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ABSTRACT | The field of cognitive dynamic systems (CDSs)

is an emerging area of research, whereby engineering learns

from neuroscience. Under this framework, engineering sys-

tems are configured in a manner that mimics the human

brain and improves the utility and performance of traditional

systems. In essence, a CDS builds on Fuster’s paradigm of

cognition and is fulfilled with the presence of five cognitive

processes: the perception-action cycle, memory, attention,

intelligence, and language. When augmented with these pro-

cesses, a system can be classified as a CDS and is afforded

the capabilities of processing information and learning from

experience through continued interactions with the environ-

ment. Tremendous benefit from adopting the CDS framework

has been observed in the literature, especially in the fields of

cognitive radio and cognitive radar. More recently, the frame-

work has been extended to other areas, such as control theory,

risk control, and the Internet of Things; where the potential

for drastic performance improvements has been evident in

the literature. This comprehensive article presents a thorough

background and exposition of the CDS framework and each

field where it has been applied. In addition, we provide a

comprehensive review of the recent advancements and related

works in each domain by summarizing the key facts relating to
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the methodologies, findings, and limitations of the surveyed

papers. Our novel contributions involve being the first source

of centralized information on this topic and forming the foun-

dation for future research efforts by presenting suggestions

regarding worthwhile avenues for further investigation.
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N O M E N C L AT U R E
5G Fifth-generation.
ANN Artificial neural network.
ATSC Advanced Television Systems Committee.
BDI Bad data injection.
BP Basis pursuit.
BUCB Bayesian upper confidence bound.
DL Deep learning.
CAF Cyclic autocorrelation function.
CAV Connected autonomous vehicle.
CBTC Communication-based train control.
CC Cognitive control.
C-CRC Coordinated cognitive risk control.
CDS Cognitive dynamic system.
CIoT Cognitive Internet of Things.
CKF Cubature Kalman filter.
CM-CNN Covariance matrix-aware convolutional

neural network.
CNN Convolutional neural network.
CPS Cyber–physical system.
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CRC Cognitive risk control.
CREW Cognitive radar engineering workspace.
CS Compressed sensing.
CSI Channel-state information.
CUSUM Cumulative sum.
CVR Cognitive vehicular radar.
DBN Dynamic Bayesian network.
dc Direct current.
DRM Demand response management.
DSM Dynamic spectrum manager.
FAR Fore-active radar.
FCC Federal Communications Commission.
FDI False data injection.
GFDM Generalized frequency division

multiplexing.
GMM Gaussian mixture model.
HMM Hidden Markov model.
IoT Internet of Things.
IR Infrared.
IWFA Iterative water-filling algorithm.
KF Kalman filter.
kNNs k-nearest neighbors.
LFM Linear frequency-modulated.
LiDAR Light detection and ranging.
LMR Land-mobile radio.
LTE-M Long-term evolution for metro.
M2M Machine-to-machine.
MAB Multiarmed bandit.
MCC Microgrid control center.
MES Manufacturing execution system.
MIMO Multiple-input multiple-output.
ML Machine learning.
MSE Mean square error.
MTM Multitaper method.
NFC Near-field communication.
OFDM Orthogonal frequency-division multiplexing.
OMP Orthogonal matching pursuit.
PAC Perception-action cycle.
PCRLB Posterior Cramér–Rao lower bound.
pdf Probability density function.
PRM Probabilistic reasoning machine.
RFID Radio frequency identification.
RKRL Radio knowledge representation language.
RL Reinforcement learning.
RMSE Root mean square error.
SCAN Stopband cyclic algorithm new.
SCF Spectrum correlation function.
SIF Sliding innovation filter.
SMDP Semi-Markov decision process.
SNR Signal-to-noise ratio.
SVM Support vector machine.
T2T Train-to-train.
T2W Train-to-wayside.
TAR Traditional active radar.
TPC Transmit-power controller.
TR Time-reversal.
TSC Task-switch control.

UAV Unmanned aerial vehicle.
UCB Upper confidence bound.
UWB Ultrawideband.
UWB-PPM Ultrawideband pulse position modulation.
V2V Vehicle-to-vehicle.
VMM Virtual measurement vector.
VRE Virtual representation of the environment.
WeSCAN New weighted stopband cyclic algorithm.
WLAN Wireless local area network.
WSN Wireless sensor network.

I. I N T R O D U C T I O N
CDSs have emerged as a new integrative field of physical
systems heavily inspired by ideas drawn from neuroscience
and cognition in the human brain. Viewing human cog-
nition as a form of unique neural computation, the study
of CDS combines knowledge from various fields, including
neuroscience, cognitive science, computer science, mathe-
matics, physics, and engineering [1]. With this combined
knowledge, CDS aims to advance and improve current
dynamic physical systems by instilling them with a sense
of cognition.

A dynamic system operating in the environment is
deemed cognitive when capable of five fundamental pro-
cesses essential to human cognition: the PAC, memory,
attention, intelligence, and language [1]. When designed
and implemented with the processes mentioned, a system
is classified as a CDS, which will be equipped to per-
ceive and interact with the environment, while it stores
and learns from past experiences to adapt its operation,
improving its efficiency, effectiveness, and robustness. It is
important to note that, occasionally, a CDS may simply be
referred to as a cognitive system, as cognition is inherently
dynamic.

Motivating the growth of interest in CDS research is the
seminal work by Haykin on cognitive radio in 2005 [2] and
cognitive radar in 2006 [3], which have seen exponential
growth from the literature, more so in the former than the
latter. Cognitive radio has been proposed for solving the
problems associated with the underutilization and scarcity
of the electromagnetic spectrum, while cognitive radar was
proposed for improved performance in terms of accuracy
and reliability in remote sensing applications [2], [3], [4].

In 2012, CC was proposed and described by
Haykin et al. [5] as one of the two special functions
of CDS to overcome the limitations of current adaptive
controllers and neurocontrollers when faced with
unmodeled dynamics and unstructured environments.
The CC paradigm is additive in nature to current system
designs and introduces a new state known as the entropic
state based on the notion of an information gap to be
controlled instead of the state-space model. A CIoT
framework was first described in 2014 by Wu et al. [6]
to improve on and exploit the interconnectivity of smart
devices by empowering them with the ability to learn and
understand from collected data and adapt to changes by
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resource-efficient decision-making mechanisms. Namely,
the CIoT framework tackles issues associated with the
heterogeneity of data collected from various sources in a
network. Finally, and most recently, CRC was proposed as
the second special function of the CDS by Haykin [7] and
Haykin et al. [8]. The objective of CRC is to expand on the
CC architecture to account for and bring under control the
risks associated with uncertainties faced by a system, such
as security threats frequently encountered by physical
systems like cyberattacks on smart grids or jammers acting
on radar systems.

The idea that engineering can be inspired by nature or
humans can be traced back extensively throughout history.
Biomimicry and biomimetics are concepts, whereby engi-
neering learns from the physical or behavioral functional-
ity of humans, animals, or anything else found in nature.
One such example of these concepts includes the design of
towers based on the structure of the human femur and its
bone fibers, which are woven in a lattice arrangement [9].
Another example is based on the human knee, which con-
sists of two bones and two ligaments that allow the knee
to act like a four-bar hinge mechanism, which engineers
study when designing humanoid robots [10]. If further
rotation is required in the design of joints, engineers
study the gibbon’s wrist joint, which permits the human
hand to rotate in a complete circle [11]. Thus, the idea
that engineering can learn from human cognition and the
brain’s computational power in the design of existing or
new physical systems is not without its merits.

This point is further justified in this article, as it will be
shown that the CDS framework can instill existing systems
with new functionality, such as cognitive radio’s ability to
find and exploit unused parts of the electromagnetic spec-
trum or cognitive radar’s ability to adapt its transmitted
waveform to avoid reserved frequency bands or narrow-
band interferences. Such abilities are beneficial in incre-
mentally increasing the autonomy of these systems and
decreasing their reliance on human operators. Otherwise,
the CDS framework can result in various performance
improvements when augmented into existing systems. For
instance, it will be demonstrated that CC, when integrated
with cognitive radar, can lead to improved tracking per-
formance of single or multiple targets, even in multipath
scenarios. Furthermore, CC can function as the supervisor
of smart grid networks and CBTC systems, by manag-
ing their sensors, meters, and communications to ensure
that the systems’ resultant control actions are accurately
informed and effectively delivered, even in the face of dis-
ruptions or uncertainties. Consequently, when augmented
with CC, such systems have exhibited improvements in
terms of state estimation accuracy, control performance,
energy expenditures, reliability, and more. Finally, it will
be demonstrated that the CRC architecture can extend
upon CC by accounting for extended types of risky, uncer-
tain, or unstructured environments in existing systems.
An example of such includes the CRC’s ability to detect
and neutralize the effects of malicious acts from external

actors, including jammers in cognitive radar applications,
and FDI or intrusion attempts in smart grid networks.

It is important to consider, compare, and make a
clear distinction between the mission of CDS and that
of other cognitive frameworks. Cognitive architectures,
for instance, are chiefly concerned with the study of
the human mind and its structure, and the creation of
models that are capable of human-level artificial intelli-
gence [12]. Surveys in the field of cognitive architectures
define cognitive architectures as proposals about men-
tal representations and computational procedures, which
operate on those representations to enable a range of
intelligent behaviors [13], [14]. On the other hand, cog-
nitive robotics has been defined as a field that combines
insight from several fields, such as cognitive and biological
sciences and artificial intelligence, to the application of
robotics [15]. The goal of cognitive robotics is to create
robots that embody human intelligence and to evaluate
and investigate hypotheses about human cognition and
neuroscience [15]. The mission of CDS bears more resem-
blance to that of cognitive robotics than it does with
cognitive architectures, in the sense that CDS combines
knowledge from cognitive science and neuroscience to
define human cognition and instill physical systems with
the elements that comprise human cognition. CDS achieves
this by integrating various techniques and ideas from the
fields of engineering, computer science, mathematics, and
physics. The goal of CDS is to equip systems with a sense of
autonomy and the ability to learn from their surrounding
environment through experience over time based on the
five fundamental principles of Fuster’s paradigm of human
cognition [16], [17].

