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I. I N T R O D U C T I O N
The field of design and design
automation of micro/nano circuits
and systems promotes interdisci-
plinary research spanning com-
puter science, computer engineer-
ing, and electrical engineering. This
field has created key technologies
without which it would be impos-
sible to achieve advances in infor-
mation processing, which is an
inseparable part of our everyday
lives. For example, fundamental
principles and tools created by this
field have empowered Moore’s law
scaling for over 50 years. Without
design and design automation of
circuits and systems, it would be
impossible to create multibillion
transistor integrated circuits (ICs)
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Point of View

that form the foundations of today’s
information age.

Like other technical fields, exist-
ing approaches in the field of design
and design automation are facing
challenges. For example, traditional
ways of improving silicon CMOS
technologies or designing, verifying,
and testing ICs and systems are
approaching various limits such as
physical size, power, and reliability
limits, as well as complexity limits.
At the same time, our dependency
on such systems continues to grow.
This creates major research opportu-
nities for new approaches beyond con-
ventional paths. Moreover, the recent
rise of machine learning and artifi-
cial intelligence (ML/AI) applications,
the recent trend toward domain-
specific accelerators and computing
at the edge, and recent progress
in NanoSystems enabled by beyond-
silicon CMOS technologies create new
opportunities for customized solu-
tions to designing electronic systems
in contrast to general-purpose proces-
sors of the 20th century. By NanoSys-
tems, we refer to systems across mul-
tiple scales—from IC chips all the
way to very large-scale systems—built
on nanotechnology foundations. The
overall systems aspects, coupled with
nanotechnologies that form the foun-
dation, are emphasized.

The breadth of these challenges
spanning multiple domains has
spurred a concerted effort of highly
interdisciplinary research, crossing
boundaries between several tradition-
ally separate fields of investigation.
For example, more and more design
and design automation researchers
are collaborating with (and contribut-
ing to) adjacent fields such as ML/AI,
cybersecurity, edge computing, and
device technologies. Such cross-
disciplinary interactions raise several
natural questions including: 1) what
are the high-risk and high-return
research topics? 2) what other
adjacent fields should electronic
design automation (EDA) research
aggressively seek collaborations
with? 3) where and how scientific
findings should be disseminated in
order to have the greatest impact

given the interdisciplinary nature of
EDA research? and 4) where should
research funding come from and how
should it be distributed to encourage
more transformative research?
Answering these questions requires
forward thinking and planning.

This article addresses these
questions by providing a high-
level overview of the current state
and future directions/needs along
the following five themes1: EDA
(Section II), foundational technolo-
gies and NanoSystems (Section III),
ML/AI/brain-inspired (BI) hardware
design (Section IV), physics-inspired
hardware design (Section V), and
application domains beyond circuits
and electronic systems (Section VI).
Fig. 1 shows these five themes and
the interdependencies among them.
While much progress on EDA will
be in the realm of conventional
technology and refinements thereof,
we expect to see in the future a heavy
emphasis not only on heterogeneous
integration and BI hardware but also
on emerging technologies, where the
computation will take advantage
of the specific attributes of the
physics-based dynamics of novel
materials and structures. Specific
examples of the interdependencies
shown in Fig. 1 include new EDA
tools that translate application
needs (e.g., energy, throughput, and
security) into technology targets
(e.g., improvements in logic, memory,
and connectivity), which will guide
technology researchers, or new EDA
methods to quickly emulate physical
systems (e.g., nonlinear dynamical
systems) in real time for physical com-
puting applications. Additional details
and more examples are elaborated in
Sections II–VI. Two critical cross-
cutting issues—infrastructures for
supporting research and educa-
tion, and education and work-
force training—are summarized in
Sections VII and VIII, respectively.

1Much of the content of this article is
based on the views expressed by the roundtable
attendees, speakers, and panelists of the NSF
Workshop on Micro/Nano Circuits and Sys-
tems design and Design Automation: Chal-
lenges and Opportunities, held on December
14–16, 2020.

II. E L E C T R O N I C D E S I G N
A U T O M AT I O N
EDA tools and methodologies have
played a central role in managing the
exponential increase of design com-
plexity due to Moore’s law scaling
and powered the electronic indus-
try to realize a cost-efficient digi-
tal revolution. However, it is signif-
icantly underinvested compared to
(such as computer networking or
ML). Exponential scaling according
to Moore’s law will continue for at
least another decade, despite numer-
ous technical challenges. Beyond that,
micro/nano circuits and systems are
expected to get even more complex.
As a result, the design complexity has
also grown exponentially, demand-
ing more efficient and scalable EDA
technologies and tools for compute,
memory, and interconnect design and
optimization.

The fast evolution of integrated
computing systems in the late 1980s
and 1990s was followed by a rev-
olution in the Internet and wireless
communications systems over the last
two decades. This has driven the pro-
liferation of wirelessly interconnected
distributed computing systems for
a range of real-time applications:
humanoid and other robots [1],
[2], [3], self-driving cars [4], [5],
unmanned aerial vehicles [6], [7],
and sensor networks [8]. Novel EDA
tools are needed to consider com-
putation versus communication costs
across distributed compute nodes.
The underlying (adaptive) hardware
architectures will be highly het-
erogeneous, consisting of processor
cores, GPUs, various kinds of domain-
specific accelerators (e.g., those for
ML), sensors, mixed-signal compo-
nents, and wireless interfaces. Verifi-
cation, post-silicon validation, design
debug, manufacturing test and post-
manufacture tuning of such systems
will pose key challenges since exist-
ing design validation and testing
techniques are not directed at high
levels of heterogeneity and real-time
adaptivity.

