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ABSTRACT | An automatic emotion recognition system can

serve as a fundamental framework for various applications

in daily life from monitoring emotional well-being to improv-

ing the quality of life through better emotion regulation.

Understanding the process of emotion manifestation becomes

crucial for building emotion recognition systems. An emo-

tional experience results in changes not only in interpersonal

behavior but also in physiological responses. Physiological

signals are one of the most reliable means for recogniz-

ing emotions since individuals cannot consciously manipulate

them for a long duration. These signals can be captured

by medical-grade wearable devices, as well as commercial

smart watches and smart bands. With the shift in research

direction from laboratory to unrestricted daily life, commercial

devices have been employed ubiquitously. However, this shift

has introduced several challenges, such as low data quality,

dependency on subjective self-reports, unlimited movement-

related changes, and artifacts in physiological signals. This

tutorial provides an overview of practical aspects of emotion
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recognition, such as experiment design, properties of different

physiological modalities, existing datasets, suitable machine

learning algorithms for physiological data, and several appli-

cations. It aims to provide the necessary psychological and

physiological backgrounds through various emotion theories

and the physiological manifestation of emotions, thereby lay-

ing a foundation for emotion recognition. Finally, the tutorial

discusses open research directions and possible solutions.

KEYWORDS | Affective computing; deep learning; emotion

recognition; physiological signals; wearable.

I. I N T R O D U C T I O N
Emotions serve a significant role in human lives as they
assist in decision-making and forging social relationships.
The short-lasting emotional responses distinguish them-
selves from affective states, such as mood or stress.
However, enduring negative emotions may have severe
effects if they are not managed well early. They may inhibit
learning among students [1], lead to burnout among work-
ers [2], and eventually lead to mental health disorders,
such as anxiety- and mood-related disorders, schizophre-
nia, and substance abuse [3].

Automatic recognition of emotions (specifically negative
emotions, such as sadness, anxiety, fatigue, and anger) can
contribute significantly to a prescreening tool to prevent
adverse health consequences. Suppose that one is driv-
ing a car for a long distance under time pressure and
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cannot afford to rest sufficiently. This condition reduces
one’s attention on the road and makes one vulnerable to
mistakes and accidents. The U.S. Department of Trans-
portation claims that driving-related errors cause around
95% of fatal road accidents [4]. A huge proportion of
these driving errors are caused by drowsiness or fatigue.
However, an intelligent emotion detection system in a
car, which can continuously monitor and detect fatigue or
drowsiness using our physiological signals, could save lives
by preventing accidents. Sending personalized alerts to the
driver ahead of time to pause for a coffee break and change
the music tempo or ambient temperature could ensure a
safer and more comfortable driving experience.

The advancement in sensing technologies has enabled
computer scientists to develop automatic emotion recog-
nition tools. Facial expressions [5] and speech [6] are
adopted for emotion recognition due to the ease of
associating typical facial expressions and speech with emo-
tions. Physiology-based solutions have emerged as another
alternative for emotion recognition research due to their
suitability for continuous monitoring in everyday life and
relatively fewer privacy issues. Wearable devices have
emerged as pervasive instruments for passive quantitative
data collection. More than 330 million smart watches,
fitness trackers, and similar wearable devices have been
sold, and the market has been growing each year [7]. Most
wearable devices can capture physiological, environmen-
tal, and activity-related information without interfering
with the user’s activities, making them a promising can-
didate for emotion recognition, especially in daily life.

Numerous emotion recognition studies in labora-
tory environments have been conducted over the past
decade [8], [9], and several public datasets are created
in these settings. However, the focus of research has
recently shifted from laboratory to daily life [10] since
emotion recognition in the laboratory differs significantly
from daily life in terms of emotional stimulus charac-
teristics, responses, and labeling [11], [12]. People can
differentiate between the artificial stimuli induced in the
laboratory and daily emotional stimuli that matter to
them and react accordingly [11]. Researchers proposed
several emotion recognition techniques and tested them
in the wild [13], [14], [15]. Shu et al. [16] describe
a framework for emotion recognition using physiologi-
cal signals and emphasize that emotion recognition in
the wild faces several challenges apart from the stimuli
itself, such as emotion labeling and intersubject variability.
Saganowski et al. [12] systematically reviewed the litera-
ture on wearable devices for emotion recognition in daily
life and noted that most studies involved laboratory data.
The approaches developed in a laboratory setting do not
have sufficient robustness to be employed in a real-time
monitoring system. Precise and robust emotion recogni-
tion in daily life is crucial for developing emotion-aware
systems (i.e., personal agents or robots) that employ the
user’s emotions as feedback to adapt its behavior. It can
be used to find personalized emotion regulation strategies,

teach emotional responses to people with certain condi-
tions, such as autism, monitor enduring negative emotions,
report emotions to physicians and psychologists through
a prescreening tool, track workers in dangerous lines of
work, and notify authorities in the case of accumulated
fatigue, anxiety, or stress, thereby decreasing work acci-
dents.

An ideal emotion recognition cycle in the wild com-
prises emotion recognition and regulation components
(see Fig. 1 for details). This tutorial provides the neces-
sary background and guidelines for developing such an
emotion recognition system. Section II briefly describes
the evolution of theories on how emotions are caused,
represented, and regulated. Section III describes the phys-
iological correlates of emotions and presents empirical
evidence for emotion manifestation through physiological
changes in the body. Section IV describes the physiological
signals, devices to obtain them, and discriminatory fea-
tures. Section V presents the guidelines for designing and
implementing scientific experiments for data collection,
along with prominent public datasets. Section VI describes
state-of-the-art machine learning and deep learning tech-
niques appropriate for physiological time-series data. This
article concludes with open research issues, insights, and
recommendations for recognizing emotions in the wild.

II. B A C K G R O U N D
Several psychophysiologists proposed emotion theories to
model the elicitation of an emotional experience. Although
most of the emotion elicitation theories bear similarities in
the psychological and physiological elements that consti-
tute an emotional experience, they differ in the occurrence
order of these elements or the depth of description of
the underlying process. Nevertheless, these theories laid
the foundation for emotion representation and regula-
tion. Emotion representation frameworks consist of single
or multidimensional spaces where several emotions are
arranged. Such frameworks for emotion representation
promote emotion modeling—detection and recognition.
This section concludes with the emotion regulation theory
that describes the potential strategies at various stages of
an emotional experience where individuals can regulate
their emotions.

A. Emotion Elicitation

Emotion refers to a change in the mental state arising
from a complex interaction between a stimulus in the
external environment and the internal state of an indi-
vidual. Although details of the emotion definition have
been controversial, the theories around emotion elicitation
have converged on the crucial components of emotion,
which define the characteristics of an emotional response.
These theories, however, differ based on the process details
of an emotional experience. James [18], [19] proposed
that the physiological response precedes an emotional
experience. According to this theory, an emotional stimulus
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Fig. 1. Ideal emotion recognition system for daily life is shown. It should continuously monitor the signals, and if it detects negative

emotions, it should suggest appropriate relaxation methods (emotion regulation support scheme) to return individuals to their baseline

state [17].

activates the sensory cortex, thereby eliciting peripheral
responses. The feedback from the peripheral responses
then triggered an emotional response. This theory empha-
sizes that the stimulus elicits a specific response pattern
that governs emotion quality. However, the theory does not
explain how physiological responses are initiated. Later,
Cannon [20] argued against the specificity of physio-
logical responses for a given emotion and claimed that
different emotions could elicit an undifferentiated physio-
logical (autonomic) response, such as an increased heart
rate (HR). Following Cannon’s empirical understanding,
Schachter [21] proposed that different stimuli are likely
to produce similar physiological arousal, but a specific
emotional experience is produced by the cognitive process
of consciously attributing the arousal to characteristics of
the stimulus. Therefore, according to this theory, attribut-
ing arousal to different characteristics of the eliciting
stimulus produces different emotions. Several researchers,
including Arnold [22], Scherer [23], and Lazarus [24],
argued against the conscious attribution of the physiologi-
cal arousal and instead claimed that the cognitive appraisal
of stimulus or the situation with respect to the individual’s
goals is likely to occur unconsciously, and it precedes
the physiological arousal. This concept of appraisal gave
rise to appraisal theories of emotion. While the first level
of appraisal focused on the situation itself, Lazarus fur-
thered his theory by adding the concept of coping or
secondary appraisal of a potentially dangerous situation by
individuals based on their capabilities. Roseman et al. [25]
suggested that the subjective evaluation of the situa-
tion concerning an individual’s goals and accountability
also influences emotions, thereby making an appraisal
individualistic. The component process model proposed
by Scherer [23] suggested that a cognitive appraisal

involves a sequence of appraisal checks, the response
to which varies over different personalities and cultures.
Emotion researchers have proposed several such variables
influencing the appraisal. Meanwhile, Ekman et al. [26]
challenged the theory of undifferentiated physiological
responses using empirical studies and showed that auto-
nomic responses are specific to emotions. Although there
have been several propositions regarding emotion elici-
tation throughout history, the class of appraisal theories
is preferred the most. Fig. 2 depicts the main compo-
nents and the sequence of occurrence of these components
based on the appraisal theory of emotions. The research
concludes that there is an endless and inconsistent list
of components leading to an emotional experience in an
individual. However, it is worthwhile to consider various
factors that influence the subjectivity of the cognitive
appraisal.

Fig. 2. Sequence of emotion elicitation based on the appraisal.

Cognitive appraisal of the external situation and the internal state

of the individual result in emotions that further trigger various

physiological and behavioral responses. The changes in the mental

and physiological states of an individual constitute an emotional

experience.
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Fig. 3. Russell’s circumplex model of affect [31] depicting

emotions on a 2-D space. V stands for valence, and A stands for

arousal. Can and Ersoy [35] selected the five highlighted emotions

for their study. The figure becomes lighter when the valence is more

positive. When the arousal increases, the red color becomes more

evident (similar to an alarm).

B. Emotion Representation

Emotions have been represented as discrete or cate-
gorical emotion states and in continuous or dimensional
emotion space. Over the past decades, different sets
of primary emotions have been categorized by emotion
researchers. James [19] identified emotion categories,
such as fear, grief, love, and rage as coarse emotions as
they involve strong physiological changes. Ekman [27]
proposed a finite set of emotions having distinctive physio-
logical signatures and universal signals, and called them
basic emotions, having common features, such as rapid
onset, short duration, automatic appraisal, and coher-
ent responses. The basic emotions constitute anger, fear,
sadness, enjoyment, disgust, and surprise. However, the
universality in the definition of basic emotions limited
the representation of the complexity of the emotion gen-
eration process among different individuals. Researchers
extended the list of basic emotions to 15 [28], 17 [29], and
27 emotions [30]. However, the similarity among the emo-
tions could not be gauged with such emotion categories
though they could be broadly classified into positive and
negative emotions. Conversely, the dimensional model rep-
resents emotions in a continuous multidimensional space
that denotes a systematic relationship between different
emotions. A prominent example is the Circumplex model
proposed by Russell [31], which is defined by two orthog-
onal dimensions: valence and arousal. The two dimensions
depicted the subjective experience and the extent of physi-
ological activity. An example of its application is presented
in Fig. 3. Another commonly adopted model is a 3-D space

defined by the scales: pleasure, arousal, and dominance
(PAD) dimensions [32]. The PAD model was based on the
premise that emotions are the foundations for cognitive
judgments. Plutchik [33] used a hybrid approach with
the emotion wheel made of eight primary emotions rep-
resented with different colors and intensities on a polar
coordinate system, thereby establishing the spatial rela-
tionship between them. The intensity of the emotions is
proportional to the color intensity, and opposite emotions
are placed diagonally opposite in the wheel. Meanwhile,
the mixtures of primary emotions are presented in the
spaces in the outermost layer. Prior work [30] has revealed
that emotions represented as categories are better at cap-
turing subjective experiences through self-reports than the
commonly used dimensions such as valence and arousal.
Scherer [23] identified a robust alternative to categorical
emotions with eight cognitive dimensions leading to a
cognitive appraisal—novelty, pleasantness, fairness of the
situation, and the individual’s perception of goal, coping
ability, accountability, morality, and self-consistency. Each
basic emotion was found to exhibit a specific appraisal
profile along the eight dimensions, and these appraisal
profiles have been used to distinguish different emotion
categories qualitatively [34].