The purpose of this article is to review and provide
a comprehensive and structured overview of the current
state of research literature published on CDS and its appli-
cations. By presenting the methodologies, key findings,
and limitations of the surveyed literature, this work aims to
provide a complete guide to the most recent contributions,
advancements, and experimental results in the field. Fur-
thermore, this work will serve as the foundation for future
research efforts by sharing insight into the most promis-
ing areas for future research efforts for all the surveyed
applications of CDS. The timeline of the major milestones
and achievements in the field of CDS, as surveyed and
discussed in the remainder of this article, are summarized
in Fig. 1.

Based on our understanding, this is the first article to
survey the entire field of CDS, which will hopefully accel-
erate growth in this relatively young field further. Other
survey papers exist; however, their scopes are usually much
more limited and usually focus on a single application of a
CDS or a specific aspect of an application. For example, two
survey papers were published recently in 2019 focusing
on cognitive radio, where, in [18], the discussion was
geared solely toward the related works in spectrum sens-
ing, while Wang et al. [19] focused on spectrum allocation
techniques based on RL algorithms. A survey of research
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Fig. 1. Timeline of the major milestones and advancements of the field of CDS, as surveyed in this article.

trends on cognitive radar, also published in 2019, can be
seen in [20], where an overview of the applications and
techniques is detailed with a discussion on future technical
and practical challenges. The need for cognitive radio and
standardization efforts in IoT technology, an issue related
to but not fully encompassing CIoT, has been surveyed
extensively in [21]. More survey papers exist for each of
the mentioned topics, and are mentioned and discussed
in their relevant sections throughout this work. However,
the areas of CC, CRC, and CIoT have yet to be the subject
of a comprehensive survey or literature review. Therefore,
this survey provides a universal overview and study of
CDSs, which provides a foundation for future research and
industrial applications.

This article is organized as follows. Section II provides
background on CDS and an exposition of the theory of
the framework’s architecture. Section III describes the first
CDS, cognitive radio, and a review of recent works in the
field, followed by the same procedure in Section IV for
cognitive radar. Other frameworks relating to the special
functions of the CDS, such as CC and CRC, are intro-
duced alongside their related works and applications in
Sections V and VI, respectively. Section VII describes CIoT
and reviews the recent advances in the literature. Next,
a discussion of the key findings of this article and sug-
gestions for future research are presented in Section VIII.
Finally, Section IX concludes this article.

II. C O G N I T I V E D Y N A M I C S Y S T E M S
Any system can be defined as a dynamic system if its
variables or input–output behavior are time-dependent.
CDSs are a new class of dynamic systems first envi-
sioned in 2006 [22] and formally described theoretically
in 2012 [1], [4], [23] by Dr. Simon Haykin. These types of
systems are inspired by neuroscience and human cognition
with the viewpoint that the latter is a form of computation.

The CDS framework relies on a model for cognition pro-
posed by Fuster et al. [16], henceforth referred to as
Fuster’s paradigm of cognition, which is based on five
fundamental principles or building blocks: PAC, memory,
attention, intelligence, and language. Once equipped with
these fundamental principles or, as will be commonly
referred to as cognitive process throughout the rest of this
article, only then a system can be considered cognitive and
classified as a CDS. However, as will be discussed later in
this section, language has often been considered beyond
the scope of consideration by CDS. Building on Fuster’s
paradigm, the functional structure of a CDS is illustrated
and described in Fig. 2, as depicted in [17], whereby the
role of each cognitive process can be summarized in the
following.

A. Perception-Action Cycle

Within any CDS, there exists a perceptual part and an
executive part. The perceptual part or perceptor resides on
the right-hand side of Fig. 2, while the executive or cogni-
tive controller is situated on the left-hand side [17]. The
perceptor is responsible for directly observing the system
and the environment using appropriate sensors, depending
on the application of the CDS. For example, an estimation
method or algorithm might be used during perception,
which extracts relevant information from what is perceived
by computing posterior estimates of the environment or
system’s states in each PAC. A feedback link delivers the
extracted relevant information about the environment and
system from the perceptor to the executive. The executive
is then tasked with performing cognitive actions on the
environment or the system per this information [17].

The purpose of the cognitive actions performed by
the executive is to continually enhance the information
extracted by the perceptor in subsequent cycles. Thus, the

578 PROCEEDINGS OF THE IEEE | Vol. 111, No. 6, June 2023



Hilal et al.: Cognitive Dynamic Systems

Fig. 2. General block diagram of a standard CDS architecture.

executive indirectly perceives the environment through the
perceptor and acts according to the information extracted,
forming a global feedback loop that completes the PAC.
Cognitive actions are usually applied to the environment to
indirectly affect the system’s perception, such as by adjust-
ing the lighting in a dark room [5]. In this scenario, the
physical state includes the positions of objects, and a cog-
nitive action, such as turning on a light, does not affect the
state of the objects but instead reduces their uncertainty.
Other types of cognitive actions may be applied to adjust
the system itself, such as reconfiguring its own sensors
or actuators. An example of this is the adaptation of a
transmitted waveform in a cognitive radar system, as will
be discussed in Section IV. In addition, cognitive actions
may also be applied to influence state-control actions by
introducing another term, known as the entropic state,
to the cost function of the state controller [5].

The cognitive controller is responsible for the
decision-making behind the described cognitive actions in
the executive, as can be seen in Fig. 2, based on feedback
information from the perceptor [24]. However, it is not
always the case that all the different types of cognitive
actions exist in a particular problem. For example,
a cognitive radar system performs cognitive actions
only on its actuators and the environment. In doing
so, cognitive radar systems can estimate a target’s state
without being able to control the target physically [5].
Regardless, the mechanism behind the decision-making
in the executive often, but not always, involves the
implementation of RL for the cognitive controller. Other
methods such as Q-learning, for example, may be used.
Further details regarding the cognitive controller and the
implementation of RL in the framework are discussed
in Section V, which focuses on CC as the overarching
function of a CDS [5].

B. Memory
Building on the PAC, the cognitive process of memory

occupies its own physical place in a CDS in three forms,
as illustrated in Fig. 2: perceptual, executive, and working
memory. The specific function and responsibility of both
memory types slightly differ; however, the overall goal of
equipping a CDS with memory is to allow for the capture
and storage of long- and short-term information [4]. With
access to this information, a CDS can learn from its past
experiences in terms of action and perception, resulting in
improved performance and robustness.

According to the CDS framework, the structure of per-
ceptual memory is desirably hierarchical and consists of
several layers [17]. With this configuration, the motivation
is to perform perceptual abstraction of incoming stimuli or
measurements to represent the essence of an object, event,
or experience. The abstraction of incoming measurements
is then stored internally within the perceptual memory.
This is similar to and motivated by the human memory
system. This approach enables long-term memory in the
perceptual part of the CDS, as relevant information is
retained, while irrelevant information is discarded [25].
The executive memory performs the dual function of
perceptual memory in response to feedback information
from the perceptor. Cognitive actions performed by the
cognitive controller based on the information from the
perceptor are stored long term in the executive memory.
Thus, the executive memory associates a cognitive action
to each incoming measurement from the perceptor, which
can be used as a reference for future cognitive actions.
By introducing the output of the executive memory to the
cognitive controller and combining it into future policies,
a new policy considering both long- and short-term expe-
riences is achieved [24]. The executive memory essentially
maintains, in a probabilistic manner, the knowledge of
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the action space of the cognitive controller. This action
space is also associated with in measurement space of the
perceptual memory.

The role of the working memory is to reciprocally couple
the executive and perceptual memories, thereby acting
as an interface for short-term memory between the two
within the CDS [3]. With this integration, the cognitive
controller can carry out its actions in a synchronous fash-
ion, specifically when it comes to storing the predicted
rewards of planned cognitive actions in short-term memory
in every PAC. The concept of learning and planning is
the subject of discussion later on in Section V. Otherwise,
in summary, it can be said that the general role of memory
is to continuously learn from and model the behavior of
the environment, the measurement space, and the action
space of the CDS [24].

C. Attention

Unlike the PAC and memory, which occupy their own
physical places in the CDS, the cognitive process of
attention manifests itself within the framework through
algorithmic mechanisms. It exists as two, perceptual and
executive attention in the perceptor and the executive,
respectively, and both rely on localized cycles and feedback
links in their respective parts of the CDS [5]. Working
closely with and driven primarily by the presence of
memory, their responsibilities include the prioritization
of efforts and efficient allocation of resources. This is
achieved in the perceptor through various techniques that
can be used for filtering irrelevant information with help
from past characterizations of the environment stored in
memory. On the executive side, attention also exploits the
well-known explore–exploit tradeoff to facilitate strategies
for the learning and planning of cognitive actions for future
cycles. Specifically, the explore–exploit strategy mainly
serves to reduce the action space of future cognitive actions
for consideration by the learning mechanism (e.g., RL)
depending on the relevance to the perceived information
in the current cycle [3], [24]. The explore–exploit process
described is illustrated in Fig. 3, whereby the darkest point
represents the learned action in the action space from
the preceding PAC. The other eight, surrounding, lighter
colored points are the relevant cluster of possible actions
to be passed to the controller for planning in the current
PAC.