Safety and dependability of the
electronic system (e.g., the control of
autonomous vehicles) rely heavily on
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Fig. 1. Depiction of the five themes covered in Sections II–VI and the interdependencies among the themes, from foundations and

advancement of EDA (Section II) to application of EDA in domains ranging from foundational technologies (Section III) to circuits and

electronic systems (Sections IV–V) to various application domains (Section VI).

the verification capability. Verification
remains a significant challenge for
modern EDA flows. From pre-silicon
to post-silicon, all the way to sys-
tem integration, verification takes
a significant and growing amount
of the product development cycle.
Despite consistent progress in verifica-
tion (e.g., [9], [10], and [11]), devel-
opments to date are far from sufficient
to meet the rapid advancement of
complex electronic systems. Given the
exponential scaling of circuit size, it is
not an exaggeration to say that none
of the large, industrial-scale designs
have been completely formally ver-
ified. Most went through bounded
checking before the verification time
and resources were exhausted. More-
over, as we raise the level of design
abstraction to behavioral C/C++ or
even domain-specific languages such
as TensorFlow and Halide, the grow-
ing semantic gap makes verification
much more challenging. Verification
and validation tend to be largely done
on flat designs, which is the primary
limitation of its scalability.

While traditional EDA focused
mainly on platform creation, we

believe that EDA can play an even
bigger role in the realization of future
heterogeneous platforms. Domain-
specific hardware acceleration is one
of the most promising approaches to
combating the stagnation of single-
thread performance scaling [12],
[13]. Along this line, EDA has seen
enormous success for decades in
addressing the challenges of design-
ing and implementing highly complex
heterogeneous computing devices
that feature massive parallelization
and extensive specialization. There
are a host of new opportunities for
EDA to enable software-inclined
developers to productively exploit
accelerators for a novel domain.
Domain-specific accelerators often
evolve rapidly in size, topology, and
capability to adapt to changes in
application demands [14]. Hence,
it is crucial to support quick (in days
instead of many months) bring-up
of software stacks that can adapt
to a moving target “instruction
set architecture.” To address these
challenges, it is necessary to rethink
the abstraction and objectives of EDA
algorithms and tools by providing

domain experts with a better tradeoff
between design optimality, agility, and
scalability.

Ultimately, EDA is successful if it
enables the design process to scale.
The key to this is being able to
make higher quality decisions earlier.
Enabling rapid design and develop-
ment of complex analog IP remains a
grand challenge for current EDA sys-
tems [15], [16]. Enabling automated
generation and layout of critical com-
ponents or automatically migrating
process nodes can reduce time to
product dramatically, saving many
engineer months of time [17], [18],
[19]. Similar gains can be achieved in
the realm of domain-specific acceler-
ators. For example, there are billions
of systolic array configurations for a
given design [20]. It is not feasible
to evaluate every configuration all the
way down to the detailed physical
design. A good predictive model is
desired. When compute and sched-
ule resources can be applied with
greater effect, we enable the scaling
of solution quality. This highlights sev-
eral intertwined needs. 1) scaling of
the design process requires ability to
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“see ahead,” i.e., to predict outcomes
of downstream design optimization
steps (e.g., [21] and [22]); 2) there
is a need to recover solution subopti-
mality that has been left on the table
over the course of decades, as the
EDA industry and its research were
driven by turnaround time require-
ments [23]; 3) we need to quan-
titatively measure the suboptimality
gap of the EDA solutions and iden-
tify opportunities for improvement,
e.g., through measuring the quality
of leading academic and industrial
tools [24]; and 4) we should reach
out to other research communities,
such as applied mathematics, statis-
tics, operation research, and theoreti-
cal computer science to work together
to constantly expand the EDA opti-
mization toolbox. Recent work on
using graph neural networks for per-
formance prediction provides promis-
ing examples [25], [26].

A. Research Needs

We summarize the needs for coor-
dinated research efforts in the field of
EDA as follows.

1) New EDA approaches to address
exponentially increasing com-
plexity at all stages of design,
test, and in-field operation.

2) New EDA approaches for new
families of systems enabled by a
wide variety of novel 2.5-D and
3-D integration technologies.

3) Special emphasis on robust
operation with resilience to
functional bugs, manufacturing
defects, reliability failures, and
security attacks.

4) New EDA methods that can
automatically capture complex
analog/mixed-signal design
constraints and facilitate rapid
design including novel circuit
topologies.

5) New EDA methods to facili-
tate NanoSystem designs based
on analog subsytems, emerging
logic, memory, and integration
technologies.

6) New formulation of EDA
problems based on theoretical
foundations in optimization and

ML. In particular, given recent
interest in the use of ML for
EDA, interactions and collab-
orations should be promoted
between EDA researchers and
ML experts to jointly address
the challenges of ever-increasing
design automation challenges.

7) New EDA tools beyond hardware
platform creation. For heteroge-
neous and accelerator-rich com-
puting systems, programmers
must navigate a large design
space for performance optimiza-
tion. This problem gets even
more complex as the accelerators
evolve rapidly. It is crucial to
support efficient compilation and
runtime systems that can adapt
to new accelerators quickly. By
extending the traditional EDA
methodology beyond hardware
platform creation, the EDA
research can benefit not only
tens of thousands of hardware
designers but also millions of
software programmers and data
scientists as well.

III. F O U N D AT I O N A L
T E C H N O L O G I E S A N D
N A N O S Y S T E M S
Nanotechnologies are the foundations
for building NanoSystems. Coming
generations of abundant-data appli-
cations will process unprecedented
amounts of loosely structured data
(such as streaming video, natural lan-
guage, real-time sensor readings, con-
textual environments, or even brain
signals) to overcome global grand
challenges [27]. Yet, at this exact
moment, when 21st-century appli-
cations are demanding the largest
improvements in computing perfor-
mance, conventional approaches to
improving performance are stalling.