C. Emotion Regulation

Emotions are helpful when they enhance our
decision-making and motivate socially appropriate
behaviors. Nevertheless, they could also be unhelpful
when they are inappropriate for a given situation or are
of inappropriate intensity, higher frequency, and longer
duration. Emotion regulation is required when these
unhelpful emotions lead to collateral damage or harm to
oneself or others. Emotion recognition systems have the
potential to assist in emotion regulation.

One needs to assume a positive goal in order to regulate
emotions. Such a goal could be to feel less sad or to lead
a healthy lifestyle. Emotion regulation could be intrinsic,
where an individual regulates one’s own emotions, such
as encouraging oneself after a job rejection, or extrinsic,
where an individual regulates another person’s emotions,
such as a parent consoling a child. Individuals have differ-
ent strategies to regulate emotions, and not all strategies
work. Hence, one must find the emotion regulation strat-
egy that works for them. Gross [36] proposed the process
model of emotion regulation, which is a framework for
identifying emotion regulation strategies at several steps
involved in emotion generation. The steps involved in emo-
tion generation and the regulation strategies are depicted
on a time axis in Fig. 4. Each step presents a potential
opportunity for regulation. The first strategy is situation
selection, where an individual can choose the situation
that will have the least negative emotional impact on
the future. This strategy is also used in cognitive behav-
ioral therapy, where the interventions increase a person’s
exposure to positive state-inducing activities. However,
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Fig. 4. Steps involved in the emotion regulation process [36].

An individual can regulate their emotions at various stages through

their choices. They can select situations that may have a lesser

negative emotional impact or modify the existing situation to avoid

negative emotions. In addition, they can choose which aspects of a

situation to focus on and which meaning to attach to an aspect.

Once the emotion is generated, they can choose to modulate the

responses by suppressing or expressing them differently.

interventions for situation selection are challenging since
it is hard to gauge one’s intrinsic feelings about different
situations, mainly when driven by an impact bias. Another
strategy is situation modification, where an individual can
physically alter an existing situation, such as moving away
from a negative emotion-eliciting scene, person, or object.
In addition, one can choose to focus on a certain favorable
aspect of the given situation. This strategy is known as
attention deployment. When facing a situation and a par-
ticular aspect that elicit negative emotions, one can choose
to attach a meaning to that aspect that may elicit more pos-
itive emotions. This strategy is known as cognitive change,
and one way to achieve it is through cognitive reappraisal.
Once the emotion has been evoked, one can modulate one
or more of the behavioral, experiential, and physiological
response tendencies, such as using physical exercise as
an intervention. While adaptive forms of emotion regu-
lation are vital for the successful functioning of humans
in daily life, the autonomic and behavioral responses
due to regulation may overlap with those of emotion
expression. Hence, it necessitates the consideration of
emotion regulation while detecting emotions. For example,
studies have shown that emotion regulation strategies,
such as suppression through facial expressions, result in
decreased facial activity [37] but an increase in sympa-
thetic nervous system (SNS) activity, such as increased
blood pressure [38]. However, the self-reported subjective
experiences remained unchanged. In contrast, the regula-
tion strategy of cognitive reappraisal decreased HR and
corrugator muscle activity [39]. Therefore, understanding
the impact of various regulation strategies potentially aids
better emotion recognition, provided that such interfer-
ence in physiological responses to emotions is carefully
modeled.

Emotion elicitation and regulation theories pro-
vide interrelated components that explain or predict
characteristics of human emotions and corresponding

behavior by specifying relations among different modal-
ities [40]. Theories also help researchers accurately
hypothesize and model the antecedents and consequences
of emotion. While emotion theories help explain a model’s
predictions, they also assist in reasoning the variance in
the predictions. Hence, theories act as a foundation for
prediction models.

III. P H Y S I O L O G I C A L C O R R E L AT E S
O F E M O T I O N S
An emotional experience constitutes changes in the psy-
chological and physiological states in response to a
stimulus. Early studies reported specific physiological and
behavioral patterns for different emotions [26]. Later, the
studies investigated how the human brain, which hosts
the emotion-processing center of the human body and also
regulates the organs of the human body that it innervates.
The human nervous system mainly comprises the cen-
tral and peripheral nervous systems. The central nervous
system includes the brain, its stem, and the spinal cord,
whereas the peripheral nervous system includes the net-
work of nerves passing through different types of muscles.
The peripheral system is further divided into autonomic
and somatic nervous systems. These two systems play a
primary role in regulating the physiological and behavioral
responses to emotions. The autonomic nervous system
(ANS) is further divided into two branches: the SNS,
responsible for stimulative functions, and the parasympa-
thetic nervous system (PNS), responsible for restorative
functions in the body. The ANS traverses the end effectors,
including smooth cardiac muscles and glands that are
predominantly involuntary. The somatic nervous system
makes up the nerves in the skeletal muscles that are often
voluntary. The following paragraphs describe, with the
help of previous research, the manifestation of emotions
through different physiological responses in coordination
with ANS.

A. Brain Responses

The brain, along with serving several necessary func-
tions in our daily lives, plays a significant role in emotion
expression and regulation. Various regions of the brain
are involved in emotion processing, such as the amygdala,
prefrontal cortex, insula, and cingulate cortex. Amygdala
is known to be involved in a negative emotional response.
When the emotion processing regions are active, several
neurons located in the cerebral cortex communicate by
generating electric potentials synchronously. This neural
activity collectively results in electric activity, which can
be measured by placing electrodes on the scalp. Studies
show that individuals exhibited relatively higher neural
activity in the left prefrontal cortex for positive emotions
and higher right prefrontal cortex activity for negative
emotions [41], [42]. The neural activity is measured in
terms of the asymmetry in the neural activation of the
left and right prefrontal cortices [43]. Furthermore, such
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neural activity in active regions of the brain demands more
oxygen and nutrients, and this results in increased blood
flow to that region.

B. Cardiac Responses

The cardiovascular system comprises the heart and
blood vessels. The heart is responsible for pumping blood
to all parts of the body. It has specialized muscle cells that
generate electrical impulses that initiate the heart con-
tractions or heartbeat. Activation of SNS due to negative
emotions or various stress stimuli results in the release
of substances called neurotransmitters that bind to the
cardiac muscles stimulating an increase in the heartbeat
rate or HR, whereas activation of PNS due to relaxation
or positive emotions results in a decrease in the rate and
force of heart contractions. Any change in contractions
is associated with a change in the electrical activity of
the heart. Since the cardiovascular system is dually inner-
vated, i.e., simultaneously controlled by both sympathetic
and parasympathetic branches of ANS, the end response
measurements will not reveal the activity of individual
branches due to the reciprocal control due to dual innerva-
tion. For instance, an increase in HR could be influenced by
increased activity of the sympathetic branch or decreased
activity of the parasympathetic branch, or a combination of
both where either of the activities dominates [44]. Hence,
specific features, such as HR variability (HRV), should be
considered to differentiate the two types of activation.

C. Skin Responses

The outer layer of the skin is capable of conducting
electricity but offers a certain level of resistance. The
middle, dermis layer of our skin, comprises the blood
vessels and sweat glands. Sweat glands, mainly inner-
vated by the SNS, produce moisture to facilitate grasping
during the fight–flight reaction. When SNS is activated
due to emotional stimuli, the emitted neurotransmitters
induce changes in the resistance (or conductance) of the
skin. According to secretion theory [45], the changes in
skin conductance are triggered by sweat gland activity.
Furthermore, due to the evaporation of sweat, the skin
temperature (ST) reduces as well.

D. Muscle Responses

ANS activity elicited by emotions can lead to changes
in muscle activity, both voluntary and involuntary. Invol-
untary muscle movements include tensing up of shoulders
and twitching due to the activation of the SNS [46].
Voluntary muscle movements may include facial expres-
sions. Even though the boundary between involuntary
and voluntary muscle movements is not always clear,
both types of movements can generate electrical activity
in the muscles. The skeletal muscle fibers that make up
the muscle tissue are innervated by the motor neurons.
Motor neurons are a part of the somatic nervous system

that send and receive muscle contraction information. The
depolarization of motor neurons upon contraction results
in electrical activity measurable from the skin surface.

E. Respiration Responses

Respiratory organs, mainly lungs, are dually innervated
as well. Respiratory sinus arrhythmia (RSA), a phe-
nomenon where the heart contracts and relaxes as a func-
tion of respiration due to the inherent coupling between
breathing and blood pumped by the heart, is a noninvasive
index of parasympathetic activity as it arises from the
fluctuations in the vagal control [47]. The chemoreceptors
in the arteries detect small decreases in the amount of oxy-
gen or increases in carbon dioxide and trigger respiration
activity. Negative emotions, such as anger, trigger a higher
respiration rate than positive emotions [48].

F. Behavioral Responses

Although closely tied to the ANS-mediated responses
described above, we categorize action tendencies or
expressions driven by underlying changes in the physio-
logical state as behavioral responses. Behavioral changes
resulting from emotions include changes in facial expres-
sions, gait, speech properties, body postures, gestures, and
so on. For instance, speech is influenced by respiration
rate. A variation in respiration rate triggered by SNS
affects the air pressure below the larynx. The variation
in air pressure affects the opening and closing of the
vocal folds, thereby resulting in variations in voice inten-
sity [49]. Emotion-specific variations in speech have been
studied [50]. Furthermore, underlying emotions are found
to activate various facial muscles, resulting in facial expres-
sions. Ekman et al. [26] conducted a pioneering study on
facial expressions and autonomic responses, discovering
that the activation of prototypical facial muscles or action
units is associated with corresponding changes in the ANS
activity. A specific combination of action units is involved
in particular emotions [27]. For instance, negative emo-
tions, such as sadness, activate the action units near the
eyebrows, whereas positive emotions, such as happiness,
activate the action units of the cheek.

IV. M E A S U R E M E N T O F E M O T I O N
R E S P O N S E S
This section is dedicated to exploring the measurement
techniques of the modalities that were discussed in
Section III. We will examine the features of each modality
and how they are utilized for detecting emotions (see
Table 1).

