

of golden models or golden chips. Simulation-based

analysis is typically not considered effective for process

calibration due to potential inaccuracies in the simulation
model and inherent uncertainties in the manufacturing

process. The set of golden chips can be obtained in two

ways: 1) by destructive reverse engineering to ensure that

they are trusted; and 2) through exhaustive testing to verify

their trustworthiness. Both processes are highly expensive

and time consuming. Furthermore, it may not be practi-

cally feasible to comprehensively verify trustworthiness of

even few chips through these processes. This has motivated
researchers to develop side-channel-analysis-based coun-

termeasures that do not require golden models. One such

approach, called temporal self-referencing (TeSR), elim-

inates the requirement of golden chip instances by

comparing a chip’s transient current signature with itself,

but at a different time window [72]. When a Trojan-free

Fig. 9. Illustration of the concept of: (a) ‘‘region,’’ and (b) ‘‘radius’’ in a circuit during test vector generation [45].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1239

circuit is made to undergo the same set of state transitions
multiple times, the transient current ‘‘signature’’ should

remain constant over different time windows. However, in

a Trojan-infected circuit, the current signature varies over

multiple time windows due to uncorrelated switching

activity in the Trojan circuit. Such a temporal self-

referencing approach can provide high detection sensitivity

for Trojans of varying sizes. TeSR, however, applies only to

sequential Trojans, and its effectiveness may be limited by
the measurement noise. Structural self-similarity in a

design can also be exploited to accomplish golden-free

Trojan detection. The basic idea is to compare side-channel

signature (e.g., current, delay) from a block (e.g., a full

adder) with that from another similar block on the same

chip. Natural symmetry in path delays in a circuit block can

be used to efficiently isolate a Trojan-infected path from

another by comparing delay signature of similar paths [73].
These self-referencing approaches rely on the fact that the

Trojan effect is local and not all similar components are

affected by a Trojan. In addition to not requiring a golden

model, they automatically eliminate the effect of interdie

process noise in a side-channel parameter, thus improving

detection sensitivity [72].

C. Trojan Detection in Hardware IPs
Today’s SoC designs use a large number of IP cores from

different IP vendors, with varying degree of reliability

associated with each vendor. Trustworthiness of these third-

party IPs is imperative to ensure trustworthiness of the SoCs,

in which they are used. Trojans may be inserted into IPs of

different forms by a rogue designer or an untrusted CAD tool

in an IP design house. Existing solutions for trusted IP

acquisition fall into three broad classes. The first one relies
on trust verification of IPs through directed test and

verification. Conventional wisdom dictates modeling the IP

trust verification problem as a formal verification problem.

However, lack of a reliable golden design makes direct

application of such verification approaches infeasible. One

can, however, employ suspect-signal-guided sequential

equivalence checking (SEC) [47] to gain some degree of

confidence on the netlist. In the first step, functional vectors
are generated using sequential ATPG to drop unsuspicious

signals and identify suspect candidates. In the next step,

N-detect full-scan ATPG is used to further discard the

signals, which correspond to combinational untestable stuck-

at-faults, by allowing the system to reach even those states,

which are not functionally reachable. Then, the suspect

circuit and specification-derived circuit are compared using

FSM unrolling to see if the same behavior is produced when
the suspect signal is activated. The approach, however,

heavily relies on proper selection of the suspect signals. In

[46], a structural checking approach is suggested to verify

integrity of IPs, but the technique is not easily scalable to

large designs. Recent works have also proposed using

multiple copies of the same IP from different vendors to

compare using unrolling [65] and validation [66] techniques.

They can identify malicious inclusions assuming that

different vendors will not introduce identical Trojan

instances.

The second class of approaches relies on a design

paradigm for facilitating the acquisition of trustworthy

IP. One such framework is based on proof-carrying code

(PCC) [17]. Fig. 10 shows the protocol of trusted IP
transfer between an IP writer and user. A set of security-

related properties is formulated, and a formal proof of

these properties is crafted by the designer. Any

undesired modification to the IP is likely to violate the

proofs. Validation of security-related properties is carried

out by the IP user using the PCC to ensure that no

hardware description language (HDL) code was modified

or tampered with. Although the security-related proper-
ties cannot ensure complete trust in an IP vendor who

crafted the formal proof of these properties, it never-

theless offers a line of defense against malicious

alteration.

A new paradigm of expert-system-based IP analysis

approaches [70], [71] forms the third class of solutions for

IP trust verification. These approaches capture prior and

trusted experience about designs, which include their
specifications, into one or more knowledge bases (KBs).

Next, KB rules are used to perform static/dynamic analysis

to check correspondence to specifications. Primary chal-

lenge in these approaches lies in building the KBs. The

knowledge for a standard IP can be captured by building

specification ontologies, property-based models, and rule-

base and associated assertion libraries. The manual effort is

initially high and minimal afterwards. However, the reuse
of KB across multiple IC design projects justifies the initial

effort.

V. DESIGN FOR SECURITY

Side-channel analysis and test generation for Trojan

activation are widely discussed methods to detect Trojans.

Fig. 10. IP acquisition and delivery protocol based on PCC [17].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1240 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

These methods, though promising, must deal with major
challenges due to rare activating nets in the circuit, process

variations, and measurement noise. To improve the

effectiveness of these detection methods, ICs must be

designed with these detection strategies in mind. In fact,

trust must be considered as an important design criterion

in the design flow of modern ICs instead of being an

afterthought.