The computation demands of
21st-century applications far exceed
the capabilities of today’s systems,
from energy-constrained embedded
systems all the way to the cloud,
and cannot be met by isolated
“business as usual” improvements
in technology, circuits, and architec-
tures. Fortunately, there are many
innovative research ideas at the level

of foundational technologies and
also at the level of NanoSystems
in response to these computation
needs. As discussed in [28], the
three pillars for future computing
systems include technologies for
logic, memory, and the connectivity
between memory and logic. A wide
variety of foundational technologies
and NanoSystems are being pursued
by researchers, too many to be
covered exhaustively in this article.
Several beyond-traditional silicon
technologies have been implemented
in industrial facilities (e.g., [29],
[30], [31], [32], [33], [34], and
[35]). NanoSystems that leverage
the unique properties of various
foundational technologies enable
new and transformative architectures
(e.g., [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52],
[53], [54], and [55]).

The combination of foundational
technologies and NanoSystems
architectures promises to deliver
unprecedented functionality, per-
formance, and energy efficiency for
future computing systems. Without
such continued advances, these next-
generation applications cannot be
realized.

NanoSystems research focuses on
innovations at the circuits and archi-
tecture levels (and associated design
methodologies) enabled by novel
nanomaterial, nanofabrication, and
nanodevice concepts. From a hard-
ware demonstration standpoint, we
expect that NanoSystems research
will strive to build at least medium-
scale circuits and systems to demon-
strate the effectiveness, practicality,
and scalability of new concepts. This
is in contrast to traditional nanomate-
rial, nanofabrication, and nanodevice
research efforts that often focus on
hardware at the scale of a few tran-
sistors or a few memory cells (often
fewer than 1000). Medium- and large-
scale circuits and systems can be built
on top of existing silicon infrastruc-
ture, e.g., new nanotechnologies inte-
grated on top of silicon wafers to
demonstrate interesting circuit- and
system-level capabilities.
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Computing systems today are (and
will continue to be) dramatically
different from the 20th-century ones.
Domain-specific accelerators are
already rising as the speed and energy
benefits of classical technology scaling
diminish. The diversity of applica-
tions, algorithms, and accelerator
hardware architectures is changing
very rapidly. For example, more than
200 hardware accelerators for AI
inference and training have been
published over the past 3–4 years.
Beyond AI, hardware accelerators
for data analytics, graph processing,
genomics, and security are also
growing. Similarly, an explosion
of new concepts in foundational
technologies and NanoSystems is also
emerging: not only new transistor
technologies but also a wide variety
of memory technologies, new sensing
technologies, new interconnect
technologies, new on-chip and
interchip integration technologies,
and new thermal technologies. Unlike
innovations mostly around the silicon
transistor and its miniaturization in
the past, there is growing recognition
about combining these wide varieties
of technologies in innovative ways to
create new architectures optimized
for various application domains.

A. Research Needs

Based on the above discussions,
we identify the following needs for
coordinated research efforts in the
area of foundational technologies and
NanoSystems design:

1) EDA for Foundational Tech-
nologies and NanoSystems: There is
growing recognition that combining
the rapidly growing variety of
technologies in innovative ways
is crucial to create new architec-
tures/NanoSystems optimized for
various application domains. Such
approaches require a new set of
EDA tools, different from current
commercial offerings. Development
of such EDA tools must consider
not only classical metrics (energy,
throughput, and cost) but also emerg-
ing metrics (e.g., security, privacy,
accuracy of results, robustness to
manufacturing, and environmen-

tal variations). Many emerging
nanotechnologies are expected to be
used to realize accelerators, and their
ultimate adoption will be decided by
strong competition among candidate
approaches. EDA will play a crucial
role in supporting this competition
with ammunition of even strengths
for various contenders. There must
be tight integration between new
technology development and new
EDA for the following reasons.

1) New EDA tools must translate
application needs (e.g., energy,
throughput, and security)
into technology targets (e.g.,
improvements in logic, memory,
and connectivity) that will guide
technology researchers.

2) EDA acts as a technology enabler
(as articulated in Section II) to
unlock the potential benefits of
new technologies.

2) Codesign for NanoSystems: There
is an immediate need for new
research efforts focusing on codesign
for NanoSystems, connecting hard-
ware circuits and architectures with
applications on one end of the spec-
trum and foundational nanotechnolo-
gies on the other end—a codesign
approach. Three examples are given
as follows.

1) Connect abundant-data work-
loads (e.g., speech and video
processing, graph processing,
data analytics, and security) with
new nanotechnologies [56].

2) Connect the wide variety of
(existing and new) ML/AI
models with new nanotechnolo-
gies [42].

3) Connect emerging models of
computation (stochastic com-
puting and p-bits, approximate
computing, Ising, and others)
with new nanotechnologies
[52], [57], [58] to realize a
wide variety of NanoSystems
(including digital, analog heavy,
low temperature, supercon-
ducting, coupled oscillators,
thermodynamic, and other
implementations).

3) Hardware Prototyping and
Benchmarking: Demonstration of

medium-to-large-scale hardware pro-
totypes for codesigned NanoSystems
using the nanotechnologies estab-
lished (by leveraging the infrastruc-
tures to be discussed in Section VII)
should be strongly encouraged. Such
projects are expected to be major
efforts with high costs, high risks, and
high rewards and may be conducted
on a five-year scale. Adaptivity is
critical as various factors can change
in the course of such ambitious
projects.

Benchmarking foundational tech-
nologies in order to assess their
benefits at the application level is
essential to evaluate the myriad
of technology, circuit, and architec-
ture alternatives. Developing well-
accepted benchmarks requires close
collaboration among technology, EDA,
system, and application researchers.
Industry support is also indispensable.

IV. M L / A I / B I H A R D W A R E
D E S I G N
The growing impact of ML, AI, and
BI algorithms over the past decade
has made them a prime target for
hardware acceleration. Indeed, as
ML/AI/BI algorithms have evolved
over time, their deployment has
placed ever-increasing demands on
the capabilities of the underlying
hardware. Ever newer accelerators
are being developed to meet these
demands while also driving algorith-
mic progress in the field, as evi-
denced by recent large-scale models
(GPT-4, GPT-3, GLaM, and Mega-
tron) [59], [60], [61], [62]. Fur-
ther gains in accelerator design might
be possible through emerging tech-
nologies [63]. Many such technolo-
gies offer strikingly different tradeoffs
compared to the conventional CMOS
paradigm [64]. Extracting efficiencies
will require careful explorations of
this design space through hardware–
software algorithm codesign. Such
research can be driven by new algo-
rithmic innovations or through empir-
ical or utilitarian considerations.