A. Brain Activity

Electroencephalogram (EEG) involves recording and
amplifying the collective electrical signals generated by bil-
lions of nerve cells through the use of electrodes and wires
attached to the scalp. Despite its ability to offer researchers
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Table 1 Activity Types and Corresponding Measurement Types

tremendous time resolution, the spatial resolution of EEG
is relatively low, and it requires multiple electrodes to
be placed at various locations on the head. Nonetheless,
EEG remains a valuable tool for investigating phase tran-
sitions in response to emotional stimuli [51]. Functional
neuroimaging techniques, including positron emission
tomography (PET) and functional magnetic resonance
imaging (fMRI), have been utilized to investigate the
impact of emotion on the limbic system [52]. Researchers
discovered emotion-related increases in cerebral blood
flow or blood-oxygen-level-dependent signals in corti-
cal, limbic, and paralimbic regions. This suggested that
specific brain regions have specialized functions for emo-
tional operations. To investigate this specificity, researchers
induced visual, auditory, and recall-based stimuli to rec-
ognize emotions by analyzing the activated regions using
PET and fMRI technologies [53], [54]. In addition, EEG is
noninvasive, fast, and cost-effective, making it a preferred
method for investigating the brain’s responses to emotional
stimuli [55]. EEG is commonly combined with speech [56]
and facial expression [57] data to improve the robustness
of emotion recognition systems. Recently, new EEG devices
have emerged in the market, which offers several advan-
tages, such as unobtrusiveness, affordability, portability,
and ease-of-use. These devices, such as the Emotiv Epoch
14-channel, the Emotiv Insight 5-channel, and the Omnifit
Brain 2-channel headsets, are typically equipped with
10–20 electrodes and can be utilized to capture raw EEG
data.

1) Preprocessing: There are two types of artifacts that
can affect EEG data: technical (extrinsic) artifacts and
physiological (intrinsic) artifacts [58]. Technical artifacts
include noise from electrode misplacement, powerline
interference, and other electromagnetic interferences,
while physiological artifacts include eye movements and
blinks (electrooculogram artifacts), muscle activities (elec-
tromyogram artifacts), and cardiac activities. Frequency-
domain filters, such as a bandpass filter between
0.5 and 60 Hz, can remove most technical artifacts. How-
ever, removing physiological artifacts is more complex and
requires the use of threshold-based time-domain filters and
independent component analysis techniques [59].

2) Feature Extraction: EEG features can be divided into
two groups: time and frequency domains. Time-domain
features can be listed as mean, median, variance, stan-
dard deviation, skewness, kurtosis, zero crossing rate,

wave duration, peak amplitude, instantaneous frequency,
complexity, and energy [60]. In frequency-domain anal-
ysis, brain rhythms are very well established. Gamma
waves can be found over 30 Hz and related to activity
in fronto-central areas. They have the highest frequencies
and can be used to monitor regions related to volun-
tary movements, cognitive functioning, learning, memory,
and processing information [61]. Beta waves are between
14 and 30 Hz and are related to activity in the pari-
etal, somatosensory, frontal, and motor areas. They are
seen during awakened states, and they are correlated
with memory, focus, and problem-solving functions. Alpha
rhythms are between 8 and 13 Hz and are related to
occipital and parietal regions. Alpha rhythms are made
up of the subconscious activity of the brain, and they
are related to relaxed and mediated mind states. Another
rhythm is the theta rhythm and related to the hip-
pocampus region. They are commonly observed under
drowsy, daydreaming, and sleep states. The last rhythm
is delta waves, and they are the slowest brain waves.
They can be observed during deep sleep states. Frequency-
domain features are mostly built up on well-established
brain rhythms. δ, θ, α, β, γ, θ/α, β/α, (θ + α)/β, θ/β, γ/δ,

mean, median, variance, standard deviation, and reflec-
tion coefficients are commonly used frequency-domain
features.

B. Electrical Activity of Heart

There are two methods for measuring heart activ-
ity: electrocardiography (ECG) and photoplethysmography
(PPG). ECG sensors use multiple electrodes placed sym-
metrically on specific areas of the body to measure the
heart’s electrical activity, resulting in an ECG signal with
essential information, including the R peak, which is com-
monly used for extracting emotion-specific features [62].
On the other hand, PPG sensors measure the changes
in blood volume by measuring the extent of reflection
absorbed by skin-reflected infrared light initially emitted
by a light-emitting diode, resulting in a PPG signal that
can be used to estimate R peaks from the peaks of blood
volume (refer Fig. 5). Although PPG data have lower
quality and are more susceptible to motion artifacts under
physically active situations, they offer greater unobtrusive-
ness and can be used without interrupting users during
long experiments in daily life. Therefore, sensors should
be selected based on the performance requirement, exper-
iment duration, and environment of the study. Devices
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providing raw ECG data include BIOPAC’s MP150, MP35,
Shimmer Sensing 3, Polar H9, Polar H10, Firstbeat Body-
guard 2 and 3, Zephyr HxM, and Bitalino (r)evolution.
Wristbands such as Empatica E3 and E4, Samsung Galaxy
S1 and S2, Angel, Polar Verity Sense, and finger sensors,
such as CorSense, UFI model 1020, and BIOPAC BioNo-
madix PPGED-R, provide raw PPG data.

1) Preprocessing: Robust artifact detection and removal
algorithms are applied before processing the PPG data.
In the literature, several frequency- and time-domain filters
have been used. Generally, every data point is compared
with the local average for time-domain filters. A data
point is labeled as an artifact if the percentage of differ-
ence is greater than a certain threshold (approximately
20% [63]). The commonly used frequency-domain fil-
ters include Butterworth high-pass filters with a cutoff
frequency of 1 Hz to eliminate baseline wander, low-
pass filters with a cutoff around 25 Hz to eliminate
high-frequency artifacts (also from other sensors, such as
EMG), and band rejection filters to eliminate power line
interference between 50 and 60 Hz [64]. The removed
artifact data points can be replaced using different interpo-
lation techniques. The cubic spline interpolation is one of
the most commonly used techniques since it has a structure
similar to the heart activity signal.

2) Feature Extraction: HR is commonly used to estimate
the degree of emotions. It can be calculated by counting
the number of heartbeats per minute. Alternatively, the
time interval between consecutive R peaks called the RR
interval or interbeat interval (IBI) is used. IBI has an
inverse relationship with HR. HRV is another widely used
measure for heart activity, and it can be computed from the
distribution of RR intervals over a time interval. Variation
in HRV corresponds to SNS and PNS activities.

HRV features can be extracted from time and frequency
domains. Mean HR, standard deviation of IBI, mean RR,
root mean square of successive differences (RMSSD) of
respiration rate (RR) intervals, and the percentage of
successive RR intervals that differ from the previous RR
interval by more than 50 ms (pNN50) are considered the
most distinctive time-domain features. The IBI data should
be converted to the frequency domain to extract frequency-
domain features. Since R-peaks are not equidistant, either
the IBI signal needs to be resampled to obtain equidistant
samples in order to use fast Fourier transform or methods
such as Lomb–Scargle periodogram [65] can be used. After
the conversion to the frequency domain, powers in very
low, low, prevalent low, high, and prevalent high-frequency
ranges and the ratio of power in low- to high-frequency
ranges are commonly extracted.

Several nonlinear features of HRV [66] are evaluated
using various state-space domain entropy-related mea-
sures. The most commonly used measures are the standard
deviations of the Poincare plots, approximate and sample
entropy, correlation dimension, recurrence, and fluctuation
slopes [67].

C. Muscle Activity

Electromyography (EMG) utilizes electrodes to quan-
tify the electrical activity changes in muscles as a
result of contraction. The facial and trapezius muscles
are the most extensively examined muscles for emo-
tional responses [68]. Facial muscle activity is commonly
employed for emotion recognition and is recognized via
the facial action coding system (FACS) [69]. While the
visual inspection is subjective in nature and has poten-
tial coding errors, facial EMG is an objective method
with fewer true negatives than [46]. However, facial
EMG measurement may be intrusive and alter the par-
ticipant’s natural behavior. Facial expressions resulting
from muscle activity will be discussed in greater depth in
Section IV-G. Yet, the importance of bodily expressions of
emotions is currently being investigated as they have been
found to correlate with facial expressions during social
interactions [70].

1) Preprocessing: The EMG signal is often affected by
noise. The possible noises include the motion artifacts
arising from user motion or cable and electrode inter-
faces, inherent device noise, and ambient noise [71].
Frequency-domain filters are applied to remove artifacts
in specific frequency bands [72]. In addition, adaptive
prediction error filters have been proposed for eliminating
nonstationary artifacts affected by factors such as stimu-
lation intensity, fatigue, and the contraction level of the
muscle [71].

2) Feature Extraction: Muscle activity signals obtained
from the EMG sensor include the superposition of actions
of numerous motor units. Therefore, they need to be
decomposed to reveal the mechanisms of muscle and
nerve control. The decomposition is commonly performed
using wavelet spectrum matching and principle compo-
nent analysis of wavelet coefficients [71]. Commonly
extracted features include wavelet-based features [73],
Mel-frequency cepstral coefficients [72], and statistical fea-
tures, such as mean, standard deviation, rms, peak loads,
and gaps per minute. Furthermore, muscle tremors are
known to be signs of different emotions [74], and they
can be detected around 11 Hz using frequency-domain
analysis.

D. Skin Activity

Electrodermal activity (EDA) is the activity of the skin
where the electrical properties change based on the emo-
tion a person experiences. EDA is measured in terms
of change in skin conductance estimated by passing a
small amount of current through silver–silver chloride
electrodes. An instantaneous surge in skin conductance
constitutes the phasic component of EDA. Darrow [75]
found a correlation between the sweat gland activity and
the phasic skin conductance response (SCR) upon expo-
sure to an emotional stimulus; however, there is a delay
of a few seconds between the two. The dc component
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Fig. 5. Recorded signals from a laboratory experiment comprising four phases. In the first phase, the baseline is shown. In the second

phase, participants are induced with mental stress using TSST. The changes in BVP and EDA signals can be observed in the stress phase. The

third is a recovery phase using breathing exercises. The last phase is a physical activity phase with increased acceleration, EDA, and BVP

signal activities.

of EDA is the skin conductance level (SCL) and is either
low or high in resting and activated states, respectively.
Although EDA is a good approximation of SNS activity
and an easy yet inexpensive way to measure, it is unre-
liable when the subject moves or the external temperature
conditions vary. Furthermore, researchers must be cautious
while measuring the EDA signal due to the factors such as
the contact between the electrodes and the measurement
area, the salinity of the electrolyte, skin area preparation,
the controllability of the stimulus, and respiration matter.
EDA is a promising signal for emotion recognition along
with the heart activity signal. Measuring instruments,
such as Shimmer 3 GSR+, ProComp Infiniti, Bitalino
(r)evolution, BIOPAC MP150, and wrist devices such as
Movisens EDAMove 4, Empatica E3, and E4, are widely
used to measure EDA, which provides raw data [68].

1) Preprocessing: EDA increases with physical activ-
ity and changes in temperature as they cause sweating.
Therefore, a multimodal approach with physical sensors is
required to isolate the effect of emotional state changes
on EDA. Physical activity measured using accelerometer
sensors and external temperature changes inferred by ST
sensors can be useful. There are several preprocessing
tools for cleaning the EDA signal. Though wavelet-based
artifact removal techniques are common in the lit-
erature [76], [77], supervised machine learning-based
techniques [78] for artifact removal exist. Manually anno-
tated data labeled by experts for artifacts are used to train
supervised models.

2) Feature Extraction: The EDA signal has two com-
ponents: SCL and SCRs. SCL is a slow-changing dc
component, also called the tonic component. In contrast,
SCR is an event-related and short-term component of the
EDA and is also called the phasic component. There are
open-source tools for analyzing the EDA signal, such as
cvxEDA [79] (a convex optimization-based EDA analysis

tool) and pyEDA [80]. The tonic component is used
for long-term baseline measurement using statistical fea-
tures, such as the mean, minimum, maximum, standard
deviation, quartile deviation, 20th percentile and 80th
percentile of values over an interval, and first and second
derivative features. For short-term arousal detection, fea-
tures from the phasic component, such as the peaks count
over a specific duration, the total number of peaks above
a certain high threshold (one micro Siemens) over a dura-
tion, the delay between stimulus and peak response, peak
amplitude, and rise and recovery times, are measured.

a) Skin temperature: Besides emotions, STs are
affected by various factors, such as weather and physical
activity. Previous research has shown that increased blood
flow due to arousal induces about 0.1 ◦C–0.2 ◦C change
in ST [81]. With controlled external factors, such subtle
changes in the ST resulting from an emotional response
can be measured. Often, ST is combined with additional
biosignals to get a more robust recognition performance.
Standard time-domain statistical features of ST signals are
used in the literature.

