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ABSTRACT | This article examines the emerging challenges

in modeling and analyzing the electric power system due to

the widespread growth of variable renewable energy (VRE),

particularly in the form of distributed energy resources (DERs),
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which are displacing traditional large power plants. Many

of these resources are connected to the system through

power electronic interfaces, also known as inverter-based

resources (IBRs), which are reshaping the system dynamics

and lowering the grid strength and inertia. Understand-

ing the dynamic behavior of the power system should be

critical to addressing the potential stability concerns, refin-

ing the grid requirements, and developing effective and

reliable measures among many alternatives. However, con-

ventional methodologies for resource integration and network

expansion studies, as well as application-specific electro-

magnetic transient (EMT) studies, need to be improved.

This article thus presents recent academic and industrial

efforts to advance the existing approaches, especially by

incorporating the uncertainty in model parameters of DERs,

variability of VRE, and EMT dynamics of IBRs for the grid

planning and operations studies such as the impact of

DERs on load modeling and system-wide dynamic perfor-

mance. In addition, this article showcases recent develop-

ments to expand the study boundaries by synergizing the

strengths of the industry-accepted approaches along with

real system studies for Korea’s electric power systems in

particular.
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I. I N T R O D U C T I O N
Growing concerns about climate change and global decar-
bonization efforts are accelerating clean electricity goals
and transforming our electric power grid. The rapid growth
of renewable energy resources, mainly wind and solar,
is displacing conventional fossil-fueled synchronous gen-
erators, which is truly remarkable [1], [2]. For example,
South Korea is witnessing a dramatic increase of renew-
ables, mainly solar energy, in the power grid, principally
driven by clean energy policies to support carbon neutral-
ity by 2050 [3].

However, global utilities have also been observing grow-
ing variability and uncertainty, and challenges in balancing
the generation and demand due to increasing renewable
energy resources [4], [5], [6], [7], [8], [9]. Given the
current operations and planning paradigms, additional
power reserves should thus be secured to accommodate
the variable renewable energy (VRE) for reliability [2],
[10]. Furthermore, power system operators may not be
able to precisely measure the total amount of electricity
generated by some distributed energy resources (DERs),
such as small-scale photovoltaic (PV) resources located on
the customer side of the meters. These resources, known
as behind-the-meter generation (BTMG), often appear as
a net load due to the obscuring effect of the electricity
demand [11], [12].

As an example, Fig. 1 shows how metered the power
demand has changed due to the increased PVs including
BTMG, highlighting the differences in 24-h load profiles
between rainy and sunny days on weekdays in October
2017, 2019, and 2021. Also, the accumulated precipitation
(the data from the Korea Meteorological Administration
[13]) during the daytime in Korea is visualized and
matched with each load profile obtained from the Korea
Power Exchange (KPX, an independent system operator
in South Korea [14]). The rainy day depicted in Fig. 1
illustrates the cumulative precipitation from 7:00 to 19:00,
suggesting minimal daily PV generation due to widespread
cloudy weather conditions across the country. Conversely,
on sunny days with clear skies, PV generation significantly
increases, resulting in a reduction in the national net load
due to the increased BTMG. Also, it is noteworthy that
an interesting characteristic of electricity demand in Korea
is the temporary reduction at noon on weekdays due to
reduced power consumption during lunchtime. In 2017,
a slight difference was observed in the two load profiles,
because of the small number of installed BTMGs. The
difference between load patterns became more apparent in
2019, as shown in Fig. 1(b). The gap between the two lines
at lunchtime reached about 5 GW in 2017 and increased
to almost 7 GW in 2019. On a typical sunny day in 2021,
the load was further depressed with high penetrations of
BTMGs during the day, as evidenced in Fig. 1(c). Over the

past six years, the continuous increase of distributed PVs
in Korea has significantly increased the load variability,
heightening the importance of grid flexibility (via fast-
acting resources [9], [15]) and forecasting accuracy for the
net load and renewable generation.

These ongoing changes may threaten power system
reliability and stability if not handled adequately in the
operations and planning. Understanding the dynamic
behavior of the power system should thus be critical to
addressing the potential stability concerns, refining the
grid requirements, and developing effective and reliable
measures among many alternatives [74]. It is equally
critical to understand the limitations of existing methods
and tools for adequately modeling power system dynam-
ics and accurately assessing the power system security
[17], [18], [19], [74]. Conventional practices for the
resource integration and network expansion studies, and
application-specific electromagnetic transient (EMT) stud-
ies are both limited as an integrative approach.

This article thus examines the emerging challenges in
modeling and analyzing the electric power system under
transformation, as summarized and shown in Fig. 2. Focus-
ing on the bulk power system planning and operations,
this article presents selected methods to effectively capture
the growing uncertainty, variability, and fast dynamics
of modern power systems evolving with high penetra-
tions of VRE, largely interfaced through power electronics.
Positive-sequence root-mean-square (rms) model-based
studies have been the most commonly used in large-scale
power system studies [18], [20], [21], [22]. Given that
the rms model-based analysis focuses on the dynamic
performance at the transmission level, aggregated models
for the distribution systems and loads [23] have been
widely used for computational efficiency and convenience.
For instance, DERs and BTMGs scattered in the distribution
network are often represented by a single generator and
encapsulated in the loads [24], so the uncertainty from
these models becomes high and needs to be investigated.
Also, the dynamic analysis based on the rms model starts
from a specific single operating condition; thus, it cannot
reflect the inherent variability in renewables: this lim-
itation will be more pronounced when the renewables
become dominant energy sources [25]. Moreover, the rms
models cannot exhibit the fast dynamic characteristics
of power electronics-based equipment [26], [27], [74]
because they are principally developed to simulate slow
dynamics in the frequency range of 0.1–10 Hz. Accurate
representation of these components requires EMT tools
to adequately model fast current and voltage controllers,
and switching characteristics of power electronics [27],
[28]. However, the EMT modeling poses a considerably
higher computational burden than the rms modeling [29].
It is then remarkable that advances in computing tech-
nology have partially relieved computational concerns and
improved the performance of EMT tools significantly [30].
We thus investigate a practical framework for large-scale
EMT simulation using parallel computing and techniques
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Fig. 1. Changes and large deviations in the typical 24-h load profiles of Korea for sunny and cloudy days due to rapid adoption of

distributed PVs. (a) 2017. (b) 2019. (c) 2021.

to facilitate the overall study procedures. We further intro-
duce a co-simulation platform combining the advantages
of rms and EMT studies along with case studies for the
future Korea electric power systems [31], [32].

Fig. 2. Research motivation and focus: major attributes and

challenges of future power systems, and select solution.

The remainder of this article is structured as follows.
The state-of-the-art rms modeling for the inverter-based
resources (IBRs) is reviewed in Section II. Section III
presents the analysis method for evaluating the impact of
model parametric uncertainties, especially due to aggre-
gated representation of DERs via case studies for the
Korea power system. The stochastic stability analysis
is introduced in Section IV. Section V introduces the
EMT model-based analysis and recent efforts extended to
large-scale system studies. The conclusions are presented
in Section VI.