Contemporary ML/AI/BI accel-
erators predominantly leverage
digital implementations due to
greater design productivity, ease of
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verification, improved scalability, and
improved resilience when compared
to analog systems of similar complex-
ity and scale [65]. In addition, digital
accelerators are well positioned to
taking advantage of various algo-
rithmic techniques that can improve
ML/AI/BI algorithm efficiency such
as sparsity, compression, and low-
rank approximations [66]. This trend
is further reinforced by the need
to accommodate rapidly evolving
ML algorithms. A concomitant issue
is how to verify such ML/AI/BI
hardware, perhaps supplanting
known formal or semiformal methods.
New research is also necessary to
identify hardware bugs/faults and
methods to mitigate their effect on
hardware performance in the context
of ML applications.

While the advantages offered by
digital accelerators are clear, ana-
log computing solutions may offer
an elegant path toward extreme
energy efficiencies that rival that of
the human brain. Specifically, ana-
log computation has the potential
to deliver extreme energy efficiency
and computational density, particu-
larly when the application might be
amenable to low-precision computa-
tion [67]. A particularly promising
architecture for analog computation,
in-memory computing, has been the
focus of recent research in ML/AI/BI
accelerators (e.g., [68], [69], and
[70]). In addition, analog compu-
tation is particularly well suited to
application spaces where machine
intelligence must be applied, in
real time, on signals acquired from
physical sensors, such as intelli-
gent imaging, cognitive transceivers,
closed-loop implants, and sensors for
robotics. Indeed, analog computation
near sensors might be pertinent to
AI/BI algorithms inspired by embod-
ied intelligence. However, analog
computing systems—in-memory com-
puting and near-sensor computing—
need more in-depth study before
they become practical. The techniques
employed for analog computation
open-up another avenue for codesign
and optimization when deployed as
part of sensing and decision systems.

Given the unique advantages of ana-
log computing and digital computing,
research in the field must embrace a
heterogeneous approach where both
analog computing and digital comput-
ing coexist [71].

Breakthrough ML/AI/BI advances
benefit from highly interdisciplinary
interactions among computer engi-
neers, algorithm designers, EDA tool
developers, and increasingly cogni-
tive scientists, neuroscientists, and
bioengineers. Such synergy will ele-
vate the understanding of how the
embodied brain computes and inter-
acts with its environment toward
more autonomous, effective, efficient,
and resilient operation of computing
machinery.

A. Research Needs

Based on the above discussions, the
needs for coordinated research efforts
in the area of ML/AI/BI-inspired
hardware design are summarized as
follows.

1) Novel Technologies and Architec-
tures for ML/AI/BI: Emerging cir-
cuits and technologies promise orders
of magnitude improvement in accel-
erator performance. Hardware-aware
codesign of algorithms (discussed
later) will be crucial to actualize
the gains offered by such systems.
Accelerators employing analog com-
putation, e.g., in-memory computing,
must overcome analog impairments
and nonidealities, which are typically
exacerbated in emerging technolo-
gies. Tools that improve a designer’s
productivity for analog computation
will also be required to make such
systems practical. It is critical that
systems employing analog circuits or
emerging technologies can be fabri-
cated and prototypes developed, as
outlined in Section VII.

2) Codesign for (ML/AI/BI) Systems:
More research is required to encapsu-
late the end-to-end benefits of incor-
porating different architectures within
a system. It is imperative that future
research is scaled beyond small-scale
macros and capture the complex-
ity of the interplay between vari-
ous subsystems. Hardware–software

codesign—across technology, circuit,
architecture, algorithm, system, and
application levels—is critical to meet
the rapidly growing demands of
ML/AI/BI-inspired algorithms. Such
codesign efforts are best accompanied
by medium- and large-scale hardware
and system prototyping of ML/AI/BI
systems by leveraging the infrastruc-
tures to be discussed in Section VII.

3) Cross-Disciplinary Coexplo-
ration of ML/AI/BI Systems:
Cross-disciplinary coexploration of
ML/AI/BI systems, especially between
computer science/engineering, cog-
nitive science, and neuroscience
should be strongly encouraged. In
particular, collaboration with domain
experts in nontraditional applica-
tion domain fields, e.g., robotics,
bioengineering, and high-energy
physics, can drive transformative
research. These include neuromorphic
engineering approaches to modeling
brain function in physical systems for
sensing, perception, cognition, and
action rooted in the biophysics of
neural computation further discussed
in Section V.

V. P H Y S I C S - I N S P I R E D
H A R D W A R E D E S I G N
Physical computing combines physics
and computation in a complemen-
tary and synergistic fashion. On the
one hand, one can exploit physics to
efficiently perform a computational
task, and, on the other hand, one
can view computation as emerging
from physics. Computing with physics
encodes computational variables in
physical quantities, and the compu-
tation is performed by exploiting the
physics of that particular medium.
Physics as Computing interprets phys-
ical state variables as computational
quantities, and the time evolution
of the physical system (according
to the Laws of Physics) realizes the
computation.

While hardware implementation
of all algorithms ultimately involves
physical implementations, they do not
necessarily mimic natural laws that
our models (of physics) are meant
to follow. Physics-inspired hardware
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design seeks to map the problem
at hand to the behavior of a sys-
tem described by the natural laws of
physics. The time evolution of that
system should be describable not only
by the (state) variables having phys-
ical interpretations but should also
be constrained by fundamental con-
servation laws, e.g., energy, momen-
tum, and entropy. Depending on the
structure of the computational prob-
lem under consideration, the map-
ping may range from very simple to
exceedingly complex, e.g., it could
be an elementary one-to-one mapping
(in which case a physical medium may
be envisaged as a hardware substrate
for computation), an isomorphism, or,
at an extreme, disparate dimension
and be highly complicated and non-
linear. The potentially complex (non-
linear) nature of these mappings can
give rise to behaviors of the hardware
implementation significantly deviant
from the behaviors required by the
intended physics of the system (e.g.,
deviate from meaningful concepts of
robustness, stability, dissipativity, and
so on), which may involve additional
compensation.