A. Design Approaches to Prevent Trojan Insertion
Preventive approaches can be broadly classified into

two major categories: 1) obfuscation-based approaches;

and 2) layout-filler approaches. The first class of

approaches is based on obscuring functional and structural

properties of a design, thereby making it difficult for an

attacker to incorporate Trojans [48], [49]. The central

idea is to employ a key-based obfuscation technique that

modifies state transition function of a given circuit. It
makes a circuit operate in two distinct modesVthe

normal mode and the obfuscated mode [49]. While

normal mode of operation results in desired output,

obfuscated mode produces incorrect functional behavior

for some input patterns. Such a modification obfuscates

the rareness of the internal circuit nodes, thus making it

difficult for an adversary to insert hard-to-detect Trojans.

Fig. 11 illustrates the modification in the state transition
diagram. It can also make some inserted Trojans benign

since they can be active only in the obfuscated mode. The

combined effect leads to higher Trojan detectability and

higher level of protection against such attack. The

approach, however, incurs hardware overhead and cannot

provide high coverage against random Trojan insertion.

Additionally, it requires application of a key to enable

normal operation, which imposes the requirement for on-
chip storage of key or disabling of the key by the designer

after manufacturing.

The second class of approaches aims at denying

opportunity for insertion of additional circuit components

in a design by filling vacant spaces. To prevent an attacker

from identifying filled spaces in a layout and replace them
with Trojan circuit, it is important to hide them

appropriately. Built-in-self-repair (BISA) is a technique

to fill all the unused spaces in an IC with functional

standard cells instead of filler cells. Such an approach

makes it challenging for an adversary to find any real estate

on the device to insert Trojans [50]. BISA is a self-

authenticating system, i.e., any attempt for tampering or

changing the BISA architecture would be easy to detect.
The flow involves identifying the vacant spaces on the

design layout, placing the BISA cells to fill in the gaps,

routing, and connecting these cells in such a way that they

are self-authenticating after the fabrication. BISA provides

protection against removal attacks where one or more of

the filler standard cells are removed to place the Trojan

cells by producing an incorrect signature during self-

authentication. It also protects against redesign attacks and
resizing attacks, using the same signature difference. Filler

approaches including BISA, however, cannot prevent

malicious alteration of a set of transistors or addition of

a circuit that do not require extra layout space. Moreover, a

resourceful adversary can redesign specific part of a circuit

(e.g., resizing some transistors or constrained logic

synthesis) to create room for Trojan insertion.

An emerging approach to prevent Trojan attack relies
on a split-manufacturing process [51]. In this case, the

front-end-of-the-line (FEOL) and bank-end-of-the-line

(BEOL) process steps are performed in separate fabrica-

tion facilities to hide the design intent and prevent

malicious insertion. It considers fabrication of device

layers (i.e., the FEOL steps) using an advanced process in

an untrusted fabrication facility and high-level intercon-

nects (i.e., the BEOL steps) to be processed using a less
advanced trusted fabrication facilities. By not sharing the

interconnection information to FEOL facilities, it prevents

an attacker from understanding a design as well as from

incorporating any undesired alteration since it requires

connecting a set of transistors, e.g., realizing a Trojan

circuit in Fig. 3(a), through a BEOL process.

Fig. 11. Hardware-obfuscation-based design solutions hide design information to thwart Trojan attacks [49].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1241

B. Design Approaches to Facilitate Trojan Detection
Similar to testing for faults and functional bugs, Trojan

detection can also benefit from specially crafted on-chip

embedded structures. It needs to address the challenges

due to rare activating nets in the circuit, process variations,

and measurement noise [52]–[58]. Some of the major DFS

approaches that aim at addressing them are described next.

1) On-Chip Security Monitors: The major challenge with
side-channel analysis is that a small Trojan (e.g., of size 1–

100 transistors) in a large multimillion transistor design

would induce a barely noticeable effect in delay or supply

current, even with the best available measuring instrument

and judicious vector generation. In other words, the

‘‘detection sensitivity,’’ which is measured as the percent-

age deviation in delay or current due to a Trojan, is too low

to identify a Trojan reliably. The problem of reduced
detection sensitivity is greatly accentuated by the noise due

to process and environmental fluctuations [52]. Research-

ers have proposed configuring circuit paths into ring

oscillators [53], [54] to precisely detect small delay

variations due to a Trojan. Moreover, integration of

transient current sensors in a chip is shown to provide

significantly higher detection sensitivity than conventional

off-chip current monitoring [52]. Moreover, they provide a
scalable solution for designs of arbitrary size and

complexity as well as Trojans of various forms and sizes.

One can exploit existing power-gating circuits used in

modern designs to reduce the overhead of current sensors.

Fig. 12(a) illustrates insertion of transient current

monitors (CMs) in a chip. The detection sensitivity can

improve significantly under process variations, as shown in

Fig. 12(b). These on-chip structures, however, are
themselves vulnerable to tampering by an adversary in

an untrusted fabrication facility. Hence, they require

additional validation step to ensure their integrity. In [63],
Waksman and Sethumadhavan have proposed two area-

efficient detection mechanisms, called TRUSTNET and

DATAWATCH, to detect attacks on microprocessors by

implanting intelligent insiders within the chip.

2) Removing Rare-Triggered Nets: The stealthy nature of

Trojans suggests that they connect to nets with low

controllability and/or observability. As an example, a
Trojan can have q > 1 trigger inputs which can be nets

with 1) very low transition probabilities; and 2) rare

combinations. When the transition probability of Neti is

very low, either Pið0Þ � Pið1Þ or Pið1Þ � Pið0Þ. With q
number of trigger inputs, the probability of generating a

specific trigger vector is Ptrigger�vector ¼
Q

Pi (i ¼ 1 to q),

assuming independence of the nets. It is expected that

Ptrigger�vector is very low if Pis are low. By increasing the
transition probability of nets with low transition rate, it is

possible to eliminate hard-to-activate sites in a design.