II. R E N E W A B L E E N E R G Y M O D E L I N G
F O R L A R G E - S C A L E P O W E R S Y S T E M
D Y N A M I C S T U D I E S
Positive-sequence-based rms modeling has been consid-
ered the most commonly accepted approach for repre-
senting the dynamic performance of the large-scale power
system [18], [20]. The system components, such as gener-
ators and loads, are modeled using differential algebraic
equations (DAEs) along with power-flow equations as
follows:

ẋ = F (x, y, λ) (1)

0 = G(x, y, λ) (2)

where x, y, and λ are dynamic variables (e.g., states
of generator models), algebraic variables (e.g., terminal
voltage of generator and network variables such as bus
voltages and angles), and the model parameters (e.g.,
machine parameters), respectively. It is worth noting that
switching certain variables under specific conditions is a
common method used in various power system models to
represent the discrete characteristics of the model (e.g., the
saturation characteristics of electric machines, transformer
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tap changing, and control using logic-based switching).
An example of utilizing a switching function is the volt-
age or frequency ride-through of renewable generators to
simulate the generation trip when operating outside of
specific predefined conditions [33]. When switching occurs
at a particular moment in some models, the algebraic
equation (2) is changed, allowing for the simulation of
nonsmooth behavior.

The power system modeled by (1) and (2) is utilized
to investigate the dynamic responses of the power system
(e.g., frequency and bus voltages) for credible distur-
bances, including transmission line failure, unexpected
generator trip or failure, and temporary or permanent
faults at substations. Once the study finds stability con-
cerns for a specific scenario, adequate operating strategies
will be designed to avoid problematic operating conditions.
The worst case should be a system-wide blackout and
prevention and mitigation measures should be investigated
in advance. Accurate models for various elements (e.g.,
generators and transmission facilities) are essential to
guarantee the reliability of power system analysis. Among
various power system models, this article mainly focuses
on the dynamic modeling of renewable energy resources,
which are typically represented using either plant-level
models [34], [35] or DER models [22] to capture their
dynamic behavior. The following provides a brief overview
of these two model types. More detailed information on
other dynamic models can be found in [18].

A. Plant-Level Renewable Modeling

The plant-level renewable generator (i.e., utility-scale
generators) collects power generated from multiple renew-
able energy resources (e.g., tens to hundreds of wind
turbines or solar panels) and supplies the collected active
and reactive powers to the grid. The general structure of
solar and wind power plants can be found in [36] and [37],
respectively. When investigating the dynamic performance
of large-scale power systems, it is common to model
the plant-level renewables using an aggregation approach
(e.g., a single equivalent generator [37] or multiple equiv-
alents by separately aggregating inverters from the same
manufacturer [38]) rather than modeling each solar panel
or wind turbine of the plant; it is a widely accepted current
practice [21], [33], [36]. The validity of the aggregated
plant model needs to be verified through field tests or
measurement-based validation [33], just as conventional
synchronous generator models need to be [39].

To understand the concept of aggregated modeling,
Fig. 3 shows a practical utility modeling process for the
Jeongam wind power plant in Korea, which consists of
14 type-4 wind turbines. Fig. 3 also shows the approximate
location of the Jeongam wind power plant within the
Korean transmission map. During this modeling process,
the 14 wind turbines are aggregated and represented as
a single equivalent generator, as visually shown in Fig. 3.
The equivalent generator consists of four functional mod-
ules: a plant control module, an electrical control module,

Fig. 3. Conceptual diagram of the aggregated modeling process of

a plant-level wind generator for the dynamic analysis of large-scale

power systems.

a generator converter module, and a turbine. The model
has been developed with many years of effort under the
leadership of the Western Electricity Coordinating Coun-
cil (WECC) [35], and continuous efforts are ongoing to
verify and improve the validity of the developed mod-
els [33], [40]. The modeling process shown in Fig. 3 can
be extended to PV power plants and type-3 wind power
plants [34], [35].

Power system operators may continuously monitor
plant-level renewable generators, check their dynamic
characteristics, and validate the derived models. However,
it is impossible to precisely model the dynamics of DERs
spread across the entire power grid. As a result, a different
aggregated modeling approach from plant-level modeling
should be required for large-scale power system studies.

B. Modeling of Distributed Energy Resources

As seen and discussed in Fig. 1, DERs, such as BTMG,
are frequently modeled together with power demand (or
load). This section briefly overviews how power load is
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Fig. 4. Aggregated modeling of loads and DERs for the

transmission-level power system studies.

represented in large-scale power system studies, followed
by a description of BTMG modeling.

The numerous power loads in the bulk power system
are constantly subject to change, making it practically
impossible to model and analyze each one individually.
Dynamic analysis of large-scale systems aims to deter-
mine whether the synchronization of generators and grids
is sustained after specific disturbances and whether the
system voltage is maintained at an appropriate level.
Therefore, examining the detailed dynamic characteristics
of all distribution networks is unnecessary (and techni-
cally infeasible). Instead, the power load is modeled by
aggregating countless loads in the distribution system into
several models at the transmission level, as shown in
Fig. 4. The various loads of the distribution system in the
box are grouped and aggregated as well documented in
[18, Chapter 7]. Various aggregated models [41], [42],
[43], from simple to complex, have been developed and
discussed to enhance modeling accuracy and validity. For
example, Fig. 4 shows the composite load model [44]
recently developed by the WECC. This model combines
four induction motor models, an electronic load model,
and a static load model in parallel. The proportion of
each model must be carefully determined and validated
based on information about the load composition and
characteristics. Unlike other electric facilities (e.g., gen-
erating plants), the load model structure and parameters
cannot generally be tested on-site. Therefore, disturbance
data and ambient measurements are used to validate the
load model [45]. As a result, the confidence in model
accuracy compared to other components is relatively low.
The uncertainty in the dynamic response of the load and its
impact on the analysis should also be carefully examined.

The DERs scattered throughout the distribution network
are often modeled as a single power resource through
aggregation. The model structure that incorporates the
aggregated load and DER, known as the composite load

model with a DER (CLMDER) [24], is presented in Fig. 4.
In Fig. 4, the DERA [22], [46] is a simplified model of
the plant-level generator introduced in Fig. 3. Note again
that the main purpose of using this model is to analyze the
overall system dynamic performance for feasible operating
scenarios at the transmission level. More accurate analysis
requires a detailed representation of the loads and DERs of
the distribution system.