Physical computing involves algo-
rithms operating on state variables
realized by physical quantities in
physical domains (such as electric,
magnetic, photonic, and plasmonic)
and in time, which may be any com-
bination of continuous and/or dis-
crete representations [72], [73], [74],
[75]. A crucial aspect is the mapping
of the structure of a computational
problem to an appropriate physical
system [76]. Generally, physical com-
puting may involve several levels of
abstraction to address a wide hier-
archy of spatial and temporal scales.
In contrast to the conventional digi-
tal approach, physical computing even
may take advantage of noise (to
escape local minima, e.g., in search
problems) [77] and may include the
phase of a physical quantity (in addi-
tion to its amplitude) [78].

Examples of this approach include
the large body of work on BI neuro-
morphic hardware design [79], [80]
and more recent approaches based
on Ising machines [81], [82] and

networks of coupled oscillators [83],
[84], [85].

A. Research Needs

In light of the above discussions, we
identify the following need for coordi-
nated research efforts in the area of
physics-inspired hardware design.

1) EDA Support for Physical Com-
puting: An EDA community ecosystem
doing physical computing is needed
to accelerate development at man-
ageable timescales, ideally in real
time on physical emulation platforms,
e.g., [86], [87]. The development
of tools and computational frame-
work for physical computing applica-
tions becomes essential for its long-
term development. This ecosystem
means that education of the current
and next generation of researchers
must happen to empower these phys-
ical computing approaches. Given
the interdisciplinary nature of these
efforts, as well as the need to develop
the larger computing stacks for these
technologies, we need to raise up tall-
thin people characteristic of the early
digital VLSI development [88] as well
as experts in the various subdomains.

VI. A P P L I C AT I O N
D O M A I N S B E Y O N D
C I R C U I T S A N D
E L E C T R O N I C S Y S T E M S
EDA methodologies and tools have
achieved great success in managing
the enormous complexity in electronic
systems by building on the general
principles of abstraction (bottom-
up) and refinement (top-down) as
well as decomposition and composi-
tion for both verification and design.
Such design automation principles
and methodologies are equally appli-
cable to designing other engineered
systems.

A number of application domains
adjacent to electronic circuits and
systems have directly benefited from
EDA but also present unique chal-
lenges. One example is the devel-
opment of ICs based on many
flourishing beyond-CMOS technolo-
gies ranging from phase change
to resistive switching arrays, from

spintronic to ferroelectric devices,
and from superconductive Joseph-
son junctions to nanophotonic devices
(e.g., [89], [90], [91], [92], and
[64] and also see Section III).
Such new systems will be hetero-
geneous in nature and will utilize
a variety of emerging technologies
while coexisting with deeply scaled
CMOS. Another example is design-
ing large-scale systems—systems-of-
systems, which requires expanding
the scope of traditional EDA in
order to consider complex comput-
ing platforms, software, and physical
plants as well as safety and security
issues [93]. Autonomous systems are
another example, which are safety-
critical and/or demand high avail-
ability, thus requiring research into
assured autonomy [94].

Beyond the adjacent application
domains, a number of other appli-
cation domains (e.g., smart build-
ings [95] and electric vehicles [96])
have also embraced systematic design
automation processes that bear simi-
larity to EDA approaches. Some rep-
resentative application domains that
are “farther away” from electronic sys-
tems include: 1) design of reliable
and secure large-scale networks [97];
2) synthetic biology that is built upon
genetic engineering by adding the
engineering principles of standards,
abstraction, and decoupling [98],
[99]; 3) development of microflu-
idics lab-on-chip technology and its
adoption for microbiology [100],
[101]; and 4) modeling and design
of biomedical systems and drugs
[102], [103].

The confluence of design automa-
tion in these application domains
brings new challenges and opportu-
nities. One could envision a field
of “ESDA” as a natural evolution
of the current design automation
solutions from different application
domains. For example, the concept
of platform-based design methodol-
ogy was first introduced for embed-
ded system design [104], and later,
it was extended to smart build-
ing design [95]. This methodology,
including abstraction, formalization,
and systematic design flow, can be
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further developed into ESDA theories
that are readily adopted by other engi-
neered systems. For ESDA to be widely
applicable, it will need to deal with
the proliferation of complex, large,
CPSs where software is as impor-
tant as hardware in determining the
functionality and performance of the
target-engineered system and where
regulatory requirements and new con-
cerns (such as self-learning, privacy,
and sustainability) must be met.

A. Research Needs

Based on the above discussions,
we summarize the needs for research
efforts in leveraging EDA principles to
develop design automation method-
ologies and techniques for emerging
and new application domains as fol-
lows.

1) Design Capabilities for Hetero-
geneous Systems: Integrated design
capabilities need to be developed
to support heterogeneous systems
that combine a variety of CMOS and
beyond-CMOS technologies across
multiple platforms, including 3-D
integration, silicon in a package (SiP),
and wafer-scale integration (WSI).
Many local and global sources of
variability in extreme-scaled CMOS
devices and circuits as well as
the inherently random nature of
many beyond-CMOS technologies
demand that EDA platforms and
tools properly model and cope with
deterministic and stochastic behaviors
and noisy inputs/outputs while
supporting approximate (imprecise)
computations. Next-generation EDA
tools will also need to support
other types of heterogeneity, such
as large-scale multiphysics-based
heterogeneous systems, heteroge-
neous timing paradigms ranging
from fully synchronous to self-
timed systems, and mixed-signal
and RF circuits integrated with
on-chip antennas. Designing such
heterogeneous systems will require
design algorithms, techniques, and
tools that support the full spectrum
of capabilities, including synthesis,
simulation, modeling, verification,
and test.