D. Intelligence

Like attention, intelligence does not occupy its own
physical place in a CDS. However, it builds on all the pre-
vious cognitive processes, such as memory and attention,
and utilizes them in an integrated fashion with the PAC
to facilitate computational intelligence through efficient
decision-making [4], [22]. The influence of intelligence
is distributed throughout the entirety of a CDS, whereby
its power and effectiveness in information processing are
derived from exploiting all the system’s feedback loops,

Fig. 3. Illustration of the explore–exploit strategy that represents

one of the manifestations of the cognitive process of attention,

as described in Section II-C.

both global and local. Quantifying the level of intelligence
of a system is a challenging task. However, computa-
tional efficiency and overall system efficiency are typi-
cally used as metrics to help measure intelligence for
comparative purposes. For example, if a system is com-
putationally complex yet highly efficient, it is said to be
more intelligent compared with a less-efficient system.
Intelligence in the CDS framework has the key role of opti-
mal decision-making in terms of the actions taken by the
controller on the system or environment of interest [17].
As such, the choice of algorithm for the cognitive controller
in a system is one of the major factors contributing to the
arguments of whether or not the process of intelligence is
satisfied.

E. Language

Language, the fifth principle of CDS, is primarily con-
cerned with providing the means for effective and efficient
communications between different constituents of a CDS,
or between external parties, such as other systems or
CDS. This final principle of cognition has generally been
considered outside the framework’s scope, as repeatedly
stated in most of Haykin’s literature [4], [23]. In addition,
it has been mentioned to be deferred for future research by
Haykin and Fuster [17]. Consequently, this article gener-
ally considers language to be outside the primary scope of
the study. This can also be mainly attributed to the fact that
the cognitive process of language has yet to be the subject
of detailed examination or research in the CDS framework,
which we have deduced from our survey of the existing
literature. However, this provides a significant opportunity
for future research work, particularly in the areas of nat-
ural language processing (NLP) and explainable artificial
intelligence (xAI). These rapidly growing areas of research
are critical for our understanding of CDS behavior and
will assist with user uptake as the public becomes more
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comfortable with these types of systems as they become
more embedded in our society.

It is also important to note that language in a CDS
is highly dependent on its application area. Further-
more, often, language is inherently already accounted
for in the application of interest. For example, Marinho
and Monteiro [26] mention that the basics of cognitive
radio’s communication protocol are limited to physical
and medium access control (MAC) layers and extensively
review the works done in those areas. Similarly, in most
radar applications, the communication protocols are stan-
dardized according to the IEEE 802.11 standard and the
improved IEEE 802.11p standard for communication in
vehicular environments, which are limited to channels
of 10-MHz bandwidth in the 5.9-GHz band of the spec-
trum [27], [28]. The heavily regulated nature of com-
munication protocols is among the main reasons behind
rendering language beyond the scope of consideration in
this article.

However, it is noteworthy to introduce and briefly
discuss the concept of RKRL proposed by Mitola and
Maguire [29]. The term cognitive radio was coined by
Mitola [30] and expanded on in his thesis in the sub-
sequent year as a means of enhancing the flexibility of
personal services and devices. Specifically, this is achieved
through RKRL, which is a declarative language for rep-
resenting knowledge about the radio environment. RKRL
consists of sets of rules that define relationships between
aspects of the radio environment to allow for knowledge
reasoning. This knowledge includes information about the
spectrum, radio wave propagation, modulation schemes,
and other factors, which can affect radio communica-
tions. In terms of radio etiquette, RKRL also encompasses
knowledge of devices, software modules, networks, user
needs, and much more. The goal of RKRL is to provide a
language framework for software-defined radios in which
data exchanges can be dynamically defined [31]. Further-
more, representing knowledge in this formal framework
allows software-defined radios to share information about
the radio environment with other users, as well as other
parts of larger systems or networks. As a result, more
efficient use of the radio spectrum and better coordination
amongst software-defined radio users can be realized.
It should be noted, however, that, based on a quick review
of the literature on a software-defined radio, RKRL has
not been widely adopted or implemented in the academic
community or industry. A severe dearth of literature exists
on the topic, and RKRL has yet to see any significant
adoption or use in real-world systems. Despite this, these
efforts demonstrate the first and only efforts in the field
of CDS to approach the cognitive process of language.
Furthermore, as will be discussed in Section III of this
survey article, this work is one of the inspirations behind
Haykin’s work on cognitive radio in [2]. Regardless, RKRL
and cognitive radio are considered precursors to the CDS
framework, in which they were proposed prior to the
proposal of the CDS framework. This matter is the subject

of many detailed discussions and explanations throughout
the remaining sections of this survey.

Finally, considering the rapid advancement of technol-
ogy, the issue of cybersecurity is of paramount importance
when it comes to the context of language as a cognitive
process. Although cybersecurity in language may not have
been previously mentioned in the literature, we consider
it to be a matter that in all future research and practical
applications as the field of CDS evolves. This will help min-
imize the possible dangers that any CDS may encounter.
Other future research activities in the area of language are
considered in Section VIII.

III. C O G N I T I V E R A D I O : A P R E C U R S O R
T O C D S
Cognitive radio has been defined as an intelligent wireless
communication system, which is aware of its environment
and utilizes the methodology of understanding-by-building
to learn from the environment and adapt to statistical
variations in the input stimuli [2]. However, the concept of
cognitive radio first appeared in the literature in 2005, six
years before the introduction of the CDS framework in [4].
Thus, in this section, it will be made readily apparent that
cognitive radio does not strictly adhere to or even use
the CDS framework. Despite being inspired by the idea of
human cognition, cognitive radio has diverged and evolved
into its own respective area of study. As such, cognitive
radio is regarded as a precursor and motivation to the
development of the CDS framework.

Even though cognitive radio does not strictly fall under
the classification of a CDS, this section of this article
serves to highlight the similarities and differences between
cognitive radio and the CDS framework. Furthermore, this
section aims to provide further insight into the timeline
and development of the field of CDS over time, which
has been graphically summarized in Fig. 1. This will be
achieved by introducing and discussing the architecture
of cognitive radio and whether any of the five pillars
of cognition are satisfied even though they have not
been a guiding principle in its development. A review of
the main aspects and research areas of cognitive radio
will follow, whereby further parallels between the two
paradigms will be examined. In addition, a summary of
all the surveyed works in the field of cognitive radio is
presented and can be found at the end of the Section in
Table 1.

A. Background and Motivation

Radio technology applications operate by using trans-
mitters and receivers that utilize the electromagnetic
radio spectrum. The radio spectrum is a precious natural
resource by which governmental bodies license the use of
and regulate. The traditional procedures adopted by the
FCC to issue licenses and allocate bands exclusively to
single entities have seen increased criticism in recent years.
The exclusive licensure of these bands prohibits other
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Table 1 Summary of Published Works on Cognitive Radio

entities or devices from transmitting significant amounts
of power within them. The FCC has also designated a
few unlicensed bands known as the industrial, scientific,
and medical radio bands over which popular Wi-Fi devices
transmit. However, these ISM bands are being occupied
rather quickly.

The significant underutilization of the radio spectrum
was made apparent in a 2002 report prepared and pub-
lished by the FCC; the aim was to improve the manage-
ment of this precious resource within the United States’
jurisdiction [32]. The task force responsible for the report
consisted of top-level FCC professionals whose exper-
tise spanned multiple disciplines and industries. In terms
of spectrum utilization, the main findings of the report
detail that, if portions of the radio spectrum were to be
scanned, many of the legally licensed and owned frequency
bands would be vastly underutilized by the primary users.
As such, this leads to the following definition by Haykin for
spectrum holes [33]:

“A spectrum hole is a band of frequencies assigned
to a primary user, but, at a particular time and specific
geographic location, the band is not being utilized by that
user.”

In recent years, researchers have recommended allow-
ing secondary users, who are not otherwise serviced,
access to spectrum holes unoccupied by primary users
given the appropriate spatial and temporal conditions to
achieve improved spectral efficiency [2], [34]. Cognitive
radio is a term coined by Mitola and Maguire [30] and
built on the novel idea of software-defined radio and
expanded in Mitola’s Ph.D. thesis. Furthermore, as men-
tioned in Section II-E, Mitola’s cognitive radio was based
on the concept of RKRL, a language framework to facilitate
knowledge reasoning and exchange between devices. Cog-
nitive radio has been suggested as a novel way of solving
the spectrum underutilization problem by exploiting the
presence of spectrum holes [2], [30]. This technology
facilitates the coexistence of the incumbent primary users
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with the secondary users by dynamically adapting its trans-
missions to search for unutilized frequency subbands. This
is carried out while minimizing interference and providing
the means for accessing those subbands [33]. Spectrum
holes pose technical challenges in their identification and
exploitation, rooted in the stochastic nature of how they
appear and disappear.

B. Overview of Cognitive Radio

Cognitive radio consists of three functional blocks or
cognitive tasks that form a cognitive cycle: radio scene
analysis and channel identification, carried out by the
receiver, and radio scene actuation, by the transmitter.
The processes involved in a cognitive radio are repre-
sented in a flow diagram in Fig. 4. Radio scene analysis
is conducted through an environmental scene analyzer
within the receiver, which senses the radio environment
to discover spectrum holes and their locations in time and
space [4]. Another critical function of the environmental
scene analyzer is identifying the location of interferers in
time and space, and estimating a metric known as the
interference temperature. Effectively, spectrum holes and
interferences can be regarded as the spatiotemporal state
of a radio’s environment from the cognitive radio’s frame of
reference. Channel identification is also carried out in the
receiver and encompasses the estimation of CSI and the
prediction of channel capacity for use by the transmitter
based on the interference temperature. This results in the
formation of a local feedback loop [2]. A new metric
known as the interference temperature is proposed to
measure the radio frequency power available at a receiver.
This metric reflects the power generated by noise sources
and other entities. Furthermore, the new metric makes
it possible to enforce a maximum amount of tolerable
interference for a given frequency band at a particular
location, thus characterizing the worst case environment
in which a receiver would be expected to operate [32].