E. Blood Pressure

High-arousal negative emotions cause an increase in
blood pressure levels, whereas low-arousal positive emo-
tions can decrease them [82]. Recently, commercial
wearables have been equipped with blood pressure sen-
sors, namely, ASUS VivoWatch BP (HC-A04) and Omron
HeartGuide. These devices make it possible to monitor
blood pressure levels continuously. Systolic and diastolic
components of blood pressure can be used as features.

F. Respiration

Furthermore, respiration data are used to decouple
the EDA data from the effects of breathing. Respiration
measurement is inexpensive as it involves a simple belt
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containing a piezoelectric device. However, one should
beware of possible issues during the measurement. For
example, the tightness of the chest strap may lead to
either ceiling effect or inaccurate recordings, the dis-
comfort caused by the strap leading to new breathing
patterns, or voluntary controlled breathing. Breathing
rate and amplitude can be indirectly measured using
transducer-based sensors that rely on chest cavity expan-
sion [83], [84]. PPG data from wearable devices can be
used to derive respiration rate [85]. Statistical features,
such as minimum, maximum, mean, and standard devia-
tion of respiration rate, mean and standard deviation of
the first and second derivatives, and frequency-domain
features such as spectral power [16], are extracted.
In addition, nonlinear features are extracted using recur-
rence quantification analysis, deterministic chaos, and
detrended fluctuation techniques [86].

G. Measurement of Behavioral Responses

Behavioral responses are best suited for noncon-
tact measurement. Behavioral responses are commonly
combined with physiological signals to obtain a more
accurate emotion recognition system. Yang et al. [87]
combined several behavioral (facial expression, speech,
and keystroke) and physiological (blood volume, EDA,
and ST) modalities and achieved 89% accuracy for binary
emotion recognition. One of the advantages of deep
learning approaches is their ability to effectively utilize
multimodal data, which includes information from phys-
iology, facial expressions, and speech. Moreover, facial
muscle activity has independently aided emotion recog-
nition. The measurement has started with facial EMG,
but, recently, RGB cameras have been used more com-
monly to capture emotions from facial muscle activity.
The discovery of action units by Ekman et al. [26] led
to the development of the FACS. This system represents
facial expression prototypes in terms of the location of
action units on the face [69], and geometry-based facial
feature extraction approaches that involve the position,
size, and shape of facial landmarks were developed to
detect these action units [88]. In addition, appearance-
based approaches that utilize color intensity and texture
of facial features, such as spatial filters and local binary
patterns [89], have also been explored. Early approaches
to facial emotion recognition primarily relied on tradi-
tional emotion classification methods that utilized these
extracted features from facial expressions. However, with
the availability of large datasets and advancements in
computing technology, recent research has introduced
deep learning approaches that can inherently capture the
nuances of facial expressions from images and directly
classify them into emotions [90], [91].

Speech signal has been widely combined with physiolog-
ical signals [92], [93] and improved emotion recognition
performance. Emotion-specific variations in the speech
were identified several decades ago [50]. While the elec-
trical activity of the vocal cords can be measured through

electroglottography, it is easier to capture emotion-related
patterns of speech in microphone audio data. Recent
advances in machine learning have resulted in learning
emotional feature representations from speech data [94].
Furthermore, transformer-based speech emotion models
have led to improved recognition of positive and negative
emotions, with good generalization and robustness across
different domains, speakers, and genders [95].

In addition, recent research has demonstrated that
alterations in body posture can indicate changes in affec-
tive states [96], [97]. Consequently, numerous studies
have investigated the utilization of body postures and
movements for emotion recognition [98]. Specific body
postures, such as head tilts and clenched fists, have
been linked to the expression of specific emotions [99],
[100], suggesting their involvement in nonverbal com-
munication and emotion perception. Moreover, recent
studies have revealed that body movements [101] includ-
ing measures such as the velocity of joints, acceleration,
and jerk, and other gesture-specific features such as
height, angle, and movement direction of the hands and
arms, body movement trends, head movement, symme-
try [102], and gait [103] can carry information relevant to
emotions.

H. Contextual Information

Context influences an emotional experience but is chal-
lenging to obtain in an uncontrolled setting, such as daily
life. Nevertheless, the system’s robustness can be increased
by adding contextual information to the physiological sig-
nals. Activity-associated context actively acquired from the
user in combination with HRV significantly increased the
stress detection performance in the wild (around 25%
increase in F1-score) [104]. Since the active acquisition
of context from the users may interrupt them, passive
acquisition using smartphone data may provide helpful
insights. Passive context based on physical activity and
location, smartphone activity (calls, SMS, applications,
battery status, and screen usage), and ambient condi-
tions (light and weather) can detect stress independent
of physiological signals [105]. Context based on smart-
phone activity has been used in addition to physiological
data, such as EDA [106]. A 10%–15% increase in stress
recognition accuracy was reported when weather data (air
temperature, humidity, and air pressure), activity informa-
tion, and physical activity intensity were added to HRV and
EDA signals [107].

I. Combination of Multiple Physiological Signals
and Interdependencies With Other Modalities

Emotion recognition studies often combine multimodal
physiological signals to obtain a more comprehensive view
of emotional states [74]. Adding more modalities can
eliminate the drawbacks of individual signals and develop
more robust systems. Soleymani et al. [108] investigated
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the interactions between EEG signals and facial expres-
sions for emotion recognition. In particular, they show
that informative features of EEG signals originated to a
large extent from facial expressions. Insights on potential
artifacts in channels of affect-related information could
be deployed when designing fusion processes and, thus,
contribute to a more reliable emotion recognition process.

The multimodal fusion process is of three different
types: early, intermediate, and late [16].

1) Early Fusion: This type of fusion occurs at the feature
level by selecting the features from multiple signals and
combining them to form a single input for feature extrac-
tion or classification. Fabiano and Canavan [109] used a
feature-level fusion and showed a 10%–15% improvement
in valence, arousal, and dominance recognition. However,
this fusion is suitable for synchronized input signals.

2) Intermediate Fusion: This kind of fusion can overlook
synchronization issues by leveraging feature extraction
from different time lengths. Furthermore, by comparing
previous instances with the current ones, probabilities for
imperfect instances can be statistically predicted [16].
Methods using hidden Markov models and Bayesian net-
works are practical for dealing with these situations.
Shin et al. [110] used a Bayesian network to fuse features
from EEG and ECG for recognizing comic, fear, sadness,
joy, anger, and disgust emotions and increased the accuracy
by 35.78%.

3) Late Fusion: This type involves aggregating results
generated by different classifiers to obtain a final result,
often through voting. The classifiers can be trained
separately on each modality, hence not requiring syn-
chronization [16]. Wang et al. [111] applied three SVM
(RBF kernel) classifiers to power spectral, Higuchi frac-
tal dimension, and Lempel–Ziv complexity features. They
integrated these classifiers by employing a weighted fusion
strategy that computes confidence estimation on each class
by each classifier. They evaluated their approach on the
DEAP dataset (on EEG data) and showed that this late
fusion method outperforms the performance of individual
classifiers and the early fusion methods.

J. Insights

Multimodality has advantages such as increased redun-
dancy, i.e., when one signal fails to detect emotion in
a specific situation, thereby improving prediction perfor-
mance. Furthermore, specific signals can be used to detect
and remove artifacts from other signals. For example, EDA
is very sensitive to physical activity and increased room
temperature. Under such conditions, changes in EDA could
be falsely regarded as increased arousal or valence. Accel-
eration and ST data can be used for cleaning the artifacts
in EDA data [78]. In addition, some signals, such as ST
and respiration, achieve better results when combined
with additional biosignals [16]. The selection of modalities
depends mostly on application type and environment.

The behavioral (i.e., speech and body movements) and
muscle-based responses (such as facial expressions) are
more robust in controlled environments than physiological
signals. Moreover, researchers obtain robust performance
with EEG signals, especially in laboratory or controlled
environments. In more controlled situations, they can be
preferred. However, it is challenging to monitor speech and
facial expressions in the wild, and users will be reluctant
to wear EEG devices in daily life although they are more
reliable. Therefore, the story is different for daily life emo-
tion recognition. User’s self-reports reflecting the issues
such as comfort and utility are more important for daily
life [112]. Wrist-worn devices have advantages in these
aspects, but they have lower data quality [113]. Therefore,
the selection of modalities and wearable devices is a mul-
tivariate problem, and researchers should make a tradeoff
by evaluating their application-specific requirements.

K. Unexpected Observations

In some of the experiments, researchers observed unex-
pected phenomena while analyzing the data. The most
common ones are observed during the emotion elicitation
phases of experiments. Wagner et al. [114] observed that
all classification algorithms had particular problems in
separating pleasure and sadness that they found surpris-
ing. After further analysis, it is revealed that listening
to sad music may elicit positive feelings [115]. Emotions
are complex phenomena, and assumptions made while
designing experiments for emotion elicitation might not
hold on some participants. In another case, researchers
noticed that some participants did not report stress in the
arithmetic phase of the trier social stress test (TSST) in the
questionnaires [116]. They recruited the participants from
a university, and they saw that students from mathematics
or computer science departments tend to report low stress
in the arithmetic phase of TSST. Therefore, to detect these
unexpected observations, perceived emotion self-reports
can be collected and cross-referenced with the elicitated
emotional context (whether the participant watches a sad
video or stress is induced) to validate whether the experi-
enced emotion is the same as the elicitated one. Moreover,
although multimodality yields generally better results, it is
not always the case [117]. Sometimes, research using only
ECG or EEG data showed better or sometimes worse than
the multimodal approaches. One signal can be dominantly
better than others for a task or all signals can be noisy
in similar intervals, and they could not contribute to the
performance of others. In these cases, multimodality does
not necessarily improve performance. In the context of
interpersonal differences, a study found that women and
men do not react the same way and also showed different
patterns in physiological (skin conductance) recording.
Women were found to be more emotionally expressive
than men [118]. Individuals using an emotional regulation
strategy, such as suppression, yield different physiological
responses to emotions than those [119].
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V. E X P E R I M E N TA L D E S I G N F O R
P H Y S I O L O G I C A L D ATA C O L L E C T I O N
A N D E X I S T I N G D ATA S E T S
Data collection in emotion research has no consensus on
emotion elicitation and measurement methods owing to
the highly subjective nature of emotions. However, sev-
eral measures can be adopted during data collection to
capture emotions reliably and facilitate effective emotion
recognition. The most important factors to be considered
during data collection are sample population, emotion
stimulus, modalities measured, emotion annotation pos-
sibilities, and sensing equipment [132]. Below are some
points to consider.

1) Emotional stimuli: Stimuli are characterized by cat-
egorical emotions, such as happy and sad, and are
employed for emotion elicitation. Appraisal-based
theories of emotion elicitation have emphasized that
the emotion elicited in an individual is specific to the
stimulus and its appraisal. Therefore, due to individ-
ual differences, perception of the stimulus may vary
from the intended emotion or its intensity. Research
has progressed from eliciting strong emotions in a
laboratory to measuring emotions in real life, thereby
dealing with low-intensity emotions. Therefore, it is
crucial to ensure: 1) the stimulus for a specific cat-
egory of emotion should be verified to elicit the
intended emotion; 2) to the required intensity; and
3) no other overlapping emotion is elicited. An exam-
ple of a verified stimulus for inducing stress is the
TSST [133]. It is a method consisting of a public
interview and arithmetic tests to induce stress and is
widely used for stress response elicitation. TSST has
been clinically validated to induce a stress response
in most of the population and is characterized by
novelty, uncontrollability, unpredictability, and socio-
evaluative threat [134].