Scan architecture allows access to internal cells of the

circuits, thereby improving controllability and observabil-

ity for internal nodes. To remove hard-to-activate sites,

dummy scan flip-flops can be inserted to increase

transition probability of design nets with transition

probability less than a threshold ðPthÞ [56]. Such design
modifications can be done even if the gate-level netlist is

not trusted.

3) Increasing TCR: While efficient vector generation can

aim at achieving the goal of increasing TCR, as described

earlier, one can achieve the same effect with appropriate

design modification. It is possible to reorder scan cells

based on their final physical location in the layout. Layout-
aware scan-cell reordering can localize switching activity

to one region while limiting it in other regions in a design

Fig. 12. (a) On-chip current monitors attached to power supply bumps can significantly improve the detection sensitivity in current-based

side-channel analysis. (b) Comparison of off-chip versus on-chip current without (blue) and with Trojan (red) considering effect of process

variations [52].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1242 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

[55]. Simulation results show that this technique is very
effective for small and large Trojans as well as distributed

and localized Trojans. This is because reduction in circuit

switching using this technique is substantially larger than

the reduction in Trojan’s switching, even if an attacker

distributes the Trojan gates among different regions in the

circuit. Contribution of Trojan to the total supply current

can also be enhanced through voltage inversion [58]. Let

us consider a four-input Trojan and gate. When we invert
the supply voltage of a CMOS gate, it behaves as its

complement. Hence, once the voltage is inverted, the

Trojan gate becomes a nand gate and, for random input

patterns, the triggering scenario occurs more frequently

than in the normal (noninverted) operation. The approach

is, however, effective for specific forms of Trojans, and

suffers from scalability to large circuits.

VI. RUNTIME MONITORING

Although detecting Trojans before ICs are deployed in the
field is highly desirable, the existing techniques cannot

guarantee comprehensive coverage of all types and sizes of

Trojans. Hence, online monitoring of computations can

significantly reduce the potential catastrophic effect of Trojan

attacks. These approaches can be used to disable the chip

upon detection of malicious logic or to bypass it and allow

reliable operation, albeit with some performance overhead,

in the presence of unreliable components. Next, we describe
the major classes of these monitoring approaches.

A. Configurable Security Monitors
One approach for such online monitoring is based on

addition of reconfigurable logic in a given SoC to enable

real-time functionality monitoring using security monitors

(SMs) [6], [15]. Fig. 13 shows a SoC designed with SMs.

SM is configured to implement finite state machines
(FSMs) which check the behavior of signals of interest.

These signals are fed to SMs through a signal probe

network (SPN). The configuration of one SM does not

interrupt the normal system operation or other SMs. The

checks can be performed concurrently with the normal

circuit operation and trigger appropriate countermeasures

when a deviation from normal functionality is detected.

SMs can be reconfigured by a configuration and control
processor to dynamically implement different security

checks to detect unexpected or illegal behavior created by

a Trojan such as access to protected memory space or

entering test mode during normal operation. Typically, the

reconfigurable core will implement the functionality of the

infected logic, which, in turn, will be disabled or bypassed.

B. Variant-Based Parallel Execution
Another approach combines multicore hardware with

dynamic distributed software scheduling to determine

hardware trust during in-field use at runtime [31]. It

involves scheduling and execution of functionally equiv-

alent variants (obtained by different compilations, or

different algorithm variations) simultaneously on different

processing elements (PEs) capable of executing these

variants and comparing the results. If a mismatch is
detected, a new PE is engaged until a match is possible and

the PEs with Trojans are identified. The idea is similar to

N-version programming in software that generates and

executes multiple functionally equivalent versions of the

same program to achieve high reliability in presence of

software faults. Even if two PEs can have similar Trojans,

since they execute variants of a code, the Trojans are likely

not to be activated simultaneously. It can achieve high
level of trust for specific computer systems (e.g., many-

core processor) at the cost of additional computation that

can lead to performance and energy overhead. Effective-

ness of such an approach also relies on efficient generation

of variants.

C. Hardware–Software Approach
In case of microprocessor-based systems, a software

solution that can detect Trojan activation and/or tolerate

Trojan effects can provide effective protection. For

example, a simple verifiable ‘‘hardware guard’’ module

external to the processor can be used for runtime

execution monitoring to identify Trojan activation, as

described in [23]. It targets primarily DoS and privilege

escalation attacks using periodic checks by the OS, which

is enhanced with live check functionality. It can be
implemented with only 2.2% average performance over-

head based on SPECint 2006 benchmark programs. A

hybrid hardware/software approach referred to as BlueChip
[24] is also investigated which includes a design-time

component as well as runtime monitoring. It tries to

identify any unused circuitry with design verification tests

and tags it as suspicious. At runtime, the suspicious
Fig. 13. Runtime monitoring of Trojan effect using a reconfigurable

infrastructure [20].

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1243

circuitry is removed and replaced with exception logic,

which can trigger a software exception, allowing the

system to perform normally by providing a detour around

malicious hardware Trojans. This technique is designed to

circumvent hardware Trojans, which are similar to
software Trojans in purpose. These Trojans can be inserted

in a hardware IP or in the instruction code running on an

embedded processor.

VII. SUMMARY AND FUTURE
DIRECTIONS

The threat of hardware Trojan attacks during IC design and

fabrication is escalating with increasing complexity of

modern SoCs coupled with the evolving business model.
Due to ever-growing computing demands, modern SoCs

tend to include many heterogeneous processing cores (e.g.,

MPSoC), scalable communication network, together with

reconfigurable cores, e.g., embedded field-programmable

gate array (FPGA), in order to incorporate logic that is

likely to change as standards and requirements evolve.