As mentioned previously, information about the pres-
ence and location of spectrum holes, predicted CSI, and
capacity in the transmitter is relayed from the receiver.
Given this feedback information from the receiver, a TPC
is utilized to allocate limited battery power among com-
peting secondary or cognitive radio users with this infor-
mation [2]. Furthermore, the DSM is responsible for dis-
tributing the available spectrum among the competing
secondary users. Following the processes carried out by
TPC and the DSM, the radio scene actuator is responsible
for transmitting a signal, closing the global feedback loop.

Despite the lack of guidance from and reference to
Fuster’s paradigm of cognition, several observations can be
made about cognitive radio. First, the presence of the PAC
in cognitive radio is considered to be fulfilled by having a
receiver perceive the environment and a transmitter acting
in response to that receiver’s perception of the environ-
ment through a global feedback loop. As for memory, there
is no mention throughout the cognitive radio literature

Fig. 4. Overview of a basic cycle in a cognitive radio system and the

three fundamental tasks involved (adapted from [2]).

regarding the need for storage or retrieval of any past data
or experience. Consequently, it is determined that the cog-
nitive process of memory is absent in the cognitive radio
architecture. In the case of the cognitive process of atten-
tion, an argument can be made that attention is present
only due to the nature of the TPC algorithm described in
the literature [2]. Specifically, an IWFA is described for
this task, which is equipped with the ability to adjust the
power allocation among several users depending on their
data transmission rate. If a user’s data-transmission rate is
greater than a target value, the transmit power is reduced.
On the other hand, if the rate is below the target, the
transmit power is increased while keeping in mind that the
interference temperature must not be violated. Although
this implementation of the mechanism of attention does
not strictly adhere to that described earlier in Section II-C,
it can still be argued to be another form or degree of the
manifestation of attention. It must be emphasized again
that it is due to the IWFA that cognitive radio exhibits some
degree of the process of attention; however, certainly not to
the full extent that one would expect from a typical CDS.
Finally, when it comes to the cognitive process of intelli-
gence, there is evidence of its existence in cognitive radio.
This is mainly due to the ability of cognitive radio systems
to exploit the feedback information from the receiver in
the transmitter and enable effective decision-making with
the TPC through the use of game-theoretic and statistical
learning-based approaches [2].

C. Related Works on Cognitive Radio

1) Spectrum Sensing: Among the many fundamental
processes involved in cognitive radio, the most exhaus-
tively researched is the task of spectrum sensing, which is
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embodied by radio-scene analysis. As briefly mentioned,
spectrum sensing is responsible for locating spectrum
holes and monitoring the appearance and disappearance
of primary users. The purpose of this is to minimize the
interference that the cognitive radio users may cause to the
primary users. Spectrum sensing also entails determining
the resolution of each spectrum hole, the estimation of
spatial directions of any incoming interferers, and the
classification of signals. In the last decade, there have been
significant efforts to study and improve spectrum sensing
techniques and performances, and in this section, the most
prominent techniques and approaches will be highlighted.
For a more comprehensive review of this topic, we refer
the reader to [18].

Energy detection is considered the most straightfor-
ward approach to spectrum sensing, providing reasonable
performance levels without much computational complex-
ity [35], [36]. This approach requires no a priori knowl-
edge of the primary signal, making it robust to statistical
variations of the signal, and can detect the presence or
absence of the primary signal [37]. The RF energy in the
channel is measured to determine if a channel is idle or
not, and the input signal is subsequently filtered using a
bandpass filter to select bandwidths of interest. Then, the
signal is squared, and the integral is taken over the obser-
vation interval and then compared to a predetermined
threshold to determine the presence or lack of the primary
user signal [38]. However, there are disadvantages and
drawbacks to the energy detection approach; the first is
that it performs poorly under low SNR conditions. A low
SNR means that the noise’s variance is not known with
enough accuracy, and thus, the uncertainty of the noise
renders the energy detection approach useless [39]. Fur-
thermore, energy detection techniques cannot distinguish
other cognitive users with whom a channel is shared from
primary users requiring the channel to be vacated [40].
The minor errors resulting from noise power estimation
may result in a significant performance loss due to the
dependence of the threshold used in energy detection on
the noise variance.

Alternatively, the cyclostationary detection approach to
spectrum sensing is more robust to noise uncertainty than
energy detection techniques. In general, signals that are
human-made are nonstationary, and many of these signals
are often cyclostationary. A signal is characterized by the
property of cyclostationarity if its statistics exhibit period-
icity, often caused by the modulation format and coding,
or it may be produced in such a way intentionally to
assist in channel estimation and synchronization [37]. It is
possible to exploit this periodic nature to detect random
signals with specific modulation types in a noisy back-
ground with other modulated signals, otherwise known as
cyclostationary detection. The detection of these signals
is achieved by first computing the CAF of an observed
signal and then taking its discrete Fourier transform to
observe its 2-D SCF [41]. The importance of the SCF is
due to the correlation between widely separated frequency

components due to the spectrum redundancy caused by the
modulated signal’s periodicity. From the SCF’s-plane anal-
ysis, detection is achieved by finding the unique cyclic fre-
quency that corresponds to the peak in the plane [42]. The
robustness of this approach to noise and interference from
other signals lies in the fact that the noise only has a peak
in the SCF at a cyclic frequency of zero, and the various
other modulated signals have unique cyclic frequencies.
Therefore, it is possible to detect the signal of a primary
user from cognitive user signals over a frequency band.
A limitation of the cyclostationary detection approach is
the increase in implementation complexity compared to
energy detection [43]. Another major limitation of this
approach is its requirement of a priori knowledge of the
primary user signal properties, such as the modulation
format.

Due to the unreliable nature of wireless communica-
tions, which are further compounded by the uncertainties
of accessing those spectrum holes, it is often preferred
that a nonparametric approach to spectrum sensing is
undertaken. Using a nonparametric approach, modeling
the system under study can be avoided, and instead, it is
possible to deal directly with the stochastic process under
study. Energy detection is one such approach; however,
it is affected by significant limitations discussed earlier in
this section. The MTM was proposed by Haykin et al. [44]
to address these issues by reliably and accurately esti-
mating the power spectrum of RF stimuli as a function
of frequency and subsequently identifying locations of
spectrum holes within the spectrum. This nonparametric
approach uses multiple tapers (or windows) to reduce
the bias of the power spectrum estimate of a stochastic
signal. With the use of multiple tapers, the increase in
the estimate’s variance resulting from loss of informa-
tion due to the truncation of time-domain windowing
that is usually accompanied by using a single taper is
mitigated.

In addition to locating spectrum holes and estimating
power contents, a sense of direction is required when
analyzing the radio scene in the neighborhood of a local
receiver to listen to any inbound interfering signals from
unknown bearings. In other words, a sensing technique
must be equipped with space–time processing capabilities,
which the MTM naturally lends itself to. This is due
to an effective tool known as singular value decomposi-
tion [44]. The studies expand on the MTM by embracing
the Loève transform and, thus, enabling time–frequency
analysis to be performed by cognitive radios. This fea-
ture allows for the MTM to find properties of cyclosta-
tionarity in signals. Furthermore, the authors perform
experimental simulations and apply the MTM to perform
wideband spectrum sensing in ATSC and LMR signals.
From the results of the experimentation, the literature
concludes that the proposed MTM with time, space, and
frequency analysis capabilities is a robust spectral estima-
tor, which resolves the bias–variance dilemma. Further-
more, it is shown that the MTM is feasible for real-time
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computation, has the capability of multidirectional listen-
ing, and characterizes the property of cyclostationarity in
the receiver’s input [44].

In more recent years, there have been increased
efforts in the literature focusing on applying ML and
DL techniques for spectrum sensing in cognitive radio.
ML approaches can effectively extract the features of
various environments in a data-driven methodology and
have been proven to provide superior performance in
many different applications. Thilina et al. [45] proposed
several ML models, such as k-means clustering, SVM,
kNNs, and GMMs as classification and clustering tech-
niques to determine the availability of spectrum holes from
incoming signals. The authors showed that the model’s
performances are rather impressive and exceed existing
techniques. However, a limitation of some of these models
is their reliance on information from the primary user
about the spectrum occupancy of incoming energy vectors
during their training phase. As a result, these models are
often more challenging to implement. Lee et al. [46] also
proposed a cooperative spectrum sensing scheme, where
a CNN is trained with simulated data to autonomously
learn strategies for combining individual sensing results
of cognitive users to detect a primary user instead of
explicit mathematical modeling. The proposed CNN model
was shown to have greater sensing accuracy than con-
ventional approaches and lower computational overhead.
Liu et al. [47] suggest that a more practical approach is
required and proposed a CNN that relies on its input from
a sample covariance matrix due to its versatility as a test
statistic. The proposed CM-CNN takes advantage of the
input’s 2-D structure to extract discriminative features. The
CM-CNN was demonstrated to perform similar to other
conventional approaches through experimentations while
being robust to SNR conditions and not depending on
a priori information from primary users.

2) Channel-State Estimation: The CSI in communication
systems contains knowledge about the properties of a
channel in a communication link. Channel-state estimation
is a feature needed in a receiver of cognitive radio for
coherent detection of transmitted signals to acquire CSI to
describe the nature of the propagation of signals from the
transmitter to a receiver [2]. The information describing
how a signal propagates represents the combined effects of
scattering, fading, and power decay over distance. The CSI
is also used to compute a channel’s capacity and is required
for the transmitter to carry out transmit-power control,
which is the focus of discussion in Section III-C2. Despite
the practical significance of channel-state estimation in
improving the reliability of spectrum sensing in cognitive
radio, research on novel methods and advancements in this
field has been relatively scarce compared to other areas of
cognitive radio systems.