2) Domain-Specific Design Automa-
tion: Dedicated interdisciplinary
research projects that draw on
EDA principles should be supported
for exploring design automation
of engineered complex systems
arising from a variety of application
domains, including autonomous
systems, biomedicine, drug discovery,
and synthetic biology. EDA’s deep
expertise in creating domain-specific
abstractions, algorithm development,
and optimization would facilitate the
development of tools that can greatly
expedite the design and validation of
such complex systems.

3) New Design Concerns: New
design concerns, such as autonomy,
privacy, resiliency, and sustainability
of computing systems, can be on par
with more traditional design concerns
such as area, speed, reliability, and
power efficiency. EDA platforms
and tools must model and enable
meaningful tradeoffs among these
often-conflicting concerns in a way
that would empower not only the
product developers but also the end
users of the electronic products.
To maintain design quality and to
safeguard evolution in the field
operation phase, EDA support should
be extended to the field with highly
automated versions of EDA tool
functionality, including the related
model base for self-modeling and
context modeling. New tools for
dependency and automated failure
analysis will be needed, as well as
for model adaptation and model error
detection.

VII. I N F R A S T R U C T U R E
The U.S. government supported
the MOSIS program [105] that
starting around 1981 unleashed
the innovation of circuit designers
and enabled circuit research and
education to proceed by way of
abstractions that decoupled circuits
research from device technology
research. Fast forward 40 years and
the needs of today are drastically
different. End-user design innovations
are now strongly coupled with chip-/
system-architecture innovations.

Circuit/architecture innovations often
derive from the use of new device
and integration technologies, and
conversely, device technology innova-
tions are driven by application needs
and require circuit/architecture level
optimizations and demonstrations
to be relevant. In short, codesign
across the technology stack is the
future of tomorrow’s systems, and
innovations and investments are
needed to push beyond the traditional
approaches. University clean rooms
(such as those supported by the NSF
NNCI [106]) today are missioned to
facilitate basic science discoveries and
engineering research at the single
or few devices level. These facilities,
while they are successful in fulfilling
their stated missions, do not have
the capability to fabricate state-of-
the-art transistors that are relevant
to practical applications, nor do
they have the capability to yield a
large enough number of devices for
meaningful circuit demonstrations.
The ability to demonstrate circuit-
and system-level functionality and
benefits, using advanced technology
nodes, or using emerging not-yet-
commercialized technology, or using
lab-scale technology developed at
universities is the core of research
that will break down abstraction
boundaries to effect codesign and
cooptimization—a technical direction
that is highlighted by earlier studies
on the subject [107].

The access to semiconductor
foundry can be broadly categorized
into three areas: 1) foundry access
for IC designers to advanced tech-
nologies as well as commercial-class
mature node technologies that allow
significantly sized chips to be built;
2) foundry access for technology
developers for creating new technol-
ogy demonstrators; and 3) access to
design ecosystems (EDA tools, design
flows, and IP blocks) supporting
system-level demonstrations. While
such access is available to a small
set of select research groups, through
personal networks and serendipitous
or historical connections, access is
spotty across the board for most
academic researchers. This has
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Fig. 2. Lab-to-fab translation fills a much-needed gap in advancing innovations along the technology readiness timeline.

significantly hampered the pace of
research and limited the opportunity
to innovate to a subset of researchers.
In many cases, research ideas simply
cannot be executed or have to
be abandoned due to the lack of
access and sometimes end up being
reinvented in other geographies. The
net result of this access problem is
a severe underutilization of a large
group of talented researchers and
technology developers.

To make things worse, the time
cycle for hardware experimentation is
currently much longer than software-
only and/or simulation-based studies.
The pace of progress in hardware
is not keeping up with the pace of
advances in software and applica-
tions. Yet, we know that the software
and the hardware must go hand-in-
hand. We cannot run today’s soft-
ware on 20-year-old hardware. More
powerful software requires more pow-
erful hardware. If hardware fails to
progress, then software will shortly
follow.

A. Research Needs

Progress in infrastructure will bene-
fit from addressing the following criti-
cal needs.

1) Facilitate Access to Leading-Edge
Silicon CMOS Technologies: Currently,
only select groups of researchers
have access to advanced technologies
(silicon CMOS and beyond) and
advanced integration technologies.
Even those accesses are limited to two
generations behind the state-of-the-

art. The majority of researchers are
still working with technologies that
are at least three generations behind.
Current practices [e.g., by Defense
Advanced Research Project Agency
(DARPA) and Intelligence Advanced
Project Activity (IARPA)] have shown
that access can be arranged when the
full support of the U.S. government is
brought to bear. We must find ways
to broaden such access to a wider
academic community. Such access
includes leading-edge silicon as well
as affordable access to mature nodes.
This is as much an issue about access,
as it is about the cost of access. Fund-
ing mechanisms should be developed
that support the cost of chip design
tape out in addition to the traditional
cost of research in circuit design
and computer/system-architecture
fields.

2) Support/Establish a National
Facility for Prototyping Emerging Tech-
nologies At-Scale: The establishment
of the multiproject wafer (MPW)
service by MOSIS has dramatically
changed the landscape of circuit
design education, research, and
commercialization. We must find ways
to demonstrate emerging device tech-
nologies at scale, beyond the 1–1000
devices scale that are sufficient for an
initial exploration. A national facility
should be established. The mission
of such a National Facility would:
1) enable fast turn-around experi-
mentation of chip-scale and package-
scale systems; 2) achieve flexibility (of
material and process technologies)

at scale; and 3) facilitate lab-to-fab
translation of systems technology,
thereby making academic research
relevant for advancing foundational
microelectronics technology for the
country (see Fig. 2). Such a national
facility would take foundry wafers
as starting materials and integrate
various materials and devices on the
Si CMOS foundry wafer. Similar to
an MPW service, there needs to be
a wafer brokerage that defines the
technology and the design interface
protocols. Partnership with other
branches of the U.S. government
may leverage the same facility to
further lab-to-fab translation to
industry.