Such design practices greatly increase the number of

untrusted components in a SoC design. Growing reliance
on untrusted third-party IPs, tools, and reduced control on

the design/fabrication steps make modern ICs increasingly

vulnerable to malicious manipulation. At the same time,

new and more complex attack models, such as the ones that

take advantage of collusion between IC design and test

stages [21], are emerging. With growing awareness among

the design as well as manufacturing communities on the

possibility of Trojan attacks, adversaries are likely to inflict
unanticipated attacks, which are difficult to detect or

prevent by existing design and test methods. Attacks such

as leakage of confidential information through side

channels [19] (e.g., power trace), selectively changing the

process parameters, e.g., dopant polarity of transistors [60]

during fabrication to compromise lifetime of an IC without

affecting functional or parametric behavior, are some of the

key examples. The latter does not require any additional
logic element or interconnect. These attacks can be

extremely stealthy and can bypass even very fine-grain

detection techniques.

A ‘‘silver bullet’’ solution, which can reliably protect

against Trojan attacks of all types, forms, and sizes is

extremely difficult to achieve. On the other hand, an

integrative solution, which combines the complementary

benefits of design and test solutions, is expected to
provide comprehensive coverage. Hence, protection

approaches that integrate the benefits of a Trojan-aware

design with efficient post-silicon test/validation as well as

online monitoring can be attractive for high-assurance

applications. Fig. 14 outlines the steps of such a cross-

layer integrative protection approach. It includes trust

verification of hardware IPs/tools, incorporating design-

for-security measures in circuit blocks, postmanufactur-
ing trust evaluation of ICs (through functional and

parametric testing), and, finally, runtime monitoring of

circuit operation. From the economic standpoint, how-

ever, it may be advantageous to invest more in the

assurance of individual components (tools and IPs) than

protecting the whole IC (through trust verification and

monitoring) [59]. Emerging solutions such as nonde-

structive reverse engineering-based (e.g., through func-
tional and side-channel analysis) trust validation, different

forms of design obfuscation, and split-fabrication process

[74], [75] are creating new pathways for protecting against

these attacks.

The operating principles of emerging nanoscale devices

can alter the concepts of hardware Trojan insertion and

corresponding defense mechanisms. For example, the

current flowing through nanoscale transistors strongly
depends on channel stress, which can be modified through

changes in process steps or even small layout changes,

giving rise to new vulnerabilities. A more interesting

problem will be to create reliability Trojans where

malicious changes are engineered to radically accelerate

device aging. Similar Trojans are also possible in noncharge-

based devices, e.g., by marginally modulating spin polariza-

tion, or magnetic tunnel junction (MTJ) resistance. On the
other hand, the level of intrinsic process variations in both

charge- and noncharge-based emerging devices would affect

the efficacy of side-channel analysis in detecting Trojan

attacks.

Future work would focus on three major areas related

to hardware Trojans: 1) exploring emerging attacks, in

particular, attacks on circuits made with emerging

Fig. 14. Integrative protection approach that combines the benefits of

design, test, and online monitoring solutions and hence can provide

the highest level of confidence.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1244 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

nanoscale devices; 2) developing a unified trust metric for
coverage estimation, which can be extremely valuable in

providing confidence level against arbitrary attacks; and

3) novel protection approaches. Future research on

protection approaches would include improving detection
sensitivity for unknown Trojans and eliminating the need

of golden ICs, Trojan-resilient design, and efficient online

detection approaches. h

RE FERENCES

[1] S. Adee, ‘‘The hunt for the kill switch,’’ IEEE
Spectrum, vol. 45, no. 5, pp. 34–39,
May 2008.

[2] J. Kumagai, ‘‘Chip detectives,’’ IEEE Spectrum,
vol. 37, no. 11, pp. 43–48, Nov. 2000.

[3] Defense Advanced Research Projects Agency
(DARPA), ‘‘TRUST in integrated circuits
(TIC),’’ 2007. [Online]. Available: http://
www.darpa.mil/MTO/solicitations/baa07-24.

[4] D. Agrawal, S. Baktir, D. Karakoyunlu,
P. Rohatgi, and B. Sunar, ‘‘Trojan detection
using IC fingerprinting,’’ in Proc. IEEE Symp.
Security Privacy, 2007, pp. 296–310.

[5] M. Tehranipoor and F. Koushanfar, ‘‘A survey
of hardware Trojan taxonomy and detection,’’
IEEE Design Test Comput., vol. 27, no. 1,
pp. 10–25, Jan.–Feb. 2010.

[6] M. Abramovici and P. Bradley, ‘‘Integrated
circuit securityVNew threats and solutions,’’
in Proc. 5th Annu. Workshop Cyber Security Inf.
Intell. Res., 2009, DOI: 10.1145/1558607.
1558671.

[7] R. S. Chakraborty, S. Narasimhan, and
S. Bhunia, ‘‘Hardware Trojan: Threats and
emerging solutions,’’ in Proc. IEEE Int. High
Level Design Validation Test Workshop, 2009,
pp. 166–171.

[8] R. S. Chakraborty, F. Wolff, S. Paul,
C. Papachristou, and S. Bhunia, ‘‘MERO: A
statistical approach for hardware Trojan
detection,’’ in Proc. Workshop Cryptogr.
Hardware Embedded Syst., 2009, pp. 396–410.

[9] Chipworks Inc. ‘‘Semiconductor manufacturing
VReverse engineering of semiconductor
components, parts and process.,’’ [Online].
Available: http://www.chipworks.com.

[10] Defense Science Board. ‘‘Task force on high
performance microchip supply, ’’ 2005.
[Online]. Available: http://www.acq.osd.
mil/dsb/reports/ADA435563.pdf.