Generally, the channel-state estimation problem is dealt
with using training-based strategies, which often requires
a pilot signal [48], or blind strategies that use the statistics

of incoming data and eliminate the need for a pilot sig-
nal [49]. The training-based approaches can achieve signif-
icantly better accuracy than blind estimators but are often
imprudent in managing channel bandwidth and transmit
power. The reasoning behind this is that channel estima-
tion can be impaired by pilot signals transmitted by other
users, which renders the addition of transmit power inef-
fective [50]. This effect is known as the pilot contamina-
tion effect. Furthermore, when it pertains to channel-state
estimation techniques, most of the published literature on
the topic assumes systems based on the OFDM modulation
strategy [51]. Inherent features of OFDM allow them to be
computationally efficient and flexible, and commend them-
selves to cognitive radio. Building on this success, GFDM
has been proposed to address weaknesses in OFDM, such
as spectral leakage to adjacent frequency bands resulting
from rectangular pulse shaping [52]. However, interfer-
ence is introduced in this approach, which degrades GFDM
systems’ performances due to using a root-raised cosine
filter. Owing to the subsequent work of Datta et al. [53],
it has been shown that, by using a successive interference
canceller, the degradation in performance can be miti-
gated.

We observe, interestingly, that, in recent years, there
has been a proliferation of literature investigating the
use of ML-based channel-state estimation techniques for
legacy communication systems. For example, in [54],
an ML-based model using ANNs in OFDM systems is pro-
posed, and similarly, Soltani et al. [55] proposed a frame-
work for channel estimation in OFDM using CNNs, with
both approaches demonstrating superior performances
compared to traditional approaches. In [56], a hybrid CNN
and LSTM model is used to estimate CSI in 5G commu-
nications. As such, we postulate that further investigation
into applying ML techniques for channel-state estimation
in cognitive radio networks may serve as a worthwhile
avenue of consideration for future research efforts.

3) Spectrum Access: With the ability to now identify the
location of spectrum holes using spectrum sensing tech-
niques and the estimation of CSI to determine a channel
capacity, a cognitive radio’s transmitter is then responsible
for spectrum access [57]. In Fig. 5, the concept of locating
spectrum holes in time and space and estimating channel
capacity is illustrated. From this figure, it can be seen that
a third component must be factored into consideration
in cognitive radio systems to facilitate spectrum access:
the power of a secondary user’s transmitted signal. The
TPC, located in the transmitter, is responsible for allocat-
ing and distributing transmit power to secondary users
to maximize their transmission rates while ensuring that
interference on primary users is below prescribed thresh-
olds [2]. Subsequently, the DSM, also in the transmitter,
is responsible for devising a decentralized dynamic spec-
trum management policy to utilize spectrum holes effec-
tively and efficiently among competing secondary users in
a manner that ensures reliable communication across the
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Fig. 5. Illustration of the concept of locating and accessing spec-

trum holes in cognitive radio. Each color of the occupied spectrum

represents a different primary user (adapted from [57]).

channel [2]. The operation of the TPC in a transmitter is
generally performed cooperatively with the DSM. As such,
the focus of the discussion in this section will be on both
components.

Among the most notable literature contributions to spec-
trum access is a robust IWFA proposed by Setoodeh and
Haykin [58], which is a formulation of the classic IWFA
from [2]. The authors describe the IWFA as a viable can-
didate for resource allocation in cognitive radio networks,
citing their low complexity, fast convergence, distributed
nature, and convexity. The robust IWFA, which is imple-
mented in a decentralized manner, takes the form of a
Nash-equilibrium game, utilizing the effects of propagation
in its formulation through interference gains [58]. The
main motivation behind the robust IWFA formulation is to
address the problems of the appearance and disappearance
of spectrum holes and other cognitive users with the cost of
the compromise of optimality. However, the robust formu-
lation guarantees an acceptable level of performance even
under worst case conditions and, through experimental
simulations, was demonstrated to maintain stability and
consistently converge to equilibrium solutions [58].

In the above examples, we discuss an approach assum-
ing a decentralized cognitive radio network spectrum-
sharing structure. However, two other structures exist,
which are distributed networks and hybrid networks. Cen-
tralized network approaches are similar to traditional com-
munications in which there must be a base station to
function as a central controller. The central controller is
responsible for allocating the available spectrum among
secondary users and optimizing operations by enforcing
adjustments in the transmit power of the users. In hybrid
networks, multiple base stations exist, each serving a cell
that covers multiple secondary users. The spectrum access
transmit-power allocation within a cell is controlled by its
respective base station in a centralized model form, and

the access among each of the base stations then takes the
form of a distributed network.

Within each spectrum-sharing framework, a vast num-
ber of different considerations must be factored in, includ-
ing an increasing variety of algorithms to choose from,
as studied in the literature. Thus, in fairness to the sig-
nificance of spectrum sharing and its advances, we war-
rant the topic beyond this survey’s scope due to space
constraints. In place, we suggest the reader refer to a
review of spectrum resource allocation techniques in [59]
and [60], and a detailed review and discussion of robust
transmit-power techniques in [61]. We make one impor-
tant final observation regarding the advancements of spec-
trum access in cognitive radio, which is the increased
attention directed toward implementing and applying RL
algorithms for this task. As such, we refer the reader
to [19] and [62] for surveys on the topic of RL-based
spectrum access.

IV. C O G N I T I V E R A D A R : A P R E C U R S O R
T O C D S
Cognitive radar was proposed in 2006 [3], a year after
cognitive radio but similar in the sense that it is a discipline
that was proposed prior to the introduction of the CDS
framework. Cognitive radar can be considered another
precursor to the CDS framework, which has also diverged
and evolved into its own area of study but provides insight
into the evolution of the CDS theory over time. Despite not
abiding by the principles of Fuster’s paradigm of cognition,
cognitive radar is, nonetheless, motivated by the ideas of
cognition and intelligence. Specifically, it will be shown in
Section IV-A that the cognitive abilities of a bat in its adap-
tation of its transmitted signals based on the target’s state
and characteristics is one of the main sources of inspiration
for cognitive radar. More interestingly so, cognitive radar
is the first application that has been revisited by its original
authors after the proposal of the CDS framework and
subsequently adapted to adhere to it, as will be examined
in Section V.

This section will present and examine the theory behind
cognitive radar to provide insight into and context over
the development of the CDS framework. Furthermore,
we will investigate whether any of the pillars of cognition
is satisfied despite not being guided by them, as well
as review the most significant related works in the field.
Finally, pertinent details and summaries of the surveyed
work on the cognitive radar are presented in Table 2.

A. Background and Motivation

Radar technology is used in tracking and detection
systems and operates similar to radio in the sense that
it makes use of both a receiver and a transmitter. The
applications of radar span both military and civilian uses
in surveillance, tracking, imaging, and detecting weather
formations. The radar consists of two critical subcom-
ponents known as the receiver and the transmitter. TAR
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Table 2 Summary of Published Works on Cognitive Radar

systems operate by illuminating the electromagnetic envi-
ronment using a transmitter, which produces returns or
echoes by reflecting off unknown targets within the envi-
ronment. A radar’s receiver is then tasked with receiving
and processing the radar return to determine the target’s
properties, and as such, a TAR is considered a feedfor-
ward information processing system [1]. FAR systems are
another class of radar intended to manage the allocation
of available resources for control in an online adaptive
manner. Examples of such resources that may reside in
the transmitter include, for example, libraries of transmit
waveforms for target tracking or sets of scan times for
environmental surveillance [1]. An FAR system is essen-
tially a closed-loop feedback control system, as feedback
information from the receiver to the transmitter is required
to facilitate control of the receiver by the transmitter.

Upon initializing a traditional radar system, an elec-
tromagnetic link is formed between the system and its
surrounding environment, strongly influencing the radar
returns or echoes. A radar system’s knowledge of its envi-
ronment is developed from each scan to the next, and
the radar receiver eventually determines the locations of

unknown targets once the targets desired for surveillance
are declared. The need to keep a record of all past data for
the radar is eliminated by adopting a state-space model
of the environment and updating, recursively, the state
vector representing estimates of parameters relating to
the environment [3]. The nonstationary nature of the
environment, which is explained by statistical variations in
the weather and unknown targets at unknown locations,
requires recursive updating of estimates of the environ-
mental state. This process of recursive updating is also
known as adaptivity and is a feature that is generally
confined to the receiver in current radar system designs.

In 2006, Haykin [3] described cognitive radar for the
first time, highlighting it as a new generation of radar
systems with tracking capabilities and reliability that will
exceed the reach of traditional radar systems. The echolo-
cation ability of the bat using sonar waves, which provides
bats with information about the range, relative velocity,
size features, azimuth, and elevation of a target, is the
inspiration behind cognitive radar [63]. The ability to
extract this useful information lies in the complex neural
computations performed within, as Haykin quotes, the
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Fig. 6. Block diagram of a dynamic closed-loop feedback system for cognitive radar (adapted from [3]).

“size of a plum” [1]. Using echolocation, the bat can pursue
and capture targets with aptitude and accuracy that would
far exceed any radar engineer’s capabilities. The answer
behind how they are equipped with these skills lies in
the fact that, shortly after birth, bats use their innate
hard-wired brains to construct rules of behaviors through
a mechanism we refer to as experience [64]. With the
knowledge and experience acquired over time, bats learn
to adapt their transmitted signals based on the parameters
and state of their targets of interest to extract more accu-
rate and reliable information about their states [65]. This
knowledge of a bat’s echolocation system and the potential
breakthroughs that can be realized through biomimicry is
the motivation behind Haykin’s pioneering work in cogni-
tive radar [1].