This section provided a brief overview of the latest
modeling outcomes in power system planning and oper-
ations studies at the transmission system level, focusing on
renewable energy resources such as plant-level renewables
and BTMG scattered throughout the system. Load models
have been historically known to be the most uncertain
among various dynamic models of power systems, and
accurately modeling load dynamics from the transmission
system’s perspective has become even more challenging
due to the rapidly increased number of DERs across the
entire grid. The CLMDER introduced in Fig. 4 allows for
a more realistic representation of the aggregated features
of net loads (i.e., load and DER). In the following, two
typical analyses of power system dynamic performance will
be addressed using this model, along with a discussion of
how the uncertainty of the CLMDER affects the analysis
results.

III. G R I D I M P A C T S T U D I E S O F
L A R G E - S C A L E D E R s A N D M O D E L
P A R A M E T R I C U N C E R TA I N T Y
This section discusses the grid impact of large-scale DERs
in the Korea power system by incorporating CLMDERs
from Fig. 4 into real planning cases. A total of 1.43 GW
of BTMGs are modeled in four regions (see Fig. 5) using
CLMDER with widely used parameter values [43], [46].
It is worth mentioning that the typical parameter values
are currently used in Korea due to the early stage of
case studies utilizing this model. Also, along with this,
ongoing research is currently in process to verify the
model parameters based on measurements, which will help
obtain more reliable parameters that can better represent
the distinctive features of the Korean system. The remain-
ing loads are modeled using the complex load (CLOD)
model [46], a simplified model for representing load
dynamics. The analysis results obtained using the initially
defined model parameters are referred to as the base case.
Dynamic simulations were performed for two contingency
scenarios: a transmission line failure and an unplanned
generator trip. In addition, we evaluated the uncertainty
impact of CLMDER parameters, considering the extent of
aggregation in this model. The cases designed to evaluate
parametric uncertainty are referred to as lower and upper
cases, considering the ranges of crucial parameters.

A. Case Study for Transmission Line Failure

1) Result With the Initial Parameter Set: Figs. 6 and 7
present the simulation study results for a 765-kV trans-
mission line trip when the system is powering 81 GW of
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Fig. 5. BTMG modeled areas and the area assuming model

uncertainty in case studies using the Korea power system.

demand. It is worth noting that this scenario is comprehen-
sively evaluated in operations and planning studies carried
out in Korea due to its potential impact on the entire power
system. In addition, note that the base case represents the
simulation using the initial model parameters, whereas the
lower and upper cases illustrate how the parametric uncer-
tainty of the CLMDER can significantly affect the study
results, leading to delayed and faster voltage recovery
compared to the base case. Analytical insights into these
behavioral changes are provided in Section III-A2.

2) Evaluating Perturbation Impact of Uncertain Param-
eters: Note again that power system dynamics analysis
investigates how the system responds after certain events
occur at a specific operating point, which means that
the constantly changing load and its dynamic model are
assumed to be specific values at the given operating point.
Various model parameters have been utilized for each time
period or season to account for the variability in load char-
acteristics [43]. Nevertheless, the uncertainty associated
with the load model and DER is relatively high com-
pared to other power system models, primarily due to the
abstract nature of the modeling philosophy seen in Fig. 4
and the continuously changing load characteristics. This
inherent uncertainty may lead to a completely different
conclusion from the power system analysis, as manifested
in Figs. 6 and 7.

Many studies have thus been conducted to deal with
this uncertainty [47], [48], [49], [50], [51], [52], [53].
Probabilistic-based analyses (e.g., [48] and [52]) can
examine the influence of uncertain parameters but require
considerable computational costs for the combined effects
of multiple parameters, especially for large-scale power
systems. Conversely, trajectory sensitivity-based analyses

(e.g., [49], [51], [54], and [50]) are advantageous in
conducting worst case analysis efficiently and thus have
been widely utilized in practical power system analysis to
consider various scenarios. Note that trajectory sensitivity
is one of the practical methods that investigates how the
perturbation of specific parameters affects the analysis

Fig. 6. Analyzed bus voltage responses to transmission line failure

for Korea power system planning case. (a) Voltage at Bus A in the

area with uncertain models. (b) Voltage at Bus B in the area with

uncertain models. (c) Voltage at Bus C in the metropolitan area.

(d) Voltage at Bus D in the metropolitan area.
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Fig. 7. Dynamic responses of DERs (BTMGs) and system frequency

to the transmission line failure for Korea power system planning

case. (a) Generated active powers from all BTMGs. (b) Generated

reactive powers from all BTMGs. (c) System frequency.

results [47]. The trajectory sensitivity can be derived by
partially differentiating DAEs (1) and (2) with respect to
the parameter of interest as follows:

ẋλi = Fxxλi + Fyyλi
+ Fλi (3)

0 = Gxxλi + Gyyλi
+ Gλi . (4)

λi represents one of the uncertain parameters in the
CLMDER. The derived sensitivity can identify how the per-
turbation of this uncertain parameter affects the analyzed
result (e.g., the base case in Figs. 6 and 7). After deriving
the trajectory sensitivities for the interested parameters,
we can review the perturbation impact of multiple param-
eters on the initially obtained result of power system
dynamics (e.g., bus voltage responses) by the following
approximation:

V perturbed(λ + ∆λ) ≈ V initial(λ) + J(λ)∆λ. (5)

Here, λ represents the uncertain parameters, J denotes
a Jacobian matrix comprising the derived sensitivities of
the trajectory, and V initial and V perturbed refer to the
voltage responses initially obtained and the calculated
voltage responses considering the variability of multiple
parameters, respectively. Further details regarding (5) can
be found in [47]. It should be noted that although this
article uses the bus voltage as an illustration for (5), the
methodology can be applied similar to all other responses
of interest.

The sensitivity-based approximation (5) can only be
useful when the higher order terms of the Taylor series
expansion of the trajectory are negligible. In cases where
the system is under high stress (i.e., the trajectory
approaches the boundary of the region of attraction), the
performance of the approximation (5) cannot be guar-
anteed, as discussed in [47] and [55]. Furthermore, the
previous study [51] demonstrated that parametric per-
turbations exceeding a certain threshold could result in
completely different power system responses due to the
nonsmooth behavior of power system models (e.g., load
models). Therefore, the validity of trajectory sensitivity
and its applications may be limited to a narrow range
near the initial point where the sensitivity is calculated,
especially for highly nonlinear systems.

This limitation in sensitivity-based analysis was dis-
cussed in previous studies [49], [50], [51], [54], and
recent studies [49], [50] have proposed methods to
address these limitations. The method developed in [49]
and [50] combines the screening process and the addi-
tional detailed analysis to identify the most significant
impacts of multiple uncertain parameters. The screen-
ing process can identify the anticipated case with the
most significant impact (i.e., the worst case perturbation)
by utilizing the trajectory sensitivity [e.g., (3) and (4)]
and the sensitivity-based approximation [see (5)]. Then,
the additional detailed analysis conducts a power system
simulation using the perturbed parameter set identi-
fied by the screening process. It is worth mentioning
that this method considered the situations where the
sensitivity-based approximation could lead to misleading
conclusions under the highly nonlinear parametric influ-
ence. Therefore, the sensitivity analysis was used solely
to identify the perturbation combination with the most
significant impact. Subsequently, the additional detailed
analysis was conducted to guarantee dependable analysis
results, regardless of the presence of nonlinear parametric
behavior. The case study in this section also employs this
method but only shows the outcomes of the additional
detailed analysis without the screening process results. The
main aim of this section is to visually demonstrate the
impact of various uncertain parameters on the initially
analyzed result, and detailed information on this method
can be found in [49] and [50].