[11] Australian Government, Department of
Defence (DoD), Defence Science and
Technology Organisation (DSTO). ‘‘Towards
countering the rise of the silicon Trojan,’’
2008. [Online]. Available: http://dspace.dsto.
defence.gov.au/dspace/bitstream/1947/9736/1/
DSTO-TR-2220%20PR.pdf.

[12] A. Rawnsley, ‘‘Fishy chips: Spies want to
hack-proof circuits,’’ Wired, Jun. 24, 2011.
[Online]. Available: http://www.wired.com/
dangerroom/2011/06/chips-oy-spies-want-to-
hack-proof-circuits/.

[13] R. Johnson, ‘‘The Navy bought fake
Chinese microchips that could have
disarmed U.S. missiles,’’ Business Insider,
Jun. 27, 2011. [Online]. Available: http://www.
businessinsider.com/navy-chinese-microchips-
weapons-could-have-been-shut-off-2011-6.

[14] S. Skorobogatov and C. Woods, ‘‘Breakthrough
silicon scanning discovers backdoor in military
chip,’’ Cryptographic Hardware and Embedded
Systems Workshop, vol. 7428, Berlin, Germany:
Springer-Verlag, 2012, pp. 23–40.

[15] S. Bhunia et al., ‘‘Protection against hardware
Trojan attacks: Towards a comprehensive
solution,’’ IEEE Design Test Comput., vol. 30,
no. 3, pp. 6–17, May–Jun. 2013.

[16] C. E. Landwehr, A. R. Bull, J. P. McDermott,
and W. S. Choi, ‘‘A taxonomy of computer
program security flaws,’’ ACM Comput. Surv.,
vol. 26, no. 3, pp. 211–254, 1994.

[17] E. Love, Y. Jin, and Y. Makris, ‘‘Proof-carrying
hardware intellectual property: A pathway to
trusted module acquisition,’’ IEEE Trans. Inf.
Forensics Security, vol. 7, no. 1, pp. 25–40,
Feb. 2012.

[18] M. Potkonjak, ‘‘Synthesis of trustable ICs
using untrusted CAD tools,’’ in Proc. Design
Autom. Conf., 2010, pp. 633–634.

[19] L. Lin, W. Burleson, and C. Paar, ‘‘MOLES:
Malicious off-chip leakage enabled by
side-channels,’’ in Proc. Int. Conf.
Comput.-Aided Design, 2009, pp. 117–122.

[20] M. Abramovici, ‘‘Protecting integrated circuits
from silicon Trojan horses,’’ Military Embedded
Syst., Jan.–Feb., 2009. Available: http://www.
mil-embedded.com/articles/id/?3748

[21] S. Ali, D. Mukhopadhyay, R. S. Chakraborty,
and S. Bhunia, ‘‘Multi-level attack: An
emerging threat model for cryptographic
hardware,’’ in Proc. Design Autom. Test Eur.
Conf. Exhibit., 2011, DOI: 10.1109/DATE.
2011.5763307.

[22] S. Jha and S. K. Jha, ‘‘Randomization based
probabilistic approach to detect Trojan
circuits,’’ in Proc. IEEE High Assurance Syst.
Eng. Symp., 2008, pp. 117–124.

[23] G. Bloom, B. Narahari, and R. Simha, ‘‘OS
support for detecting Trojan circuit attacks,’’
in Proc. IEEE Int. Workshop Hardware-Oriented
Security Trust, 2009, pp. 100–103.

[24] M. Hicks, M. Finnicum, S. T. King,
M. M. K. Martin, and J. M. Smith,
‘‘Overcoming an untrusted computing base:
Detecting and removing malicious hardware
automatically,’’ in Proc. IEEE Symp. Security
Privacy, 2010, pp. 159–172.

[25] S. T. King et al., ‘‘Designing and implementing
malicious hardware,’’ in Proc. 1st USENIX
Workshop Large-Scale Exploits Emergent
Threats, 2008, article 5.

[26] X. Wang, S. Narasimhan, A. Krishna,
T. Mal-Sarkar, and S. Bhunia, ‘‘Software
exploitable hardware Trojan attacks in
embedded processor,’’ in Proc. IEEE Int. Symp.
Defect Fault Tolerance VLSI Nanotechnol. Syst.,
2012, pp. 55–58.

[27] Y. Shiyanovskii et al., ‘‘Process reliability
based trojans through NBTI and HCI effects,’’
in Proc. NASA/ESA Conf. Adaptive Hardware
Syst., 2010, pp. 215–222.

[28] F. Kiamilev and R. Hoover, ‘‘Demonstration of
hardware Trojans,’’ presented at the DEFCON
16, Las Vegas, NV, USA, Aug. 8–10, 2008.

[29] R. Karri, J. Rajendran, K. Rosenfeld, and
M. Tehranipoor, ‘‘Trustworthy hardware:
Identifying and classifying hardware Trojans,’’
IEEE Computer, vol. 43, no. 10, pp. 39–46,
Oct. 2010.

[30] S. Narasimhan et al., ‘‘Hardware Trojan
detection by multiple-parameter side-channel
analysis,’’ IEEE Trans. Comput., vol. 62, no. 11,
pp. 2183–2195, Nov. 2013.

[31] D. McIntyre, F. Wolff, C. Papachristou, and
S. Bhunia, ‘‘Dynamic evaluation of hardware
trust,’’ in Proc. IEEE Int. Workshop
Hardware-Oriented Security Trust, 2009,
pp. 108–111.

[32] J. A. Kash, J. C. Tsang, and D. R. Knebel,
‘‘Method and apparatus for reverse engineering
integrated circuits by monitoring optical
emission,’’ U.S. Patent 6 496 022 B1, 2002.