Specifically, the ability of a bat to extract information
about the target of interest is emulated in the receiver
of cognitive radar systems, as can be seen in Fig. 6.
In each cycle, the storage of knowledge and experience
gained from the perceived information is also carried out
in the receiver—just as the bat learns from experience
over time. This information is subsequently relayed to the
transmitter, which is responsible for intelligently deciding
on the adaptation of the transmit waveform based on the
feedback information from the receiver.

Thus, the task of the transmitter is similar to that of
the bat’s brain, in which they are both responsible for
deciding how to adapt their transmitted waveform based
on perceived information and past experiences. It will be
demonstrated further in this section that this is possible in
cognitive radar through advanced algorithms responsible
for decision-making. The ultimate result is more effective
illumination of the target and the environment, which
leads to improved tracking accuracy of targets by the bat
and cognitive radar.

B. Overview of Cognitive Radar
There are three fundamental parts in cognitive radar

systems: the receiver, transmitter, and the environment,
as shown in Fig. 6. The radar-scene analyzer is one of the
elements in the receiver and is responsible for providing
information about the environment in response to the
radar returns or other relevant information on the environ-
ment such as temperature, humidity, pressure, and more,
which is gathered by sensors other than the radar itself [3].
Another element in the receiver is the target tracker or
filter, which makes decisions on the possible presence of
targets based on information from the radar-scene ana-
lyzer. We start with a state-space model in tracking applica-
tions, generally treated as state-estimation problems under
the Bayesian framework. Within the state-space model
exists a pair of equations, the first of which is the sys-
tem equation, which describes the evolution of the state
across time with system noise as a driving force, and the
second is the measurement equation that describes the
dependence of the measurements on the state corrupted by
measurement noise. Due to the typically nonlinear nature
of the state-space model, an approximation of the optimal
Bayesian filter is required. From there, the approximated
Bayesian filter is used as a means of perception of the
target/environment based on incoming measurements [3].
A feedback link is required from the receiver and is respon-
sible for relaying information about the radar environment
and target from the radar-scene analyzer and the target
tracker for action by the transmitter.

The function of a transmitter in a cognitive radar is to
indirectly control the receiver by illuminating the environ-
ment based on feedback information received. Specifically,
the transmitter is responsible for adjusting its transmitted
waveform effectively and robustly by considering the size,
range, and velocity of its target and other environmental
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factors. Within the transmitter’s first component, dynamic
programming is resorted to as a means of optimal control
of the transmitter actuation, given the feedback received
from the receiver. In the literature, Bellman’s dynamic
programming is the method of choice. However, when the
dimensionality of either the state, measurement, or action
spaces is high, one must resort to approximate dynamic
programming [3], [23]. Cognitive radar extends adaptabil-
ity, which is generally confined to the receiver in traditional
radar systems, to the transmitter. In doing so, cognitive
radar can learn from experience how to deal with differ-
ent targets at varying ranges of any size effectively and
robustly.

Although discussion of Fuster’s principles of cognition
is not present within the literature on cognitive radio,
it can be identified that the first pillar of cognition, the
PAC, is satisfied in cognitive radar due to the presence of
a receiver to perceive the target and environment and a
transmitter to act in response to perceived information, all
in the presence of a global feedback loop. The presence
of this process in cognitive radar can be attributed to the
motivation in emulating the bat’s ability to perceive and
adapts its transmission based on the information received,
as discussed in Section IV-A, and coincidentally satisfying
the PAC. Intelligence is also identified to be accounted
for due to the global and local feedback loops, which
enhances the controller’s information-processing power
and the algorithmic mechanisms throughout the system.
The function of intelligence is to enable the transmitter’s
decision-making capabilities to pick a transmit-waveform
vector to exercise control over the receiver to perform
with effectiveness and robustness, just as the bat does in
deciding how to adapt its transmitted signal based on its
target’s states.

However, after extensive study and examination of the
literature on cognitive radar, we note that there has been
neither consideration nor implementation of the cognitive
processes of memory and attention. Despite Haykin’s dis-
cussion on the bat’s ability to learn from experience and
construct rules of behavior over time, there is no physical
or direct approach to facilitate the cognitive processes of
memory and attention, which are core to such behavior.
It may be argued that the use of dynamic programming
to select the optimal waveform based on learned rewards
may somewhat resemble the act of learning from experi-
ence over time; however, this is only true for a very limited
number of possible scenarios or action-space size. Without
the presence of a true form of memory to facilitate learning
of a wide and nonfinite range of experiences, dynamic
programming falls burden to the problems of high dimen-
sionality and is consequently rendered too computationally
expensive and infeasible.

C. Related Works on Cognitive Radar

1) Waveform Design: One of the most critical processes
of cognitive radar systems is adapting the transmitted

waveform to the environment through which it propa-
gates in response to information about that environment.
Waveform design is a topic of research that has received
considerable interest in the past years. Traditionally, the
approach to optimal design of waveforms for radar systems
has been dependent on the task. For instance, when detect-
ing a specific target, the SNR of the output signal is usually
maximized, and the energy of the waveform is distributed
to the corresponding target’s largest mode [66]. Another
example is when the task is to estimate the parameters of a
single target from a given ensemble; the transmitted wave-
form must distribute the energy to several target modes in
a matter, which maximizes the mutual information of the
received signal and target ensemble [66], [67]. However,
cognitive radar systems require an approach to waveform
design that allows for more flexibility to optimize and
account for various competing design criteria.

Haykin et al. [68] proposed a waveform design frame-
work to synthesize waveforms providing a smooth tradeoff
between different detection and estimation criteria and
accommodating various constraints imposed on the trans-
mitted spectrum. In their approach, the authors seek to
maximize the mutual information of the target ensem-
ble and received signal, subject to lower bounds on the
specified target’s SNR, bandwidth constraints, and energy
normalization [68]. Despite showing that the formulation
of this problem is not convex and challenging to solve,
the authors prove that it can be transformed into a convex
problem in the waveform’s autocorrelation. A customized
interior-point algorithm is developed in the study and
demonstrated to solve the problem efficiently through
numerical examples. The model developed assumed that
estimates of the target and spectral density of the Gaus-
sian ensemble were known precisely with a radio scene
analyzer; however, the authors comment that, in practice,
these terms may not be known with such precision. There-
fore, the authors state that insight from [67] and [69] will
serve as motivation for future efforts to develop waveform
design techniques providing more robust performance in
the presence of imperfect estimates [68].

He et al. [70] proposed a stopband cyclic algorithm for
unimodular transmit sequence design. The algorithm was
implemented to adapt to the need to avoid reserved fre-
quency bands and narrowband interference, and improve
the correlation properties of the transmit waveform as
desired for specific applications. A feature of the pro-
posed SCAN is its ability to design discrete sequences
whose spectrum can be suppressed in arbitrary bands [70].
Such sequence designs can be used for active sensing
and spreading sequences for spread spectrum applications,
such as code division multiple access systems [71]. Starting
from random initializations, SCAN can generate many
similar sequences with desirable properties and, through
numerical examples, was demonstrated to handle very
long sequence designs efficiently. The authors extend on
SCAN by introducing weighted terms in the penalty func-
tion, and the WeSCAN algorithm was able to generate
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sequences with improved frequency stopband suppression
but at the cost of increased computational complexity and
a decrease in correlation [70].

Generally, radar and radio communications have been
independent research entities in the research literature.
In response to this, an approach to combine radar and
communication capabilities within a single waveform
design for cognitive radar-radio networks was proposed by
Nijsure et al. [72]. UWB signals are used for their high
spatial resolution and immunity to path fading to address
existing issues with the coexistence of radar and radio in
mission-critical systems, where information from multiple
radars functioning in tandem with one another must be
integrated as one. A joint wireless communication and
radar technology system is postulated as a cost-efficient
alternative solution for intelligent surveillance, which
requires sensing the environment and establishing ad hoc
communication links [72], [73]. In their work, the authors
use a UWB-PPM technique to obtain a unified waveform
design solution for radar and communications. A mutual
information minimization approach is used to design the
UWB transmission sequences and then embed them with
communication data using the PPM scheme. An analysis of
the proposed methodology is provided in the study, high-
lighting the improved target impulse response and range
resolution and the high data rate performance over short
ranges from a communication perspective [72]. A unified
system such as the one proposed by the authors, which
ensures maximum information extraction from the radar
scene and better discrimination capability, may constitute a
future unique and cost-efficient platform for applications in
intelligent surveillance. These statements hold especially
true in applications where both environmental sensing and
ad hoc communication links are essential [72].

2) Single-Target Tracking: In the surveyed literature, the
application of cognitive radar for single-target tracking is
among the first to receive attention. However, our survey
found that the first experimental study confirming cogni-
tive radar’s superior performance was not published until
six years after the application was proposed. During those
six years, however, there have been studies carried out by
Haykin et al. [74], [75], by which the theoretical validity of
cognitive radar is justified and substantiated. In those stud-
ies, numerical simulations using an FAR were carried out,
emphasizing the CKF [76] for filtering in the receiver and
the introduction of a cognitive waveform selection algo-
rithm in the transmitter based on approximate dynamic
programming principles and global feedback to embody a
PAC. The purpose of the waveform selection algorithm is to
select the optimal waveform parameters from a prescribed
library of possible waveforms arranged as points in a grid
while minimizing a measure of tracking error formulated
as an optimization problem in the literature [74].