This article assumes ±20% uncertainty for five selected
crucial parameters of CLMDER in a specific region (i.e., see
the marked blue area in Fig. 5). A total of 20 loads (about

860 PROCEEDINGS OF THE IEEE | Vol. 111, No. 7, July 2023



Kim et al.: Dynamic Performance Modeling and Analysis of Power Grids

Table 1 Considered Model Parameters for Perturbation Study

4920 MW) with BTMGs (about 365 MW) are modeled by
CLMDER. These considered parameters are each fraction
of four motors (FmA, FmB, FmC, and FmD) in Fig. 4 and
the recovered DER fraction (Vrfrac) after voltage returns
to the defined range. Note also that the initially defined
values can be seen in Table 1. From the result of the
screening analysis, we may conclude that voltage recovery
is delayed as the motor ratio of each motor increases or
Vrfrac decreases. Therefore, based on this information, the
additional power system simulation is conducted using the
perturbed parameter set that 20% increased fractions of
four motors (FmA = 0.12, FmB = 0.12, FmC = 0.12, and
FmD = 0.36) and the 20% decreased Vrfrac (Vrfrac =

0.64) in Table 1; the simulation result is the lower case in
Figs. 6 and 7. In addition, the opposite 20% perturbation
(FmA = 0.08, FmB = 0.08, FmC = 0.08, FmD = 0.24,
and Vrfrac = 0.96) is considered for comparison as the
upper case. Note that the fraction of the static model in
Fig. 4 varies depending on the changes in the fractions of
motor models because the total sum of the load component
fractions remains one [44].

3) Perturbation Impact of Uncertain Model Parameters:
Fig. 6 manifests the impact of parametric uncertainty on
the voltage responses of four buses; Fig. 6(a) and (b)
shows the voltage responses of the most and least affected
buses, respectively, among all 20 buses assuming the
uncertain model. Fig. 6(c) and (d) shows the voltage
responses of the most and the moderately affected buses,
respectively, in the metropolitan area. The lower case (i.e.,
increased motor loads) shows delayed voltage recovery,
whereas the upper case (i.e., decreased motor loads)
results in faster recovery than the base case. This is
primarily due to increased motor loads drawing more
reactive power in low-voltage operating conditions [56],
consequently impeding faster voltage recovery. Note that
transient voltage criteria [57] (i.e., the acceptable voltage
level during voltage recovery) are generally established for
power system studies. For example, the voltage magnitude
should be maintained above 0.9 pu within 10 s after any
disturbance; Fig. 6 shows that the voltage levels of the base
and upper cases are recovered within 10 s [i.e., at 8 s in
Fig. 6(a) and (c)] after the transmission line failure, thus
meeting the voltage criteria. However, the lower case in
Fig. 6(a) and (c) does not comply with the criteria because
the voltage magnitude cannot return to the desired level at
10 s. Therefore, there is no transient voltage issue for the
given scenario (i.e., 765-kV transmission line failure) from
the conventional analysis (using only the single model
parameter set). However, a different conclusion could be
reached when parameter uncertainty is considered.

The perturbation impact of uncertain parameters may
vary depending on the power system operation condition

or the disturbance types. Previous research [49], [55]
observed that the impact of parameter uncertainty could
be more salient when severe disturbances occur, causing
stability concerns. Therefore, it is advised to examine
the parametric uncertainty when analyzing the high-
impact (generally low-frequency) contingency events,
which should certainly improve the confidence level in the
studies and thus reliability of power system planning and
operations.

It is also important to note that the perturbation impact
may have a different effect on different quantities, even
when the same uncertainty is assumed, as shown in
Fig. 6(a) and (b). Furthermore, although Buses C and
D are located in the metropolitan area shown in Fig. 5
(i.e., not the area assuming the uncertainty), Fig. 6 shows
that the voltage response of Bus B, which is subject to
assumed uncertainty, is impacted less than that of Buses
C and D. In particular, Fig. 6 suggests that Bus C is
affected as much as the buses (e.g., Bus A) where the
uncertainty is assumed. Previous research [50] has shown
that parameter uncertainty can significantly affect the
analysis results of specific locations. Similar findings are
confirmed in the case study of this article utilizing the
CLMDER (i.e., an advanced model that combines load and
DER), which also thus advises the necessity of system-wide
impact studies.

When considering parametric uncertainty, the dynamic
behavior of the modeled BTMGs changes, as shown in
Fig. 7. As discussed in Fig. 6, the lower case exhibits
a more delayed voltage recovery due to the increased
motor loads, resulting in the slower recovery of active
power generation from BTMGs due to the modeled control
logic. The CLMDER can replicate the dynamic behavior of
specific BTMGs that cannot supply active power during
voltage recovery by adjusting the Vrfrac parameter and
other voltage control logic-related parameters [46]. This
decrease in active power output causes a reduction in the
supply of reactive power from BTMGs, which ultimately
impedes voltage recovery.

On the other hand, in Fig. 7(a), it is evident that the
increased value of the Vrfrac parameter (i.e., Vrfrac =

0.96) in the upper case increases the recovered BTMG.
Note again that the increasing Vrfrac results in an increase
in power supply from the BTMGs during voltage recovery
[46]. As shown in the upper case of Fig. 7(b), the BTMGs
supply more reactive power and then decrease the reactive
power supply after 8 s because the voltage is recovered
at a predefined level, consistent with the faster voltage
recovery observed in the upper case of Fig. 6.

iMoreover, the system frequency recovery is also delayed
in the lower case, as shown in Fig. 7(c), due to the power
supply reduction from BTMGs, leading to an increase in
the net load. In actual power system operation, the net
load characteristics caused by the dynamics of BTMG
are not visible to the system operators. Therefore, it is
crucial to conduct comprehensive analyses, as shown in
Figs. 6 and 7, using adequate models.
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Fig. 8. Analyzed dynamic responses of (a) system frequency,

(b) national net load, and (c) total generated powers from all BTMGs

to unplanned generation trip for Korea power system planning case

(modeled BTMG).