3) Open Access for Design Ecosys-
tem: EDA tools and design flows
are currently proprietary and have
become so complex that they are
almost a black box. NSF must invest
in open-source EDA tools and design
flows since industry mainly focuses
on proprietary tools. Using a mixture
of commercial and research/open-
source EDA tools (e.g., in the cloud)
as well as advanced and robust IP
blocks will enable a vibrant design
ecosystem. The learning curve for
a tape out is steep; this hampers
innovation and turns many students
away. There needs to be a con-
certed effort to make the circuit
design process as easy as software
development.

4) Design Enablement for Emerging
Technologies: While today’s advanced
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EDA tools will continue to support
industrial technology offerings, there
needs to be a major emphasis on
new design and verification tools to
address emerging technologies and
their complexities (in tandem with
new technology capabilities created
as 3) mentioned above). Without
this enablement, the exciting promise
of system-level demonstrations of
emerging technologies cannot be
fulfilled.

5) Education and Workforce Devel-
opment: To remain globally compet-
itive, there is no excuse to teach
students using old technology nodes
because learning on old technology
nodes does not serve the students’
needs as they graduate and find jobs
in industry that uses leading-edge
technologies that have vastly different
design constraints. The task of main-
taining the infrastructure to support
circuit design has grown beyond the
capability of individual faculty mem-
bers. We must find ways to incentivize
and assist universities to develop and
offer engaging IC design courses using
real technologies that are used in
practice.

VIII. E D U C AT I O N A N D
W O R K F O R C E T R A I N I N G
The size, reach, and impact of design
and design automation have grown
significantly over the years, pow-
ered by the intellectual efforts of
highly trained engineers/researchers
who have decades of experience in
EDA research and development. How-
ever, the entering pipeline is notably
shallow, with far fewer new students
(at both the undergraduate and grad-
uate levels) choosing the technol-
ogy/circuit/architecture design and
design automation profession. In gen-
eral, undergraduate enrolment in
computer engineering and electrical
engineering has been declining across
universities in the United States. It
is imperative that these declining
numbers can be reversed to pre-
vent a further decline in critical
onshore IC manufacturing and design
capabilities. Several possibilities exist:
1) fewer students find semiconductor

and related jobs compelling, i.e., there
is a perception that these jobs are
moving away from the United States;
2) high-school and early undergrad-
uate students migrating away from
these disciplines due to a perception
of software can do more; 3) outdated
curricula that do not excite students;
and 4) not enough young faculty and
role models. In the following, a more
detailed discussion on the current
status, challenges, and needs related
to education and workforce develop-
ments is provided.

A. Core EDA

The early 1980s and 1990s were
the golden era for academic and
industrial EDA: the combination
of a simple set of design rules
coupled with structured, hierarchical
design abstractions created a level
playing field for computer scientists
to collaborate fruitfully with circuit
designers and electrical engineers,
resulting in the development of
many sophisticated optimization
and synthesis algorithms, as well
as complex simulation frameworks
that enabled early design space
exploration and rapid concept-to-
design cycles. This resulted in a
wealth of academic research and tools
for creating increasingly complex
VLSI chips, in EDA areas such as
circuit design [108] and physical
design [109]; synthesis tools and
design flows at the logic [110];
register-transfer level (RTL) and
behavioral levels [111]; formal
models and equivalence checking
to ensure the correctness of designs
generated by EDA tools [112];
and testing and validation of VLSI
circuits [113]. Industry and academia
collaborated actively during this
period, with the annual Design
Automation Conference (DAC) [114]
drawing thousands of academic
researchers and practitioners from
a diverse set of small, medium, and
large EDA companies. Indeed, the
Silicon Valley start-up booms in the
late 1990s also generated tremendous
interest for academics to be active in
start-up EDA companies. All of this

excitement resulted in great interest
in educating students, both at the
undergraduate and graduate levels,
resulting in the proliferation of many
EDA courses and curricula across the
country, as well as a strong pipeline of
EDA professionals.

At some level, the early EDA
academic and research communi-
ties became victims of their own
successes in the 2000 decade, with
academic and EDA research tools
transitioned to the EDA compa-
nies and large chip design houses
(Intel, AMD, IBM, TI, and so on).
Increasingly complex and rapid device
technology advances coupled with
competition/secrecy in the industry
with regard to advanced technology
nodes and design drivers posed signif-
icant barriers for academia to know
the real challenges faced by design-
ers and sample datasets that could
be used to drive impactful academic
EDA innovations. Furthermore, the
EDA industry underwent a significant
consolidation into a few, large EDA
companies, which created further bar-
riers to cooperation between the EDA
industry, design houses, and academic
research.

The 2010 decade opened the flood-
gates for excitement and innovations
in big data analytics and ML/AI. Many
EDA-trained students were swept
up, both by generous salaries/stock
options, as well as overall excitement
in these emerging fields. Government
funding for EDA did not grow suffi-
ciently to sustain the growing need
for research to meet new challenges
arising from advanced technologies,
newer applications, and increased
design complexity. This resulted in
many EDA faculty reorienting their
research skills in emerging non-EDA
arenas, as well as fewer students pur-
suing EDA research and careers in
EDA.

We believe that it is critical to rein-
vigorate the excitement of EDA as a
vibrant and critical field. This requires
cultivation of seed corn for growth
of this field through education of the
next generation of EDA students and
researchers, through a multipronged
approach.
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B. Beyond Core EDA: Circuit
and Systems Design and General
Design Automation

Design and design automation
go hand-in-hand. Circuits and sys-
tems designers are the users of
EDA tools, while EDA tool develop-
ment must respond to the needs of
new foundational technologies and
new applications (including ML/AI/BI
applications). Furthermore, EDA prin-
ciples and solutions can benefit prob-
lem domains beyond traditional semi-
conductor ICs.