2) Emotion regulation: It is an innate process that
may take place alongside emotion expression [135].
Participants may use different emotion regulation
strategies to modify their subjective emotional expe-
riences or responses during measurement. This may
result in inaccurate physiological responses. Depend-
ing on age, culture, and personality, participants may
adopt different regulation strategies [136], [137].
Different regulation strategies may influence physiol-
ogy differently. Research has shown that participants
who used suppression to regulate their emotions,
in contrast to reappraisal as a regulation strategy,
showed higher physiological responses to emotional
stimuli [138]. Therefore, it is important to instruct
the participants not to adopt an emotion regulation
strategy during the experiment.

3) Sample population: Research has shown that cul-
tural differences influence physiological emotion
responses [139]. Depending on the emotion regula-
tion strategy used, age is also a factor influencing
physiological responses [137]. Therefore, results from

an emotion recognition study involving participants
from a specific age group or cultural background may
not be generalized to other populations. Depending
on the context of the study, a larger and more diverse
sample population size is crucial to overcome the
interindividual variability and the effect of confound-
ing variables. Sample size can be obtained using
appropriate statistical tools, such as G*Power [140],
Krejcie and Morgan’s formula [141], or Cochran’s
sample size formula [142], by specifying the allowed
margins of error.

4) Measurement: As described in Section III, the
physiological manifestation of emotions makes it
possible to identify emotions through multiple
modalities. Depending on measurement convenience,
the selected physiological measures should include
major ANS responses. Cardiac and electroder-
mal responses are helpful for autonomic activity
estimation. Research suggests seeking convergent
evidence across multiple responses for a particu-
lar emotion [143]. Furthermore, since emotions are
short-lived, the timing of physiological measurement
is important. This is especially true when emotional
stimuli produce a less intense emotional response.
Measuring devices play a crucial role in data col-
lection. Medical-grade devices are often not suited
for real-life data collection. Therefore, researchers
are directed toward more unobtrusive and easy-to-
use devices. However, scientifically validated devices
should be chosen for the data collection.

5) Annotation: Most often used means of self-reporting
are Likert scales of valence and arousal. While
self-reported data are the closest reflection of an
individual’s emotion, it is prone to several errors, such
as inaccurate understanding of scales or negligence in
reporting. Timing of self-reporting is also crucial as
the reports may be affected by failure to recall events
or the obtrusiveness of prompts.

6) Context: Models built on artificially elicited emotions
in laboratories cannot be generalized to the real-
life environment. The psychophysiological responses
to artificial stimuli do not represent those in real
life. Although real-life data collection has more issues
when compared to collecting data in a controlled lab-
oratory environment, the research direction is toward
developing real-life and daily emotion recognition
systems. However, data collection in real life poses
several challenges. First, the subtlety of the emotional
responses is a hurdle for annotation in real life. Unlike
the ability to control the stimuli in the lab, a real-life
scenario requires considerable contextual information
to be recorded. Individual-specific information, such
as personality, demographics, and health conditions
that potentially impact emotional responses, are likely
to yield better confidence in the computed emotion
recognition models. The self-reported and sensor-
based contextual information about the participant
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Table 2 Comparison of Physiological Datasets Collected for Emotion Recognition. A Stands for Arousal, V Stands for Valence, and D Stands for

Dominance

and the experimental conditions, such as physical
activity type and intensity, location, and ambient con-
ditions, is necessary to reason for the anomalies in the
emotion recognition models as they tend to influence
the physiological modalities. For example, an increase
in the EDA signal could result from physical activ-
ity, environment and weather changes, or emotional
stimuli. Furthermore, collecting data in the laboratory
and in real life from each participant could increase
the robustness of the systems. Responses to emotional
stimuli can be more accurately modeled in a con-
trolled environment, and these personalized models
could be adapted to a real-life environment.

A. Existing Datasets for Emotion Recognition

In this section, we provide the prominent emotion recog-
nition datasets that consist of physiological signals (see
Table 2). Although most of these datasets are recorded
in laboratory environments, recently, new studies created
datasets recorded in real-life environments [131], which
would help researchers to improve emotion research in
real life or the wild.

1) DEAP [120]: The Database for Emotion Analysis
Using Physiological Signals (DEAP) dataset1 was collected
from 32 participants in a laboratory environment. Par-
ticipants were asked to watch annotated 1-min music
videos and evaluate them on arousal, valence, dominance,
likability, and familiarity scales. EEG, PPG, EDA, EMG, elec-
trooculography, respiration, and temperature signals were
collected. In addition, frontal face videos were recorded for
22 participants.

2) MAHNOB-HCI [121]: Similar to the DEAP dataset,
the MAHNOB-HCI dataset2 was also recorded in a lab-
oratory environment. Twenty-seven participants watched

1DEAP access link: http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
2MAHNOB-HCI access link: https://mahnob-db.eu/hci-tagging/

video segments from commercial movies and assessed
them on valence, arousal, and dominance scales. EEG,
ECG, EDA, and ST were collected. In addition, face and
body videos were recorded using six cameras.

3) DREAMER [122]: The DREAMER dataset was col-
lected from 23 participants in a controlled environment.
Scenes from commercial movies were selected to induce
different emotions. EEG and ECG signals were recorded.
The participants assessed arousal, valence, and dominance
levels on a scale from 1 to 5. The dataset was collected
using portable and low-cost wearable devices, which are
viable options for real-life data collection. However, the
dataset has restricted access and is available upon request.

4) WESAD [123]: The Wearable Stress and Affect Detec-
tion (WESAD) dataset3 was collected from 15 participants
in the laboratory environment. The experiment included
amusement, stress, meditation, and recovery conditions.
Positive and negative affect schedule (PANAS), state-trait
anxiety inventory (STAI), and additional Likert scale ques-
tions (stress, frustration, happy, and sad) were used as
self-reports. The physiological signals recorded were ECG,
EDA, EMG, PPG, respiration, accelerometer, and ST. The
experiment duration was about 2 h.

5) AMIGOS [124]: A dataset for Multimodal research of
affect, personality traits, and mood on the Individuals and
GrOupS (AMIGOS) dataset4 was gathered in two exper-
imental settings. First, 40 participants watched 16 short
emotional videos (50–150 s) in the laboratory environ-
ment. Second, the participants watched four longer videos
individually and in groups. EEG, ECG, and EDA signals
were recorded. High-quality frontal face and body videos
were also recorded. Participants reported their valence,

3WESAD access link: https://ubicomp.eti.uni-siegen.de/home/
datasets/icmi18/

4AMIGOS access link: http://www.eecs.qmul.ac.uk/mmv/datasets/
amigos
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Table 3 Performance of Varying Machine Learning Algorithms for Recognizing Emotions. The Accuracies Are Two-Class by Default If Not Reported

Otherwise. LALV Is Low Arousal Low Valence, LAHV Is Low Arousal High Valence, HALV Is High Arousal Low Valence, and HAHV Is High Arousal High

Valence. A: Arousal; V: Valence; Acc: Accuracy; and RBC: Radial-Basis Classifier

arousal, control, familiarity, liking, and basic emotions and
were also evaluated externally. They also collected the big
five questionnaires for personality-related information and
PANAS questionnaire for mood-related data.

6) CASE [125]: The Continuously Annotated Signals of
Emotion (CASE) dataset5 consists of real-time annotated
emotions of participants while watching videos in the
laboratory environment. Twenty videos whose emotional
content is verified by previous studies were selected. ECG,
BVP, EMG, EDA, respiration, and ST signals were recorded
from 30 participants. In addition, valence and arousal
levels were reported by the participants.

7) ASCERTAIN [126]: the databASe for impliCit pER-
sonaliTy and Affect recognition (ASCERTAIN) dataset6

includes big-five personality scales and emotional self-
ratings of 58 participants. EEG, ECG, EDA, and facial
activity data were recorded, while the participants watched
audiovisual clips. Arousal, valence, and personality were
collected using self-reports.

8) EMDB [127]: The Emotional Movie DataBase
(EMDB) dataset7 was recorded in a laboratory environ-
ment. Thirty-two participants provided psychological data
during watching 52 emotional film clips, which took
around 40 s each. HR and EDA data were recorded.
Arousal, valence, and dominance were recorded as the
ground truth.

9) RWDADW [128]: The Real World Driving to Assess
Driver Workload (RWDADW) dataset8 was recorded in

5CASE access link: https://gitlab.com/karan-shr/case_dataset/tree/
ver_SciData_0

6ASCERTAIN access link: https://ascertain-dataset.github.io/
7EMDB access request at: EMDB@psi.uminho.pt
8RWDADW access link: https://www.hcilab.org/wp-content/uploads/

hcilab_driving_dataset.zip

an automobile environment. Ten participants provided
psychological data during real-word driving tasks under
the 30-km zone, the 50-km zone, highway, freeway, and
tunnel conditions. At the end of the driving task, they filled
perceived workload questionnaire. ECG, EDA, and ST data
were recorded.

10) DSDRWDT [129]: The Detecting Stress During
Real-World Driving Tasks (DSDRWDT) dataset9 was
recorded in an automobile environment. 17 participants
provided psychological data during watching real-world
driving tasks. The duration of sessions was between 54 and
93 min. HR and EDA data were recorded. Perceived stress
scores were collected for each session.

11) EMOTIONS [130]: The EMOTIONS dataset10 was
recorded once a day, in a session lasting around 25 min,
for over twenty days. It was recorded by one participant.
Eight emotions (neutral, anger, hate, grief, joy, platonic
love, romantic love, and reverence) were annotated for
each session. PPG, EDA, EMG, and respiration data were
recorded.

12) DAPPER [131]: The DAPPER dataset11 was recorded
in an ambulatory environment, unlike the abovemen-
tioned ones collected in a laboratory; 142 participants
provided psychological recordings, whereas only 88 pro-
vided physiological recordings over five days. Emotions
were annotated using the experience sampling method
(ESM), and detailed descriptions of everyday emotional
experiences were obtained using the day reconstruction
method. ESM comprises arousal and valance ratings and

9DSDRWDT access link: https://physionet.org/content/drivedb/1.0.0/
10EMOTIONS access link: https://dam-prod2.media.mit.edu/x/2022/

01/05/SetA.tar.gz
11DAPPER access link: https://www.synapse.org/#!Synapse:syn2241

8021/files/

1300 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023



Can et al.: Approaches, Applications, and Challenges in Physiological Emotion Recognition

PANAS questions for ten selected emotions. HR, EDA, and
acceleration data were recorded.

VI. M A C H I N E L E A R N I N G A P P R O A C H E S
Emotion recognition systems are based on supervised
learning and consist of binary or multiclass classifiers.
The inputs to these classifiers are various signals, and the
output class labels correspond to an emotional state (i.e.,
different emotion types and levels). Early studies employed
traditional classifiers to recognize emotions. Classification
tools can be listed as linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), k-nearest neighbor
(kNN), random forest (RF), and support vector machine
(SVM). With the advancements in deep learning algo-
rithms, multilayer perceptron (MLP), convolutional neural
networks (CNNs), and long short-term memory (LSTM)
techniques are also tested for recognizing emotions (see
Table 3).