B. Case Study for Unplanned Generation Trip

1) Result With the Initial Model Parameter Set: Fig. 8
presents the case study results of an unplanned generator
trip of about 800 MW under the same operating conditions
as the previous case study. Here again, we first focus on
the results derived from the initially defined parameters
(i.e., the base case of Fig. 8). It can be seen that the
system frequency [see Fig. 8(a)] momentarily drops due
to an imbalance in power supply and demand caused by
the unplanned generation trip and then gradually recov-
ers. During the process of frequency recovery, Fig. 8(b)
presents that the BTMG trip occurs due to the mod-
eled BTMG low-frequency trip parameter (flow), which
adversely affects the frequency recovery. As discussed, the
BTMG trips lead to the net load increase seen in Fig. 8(b),
but it should be stressed again that the BTMG is not visible
to the power system operator; only the net load response
is visible. Recently, the KPX has observed some cases of

instantaneous net load increase after the unplanned gen-
erator trip [12], especially during the daytime when the
penetration level of BTMG is high. These recent obser-
vations highly suggest the importance of modeling the
low-frequency trip characteristics of BTMG.

2) Perturbation Impact of Uncertain Parameters: The
impact of parametric uncertainty is also reviewed for the
unplanned generation trip by assuming the low-frequency
trip parameter (flow) to be uncertain because it mainly
affects the instant of the BTMG trip during frequency
recovery [12], [46]. The values of flow initially set for
four BTMGs in Fig. 5 are 59.96, 59.94, 59.92, and 59.90.
It is evident that the larger flow value leads to the earlier
trip of BTMG at a higher frequency. Therefore, without
the sensitivity analysis, we can intuitively see that the
increased flow (i.e., positive perturbation) is the worst
case for frequency response; in contrast, the negative
perturbation leads to even better frequency recovery. The
parametric perturbation of±0.02 Hz is considered for flow,
and the analyzed result can be seen in Fig. 8.

As expected, when the flow values are set to larger values
(i.e., the lower case in Fig. 8, named as such because
the frequency drops faster than base case), the minimum
system frequency is reached faster because the BTMG trip
occurs at a higher frequency value. Consequently, the rate
of change of the frequency (RoCoF) also becomes larger,
which may lead to further cascade tripping of other gener-
ators. On the other hand, in the upper case of Fig. 8, some
parts of the BTMGs are tripped, resulting in a smaller load
increase compared to that of the base and lower cases and,
consequently, less frequency drop. Fig. 8 suggests that the
analyzed result for the power system’s frequency response
can vary depending on the uncertainty of the BTMG trip.
However, as discussed, we cannot precisely determine how
much BTMG has tripped in the real system, but we can
confirm that the total net load increases seen in Fig. 8.
In practice, modeling the frequency trip characteristics of
BTMG can be achieved [12] by utilizing frequency and net
load data acquired when a specific disturbance occurs in
the actual power system. Therefore, continuous efforts are
necessary to ensure the reliability of BTMG trip modeling
through consistent management of the disturbance data
recorded during power system operations. In addition,
as shown in Fig. 8, we should evaluate the inherent para-
metric uncertainty to increase the reliability of the power
system analysis.

In this section, it has been demonstrated that the aggre-
gated dynamics of BTMGs (which are unknown to the
power system operator in reality) can be evaluated through
model-based simulation studies by using the CLMDER. It is
noteworthy that the CLMDER contains over 170 model
parameters, which presents a significant challenge to its
ease of use. Nonetheless, it is necessary to employ this
model in modern power system analyses, especially those
with extensively expanded BTMGs. Therefore, it is recom-
mended first to commence the initial case study using the
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Fig. 9. Probabilistic solar irradiance and physical wind data based

on meteorological information [69].

general parameters guided in [43] and [46]. Then, once
the actual net load data are available, the model accuracy
should be checked and validated to employ a more reliable
model in the subsequent studies. In addition, it should
be noted that the uncertainty of the net load model is
expected to increase with the increasing penetration of
BTMG due to the inherent limitations of aggregated model-
ing in practice. More comprehensive and reliable methods
are necessary to improve the existing simulation studies
that rely on a fixed single parameter set; one example was
discussed in this section. Further studies are needed to
make these methods practical for large-scale power system
studies, in addition to ongoing efforts to minimize the
discrepancy between the modeled power system and the
real-world system.

IV. S T O C H A S T I C S TA B I L I T Y A N A L Y S I S
O F V R E - R I C H P O W E R S Y S T E M S
In order to embrace variability and intermittency of renew-
able energy sources, stochastic approaches have been
adopted for power system simulation studies. The stochas-
tic nature of solar irradiance and wind data can be
captured by Gaussian [58], [59], [60], [61] and Weibull
distributions [62], [63], [64], [65], [66], [67] as shown
in Fig. 9 for stochastic analysis of power flows and system
stability. These probabilistic approaches are expected to be
further deployed along with the advancement of comput-
ing performance [68].

As the employment of renewables increases, the inverter
dynamics on top of the inherent variability have shown
a growing impact on power system stability in terms of
transient stability, voltage stability, and small-signal stabil-
ity [70], [71]. Deterministic methods for stability analysis
are typically structured such that dynamic performances
under predetermined operating conditions are evaluated.

The results indicate operating conditions or cases more
stable or less stable. However, stochastic methods incor-
porate the stochastic nature of renewable generation for
power system stability. For example, the stochastic method
provides stable operating conditions of the power system
at a specific time with a certain confidence level subject to
change with the weather condition. Planners or operators
may then investigate their findings and conclude whether
the system is stable or not [70] at their discretion.

Since the VRE, lacking dispatchability, cannot follow the
generation schedule, the deterministic method has funda-
mental limitations on its use for the VRE-rich power system
studies. From an industry point of view, one of the most
significant challenges in applying the probabilistic method
is the long simulation time due to the high computation
burden. However, the recent advancement in computer
performance has expanded the applications of stochastic
approaches.

A. Stochastic Voltage Stability

Voltage stability is defined as the ability to maintain the
voltage when disturbances occur in the power system [17],
[74]. Short-term voltage stability issues may occur due
to dynamic characteristics of fast-acting load components,
such as electronically controlled loads, induction motors,
and HVdc systems. Voltage stability issues in the long-term
may occur from slow-acting equipment such as tap chang-
ers in transformers, thermostatically controlled loads, and
current limiters in generators [17], [74].

We have successfully addressed the voltage stability by
computing the maximum loadability using active power-
voltage (PV) and reactive power-voltage (QV) curves
under predetermined operating scenarios. As observed
in [72], random nature of the active power or reactive
power of the load may cause voltage instability, which
advises the importance of incorporating the variability of
renewable energy as well for voltage stability assessment.
The Jacobian matrix has been used to investigate how a
small change in voltage magnitude and angle affects the
change of active and reactive power. The study in [73]
and [74] analyzes the eigenvalues and observes that the
power system becomes unstable due to the stochastic
nature of the load, although the operating point is stable
in the Jacobian matrix. When dealing with the random
characteristics of loads, stochastic differential equations
are incorporated into the algebraic equations of the power
system model, which can lead to singularity instability
from a mathematical perspective according to [72].