[33] M. Banga, M. Chandrasekar, L. Fang, and
M. Hsiao, ‘‘Guided test generation for
isolation and detection of embedded Trojans
in ICs,’’ in Proc. 18th ACM Great Lakes Symp.
VLSI, 2008, pp. 363–366.

[34] J. Aarestad, D. Acharyya, R. Rad, and
J. Plusquellic, ‘‘Detecting Trojans though
leakage current analysis using multiple supply
pad IDDQs,’’ IEEE Trans. Inf. Forensics
Security, vol. 5, no. 4, pp. 893–904, Dec. 2010.

[35] Y. Alkabani and F. Koushanfar,
‘‘Consistency-based characterization for IC
Trojan detection,’’ in Proc. Int. Conf.
Comput.-Aided Design, 2009, pp. 123–127.

[36] M. Potkonjak, A. Nahapetian, M. Nelson, and
T. Massey, ‘‘Hardware Trojan horse detection
using gate-level characterization,’’ in Proc.
Design Autom. Conf., 2009, pp. 688–693.

[37] D. Acharyya and J. Plusquellic, ‘‘Calibrating
power supply signal measurements for
process and probe card variations,’’ in Proc.
IEEE Int. Workshop Current Defect Based Test.,
2004, pp. 23–30.

[38] D. Rai and J. Lach, ‘‘Performance of
delay-based Trojan detection techniques
under parameter variations,’’ in Proc. IEEE
Int. Workshop Hardware-Oriented Security
Trust, 2009, pp. 58–65.

[39] Y. Jin and Y. Makris, ‘‘Hardware Trojan
detection using path delay fingerprint,’’ in
Proc. IEEE Int. Workshop Hardware Oriented
Trust Security, 2008, pp. 51–57.

[40] C. Lamech, R. M. Rad, M. Tehranipoor, and
J. Plusquellic, ‘‘An experimental analysis of
power and delay signal-to-noise requirements
for detecting Trojans and methods for
achieving the required detection sensitivities,’’
IEEE Trans. Inf. Forensics Security, vol. 6,
no. 3, pt. 2, pp. 1170–1179, Sep. 2011.

[41] F. Koushanfar and A. Mirhoseini, ‘‘A unified
framework for multimodal submodular
integrated circuits Trojan detection,’’ IEEE
Trans. Inf. Forensics Security, vol. 6, no. 1,
pp. 162–174, Mar. 2011.

[42] D. Du, S. Narasimhan, R. S. Chakraborty, and
S. Bhunia, ‘‘Self-referencing: A scalable
side-channel approach for hardware Trojan
detection,’’ in Proc. 12th Int. Conf. Cryptogr.
Hardware Embedded Syst. Workshop, 2010,
pp. 173–187.

[43] M. A. Williams, ‘‘Anti-Trojan, Trojan
detection with in-kernel digital signature
testing of executables,’’ Security Software
Engineering: NetXSecure NZ Limited, Tech.
Rep., 2002, pp. 1–12.

[44] M. Banga and M. Hsiao, ‘‘A novel sustained
vector technique for the detection of
hardware Trojans,’’ in Proc. 22nd Int. Conf.
VLSI Design, 2009, pp. 327–332.

[45] M. Banga and M. Hsiao, ‘‘A region based
approach for the detection of hardware
Trojans,’’ in Proc. IEEE Symp.
Hardware-Oriented Security Trust, 2008,
pp. 40–47.

[46] S. Smith and J. Di, ‘‘Detecting malicious logic
through structural checking,’’ in Proc. IEEE
Region 5 Tech. Conf., 2007, pp. 217–222.

[47] M. Banga and M. Hsiao, ‘‘Trusted RTL:
Trojan detection methodology in pre-silicon
designs,’’ in Proc. IEEE Int. Workshop
Hardware-Oriented Trust Security, 2010,
pp. 56–59.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1245

[48] J. Rajendran et al., ‘‘Securing
processors against insider attacks: A
circuit-microarchitecture co-design
approach,’’ IEEE Design Test, vol. 30, no. 2,
pp. 35–44, Mar.–Apr. 2013.

[49] R. S. Chakraborty and S. Bhunia, ‘‘Security
against hardware Trojan attacks using
key-based design obfuscation,’’ J. Electron.
Testing, Theory Appl., vol. 27, no. 6,
pp. 767–785, Dec. 2011.

[50] K. Xiao and M. Tehranipoor, ‘‘BISA:
Built-in-self-authentication for preventing
hardware Trojan insertion,’’ in Proc. IEEE Int.
Workshop Hardware-Oriented Trust Security,
2013, pp. 45–50.

[51] F. Imeson, A. Emtenan, S. Garg, and
M. V. Tripunitara, ‘‘Securing computer
hardware using 3D integrated circuit (IC)
technology and split manufacturing for
obfuscation,’’ in Proc. 22nd USENIX Conf.
Security, 2013, pp. 495–510.

[52] S. Narasimhan, W. Yueh, X. Wang,
S. Mukhopadhyay, and S. Bhunia, ‘‘Improving
IC security against Trojan attacks through
integration of security monitors,’’ IEEE Design
Test Comput., vol. 29, no. 5, pp. 37–46,
Oct. 2012.

[53] J. Rajendran, V. Jyothi, O. Sinanoglu, and
R. Karri, ‘‘Design and analysis of ring
oscillator based Design-for-trust technique,’’
in Proc. IEEE 29th VLSI Test Symp., 2011,
pp. 105–110.

[54] X. Zhang and M. Tehranipoor, ‘‘RON: An
on-chip ring oscillator network for hardware
Trojan detection,’’ in Proc. Design Test Eur.
Conf. Exhibit., 2011, DOI: 10.1109/DATE.
2011.5763260.