As a reminder to the reader, memory and attention
were considered beyond the scope of the studies pre-
sented in [74] and [75], but the studies demonstrated and

validated the superior tracking performance exhibited over
traditional TAR due to the ability to adapt transmitted
waveforms to the target and environment. However, agile
jumps were observed of the action points in the grid of
possible waveform parameters. The authors attribute this
effect to the absence of memory and attention. As such, the
system has no notion of utilizing and exploiting previous
actions to learn the landscape of all actions and build
local neighborhoods of search spaces for future actions.
Due to this limitation of the cognitive waveform selection
algorithm, the approach has been, therefore, noted to be
very computationally expensive by Haykin et al. [75].

Motivated by their previously discussed findings,
Haykin et al. [77] continued their research by simulating
and experimenting with fully cognitive radar and provid-
ing a comparative analysis against a TAR and FAR. In the
receiver, a continuous-discrete CKF is used to perceive
the environment, the performance of which is assessed
using the PCRLB, which represents the lowest possible
mse for deterministic parameter estimates [77]. An LFM
waveform pulse with Gaussian amplitude modulation is
used to formulate the transmitted waveform. The con-
trol of the transmitter is governed by a formulation of
Bellman’s dynamic programming, whereby the practical
problem of requiring a Markovian environment and perfect
knowledge of the state is overcome by introducing an
information state vector, resolving this to an imperfect
state-information problem.

The novelty of this work, however, lies in the fact that
the authors acknowledge Fuster’s principles of cognition
for the first time in any of their works. Specifically, the
authors describe a guideline for the design of memory coin-
ciding with the description provided in Section II-B and of
a hierarchical nature to perform feature abstraction, such
as the autoencoder network. Perceptual memory exists in
the receiver, which is tasked with associating the measure-
ment space to a grid point in the system-model library.
Each preprescribed point in the system-model library rep-
resents a different set of values of the nonlinearity (respon-
sible for the transition from one state to another) and
covariance of the system noise [77]. Executive memory is
situated within the transmitter and is similar to perceptual
memory in structure and operation, with the difference
that its input is the feedback information from the receiver,
which it must match to a transmit-waveform library. The
transmit-waveform library’s grid points are preprescribed
and represent a different combination of two parameters
of the transmit-waveform vector. The working memory
is reciprocally coupled to the perceptual and executive
memory and, unlike them, is short term in nature. The
working memory acts to correct the actions of the per-
ceptual memory should they pick a grid point that is
incorrectly matched to the input. Similarly, the process of
attention is accounted for through the implementation of
the explore–exploit strategy, as mentioned in Section II-C,
to reduce the global search to a local one in the percep-
tual and executive memory by determining a subset of
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Fig. 7. Mathematical model of a generalized framework proposed

for a cognitive radar system (adapted from [78]).

grid points lying in the immediate neighborhood of the
preceding PAC’s selected grid points [77]. Finally, the last
cognitive process, intelligence, is considered to manifest as
the algorithmic mechanism that facilitates decision-making
while accounting for and anticipating future actions and
outcomes with the knowledge gained from the perceptor
and stored in memory.

Experimental simulations involving tracking a single
target with a coordinated turn, described by a 7-D state
vector, demonstrated that the cognitive radar achieved the
most accurate tracking performance and lowest RMSE in
its state estimates, demonstrating an RMSE reduction of
98% and 78% over the TAR and FAR, respectively [77].
Furthermore, it was shown that, with cognitive radar,
the lower bound on the PCRLB was pushed lower. The
standard deviation of the estimation error over time for
range and range rate estimates achieved was lower than
the square root of the PCRLB of TAR, indicating that
cognitive radar has been able to exceed TAR’s theoreti-
cal limits of accuracy [77]. Further analysis showed that
attention and memory helped the temporal stability of the
transmitted waveform’s time rate of change, allowing for
much smoother transitions in exchange for a slight sacrifice
in optimality and savings in computational resources.

In the pursuit of generalizing and formalizing the con-
cept of cognitive radar for the specific task of single-
target tracking, a mathematical framework was proposed
by Bell et al. [78]. In their framework, the authors’ goal is
to separate the general principles from the specific appli-
cation and implementation details. A mathematical model
of the proposed framework is illustrated in Fig. 7, which
depicts a scene, a sensor, a processor, and a controller. The
scene represents the environment and target, while the
sensor refers to a radar system’s receiver and transmitter.
A processor is tasked with perceiving data observed by the
sensor and relaying that perception to the controller, which
is responsible for deciding the sensor’s actions [78].

In the author’s framework, the target state at time tk

is denoted as xk. The measurement vector produced by

the receiver is zk and depends on the target state and the
parameters of the transmitter, θk. Assuming the estimate of
a target at a timestep to be a function of the observations
up to that timestep, which, in turn, are also dependent
on the sensor parameters up to that timestep, then the
observations and parameters can be denoted as Zk ≡
{z1, z2, . . . , zk} and Θk ≡ {θ1,θ2, . . . ,θk}, respectively.
A Markov motion model is assumed with an initial target
state pdf of q(x0) and transition pdf of q(xk|xk−1;θk). The
sensor’s measurement model is described by a likelihood
function f(zk|xk;θk). The costs associated with an obser-
vation and parameter constraints in the sensor are mod-
eled by a cost function RΘ(θk). From the measurement
vector, the processor outputs a target state estimate x̂k(Zk)

by the minimization of its cost function C(x̂k(Zk), xk).
The controller is responsible for optimizing the next value
of parameters by minimizing the loss function LC,Θ(·) to
balance the performances of the processor and the sensor
through their cost functions. The authors further introduce
a novel predicted conditional Cramér–Rao lower bound,
which differs from the PCRLB in which it characterizes the
performance conditioned on actual data received [78]. The
proposed framework is suggested to work exceptionally
well in distributed radar systems over traditional radar sys-
tems, as demonstrated through experimental simulations
for target detection and tracking applications.

An example application of this framework can be
found in [79], where a transmit subaperturing frequency
diverse array radar was proposed using the framework
from [78] for moving target tracking via joint angle-range-
Doppler estimation. Furthermore, a CREW was proposed
in [80] based on the same framework discussed in [78].
The CREW, which is shown in Fig. 8, is an experimen-
tal, purpose-built cognitive radar designed to facilitate
research into the practical and hardware aspects of cogni-
tive radar for target tracking and demonstrate the viability
of the performance of such systems over conventional
radars [80].

However, we must bring to the attention of the reader
the concerns regarding whether the proposed mathemati-
cal framework adheres to the CDS framework and Fuster’s
pillars of cognition. It is simple to identify that the presence
of a PAC is satisfied by the controller’s need for feedback
information from the sensor and processor to adapt the
transmitted waveform. Similarly, intelligence is deemed
to be present through the decision-making capabilities
of the optimization algorithm outlined for selecting the
optimal waveform based on the perceived information.
The concerns lie in the belief that the cognitive processes of
memory and attention are not truly fulfilled while claimed
otherwise by the literature. We note that, in the frame-
work, memory is justified to be satisfied by the posterior
density’s recollection of all past data and attention as a
result of optimal parameter selection of the transmitted
waveform [78]. Otherwise, no further discussion exists on
either memory or attention. However, we do not consider
the statements made in this article to be a sufficient
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Fig. 8. Apparatus involved in the CREW setup, as shown in [80]. A radar RF module with a single transmitter and receiver is shown on the

left-hand side, and the waveform generators, digitizers, and other signal processing equipment mounted on a standard rack are shown on

the right-hand side.

justification for the presence of memory as per the guide-
lines described in Section II-B.

Specifically, the authors state that the perception process
of their proposed system is responsible for converting
sensor data to the posterior density, which inherently
remembers all the past data collected [78]. There are
issues with this justification, however. The posterior den-
sity described is a conditional probability, which occurs
as a result of an update in the prior probability using
information summarized by a likelihood function. The
prior probability represents how likely a hypothesis is prior
to observing the data, and the likelihood function is the
probability of the data being correct given the hypothesis.
In turn, the posterior density represents the updated belief
of the correctness of the hypothesis based on the incoming
data. While the posterior density represents the update in
belief over time, it does not explicitly store the incoming
data in a way that allows for the retrieval of that data
in future cycles. As such, the cognitive actions decided
by the controller in past cycles are not associated with
their respective past measurements. This is contrary to the
claims made in the authors’ work. The main implication
of this lack of associative memory is that the controller
will have no notion of what cognitive actions were taken
for each past observation or circumstance. Accordingly, the
controller has no way of shortlisting a subset of potential
cognitive actions to be taken in the current cycle based on
similarity to cognitive actions taken due to observations
from previous cycles. Instead, it only relies on the updated
belief of the perceptor through the posterior density of
the current cycle. As a result, the role of attention is also

rendered unclear in the author’s proposed work due to the
lack of a mechanism to facilitate any learning or planning
of future cognitive actions.

Essentially, the function and role of the posterior density
in Bell et al.’s [78] work is equivalent to that of a filter
or state estimator. Regardless, this work constitutes a sig-
nificant contribution and the first step toward a complete
generalized mathematical framework for state-estimation
and tracking problems in cognitive radar. Further work is
still required to develop a mathematical model for cogni-
tive radar, which satisfies all pillars of cognition of a CDS,
a task that has now been made easier with the introduction
of this first foundation.