As differential algebraic approaches may encounter
numerical singularity issues under incorrect models of
certain power system conditions, which is not the physical
power system phenomenon, verification of diverse oper-
ating conditions is important to investigate the possible
case of singularity instability. A stochastic model of DAE
for power system model can thus be employed to analyze
and interpret diverse system conditions. Interestingly, a
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deterministic method may indicate voltage stability, which
is not always the case in a stochastic way.

Sustained voltage oscillations viewed also as the
dynamic voltage stability in a power system can arise
from various causes associated with weak grid dynam-
ics and stochastic disturbances [73]. These oscillations
are expected to be well-damped, but it is not unusual
to observe poorly damped or even growing oscillations
in modern power systems. These problematic oscilla-
tions may be categorized in terms of the sources as
follows [73], [75].

1) Poorly damped or even negatively damped growing
oscillations are generally associated with the system
dynamics under certain operating conditions, which
are in the category of natural oscillations.

2) Forced oscillations associated with periodic or ran-
dom input sources (i.e., disturbances) to the systems.
The oscillation sources could be cyclic loads (e.g.,
aluminum smelting), malfunctioning controls, HVdc
controls, wind power plant voltage control actions,
broken valve on thermal units, and so on.

Dynamic voltage stability concerns, particularly due to
growing VRE or IBR penetration, need to be well addressed
in the grid planning and operations and adequate mitiga-
tion or corrective measures should be taken in time. Thus,
methods [76], [77] and emerging stochastic small-signal
stability detailed in Section IV-C should be beneficial as the
computing capability advances.

B. Stochastic Transient Stability

Transient stability is defined as the ability of a generator
to maintain synchronism with the power system following
a large disturbance, which is related to the rotor angle and
angular speed of the synchronous generator [17], [18],
[74]. Transient stability depends on the prefault system
conditions, the severity of the fault, and the fault clearance
method [17], [74], [78].

One of the commonly used indicators to describe tran-
sient stability is the transient stability index (TSI) [79],
[80], [81], [82]. TSI is an indicator used to assess the
transient stability of power systems, providing a quanti-
tative evaluation of how close the system is to instability
during transient events [82]. Regarding this index, the
higher TSI value can be characterized as the stabler system,
and the lower value can be interpreted as the relatively
less stable system. In consideration of the influence of the
stochastic nature of renewable generation, several studies
probabilistically interpret the stability of the power system
using probability density function (pdf), cumulative den-
sity function (cdf), or TSI [79], [80], [81]. By means of this
stochastic method, power system stability can be analyzed
by determining whether TSI is high or low [81].

In addition to modeling the stochastic nature of renew-
able generation, various power system conditions can also
be designed in a stochastic fashion [83], such as the uncer-
tainty of load shedding events, and system contingency,

Table 2 Aggregated Inertia of the Coherent Area

including fault occurrence, fault impedance, fault removal
time, and reclosing operation. The probabilistic-based pro-
cess modeling is expected to be used more in the future.

The probabilistic generation of renewable energy has
an impact on the operating point of conventional gen-
erators, leading to variations in voltage phase angle.
Recently, Korea Electric Power Corporation (KEPCO), Naju,
South Korea, and Korea Electric Power Research Institute
(KEPRI), Daejeon, South Korea, have developed a tool for
probabilistic analysis for power system planning, which is
expected to be widely used in power system analysis [81].
In the future, we foresee that the use of this probabilistic
power system stability analysis will be further expanded
and utilized in the actual power system operation.

C. Small Disturbance Rotor Angle Stability

Small-signal rotor angle stability has been tradition-
ally explained as the interactions among generators or
groups of generators, which is defined as a global problem.
In this regard, the global problem of frequency stability
is not limited to a single generator or specific regions
but rather encompasses problems that affect the entire
power grid. Local oscillations occur when a single gen-
erator swings against another generator or the rest of
the system, whereas interarea oscillations occur when a
group of generators swings against another group of gen-
erators [17], [18], [74]. Stochastic small-signal stability
studies are conducted to identify eigenvalues, damping
ratio, and oscillation frequencies [62], [69], [84], [85],
[86], [87]. Power systems are intertwined with diverse
and complex system components and control parameters,
which can be observed with the critical modes indicating
the stability of the power system. In order to accommodate
large amounts of VRE in a power system, several studies
conducted the small-signal rotor angle stability assessment
considering the inherent stochastic variability of VRE [69].

In this study, the IEEE 14-generator model is used as a
test bed for probabilistic stability analysis, incorporating
the Australian future network plan with renewable gener-
ation. This research studies how eigenvalue changes when
system inertia of Area4 in Fig. 10 changes as in Table 2
along with the change in stochastic renewable generation.

The result represents the probabilistically distributed
eigenvalue for the change in the inertial energy, as shown
in Fig. 11. Furthermore, in Fig. 11, the power system
inertia constant was changed due to the turned-off syn-
chronous generator from the reason of an increasing
renewable generation. Fig. 11(b) shows that the damping
ratio of eigenvalues decreases due to reducing system
inertia from Case1 to Case3, which is less than a critical

864 PROCEEDINGS OF THE IEEE | Vol. 111, No. 7, July 2023



Kim et al.: Dynamic Performance Modeling and Analysis of Power Grids

Fig. 10. Simplified Australian network (Modified IEEE 14 Generator

Benchmark Model) [69].

value [69]. Some of the studies also carry out a stochastic
eigenvalue analysis to design the controllers of HVdc or
inverter-based power sources [73], [74].

In conclusion, the likelihood of instability of the power
systems generally increases as the share of renewable
energy in the system grows resulting from reducing inertial
energy in the system. The impact of decreasing inertial
energy on frequency stability is already widely acknowl-
edged; however, a recent study has revealed that inertial
energy also significantly affects the stability of small-signal
oscillations [69].

V. A D V A N C E D E M T M O D E L I N G
A N D A N A L Y S I S
A. Features and Needs of EMT Modeling and
Simulation

Power system operators and planners have long relied
on rms modeling and related tools for transient stability
analysis (TSA), as they can represent the crucial dynamics
of such systems, such as synchronous generators, net-
works, and loads (although to a limited extent). These
approaches also provide dependable computing environ-
ments for various types of studies that help ensure the

Fig. 11. Probabilistic eigenvalue analysis considering stochastic

renewable characteristics [69].

stable operation of conventional large power systems.
However, due to the limitations of the positive-sequence
rms model in capturing the fast and sophisticated dynamics
of IBRs and their control interactions, there have been
notable efforts to use EMT modeling and simulation tools
for TSA. Depending on rms modeling for analysis, the
results could therefore lead to misleading conclusions.

Fig. 12 shows the different timeframes of various
power system components and their operations [74], [88].
The frequency range of IBR dynamics is much higher
than that of electromechanical synchronous machines,
which have traditionally been the primary focus in the
power system. This difference in bandwidth highlights the
need for analysis tools that operate on a microsecond
timescale. The fast control behaviors of IBRs, such as
phase-locked loop (PLL), inner loop current control, and
IBR and grid impedance interactions, contribute to emerg-
ing resonance and converter-driven stability concerns.