With the conventional CMOS scal-
ing reaching its limit, close interac-
tions between technology and EDA
tool development are indispensable.
The rapidly moving ML/AI/BI field
further increases the needs of con-
necting device technologies → cir-
cuits → architectures → systems →
applications. The fields of founda-
tional technologies and NanoSystems
for emerging applications create excit-
ing opportunities for students to make
a meaningful impact. At the same
time, the fields present a number of
challenges in attracting undergradu-
ate and graduate students.

1) It is important to understand the
interplay between device tech-
nologies, circuits, architectures,
and applications—a “cross-layer”
approach. While the cross-layer
approach is exciting, it is also
challenging to create a practi-
cal curriculum that covers both
depth and breadth sufficiently.

2) Access to latest foundational
technologies is often limited
to a few research groups and
even more limited for class-
room teaching for various rea-
sons. The gap between industry
and academic technology access
has only grown. Such limited
access severely limits innova-
tions by university students and
researchers.

3) The lack of infrastructure and
support for student designs
results in very few students
getting the opportunity to even
design in modern processes. This
limits the knowledge of IC design

to very few students. It may
also reduce the attractiveness of
circuit and system design courses
to students.

4) Unlike many other fields (e.g.,
those related to the develop-
ment of application software
and algorithms), there can be a
long cycle to obtain results and
to reach gratification, sometimes
spanning several years.

5) Overly simplistic messages (fre-
quently driven by commercial
motives) equating the minia-
turization wall or the power
wall with the end of hard-
ware technology advances often
demotivate young students from
entering the field (especially in
the United States).

System-on-chip (SoC) design and
system-level integration skills have
emerged as a critical requirement
for today’s workforce. SoC design
and system integration are key to
developing hardware-based system
that can effectively and efficiently
address the requirements of today’s
complex and multifaceted applica-
tions with varying design specifica-
tions and demanding performance
requirements. Unfortunately, a major-
ity of academic institutions of higher
education are not equipped with
the resources, know-how, and tools
needed to train such a workforce.
These institutions are very good at
providing deep technical knowledge
of a given field (such as network-
ing, computing, signal processing, or
communication systems) but fall short
when it comes to training a skilled
person in the art of combining various
point solutions in computing, commu-
nication, applications, and so on into
a unified hardware–software platform
that addresses the applications’ needs.

EDA principles and solutions have
been applied in recent years to prob-
lem domains outside of traditional
semiconductor ICs. For example, EDA
research has broadened to encom-
pass topics in other fields such as
systems biology, lab-on-chip, smart
grid, quantum computing, hardware
security, AI accelerators, and CPS.

There is clearly a need for innova-
tions in education that can prepare
the next generation of researchers and
practitioners for the new EDA land-
scape. The traditional curriculum has
emphasized semiconductor electron-
ics, chip design, algorithms and for-
mal methods, software engineering,
and optimization techniques. Future
innovations in curriculum design must
go beyond these topics and encom-
pass ML/AI, statistics, data science,
physics of new types of devices, and
the convergence with the life sci-
ences (microbiology and biochem-
istry). The key is to abstract out EDA
concepts that are presented narrowly
in the context of chip design and
present them in a broader context so
that students can apply these con-
cepts to new domains. In addition,
there is an opportunity to integrate
EDA concepts in the lifelong learn-
ing of working professionals in all
these domains, e.g., through train-
ing workshops, tutorials, and online
courses.

C. Recommendations to the
Community

The EDA research community can
play an important role in education
and workforce training to enable next-
generation system design. EDA edu-
cation should continue to emphasize
fundamental principles, not just tech-
niques. In the age of AI, it is critical
to educate students in learning when
to use which: physical modeling or AI.
EDA education should also help train
practitioners in the domains where ad
hoc design techniques are tradition-
ally used so that new EDA tools and
methodologies can be more widely
adopted.

To address the dire needs for
attracting and educating future engi-
neers and scientists in the field of
design and design automation of
NanoSystems, the community must
come together to work on the follow-
ing aspects.

1) Create ways to attract high-
school and undergraduate stu-
dents to the critically important
field of NanoSystems design
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and design automation to
advance future computing. Such
efforts are essential for the
United States but are missing
today.

2) Create a community of accep-
tance and create a community
of excitement and innovation
around NanoSystems design and
design automation, and founda-
tional technologies, which will
help attract top diverse candi-
dates to the field.

3) Create fellowships at the under-
graduate, master’s, and Ph.D.
levels for students pursuing
research in NanoSystems design
and design automation (with
an emphasis on diversity as
well) can make a tremendously
positive impact.

4) Similar to technology access
in research, create ways to
incentivize and assist universi-
ties to develop and offer engag-
ing courses on NanoSystems
design and design automation,
and foundational technologies
(with the possibility of taping
out exciting NanoSystems ideas
using nanotechnologies as part
of course projects).

5) Develop educational materials
for the broader definition of sys-

tem design and design automa-
tion. Tools can be developed to
support new types of design—
educational tools do not need
to support everything required
for industrial adoption. Bench-
marks, datasets, and sample
designs can be developed to
enhance learning.

IX. C O N C L U S I O N
This article examines the many
opportunities and unique challenges
presented to the community of
micro/nano circuits and systems
design and design automation.
Besides the research needs and
recommendations discussed in
Sections II–VIII, there is an immediate
need for the community to help
organize and coordinate awareness
campaigns in the society, at least at
the levels of AI, robotics, and quantum
computing campaigns, to emphasize:
1) the critical importance and
tremendous potential of hardware
technologies and NanoSystems to
revolutionize almost every aspect of
all our lives and 2) the increasingly
crucial role of EDA and its growing
opportunities in directly impacting
hardware and software technologies
moving forward. Furthermore,
funding is needed to support the

EDA community in creating large-
scale (both in terms of problem
complexity and participating teams)
competitions/challenges to ignite
the interest of students and young
researchers in NanoSystems design
and EDA. It is time to user in another
golden age for electronic design and
design automation. ■
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