A. Traditional Machine Learning Approaches

Traditional algorithms and their advantages and dis-
advantages can be described briefly as follows: the SVM
algorithm defines a hyperplane that separates data points
belonging to different classes with the largest spatial mar-
gin. Although originally designed as a linear classifier, SVM
can be scaled to perform nonlinear classification using
different kernel functions efficiently. However, it is used
predominantly for binary classification of emotions [16].
kNN is an algorithm that assigns a class to a new data
point based on the classes of its k closest data points and
is rather straightforward to implement. Nevertheless, kNN
requires storing all training data, which causes increased
complexities in time and space. Kernel SVM and kNN
being nonlinear classifiers compute the decision boundary
accurately depending on their hyperparameters, which can
cause overfitting and decrease the generalization capabil-
ity. The generalization capability of LDA is better when
compared with the mentioned nonlinear classifiers [16].
It assigns instances to classes with a projection of the
feature values to a new subspace. The classification per-
formance of RF is typically higher for high-dimensional
data. However, the decision tree classifier has an issue
of overfitting, which can be alleviated by assigning class
labels with the results of several decision trees in the RF
classifier.

SVM is commonly used for recognizing emotions.
It is applied to different public datasets. Around
0.6–0.7 F1-scores for recognizing arousal and valence in
two-class classification in the ASCERTAIN dataset [126]
and 45%–50% accuracy for three-class arousal and valence
classification in the MAHNOB-HCI dataset [144] are
reported. LDA is another widely used classifier for rec-
ognizing emotions. It achieved around 80% accuracy for
differentiating stress from the cognitive load by analyz-
ing the EDA signal [145] and around 80% accuracy for
recognizing two-class valence and arousal levels from

the ECG signals. Due to its suitability to high dimension
data, RF was also tested for emotion recognition, and
it achieved around 70% accuracy for two-class arousal
and valence classification, and outperformed other tra-
ditional methods [148]. Wen et al. [147] applied RF to
recognize emotional states, such as baseline, amusement,
anger, grief, and fear using heart activity, EDA, and blood
oxygen saturation signals. They achieved 74% accuracy
for quinary classification on their dataset consisting of
477 cases of 101 subjects while watching emotional videos.

B. Deep Learning Approaches

After the improvements in deep learning algorithms,
they are also widely used for emotion recognition. The
researchers first tested MLP, an artificial neural network
that generally outperformed other traditional algorithms.
It was among one of the best-performing classifiers [149].
In one of the preliminary works, Wagner et al. [114]
applied MLP and compared the results with LDF and
kNN. MLP classifier achieved better results than the other
classifiers when applied to ECG, EDA, EMG, and respira-
tion data for emotions such as joy and anger (88,64%
for valence detection and 94.32% for arousal detection).
However, the best-performing classifier changed with the
selected emotion and feature selection technique. The MLP
classifier was also applied to PPG, EDA, and ACC data for
stress level detection and achieved better results (92.15%
accuracy for binary stress classification) than LDA, SVM,
kNN, logistic regression, and RF [113].

CNN is another type of deep, feed-forward neural net-
work. They achieved significant success in the image
domain [16], and recently, researchers have applied them
to physiological signals, such as EEG, EMG, and ECG.
In one of the preliminary studies, Martinez et al. [157]
tested several CNN architectures on BVP and EDA sig-
nals for recognizing four emotional states (relaxation,
anxiety, excitement, and fun) and achieved better results
than using traditional techniques (70% accuracy for
fun and excitement and 60% accuracy for relaxation
and anxiety). CNNs were also used for automatically
extracting high-level features from physiological signals.
Kanjo et al. [13] extracted features from the EDA signal
using CNN architecture and achieved 95% accuracy and
outperformed the usage of handcrafted features (which
has 83%) for five-class valence detection. Graph CNNs
are also used for recognizing emotions from physio-
logical signals. They are appropriate for the irregular
structure of EEG data and can discover the intrinsic rela-
tionship between various EEG channels. The graph CNN
algorithm achieved higher accuracies with the EEG sig-
nals of the SEED dataset reaching 94.24% [158]. After
the success of graph CNNs with EEG signals, they were
also applied to a combination of physiological signals.
Wierciński et al. [150] reported that they achieved 70%
accuracy for valence and arousal detection when the graph
CNN algorithm was applied to EEG, ECG, and EDA signals
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on the AMIGOS dataset. They further stated that EEG alone
achieved better accuracy (75% accuracy for arousal and
valence detection) compared to the multimodal approach.
However, it can be inferred that the performance of
graph CNN algorithms for recognizing emotions using
physiological signals (except for EEG) is not investigated
comprehensively.

In recent years, recurrent neural networks (RNNs) have
had remarkable success in various areas, such as speech
recognition, language modeling, translation, and image
captioning, due to their structure being suitable for time
series. LSTM is a special type of RNN capable of learning
long-term dependencies and overcoming the vanishing
gradients problem of RNN. LSTM is commonly applied to
the output of CNN for recognizing emotions using CNN
as an automatic feature extractor [151], [152]. In these
studies, Kim and Jo [151] achieved 78.72% and 79.03%
for recognizing valence and arousal on the DEAP dataset,
and Dar et al. [152] achieved 99.0% accuracy for the AMI-
GOS dataset and 90.8% for the DREAMER dataset in
four class classification (high-arousal, high-valence, low-
valence, and low-arousal areas). In some cases, LSTM is
directly applied to the raw physiological data [153] and
handcrafted feature sets [154]. Awais et al. [153] applied
LSTM to a combination of raw signals (i.e., ECG, EMG,
BVP, EDA, ST, and respiration) and achieved 97%, 94.2%,
93.9%, and 95.2% accuracies for detecting amusement,
boredom, relax, and scared emotions, respectively, on the
CASE dataset. On the other hand, Umematsu et al. [154]
achieved 83% accuracy in predicting the next day’s stress
level by applying LSTM to the features obtained from EDA,
ST, ACC, mobile phone usage, and location data in their
local dataset. RNN variants are the most common clas-
sifiers for recognizing emotion levels from physiological
signals.

Another important issue for processing time-series
signals using deep learning methods is aggregating infor-
mation from the raw signal by giving more importance to
the most relevant parts [155]. The attention mechanism
technique employs attention weights to restrict processing
to relevant information independent of their distances.
Transformers can be regarded as one of the most pros-
perous attention-based techniques. They have been first
implemented for natural language processing (NLP) and
employ attention mechanisms to analyze sequences of
words and are appropriate for use in other applications,
such as time-series forecasting, medical, physiological sig-
nal analysis, and human activity recognition [155]. Recent
studies also use these architectures for recognizing emo-
tions from physiological signals (see [156] and [155]).
Yang et al. [156] combined CNN architectures with con-
former blocks and tested them on PPG, EDA, and ST
data from the K-Emocon dataset. They achieved 77.37%
and 79.42% accuracies for detecting valence and arousal
levels. Vazquez et al. [155] tested a transformer model
(by combining it with a 1-D CNN) on ECG data of the
AMIGOS dataset and achieved 83% accuracy for valence

and 88% accuracy for arousal detection. The transformer
architectures achieved promising results on these public
datasets.

C. Insights

Deep learning approaches improved the emotion recog-
nition results by analyzing physiological signals on promi-
nent public datasets. However, it is important to note
that deep learning approaches require a huge amount of
data compared to traditional classifiers. Therefore, if the
dataset size and the number of data points are limited,
it is advised to use traditional approaches. CNN-based
techniques automatize the feature extraction phase, and
RNN-based techniques use previous and current data for
enhanced predictions. The performance of providing raw
data to classifiers, usage of handcrafted features, and
automatic feature extraction with CNN depend on the
application and data. As an example, CNN requires a larger
amount of data for automatically extracting features.
If the data are limited, handcrafted features can be used
instead of automatically extracted features. Architecture
and hyperparameter selection are other challenging tasks
for researchers that change with varying applications. It is
also important to note that other metrics, such as privacy
and explainability, are as crucial as classification perfor-
mance. To protect the users’ privacy, researchers applied
differential privacy (DP) [159] and federated learning
(FL) [160] approaches with a tradeoff in the performance.

Another issue is the lack of information about the
decision-making process of deep learning. By automatiz-
ing the feature extraction process with CNNs and using
deep learning for classification, the emotion recognition
systems have turned into black boxes with high accu-
racy. Although several studies applied explainable methods
for face [161] and speech-based [162] emotion recogni-
tion systems, there are only a few explainable AI works
for recognizing emotions from physiological signals. For
example, Liew et al. [163] evaluated and analyzed contri-
butions of individual features and feature interactions for
representing human emotions by employing the Shapley
additive explanation values method on multimodal DEAP,
DREAMER, and AMIGOS datasets.

VII. P R A C T I C A L A P P L I C AT I O N S O F
E M O T I O N R E C O G N I T I O N S T U D I E S
Emotion recognition systems have a wide range of appli-
cations in various fields, such as the workplace, education,
automobile, healthcare, and other areas. By continuously
monitoring physiological signals in real time, these sys-
tems can detect and interpret emotions, and adapt their
responses and actions accordingly.

A. Workplace and Office

Researchers aimed to recognize emotions in workplaces,
considering that individuals spend a significant amount of
time in these settings, and given that emotion recognition
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Table 4 Summary of Practical Applications Using Physiological Signals That Use Emotion Recognition Systems. V: Valence and A: Arousal

systems have the potential to improve workers’ well-being,
reduce work-related accidents, and enhance productivity
(see Table 4). In a study by Al Jassmi et al. [164], the
researchers explored the relationship between workers’
emotions and their productivity, discovering a moderate
positive correlation. This prompted them to develop an
automated emotion recognition system for construction
workers. By utilizing blood volume pulse (BVP), RR, gal-
vanic skin response (GSR), skin temperature (TEMP),
and HR data, they were able to accurately detect work-
ers’ positive and negative emotions with a 98% accuracy
rate, using an RF classifier. The authors conducted a
four-day field experiment at a prefabricated stone con-
struction factory to collect data for their study. Using
virtual reality technology, Sun et al. [165] designed envi-
ronments with varying heights, including ground level,
4 m, and 8 m. The researchers found a statistically sig-
nificant difference in anxiety levels as indicated by EDA
signals in response to the different heights. In a subsequent
study, Lee et al. [166] utilized PPG, EDA, and ST signals
to determine workers’ perceived risk levels in hazardous
occupations. They applied an SVM classifier and obtained
an 81.2% accuracy rate for binary classification.

With the increasing adoption of robotics technology in
factories, there has been a significant focus on developing
and improving the accuracy of these systems. However,
researchers have also explored the emotions of work-
ers during human–robot interactions, given that this is
a relatively new experience for workers with a fear of

robots potentially replacing them. Liu et al. [167] used
various classification models, including kNN, regression
tree, Bayesian network, and SVM, to analyze physiolog-
ical signals (ECG, EDA, and EMG) and recognize five
distinct emotions (anxiety, engagement, boredom, frustra-
tion, and anger) during interactions, achieving an accuracy
of around 80%.

B. Automotive Environment

Given that people spend a significant amount of time
in their cars, monitoring their emotions and intervening
when necessary could help reduce accidents, injuries, and
fatalities. Emotion research in automotive environments
has focused on identifying and mitigating conditions, such
as fatigue, confusion, nervousness, distraction, and stress
that can impact drivers in automotive environments [181].
Nonintuitive user interfaces, complex navigation systems,
ambiguous traffic signs, and intricate routing can cause
confusion. Nervousness is another affective state charac-
terized by heightened arousal levels and can negatively
impact decision-making processes. Li and Ji [182] pro-
posed a method based on dynamic Bayesian networks to
detect fatigue, confusion, and nervousness from physio-
logical signals, facial features, and gaze data from both
synthetic and real-world environments.