Fig. 12. Power system dynamic phenomena, contributing

components, and control actions and corresponding frequency

ranges of interest.
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Fig. 13. EMT simulation result of Jeju Island transmission network for unbalanced fault. (a) Instantaneous CB current. (b) Bus frequency.

(c) Instantaneous bus voltage. (d) RMS bus voltage. (e) Instantaneous dc voltage of LCC HVdc. (f) Alpha angle of LCC HVdc rectifier.

Furthermore, given that the switching characteristics in
power electronics front ends are crucial for examining the
IBR-related stability issues on the power grid, it is neces-
sary to accurately model and control their fast dynamics
and switching events to ensure the stable and reliable
power system operation. To represent high-frequency
dynamics [29], [89], the EMT simulation is critical for
accurately modeling these effects and simulating various
scenarios to study power system performance and stability.

Fig. 13 presents an EMT simulation example of the
power grid on Jeju Island. This simulation was conducted
using EMT models to support the postmortem analysis of
an actual event that involved a single-line-to-ground fault
on a transmission line, followed by a line reclose and trip.
It should be noted that an rms case study cannot reproduce
this event due to limitations in analyzing unbalanced dis-
turbances. Fig. 13(a) shows the fault current flow through
the circuit breaker. During the event, a construction crane
accidentally approached the transmission line, resulting in
an A-phase-to-ground fault. Fig. 13(b) shows the system
frequency, which drops to its nadir in less than 2 s due
to Jeju Island’s nearly 80% power electronics penetration.
In addition, a large amount of BTMG tripped out from
the event, increasing the excursion in the frequency curve.

The voltage profiles of the faulted location can be seen
in Fig. 13(c) and (d), which are instantaneous and rms,
respectively, and provided to analyze unbalanced fault
cases. Fig. 13(e) and (f) shows the momentarily power
reversal of the Jeju-Mainland HVdc poles during the event.
The low voltage leads to a high alpha angle and can cause
temporarily inverted dc voltage during the unbalanced
condition. This example demonstrates that the EMT anal-
ysis can effectively examine power systems with a high
penetration of IBRs, such as Jeju Island.

Although EMT studies can provide high accuracy and
usefulness, the unavailability of EMT model parameters
can be a limiting factor. For example, modeling every
IBR in a renewable farm using EMT can be inefficient
and impractical, and the parameters may be unavailable.
In such cases, aggregating the IBRs with comprehensive
information on their behavior and characteristics is nec-
essary to simulate the EMT analysis effectively. Therefore,
it is essential to utilize validated EMT models that incorpo-
rate the behavior and features of IBRs. By conducting EMT
studies with validated IBR EMT models, power system
planners and operators can acquire valuable insights while
ensuring the stability and reliability of the power system
with a high penetration of IBRs.
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Fig. 14. EMT simulation example for GFM models.

B. EMT Models and Studies With Grid-Forming
Inverters

The mechanical inertia inherent in synchronous gen-
erators plays a critical role in resisting changes in grid
frequency. An increase in IBR penetration tends to exac-
erbate frequency instability and weaken voltage strength,
resulting in higher RoCoF and lower short-circuit levels,
and the ability to maintain voltage waveform [90], [91],
[92]. Most existing IBRs are grid-following (GFL) types
that act as current sources, displacing the existing volt-
age sources (e.g., synchronous generators), making grid
synchronization of IBRs more challenging. In contrast,
grid-forming (GFM) inverters can cope with potential sta-
bility issues due to high IBR penetration. GFM inverters can
emulate the inertial effect by independently establishing
an internal voltage reference. Given that GFM is envisioned
as a key solution to the potential stability issues of the
future power grid, numerous research works exist on the
control and design of GFM inverters [90], [93], [94], [95].

Although the functional requirements for GFM inverters
are not yet clear, it is fortunate that discussion groups are
moving forward to establish grid codes and standards for
them. One of the major requirements is sufficient fault
current supply. If the voltage is reduced during a faulted
condition, the controller should recover the voltage as
soon as possible after the disturbance. In addition, their
behaviors must be coordinated with the existing protection
devices to ensure a seamless protection system in the trans-
mission network. For example, as GFM inverters gradually
replace synchronous generators, the distance protection
zone grading around the plant must be recalculated due
to the reduced fault current level. Even though system
operators periodically do this job, the penetration of GFM
voltage sources will dramatically change the map of short-
circuit current, and there might be a need for a different
zone grading strategy than before.

The EMT simulation will be essential in verifying the
GFM functionalities and performance under fault condi-
tions of the grid. As shown in Fig. 14, a simplified ac/dc
system example is simulated to test different GFM controls,
with a single GFM source operating in parallel with the

bulk power system. Fig. 15 shows the results of the fast
frequency regulation performance of the GFM inverter
controls [96]. Fig. 15 shows the matching scheme in
green [97], the droop in blue, and the virtual synchronous
machine (VSM) in red, with each GFM frequency con-
trol scheme exhibiting different regulation performances.
Additional research and development is required to iden-
tify the optimal strategy for ensuring system stability.
Manufacturers must also consider associated responses,
such as the primary energy source, dc-side dynamics, and
protection coordination with multiple devices, in addition
to the GFM inverter model.

C. Advances in EMT Simulation and Supporting
Tools

1) High-Performance Computing EMT Simulation:
Although the EMT model accurately represents the actual
plant, its simulation time has been viewed as a significant
drawback. The complexity of the EMT simulation is
significantly higher than local-area or equipment-focused
simulations, particularly when studying transmission-level
networks with numerous IBRs. Therefore, it is very
challenging to manage the computational burden of EMT
simulations for large-scale power systems using only
single-core processing.

The parallel computing platform has been widely
adopted by many system operators, such as ERCOT and
AEMO, to accomplish simulations faster. Based on the
applicable time step of the EMT simulation, these plat-
forms typically divide the network into segments using
Dommel’s traveling-wave transmission line model for suffi-
ciently long transmission lines [98]. This approach enables
the simulation to utilize segmented networks on separate
CPU cores, significantly reducing the required time for the
EMT simulation. Although network segmentation for EMT
simulation is not a new idea and has been utilized in
real-time simulation systems that require dedicated hard-
ware, commercial nonreal-time EMT programs employ
high-performance computing (HPC) technology that lever-
ages multiple CPU cores and high-speed communication to

Fig. 15. Frequency control performances of three GFM control

schemes: changes in the frequency nadir.
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Fig. 16. Example of the HPC parallel network interface application

reducing the simulation time.

expedite the simulation and increase the application of the
EMT study.