[55] H. Salmani, M. Tehranipoor, and
J. Plusquellic, ‘‘A layout-aware approach for
improving localized switching to detect
hardware Trojans in integrated circuits,’’ in
Proc. IEEE Int. Workshop Inf. Forensics
Security, 2010, DOI: 10.1109/WIFS.2010.
5711438.

[56] H. Salmani, M. Tehranipoor, and
J. Plusquellic, ‘‘A novel technique for
improving hardware Trojan detection and
reducing Trojan activation time,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 1, pp. 112–125, Jan. 2012.

[57] M. Banga and M. Hsiao, ‘‘ODETTE: A
non-scan design-for-test methodology for
Trojan detection in ICs,’’ in Proc. IEEE Int.
Workshop Hardware-Oriented Trust Security,
2011, pp. 18–23.

[58] M. Banga and M. Hsiao, ‘‘VITAMIN: Voltage
inversion technique to ascertain malicious
insertions in ICs,’’ in Proc. IEEE Int. Workshop
Hardware-Oriented Trust Security, 2009,
pp. 104–107.

[59] J. Grossklags, N. Christin, and J. Chuang,
‘‘Secure or insure?: A game-theoretic analysis
of information security games,’’ in Proc. 17th
Int. Conf. World Wide Web, 2008,
pp. 209–218.

[60] G. T. Becker, F. Regazzoni, C. Paar, and
W. P. Burleson, ‘‘Stealthy dopant-level
hardware Trojans: Extended version,’’ J.
Cryptogr. Eng., vol. 4, no. 1, pp. 1–13, Apr. 2014.

[61] S. Wei and M. Potkonjak, ‘‘Scalable
hardware Trojan diagnosis,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 6, pp. 1049–1057, Jun. 2012.

[62] W. Zhang et al., ‘‘Virtual probe: A
statistical framework for low-cost silicon
characterization of nanoscale integrated
circuits,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 30, no. 12,
pp. 1814–1827,
Dec. 2011.

[63] A. Waksman and S. Sethumadhavan, ‘‘Tamper
evident microprocessors,’’ in Proc. IEEE Symp.
Security Privacy, 2010, pp. 173–188.

[64] A. Waksman, M. Suozzo, and
S. Sethumadhavan, ‘‘FANCI: Identification of
stealthy malicious logic using Boolean
functional analysis,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2013,
pp. 697–708.

[65] T. Reece, D. B. Limbrick, and W. H. Robinson,
‘‘Design comparison to identify malicious
hardware in external intellectual property,’’ in
Proc. IEEE 10th Int. Conf. Trust Security Privacy
Comput. Commun., Changsha, China, 2011,
pp. 639–646.

[66] C. Liu, J. Rajendran, C. Yang, and R. Karri,
‘‘Shielding heterogeneous MPSoCs from
untrustworthy 3PIPs through security-driven
task scheduling,’’ in Proc. IEEE Symp. Defect

Fault Tolerance VLSI Nanotechnol. Syst.,
2013, pp. 101–106.

[67] C. E. Landwehr, A. R. Bull, J. P. McDermott,
and W. S. Choi, ‘‘A taxonomy of computer
program security flaws,’’ ACM Comput. Surv.,
vol. 26, no. 3, pp. 211–254, 1994.

[68] L. A. Hughes and G. J. DeLone, ‘‘Viruses,
worms, and Trojan Horses: Serious crimes,
nuisance, or both?’’ Social Sci. Comput. Rev.,
vol. 25, no. 1, pp. 78–98, 2007.

[69] G. McGraw and G. Morrisett, ‘‘Attacking
malicious code: A report to the Infosec
Research Council,’’ IEEE Software, vol. 17,
no. 5, pp. 33–41, Sep.–Oct. 2000.

[70] B. Singh et al., ‘‘Knowledge-guided
methodology for third-party soft IP analysis,’’
in Proc. 27th Int. Conf. VLSI Design, 2014,
pp. 246–251.

[71] B. Singh et al., ‘‘Cross-correlation of
specification and RTL for soft IP analysis,’’ in
Proc. Design Autom. Test Eur. Conf. Exhibit,
2014, DOI: 10.7873/DATE2014.303.

[72] S. Narasimhan, X. Wang, D. Du,
R. S. Chakraborty, and S. Bhunia, ‘‘TeSR: A
robust temporal self-referencing approach for
hardware Trojan detection,’’ in Proc. IEEE Int.
Symp. Hardware-Oriented Security Trust, 2011,
pp. 71–74.

[73] N. Yoshimizu, ‘‘Hardware Trojan detection by
symmetry breaking in path delays,’’ in Proc.
IEEE Int. Symp. Hardware-Oriented Security
Trust, 2014.

[74] R. W Jarvis and M. G. McIntyre, ‘‘Split
manufacturing method for advanced
semiconductor circuits,’’ U.S. Patent 7 195 931,
2004.

[75] J. V. Rajendran, O. Sinanoglu, and R. Karri,
‘‘Is split manufacturing secure?’’ in Proc.
Design Autom. Test Eur. Conf. Exhibit., 2013,
pp. 1259–1264.

[76] TrojanHunter help file. [Online]. Available:
http://www.trojanhunter.com/trojanhunter/
help/

[77] Y. Liu, Y. Jin, and Y. Makris, ‘‘Hardware
Trojans in wireless cryptographic ICs:
Silicon demonstration & detection method
evaluation,’’ in Proc. Int. Conf. Comput.-Aided
Design, 2013, pp. 399–404.