Earlier stages of fatigue can impact driving performance
by reducing physiological vigilance/arousal, slowing down
sensorimotor processes, and impairing information pro-
cessing, leading to slower reaction times and decreased
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ability to respond to urgent situations, ultimately increas-
ing the risk of accidents. As a result, fatigue has been
extensively studied in the automotive environment. Craw-
ford [183] suggested that physiological signals are the
most reliable indicators of driver fatigue, which has been
corroborated by numerous studies (e.g., [184], [185],
and [176]) that use physiological signals to estimate driver
fatigue and drowsiness.

Research has shown that increased driver stress,
whether short term or long term, can have negative effects
on decision-making ability, driver awareness, and reaction
times in automotive environments [181]. As a result, there
is a growing interest in developing methods to detect
stress levels in drivers. In one pioneer study, Healey and
Picard [129] presented a method that employed HR,
EEG, and respiration data to assess drivers’ stress levels.
EDA signals were also employed with an LDA classifier
to detect driver stress, and around 80% accuracies were
obtained [186].

C. Education and e-Learning

Emotion recognition research has found another impor-
tant application in the field of education, particularly in
improving e-learning technologies compared to traditional
learning methods. By monitoring the emotions of both
teachers and students, emotion-aware e-learning systems
have the potential to enhance receptiveness and productiv-
ity. Umematsu et al. [154] detected student stress utilizing
LSTM classifiers on physiological signals, mobile phone
usage, location, and behavioral surveys, achieving 83%
accuracy for daily stress level detection. In another study,
Shen et al. [168] identified four emotions that commonly
arise during learning engagement (confusion, boredom,
hopefulness, and engagement) and employed SVM on
EDA, PPG, and EEG signals to detect them with 86% accu-
racy. The performance of the emotion-aware e-learning
system was compared with a baseline e-learning scheme.
Their experiment prototype offered appropriate interven-
tions based on the emotional state of the learner. The
emotion-aware e-learning system was found to be effective
in reducing the number of required interventions and
improving the effectiveness of the e-learning system.

D. Healthcare

The use of physiological data analysis has demon-
strated potential in the identification of mental disorders,
such as depression, panic disorder, anxiety, and phobias.
Researchers have been focused on detecting fear and pho-
bia automatically using physiological data. In one study,
Handouzi et al. [169] exposed participants to anxiogenic
(the environment that causes anxiety and fear) virtual
environments to identify anxiety levels in phobic indi-
viduals. They applied the SVM classifier to BVP data
and achieved 76% accuracy in detecting anxiety levels.
In another study, Bălan et al. [170] developed an auto-
matic emotion recognition model using SVM, LDA, kNN,

and RF classifiers on the DEAP dataset. The researchers
created a smart virtual therapist that recognizes human
emotions using physiological signals (EEG, ECG, and EDA)
and provides encouragement, suggestions, and adapts its
voice parameters to the scenario accordingly.

Pain is a combination of sensory and emotional experi-
ences. It can be difficult for infants, anesthetized patients,
and people with speech impairments to communicate their
pain. Self-reports have been the traditional method of
gathering data from patients with serious illnesses or
those who have undergone surgery. Nevertheless, these
reports have a subjective nature and may not always be
feasible to obtain in real time, such as during surgical
procedures. Automated pain assessment can be help-
ful in alleviating suffering, but more improvements are
needed before it can be clinically adopted. Researchers
have developed various machine-learning techniques to
detect pain and mental illnesses. For example, Lopez-
Martinez and Picard [171] attempted detecting pain using
a MultiTask Neural Network classifier along with SVM
and RF classifiers using ECG and EDA data from the
BioVid Heat Pain Database [188] and achieved around
80% accuracy. Subramaniam and Dass [172] achieved
95% accuracy using a CNN-LSTM classifier on the same
dataset. Depression is another frequently researched men-
tal illness. Chen et al. [173] investigated the physiological
signals of depression patients and control groups while
inducing emotions in the laboratory. They computed and
presented a significant statistical difference between these
groups. Cai et al. [174] produced a physiological dataset
that included 213 participants (92 of whom had depres-
sion and 121 were normal controls). EEG signals were
recorded during the resting state and sound stimulation.
They applied kNN, decision tree, SVM, and NN clas-
sifiers and obtained a maximum of 79% accuracy for
detecting depression. In addition, emotion recognition sys-
tems have the potential to enhance the quality of life
for individuals with various genetic disorders, such as
autism, by aiding in the perception and expression of
emotions. Sarabadani et al. [175] induced emotions using
images on 15 children diagnosed with autism disorder and
collected ECG, EDA, respiration, and ST. They detected
binary arousal and valence with around 80% accuracy
using an ensemble of kNN, LDA, and SVM classifiers. After
detecting the emotions of children with autism disorder,
some studies also try to intervene with social robots to
teach them to perceive and express emotions better [189].
Another interesting application is the detection of emotion
during equine-assisted therapy (EAT), which is a therapy
type that uses horse-related activities to alleviate mental
health issues. Althobaiti et al. [179] applied SVM, LDA,
and kNN classifiers to ECG, EMG, and EEG signals recorded
during horse-related activities (looking, grooming, and
leading) and achieved an F1-score of 78.27% for valence
and 65.49% for arousal detection.

When it comes to emotion regulation, individuals often
regulate their emotions and other affective states passively.
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Fig. 6. Heart activity signal obtained from a PPG sensor during a study in the wild. Artifacts and data gaps in heart activity signal can be

seen when the subject moves (during an increased activity in the acceleration signal) [187].

However, certain regulation strategies, such as emotion
suppression [36], are known to have a more negative
impact than a positive impact. Technology can help people
identify appropriate strategies through experimentation.
While research has shown that emotion regulation is
often hard to detect with a visual inspection, physiological
modalities are promising in validating the efficacy of the
interventions for regulation. Slow, controlled breathing has
been known to regulate affect positively. Several vibrotac-
tile methods, such as Doppel [190], ambienBeat [191],
and BoostMeUp [192], have been introduced as the
means for affect regulation. They provide heartbeat-like
stimulation on the wrist. Physiological measurements of
respiration and HRV due to controlled breathing induced
by these devices are measured. There are more applica-
tions to monitor breathing and encourage slower breathing
during daily activities, such as Just Breathe [193] and
Calm Commute [194]. Furthermore, skin conductance can
measure the extent of regulation using such applications.
However, more studies are required for assessing the effec-
tiveness and validity of such technological interventions
and the affect regulation strategies adopted by the indi-
viduals [195].

E. Other Applications

The application of emotion recognition is not restricted
to industries such as the workplace, automotive, health-
care, and education. It also has a significant role in
enhancing user experience, such as in the field of affec-
tive gaming, where emotions are detected to enhance the
gaming experience of players. Yang et al. [177] detected
anger, boredom, frustration, happiness, and fear emo-
tions during the FIFA2016 video game by analyzing
ECG, EDA, EMG, respiration, and body movement with

a three-axis accelerometer, facial recording, and game
screen recording, and achieved around 70% accuracy with
SVM, decision tree, and RF classifiers. In another study,
AlZoubi et al. [178] applied deep neural networks to ECG,
EDA, EMG, BVP, and respiration signals collected during
PlayerUnknown’s Battlegrounds (PUBG) gameplay. They
achieved around 80% for detecting arousal and valence
levels. Emotions were also analyzed during touristic travels
to design and manage tourism experiences better. Kim
and Fesenmaier [180] monitored the EDA signals of two
travelers during their touristic visit to Philadelphia (the
United States of America) and demonstrated the changes
in signals in different activities.

VIII. R E S E A R C H I S S U E S F O R E M O T I O N
R E C O G N I T I O N I N T H E W I L D
Emotion recognition in the wild or real-world settings
involves detecting and identifying emotions in
uncontrolled and unpredictable environments. However,
several challenges and limitations must be overcome to
achieve accurate emotion recognition in such scenarios,
including device limitations, data quality concerns
(as depicted in Fig. 6), labeling difficulties, privacy
considerations, and more. A few of the challenges are
described in the following.

A. Issues Related to Devices

1) Selection of Unobtrusive Devices and Access to Raw
Data: In order to develop an emotion recognition system
suitable for everyday use, one should employ unobtrusive
devices, such as smart bands, watches, or straps that can be
worn without much discomfort (refer Fig. 7 for examples
of unobtrusive wrist-worn devices). However, most of the
renowned commercial smart band/watch providers, such

Vol. 111, No. 10, October 2023 | PROCEEDINGS OF THE IEEE 1305



Can et al.: Approaches, Applications, and Challenges in Physiological Emotion Recognition

Fig. 7. Medical-grade devices are shown in the top row. At the

bottom, unobtrusive wrist-worn devices are demonstrated [68].

as Apple Watch, Fitbit, and Microsoft Band 2 [Microsoft
ceased support for software development kit (SDK)],
do not provide access to raw data for research purposes.
After the release of Samsung Galaxy Gear S3, Samsung
stopped providing IBI data, which was used for HRV
feature calculation, and instead started providing only
HR data. Often, the devices provide processed data and
insights related to the user’s health via their proprietary
algorithms and applications rather than providing raw data
for research purposes. When researchers aim to develop
a multimodal system that includes multiple physiological
modalities, such as HRV, EDA, ACC, ST, and BVP, the options
for unobtrusive smart bands become more limited. As a
result, researchers are often directed toward expensive,
research-oriented bands, such as Empatica E3, E4, and Q
sensor instead of off-the-shelf commercial bands.

2) Battery Life: Continuous data from sensors are nec-
essary for monitoring the mental health of individuals
in their daily life. However, unobtrusive smart bands or
watches have limitations when it comes to battery life.
When all sensors are active, the state-of-the-art batteries
of these devices can only endure for a few hours. In our
tests with devices that provide raw data, Samsung Gear S,
S2, and S3 lasted around 4 h, while Microsoft Band 2 (with
the latest SDK before support ceased) lasted approximately
8 h [113]. Empatica E4 wristband (a research-oriented
band with no display) lasted longer than these commercial
devices, with a duration of about 48 h as stated on the
website [196]. Commercial devices need to be charged at
least once a day, which makes users hesitant to use them in
everyday life. This limitation forces researchers to develop
more energy-efficient emotion monitoring methods.

3) Data Quality and Artifacts: Unobtrusive smart bands
offer lower data quality and lower sampling frequen-
cies compared to medical-grade systems. They are more
susceptible to artifacts, which can complicate the deci-
sion process of affect recognition systems. To develop
a robust system, modality-specific artifact detection and
removal algorithms should be developed. Furthermore,
since the movement of the wrist is almost unrestricted,
data gaps can occur during intense activity. To address this
issue, researchers need to investigate the characteristics of

modalities and select the most appropriate interpolation
technique (i.e., one that captures the modality characteris-
tics) to fill in the gaps.

B. Issues Related to Data Annotation

1) Reliability of Self-Report Questionnaires and Emotion
Awareness: To train supervised machine learning algo-
rithms, the physiological data require the ground truth
depicting emotions and their intensity. In laboratory exper-
iments, researchers may establish the intended emotion
and intensity level of the stimulus as the ground truth.
The ground truth for emotions outside the laboratory is
typically obtained through ecological momentary assess-
ment, such as self-report questionnaires, as the context
and induced emotion level of participants in their daily
lives are unknown to the experimenter. However, the
reliability of self-reports is questionable because they are
subjective and dependent on factors such as the individual,
culture, and gender, as described in Section V. In addition,
some individuals may try to conceal their true emotional
state in experiments, or they may have difficulty accessing
and expressing their own emotions. When considering a
general model capable of recognizing the emotions of all
people, subjective self-reports can decrease accuracy. Fur-
thermore, self-reports are challenging to obtain frequently
in real time as the emotions occur, leading to delays in
labeling. This can result in the loss of valuable information
and affect the accuracy of the emotion recognition model.