The execution time of EMT simulation can be signifi-
cantly reduced by dividing and distributing the simulation
tasks to multiple processing units through a low-latency
communication channel, such as shared memory. Fig. 16
shows an example of the application of HPC technology for
EMT simulation. In Section V-A, the EMT simulation study
took approximately 51 min to complete 10 s of simulation
time under conventional single-core execution. In contrast,
the simulation execution time was reduced to 16 min when
using parallel computing with eight cores. The study case
includes 77 buses, 30 transmission lines, nine synchronous
generators, 13 wind turbine plants, ten PV plants, two
HVdc links, and two STATCOM stations.

Although the computational benefits may decrease as
the number of cores increases due to communication
latency, the simulation time primarily depends on model
complexity. For instance, when a test power system with
4320 components is divided into 32 subprojects, it takes
around 17 h to complete a 10-s simulation. However, if the
total number of components is reduced to 1216, the total
execution time is decreased to approximately 2 h.

2) Initializer to Expedite the EMT Simulation: Apart from
utilizing HPC technology, users should establish initial
conditions for network components, including transformer
tap ratios, bus voltages and angles, active and reactive
load amounts, operating points of the flexible ac trans-
mission system (FACTS) devices, and network topology.
The extended ZIP load model (constant impedance (Z),
constant current (I), and constant power (P) model)
incorporating the frequency dependency, is employed to
represent the load dynamics. More sophisticated load
model should help improve the study accuracy. However,
given the study objectives and computing constraints,
more computing resources are allocated to represent the
power electronic components, including various control
functions, and to analyze their grid impact on time. For
effective use of advanced EMT simulation, users must
establish the initial conditions of the simulation case prior
to executing the EMT simulation. As a result, a user-
oriented initializing application is required to successfully
transfer the power-flow solution and network topology
into the initial conditions of the advanced EMT simulation
platform.

3) Future of the HPC EMT Simulation: HPC EMT sim-
ulation is practical in analyzing transmission network

disturbances, particularly for high IBR penetration sys-
tems. As shown in Fig. 13, voltage and frequency
excursions are accurately observed for unbalanced faults
based on the well-designed EMT model. The HPC EMT
simulation can also adequately represent the dynamic
behaviors of the FACTS and IBRs, as well as the tripping or
momentary cessation of legacy-type inverters. Therefore,
the HPC EMT simulation should become a more crucial
and handy tool for system operators and planners to
address weak grid and low inertia issues due to the rapid
and widespread growth of IBRs.

4) Co-Simulation Platform: Sustained efforts from aca-
demic and industry researchers have been conducted to
develop a co-simulation platform that integrates both a
TSA program and an EMT program [99], [100], [101],
[102], [103], [104], [105], [106], [107], [108], [109],
[110], [111], [112], which has recently been incorporated
into commercial EMT products [113], [114], [115]. The
co-simulation platform offers the benefits of both programs
so that it can deliver high-speed simulation performance
using a real-time EMT simulator or the EMT program with
high-performance parallel computing. We can summarize
the advantages of the co-simulation platform as follows.

1) Fast and efficient simulation: The time and effort
necessary to establish and study systems are reduced
compared to full EMT simulation. This includes not
only modeling and configuring the study system but
also circuit design, system compiling, downloading,
and data monitoring.

2) Cost saving: The co-simulation platform also saves
on installation and operational costs by significantly
reducing the number of real-time simulator proces-
sors or HPC units.

3) Simulation accuracy: The co-simulation platform can
provide accurate simulation results comparable to
full EMT simulation, particularly when the simulation
contingency is located within the internal area mod-
eled with the detailed EMT [31].

Fig. 17. Co-simulation platform at KEPRI.
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4) Available hardware validation: Validation of power
system equipment using hardware-in-the-loop (HIL)
testing (for only the real-time simulator applied
co-simulation platform) has demonstrated its efficacy
in providing accurate results under realistic, flexible,
and reproducible conditions. In addition, the co-
simulation’s flexibility supports the system-level test-
ing of controller HIL (CHIL) and power HIL (PHIL)
when actual controllers and equipment are tested.

The co-simulation platform is a useful tool for simu-
lating the transition to a cleaner and sustainable power
system with increasing integration of IBRs. However, it has
a limitation in that it cannot ensure the accuracy of
fault studies near interfacing buses. To resolve this issue,
an option could be to enlarge the internal area (EMT
simulation region) surrounding the fault location within
the co-simulation platform. Furthermore, the electrical
distance is utilized to establish an appropriate EMT sim-
ulation region from the fault location.

5) Experience With Co-Simulation: Recent efforts
have been undertaken to overcome the limitations of
co-simulation by establishing the purpose, scope, and
process of co-simulation studies in the electric utility
industry in South Korea [31], [32]. Fig. 17 shows the
co-simulation platform in operation at KEPRI, which has
the capability of CHIL and PHIL to support system-wide
impact studies. KEPRI conducted a dynamic performance
test using a large-scale real-time simulator and a replica
controller to assess the behavior and performance of
newly installed power electronics equipment in the Korea
power system. This test evaluates the equipment’s response
under various operating conditions and disturbances
before it is integrated into the operational power grid.
In 2018, KEPRI tested actual static var compensator
(SVC) replica controllers for dynamic performance studies
using the co-simulation platform. Despite the limitations
of co-simulation, it enables the flexibility to conduct
comprehensive simulation studies, performing a significant
role in analyzing the dynamic performance of future power
systems by bridging the gap between TSA models and EMT
models.

VI. C O N C L U S I O N

This article addressed selected modeling and analy-
sis methods to effectively capture the growing uncer-
tainty, variability, and fast dynamics of modern power
systems evolving with high penetrations of power
electronic-interfaced and distributed VRE. Focusing on
bulk power system planning and operations, these efforts
aim to advance the existing practices and tools for
assessing the potential security concerns and identifying
practical solutions.

The state-of-the-art positive-sequence rms models, often
aggregated for large-scale power system studies, were
briefly explained, and recent efforts to supplement limi-
tations of the existing rms model-based approaches were
introduced. In particular, the model parametric uncertainty
and its consequential impact on the dynamic perfor-
mance were investigated by using a sensitivity-based
analysis for Korea power system. This article also dis-
cussed limitations of the deterministic approaches to
the VRE-rich system security assessment, typical indus-
try practices using the rms models above. It then
introduced a stochastic study framework, incorporat-
ing the probabilistic distributions of the VRE genera-
tions. The stochastic method, as demonstrated through
practical studies, effectively handles expanded operat-
ing conditions and uncertainties to ensure the system
stability.

In addition, this article featured the importance of
EMT-based modeling to adequately study the sophisti-
cated dynamic performance of the IBRs and various types
of interactions as manifest in a series of disturbance
reports from the global utilities. Overcoming the computa-
tional limitations and modeling complexity, we introduced
research efforts to incorporate the EMT dynamics of the
VRE for large integrated power system studies through
the parallel computing with HPC and co-simulation. Con-
tinued and extensive efforts should be exerted to fully
understand the power system dynamics in transition and
advance (and develop new) analytical as well as compu-
tational methods and supporting tools in the planning and
operations.
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