ABOUT THE AUT HORS

Swarup Bhunia (Senior Member, IEEE) received

the B.E. degree (honors) from Jadavpur University,

Kolkata, India, in 1995, the M.Tech. degree from

the Indian Institute of Technology (IIT), Kharagpur,

India, in 1998, and the Ph.D. degree from Purdue

University, West Lafayette, IN, USA, in 2005.

Currently, he is a T.&A. Schroeder Associate

Professor of Electrical Engineering and Computer

Science at Case Western Reserve University, Cleve-

land, OH, USA. He has over ten years of research and

development experience with over 150 publications in peer-reviewed

journals and premier conferences in the area of very large scale integration

(VLSI) design, computer-aided design (CAD), and test techniques. His research

interests include low-power and robust design, hardware security and

protection, adaptive nanocomputing and novel test methodologies. He has

worked in the semiconductor industry on register transfer level (RTL)

synthesis, verification, and low-power design for about three years.

Dr. Bhunia received the IBM Faculty Award (2013), the National

Science Foundation (NSF) CAREER development award (2011), the

Semiconductor Research Corporation (SRC) Inventor Recognition Award

(2009), the SRC technical excellence award (2005), and several best

paper awards/nominations. He has served as a Guest Editor of IEEE

DESIGN & TEST OF COMPUTERS (2010, 2012), Guest Editor of the IEEE JOURNAL

ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS (2014), and on the

Editorial Board of the Journal of Low Power Electronics. He has served as

Program Chair for the 2013 IEEE/ACM NANOARCH and the 2014

International Symposium on VLSI Design and Test (VDAT), and will serve

as Program Chair for the 2015 IEEE International Symposium on

Hardware Oriented Security and Trust (HOST). He served in the technical

program committees of major IEEE and Association for Computing

Machinery (ACM) conferences.

Michael S. Hsiao (Fellow, IEEE) received the B.S.

degree in computer engineering (highest honors)

and the M.S. and Ph.D. degrees in electrical

engineering from the University of Illinois at

Urbana-Champaign, Urbana, IL, USA, in 1992,

1993, and 1997, respectively.

Currently, he is a Professor in the Department of

Electrical and Computer Engineering, Virginia Poly-

technic Institute and State University, Blacksburg,

VA, USA. His current research interests include

design, testing, verification, and trust of hardware and software.

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

1246 Proceedings of the IEEE | Vol. 102, No. 8, August 2014

Prof. Hsiao was a recipient of the Digital Equipment Corporation

Fellowship, the McDonnell Douglas Scholarship, and the National Science

Foundation CAREER Award. Among his publications, he has been

recognized for the most influential papers in the first ten years (1998–

2007) of Design Automation and Test Conference in Europe (DATE). He

received the best paper award at the 2010 IEEE Asian Test Symposium

and the best student paper award at the 2012 IEEE International Test

Conference.

Prof. Hsiao was an Associate Editor for the IEEE TRANSACTIONS ON

COMPUTERS, the ACM Transactions on Design Automation of Electronic

Systems, and IEEE DESIGN & TEST OF COMPUTERS. He served as Program

Chair for the 2014 IEEE Hardware Oriented Security and Trust Sympo-

sium, in addition to serving on technical program committees for

numerous conferences.

Mainak Banga (Member, IEEE) received the B.E.

degree in electronics and communication engi-

neering (Gold Medalist) from Birla Institute of

Technology, Mesra, India, in 2003 and the M.S. and

Ph.D. degrees in computer engineering from the

Virginia Polytechnic Institute and State University,

Blacksburg, VA, in 2008 and 2010, respectively.

Currently, he is a Software Engineer with Intel

Corporation, Folsom, CA, USA, in the System

Validation and Engineering Group. He is involved

in developing software tools to aid per- and post-silicon debug. He

worked extensively on Trojan detection mechanisms in pre- and post-

silicon IC design flows in his graduate research under the guidance of

Prof. M. S. Hsiao. His publications have been selected in renowned

conferences like Design Automation and Testing in Europe (DATE),

Hardware-Oriented Security and Trust (HOST), VLSI Design, Asian Test

Symposium, and Great Lake Symposium on VLSI. His research interest

also includes creating faster and more efficient methodologies for design

for test.

Seetharam Narasimhan received the B.E. (hon-

ors) degree in electronics and telecommunication

engineering from Jadavpur University, Kolkata,

India, in 2006 and the Ph.D. degree in computer

engineering from Case Western Reserve Universi-

ty, Cleveland, Ohio, USA, in 2012.

Currently, he is a Component Design Engineer

with Intel Corporation, Hillsboro, OR, USA, in the

System Validation and Engineering (SVE) Security

Center of Excellence. His areas of interest include

hardware security evaluation of system-on-chip products. He has worked

extensively on hardware Trojan design and detection as part of his

graduate research under the guidance of Prof. S. Bhunia. He has two book

chapters and more than 30 publications in peer-reviewed journals and

premier conferences in the areas of hardware security and biomedical

very large scale integration (VLSI) design.

Dr. Narasimhan has served as a peer reviewer for various IEEE

conferences and journals and in the Technical Program Committee for

several IEEE/ACM conferences such as the Design Automation

Conference (DAC), the International Symposium on Quality Electronic

Design (ISQED), VLSI Design-India, the Workshop on NanoArchitecture

(NANOARCH), and the International Conference on Computer Design

(ICCD). He has been a student competition finalist at the IEEE EMBS

conference in 2009, finalist at the CSAW Embedded Systems

Challenge in 2009–2011, and received the best paper nomination at

the 2010 IEEE Symposium on Hardware-Oriented Security and Trust

(HOST).

Bhunia et al. : Hardware Trojan Attacks: Threat Analysis and Countermeasures

Vol. 102, No. 8, August 2014 | Proceedings of the IEEE 1247

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