2) Necessity for a Substantial Amount of Labeling: Emo-
tion recognition studies in the wild rely on self-reports
collected from users as the ground truth. Although more
frequent and correct labels can result in better-trained
models, it is challenging for participants to provide
self-reports frequently and accurately during their daily
routines as this process is time-consuming and demands
increased compliance from the participants. Therefore,
researchers try to balance this out by finding optimal
intervals for collecting self-reports without causing signif-
icant inconvenience to users. Machine learning methods
involving deep learning generally outperform traditional
methods, but they require a significant amount of labeled
training data for robust models. This further increases
the demand for annotated data. Recently, semisupervised
methods (SSMs) have been proposed for decreasing the
need for labels. These methods can generate labels for
unannotated data points by making use of the existing
labeled data. Although researchers recently started using
SSM techniques for emotion recognition [197], their use
in research is still limited.

C. Issues Related to Emotion Classes

1) Division of Self-Report Scales Into Classes: Self-report
collection in the wild involves Likert or Self-Assessment
Manikin (SAM) scales with different resolutions. After the
data collection, the scale is divided into a number of emo-
tion levels or classes for emotion recognition. However,
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defining a general threshold for dividing low and high
levels of emotions is challenging, given the subjectivity
of self-reports and the potential for variation in baselines
across individuals. A fixed threshold might decrease the
performance of affect recognition systems. In the litera-
ture, a common technique is to use a fixed threshold, which
can be calculated as the number of scales/the number of
classes. Suppose that we used a 10 Likert scale for emotion
detection. We want to detect two-class emotion levels.
If we use a fixed threshold of “5” and decide the emotion
level accordingly, we might misclassify the people with
enduring high emotion levels and classify all their data
as high emotion. However, investigating the baseline with
questionnaires and increasing or decreasing their baselines
dynamically will improve the performance. In other words,
person-specific thresholds might increase the accuracy.
Automatic clustering methods, such as K-means clustering,
can also be employed to assign self-reports to the desired
number of affect levels.

2) Data Sparsity: As mentioned previously, especially,
deep learning algorithms require a huge amount of data
for training. Otherwise, they may overfit, learn the noise in
the data, and cannot be generalized to other applications.
In order to overcome this issue, researchers first try to
increase the amount of data synthetically. In a recent study,
Nita et al. [198] augmented an ECG dataset with a consid-
erable amount of representative ECG samples that were
created by randomizing, concatenating, and resampling
realistic ECG signals in the DREAMER dataset. By applying
a seven-layer CNN classifier, they achieved an accuracy
of 95.16% to detect valence, 85.56% for arousal, and
77.54% for dominance and increased the baseline (without
data augmentation) drastically. When the local dataset
size is relatively small, another technique is applying deep
transfer learning (DTL) techniques from prominent large
datasets. In DTL, parameters are learned from a relatively
large dataset, and they are adapted to the local dataset.
In the literature, DTL techniques were applied from the
SEED dataset to the DREAMER dataset, and it is reported
that DTL is beneficial in comparison to traditional machine
learning techniques. Another problem occurs when data
are imbalanced in terms of class labels. Especially in the
wild, datasets have fewer negative labels than positive
labels. In this case, machine learning algorithms have the
tendency to classify data points as the majority classes.
In order to avoid this issue, researchers can randomly
undersample the majority class and balance the dataset.
Another technique is called Synthetic Minority Oversam-
pling Technique (SMOTE), and it increases the size of the
minority class by creating synthetic data points.

D. Privacy and Ethical Concerns

Collecting and processing physiological signals require
careful consideration as they carry sensitive, health-related
information about individuals. Privacy and ethical con-
cerns must be addressed in two stages. The first stage

involves the data collection process, which demands spe-
cific procedures. Ethical approval for the experiment
protocol and informed consent must be obtained from
the ethical boards before collecting data from participants.
During the data collection, informed consent must be
obtained from the participants by clarifying the purpose of
the study, the data that will be collected, and the rights of
participants with respect to their data and contact persons,
both verbally and in writing. Another crucial ethical ele-
ment related to the experiments is the emotional stimulus.
Inducing negative effects (i.e., anger, stress, and sadness)
can be challenging because of the ethical constraints [199].
Generally, researchers use low-intensity emotion induction
techniques, namely, IAPS images, movie clips, emotional
videos, and music, which are approved by the ethical
committees. However, this can create a problem when the
models cannot learn high-intensity responses as in daily
lives since they are not present in the training data [11].

Furthermore, privacy must be ensured during stor-
ing and processing of the data. The most important
step is the anonymization of the information. Instead
of anonymization, researchers sometimes also applied
pseudonymization in which data without personal infor-
mation are stored along with a table that maps the subjects
to their identity. However, without accessing this table, it is
impossible to get the identity of the subjects. The following
example can be provided to clarify the difference between
anonymization and pseudonymization. In pseudonymiza-
tion, P32’s physiological data and a table that maps P32
to the participant’s real name are stored separately. On the
other hand, in anonymization, it is stated that a patient
has the corresponding physiological data, and there is no
way to get the identity of this patient. Both techniques
are allowed in different privacy protection laws, such as
General Data Protection Regulation.

The second stage pertains to the implementation of emo-
tion recognition technologies in real life. A crucial concern
is the access rights to physiological data and outcomes. For
instance, if employers can access their employees’ stress,
anxiety, and workload data, they may exploit it unethically.
Potential misuse may include assigning more tasks to
workers with low mental workloads or terminating those
with intense anxiety or stress. Another instance is that
health insurance companies can determine the likelihood
of mental health disorders and charge higher contribution
premiums to those affected. In addition, the presence of
hidden biases in the training data used for these systems
can lead to unfair or discriminatory outcomes. These exam-
ples highlight the significance of ensuring user data privacy
and addressing ethical concerns.

E. Privacy Preserving Machine Learning for Affect
Recognition From Physiological Signals

Researchers proposed FL and DP approaches for
addressing privacy concerns that occurred during machine
learning processes. The FL approach uploads the model
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parameters obtained from the sensitive physiological data
instead of the data itself [160]. Although FL has been
widely applied for facial features and speech for affect
recognition [200], [201], [202], it is rarely used for
recognizing affects from physiological signals. Can and
Ersoy [160] applied FL for predicting binary perceived
stress using heart activity. Each client trained an MLP
classifier on local data and shared model parameters
for each update. The parameters were then averaged
by using the FedAvg algorithm. FL was also applied to
multimodal physiological signals. Nandi and Xhafa [203]
developed an FL-based Fed-ReMECS framework for rec-
ognizing arousal and valence levels. They validated their
neural network-based FL approach on EDA and respiration
data from the DEAP dataset. In these studies, researchers
applied FL without sacrificing the affect recognition perfor-
mances.

Although FL improved the process of training mod-
els in terms of privacy, the privacy vulnerabilities of
the stochastic gradient descent (SGD) algorithm remain
unsolved. The DP mechanism can be explained as injecting
noise into each model client or server, perturbing the
updates, and restricting gradient leakage between client
and server [204]. DP can be applied alone without FL
settings. In a physiological signal-based activity recog-
nition case, the noise is added to the data directly so
that personal information is lost, but activity data can
still be used by compromising on the performance to an
extent [159]. It further improved the privacy vulnerabil-
ities when applied together with FL on speech emotion
recognition tasks [205]. However, a combination of FL
and DP has not been applied to the physiological data for
recognizing emotions yet.

F. Generalizability

Another issue is the generalizability of the emotion
recognition research. Unfortunately, most of the studies
are published on private datasets, which makes it difficult
to apply new techniques to these datasets and creates a
question about repeatability. On the other hand, as pre-
viously mentioned in Section V, many of the current
datasets were collected in controlled laboratory settings
with artificial stimuli, such as watching movie clips or
listening to music. It is widely known that emotional
responses in such laboratory environments can differ from
those in natural daily life situations where the stimuli may
be more personal and subjectively appraised with greater
intensity [11]. Furthermore, since most of the research is
conducted at universities, participants are generally col-
lege students of a certain age. However, if these algorithms
are applied to the general population, the participant
should be selected from different ages, cultures, gender,
and social status homogeneously. Liapis et al. [206] exam-
ined the effect of gender on stress recognition using EDA
signals. They trained gender-specific models and achieved
high accuracy for detecting stress (94.80% accuracy for

males and 98.85% for females). They reported that there is
a significant difference in how both genders communicate
their emotions using the arousal self-reports. On the other
hand, they also stated that gender does not have an effect
on the EDA signal during subtle human–computer inter-
action tasks. However, more comprehensive experiments
are needed for more accurate conclusions. The research
community should encourage people to create more open
real-life datasets with this homogeneity. Another state-of-
the-art solution to the generalizability and transferability
problem of traditional machine learning algorithms (sta-
tistical models) is causal representation learning [207].
Although causal representation learning has several pos-
sible real-world applications in different fields, such as
health care, marketing, political science, and online adver-
tising, and has achieved promising performances, it has not
been applied to physiological signals for emotion recogni-
tion, but it can solve the abovementioned problems.

The development of accurate and reliable emotion
recognition systems for real-world environments is a com-
plex and challenging task. It demands interdisciplinary
collaboration and encourages the development of new
techniques and methodologies.

IX. C O N C L U S I O N S A N D F U T U R E
P E R S P E C T I V E S
The purpose of this tutorial was to provide guidance for
new researchers entering the field of emotion recognition.
It covered the essential steps of developing an emotion
recognition system, including understanding the theories
of emotion and their regulation, the physiological and
psychological basis of emotions, designing scientific experi-
ments for studying emotions, utilizing wearable devices for
capturing physiological modalities, identifying prominent
features of each modality, and applying both traditional
machine learning and deep learning methods for analyzing
physiological data.

Emotion elicitation and regulation theories have pro-
vided a framework for understanding the factors that
contribute to the experience of emotions and their expres-
sions, which can aid in the development of more accurate
emotion recognition models. Research has demonstrated
that emotions are expressed through various psychological,
physiological, and behavioral modalities. Multimodality
has been shown to enhance the performance of emotion
recognition systems. We emphasize the importance of mul-
timodality and selecting appropriate ones considering their
advantages and disadvantages of each modality for specific
environments and application goals.

Another crucial consideration is the choice of machine
learning techniques. While many studies prioritize per-
formance and accuracy, other important factors, such as
privacy and explainability, also need to be taken into
account when designing emotion recognition systems.
Unfortunately, many existing research works overlook
these factors, and it is essential to explicitly address and
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discuss them during the development and deployment of
such systems.

As research progresses toward real-life emotion data col-
lection and recognition, there are several open challenges
that need to be addressed, including selecting good-quality
unobtrusive devices, handling low-quality data, and using
subjective self-reports as ground truth. This tutorial aims
to provide the necessary information for future research in
addressing these challenges.

In summary, this tutorial covers various aspects from
theoretical foundations to practical implementation of

emotion recognition systems, especially using physiolog-
ical signals. By considering the aspects of emotions,
utilizing multimodality, and addressing ethical considera-
tions, researchers can develop more robust and effective
emotion recognition systems that can contribute to a wide
range of applications in fields such as psychology, health-
care, human–computer interaction, and social robotics. ■
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