3) Multitarget Tracking: The problems associated with
multiple-target tracking have been of significant interest to
researchers and industry, especially for commercial, mili-
tary, and defense applications. This tracking task is made
much more challenging when the targets are undergoing
movement in dense urban environments. Among the first
works to apply cognitive radar to address these issues
and apply cognitive radar for multiple-target tracking
were by Chavali and Nehorai [81]. In their studies, the
authors propose a centralized network of cognitive radars
to jointly estimate the states of multiple targets and the
channel state to extract information on the propagation
conditions of an urban transmission channel. A hybrid
Bayesian filter, the multiple Rao–Blackwell particle filter,
is proposed to be employed at the receiver, which is a com-
bination of a multiple-particle filter and a Rao–Blackwell
particle filter to overcome the high dimensionality of the
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problem at hand and partition the state space to smaller
subspaces, thereby reducing the computational complex-
ity [81]. Approximate greedy programming is employed
to determine the most suitable subset of antennas in the
network for each tracking interval while optimizing the
power transmitted by each system. The power allocation
and antenna selection or scheduling optimization tasks
are facilitated using the PCRLB as the criterion com-
puted on target and channel state estimates. The proposed
model was explicitly considered for multipath environ-
ments characterized by delays and Doppler spread and,
through numerical simulations, was shown to be superior
to fixed scheduling and allocation approaches and reduced
computational costs [81]. We note a lack of discussion
on the waveform optimization techniques involved, which
may result in a limitation of the proposed approach and
is an issue stated to be an avenue for possible further
research by the authors. Furthermore, when the number
of antennas used in the network grows large, computation
of the PCRLB may become cumbersome [81]. As such, it is
postulated in the study that it may also be worthwhile for
future efforts to research and develop alternative optimiza-
tion criteria to address this.

In the surveyed literature, there have also been efforts
to study the issue tracking of multiple extended targets,
which are targets that may generate multiple measure-
ments per timestep. This situation may occur for reasons
such as when targets are large enough to occupy more
than one resolution cell [66]. There are specific challenges
associated with these targets since they violate typical
critical assumptions in a system’s measurement models.
Chen and Wu [82] addressed the waveform design issue
for this problem. The authors proposed an approach based
on the KF to exploit temporal correlations of the target
scattering coefficients from the Fourier transform of the
target impulse response [82]. Their study devised a novel
optimization procedure to design transmitted waveforms
by minimizing the mse of the KF-estimated targeted scat-
tering coefficients at each iteration. A weighted vector is
also introduced to allow for flexibility in achieving the
desired tradeoff among the detection of different targets
of interest. The optimization problem was shown to be
nonconvex and challenging to solve efficiently but could
be converted to a convex one through a proposed two-step
method motivated by semidefinite programming [82].

Another similar study conducted on tracking multiple
extended targets was proposed in [83] based on a CS cog-
nitive radar system. A novel CS-based model is devised to
extract parameters of extended targets by exploiting their
sparsity in the delay-Doppler plane. Rather than using the
dictionary matrix of a traditional CS system that consists
of only the delays and Doppler shifts of the originally
transmitted waveform at a singular point, a new overcom-
plete dictionary matrix is defined for each extended target.
This new dictionary matrix is established by collecting
all echo waveforms of the different delays and Doppler
frequencies, rather than just for the single point [83].

Thus, incoming signals first undergo a transformation to
obtain a compressed signal. After exploiting the sparsity
of this compressed signal through the construction of the
new dictionary matrices, a sparse vector is reconstructed in
which the nonzero terms represent scattering coefficients,
and the respective nonzero entry’s index corresponds to a
pair of target delay and Doppler frequency [83]. Mutual
coherence is adopted as a metric for the reconstruction
performance by the authors since, according to Elad [84]
and Tropp [85], it is more reliable in ensuring that a sparse
vector can be reconstructed from a measurement signal
with a given dictionary matrix.

Furthermore, a two-step method is proposed to improve
the reconstruction performance of the measured signal
by optimizing the transmitted waveform and minimizing
the mutual coherence of the dictionary matrix. The first
step involves the individual optimization of waveforms for
each extended target with an iterative algorithm. More-
over, the second step is concerned with optimizing the
weight vector so that the waveforms from the previous
step can be combined into a single transmission [83].
The proposed model’s performance was evaluated through
numerical simulations using two classical CS algorithms
for the reconstruction of the sparse vector: OMP and
BP [85], [85]. Results showed that the proposed model,
using either the OMP or BP algorithms to estimate the
range and velocity of seven targets, achieved improved
results compared to other static waveforms [83]. The
study provides further analysis of the effect of the tradeoff
between the number of measurements required and the
number of targets to be tracked on the system’s accuracy.
With the motivation of furthering progress in the field, it is
stated that the author’s future efforts will be concentrated
on extending this model to account for the presence of
environmental clutter.

Most recently, Wang et al. [86] conducted a study
proposing a cognitive, MIMO radar for multitarget track-
ing. In MIMO radar systems, colocated or widely sepa-
rated transceiver antennas transmit mutually orthogonal
signals, which are then extracted by sets of matched fil-
ters, resulting in finer spatial resolution than traditional
tracking radars [87], [88]. The diversity brought by the
waveforms in an MIMO radar system provides additional
degrees of freedom; as such, Wang et al. [86] proposed
a novel adaptive waveform design algorithm to extend
the capabilities of these systems further. A multitarget
detection task is first modeled as a multihypothesis test-
ing problem, which is investigated based on sequentially
received signals. Then, the waveforms are designed using
relative entropy, more precisely the maximum likelihood
Kullback–Leibler divergence criterion between the distri-
butions involved in the hypotheses [89]. A semidefinite
relaxation technique is adopted from [90] due to the
nonconvexity of this optimization problem, and numeri-
cal simulations demonstrated by the authors showed that
the proposed method resulted in higher detection prob-
abilities than orthogonal waveforms and shaped beam
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waveforms [86]. It is noted that the waveform designs can
cognize the dynamic environment to concentrate power
on angular grids where targets exist, even if the number
of targets and their locations change over time [86]. The
authors conclude by mentioning the computational burden
of the proposed algorithm, especially when dealing with
increasing numbers of targets due to the optimization
problem, and suggest its applications to be more suit-
able for multitarget tracking applications in small, local
airspaces [86]. Finally, the authors state that, although this
model does not account for clutter, it is worth exploring
extending to do so with further studies.

4) Multipath Scenarios: When operating in urban envi-
ronments, radars often suffer from interference due to
the presence of multipath reflections. Returns received by
radars in such environments will be a linear combination
of delayed, attenuated, and Doppler-shifted versions of the
transmitted signal joining from various paths. Chavali and
Nehorai [91] proposed a cognitive radar in response to
the issues associated with multipath scenarios, in which
the spatial diversity offered by multipath propagation is
exploited. In their work, the system uses the knowledge
acquired by the radar to separate the signals arriving from
the various paths. A VMM is constructed by coherently
combining the delayed versions of the separated signals,
and then, the delays are estimated by discretizing the
delay Doppler plane into several grid points and solving
a sparse reconstruction problem [91]. Subsequently, after
using the VMM for target tracking under the Bayesian
inference framework, OFDM signaling is employed at
the transmitter to predict the PCRLB on the mse of
the target state estimate. A particle filter is employed
to estimate the target state at each interval [92]. The
predicted values of the PCRLB are then minimized to
obtain the optimal specifications for transmission in the
next pulse repetition interval. Through numerical simula-
tions, the performance of the proposed model is shown
to be significantly better than that of standard radar
systems.

The accurate localization of passive radio transpon-
ders is a highly desired feature for RFID, and as such,
Witrisal et al. [93] proposed employing cognitive radar as
a solution to this issue. The authors tackle tracking, iden-
tifying, and high-definition localization of large numbers
of passive radio transponders in indoor environments.
Deterministic multipath components are exploited within
the proposed model to overcome robustness issues in
operating in non-line-of-sight situations. In the study, the
radar’s transmitter and receiver learn their own respective
models of the environment through adaptive illumination
using TR processing for waveform adaptation (from [94])
to overcome degenerate pinhole channels of radio sys-
tems [93]. The authors verify the performance of the
TR processing technique and overall proposed approach
through experimental tracking simulations, which show
that the model can significantly reduce signal bandwidths

and improve processing and response times once the target
and environment models are learned.

It is interesting to note that this study stands out from
others as it recognizes and considers the CDS framework
and Fuster’s principles of cognition in its methodology. The
authors refer to the previously discussed work of Haykin
et al. [77] as the motivation behind their adoption of the
CDS principles. However, we note similar issues in this
work in this regard to those identified in a previously
surveyed work by Bell et al. [78]. Specifically, we refer
to the fact that the cognitive process of memory in the
work of Witrisal et al. is justified to be satisfied due to
the computation of a posterior density, which stores knowl-
edge of previous data through the update of belief over
time—with no further explanation otherwise. As already
encountered with Bell et al.’s work in [78] and discussed
earlier in Section III-C2, this justification is arguably not
sufficient to completely satisfy the presence of memory.
Briefly summarizing our earlier discussion, the posterior
density represents an update in belief over time in response
to incoming data. However, the posterior density does not
explicitly store the incoming data of each cycle in a manner
that enables the controller to retrieve them in future cycles.
Therefore, the controller cannot associate past or future
cognitive actions with any measurements, nor will the
controller be able to compare current observations to past
ones. As a result, the controller will not be able to select
and consider a subset of past cognitive actions, which may
have been taken due to past measurements that are similar
to the current cycle’s measurements. Ultimately, this means
that the cognitive controller’s actions are only informed by
the current cycle’s posterior density.

Regardless, unlike other works surveyed in this field, this
work explicitly describes and accounts for an incomplete
form of short-term memory in the state space tracking for
the target’s states and as environmental memory for the
states of RFID tags and environmental parameters. There
is also a lack of justification in the case of the process
of attention, which is stated to be responsible for fast
and accurate responses to changes within the environment
and the assignment of additional resources to moving
targets [93]. This is described to be achieved through
manipulating the bandwidth of the adaptive signal, where
a lower bandwidth implies lower accuracy in return for
a lower resolution of the search space. This is explained
to benefit the PAC’s convergence when relocalizing targets
exhibiting sudden movements in scenarios with high num-
bers of targets [93]. Regardless, the literature does not go
beyond this mere description and provides no information
about how this is implemented. This deficiency is also
consistent in terms of the cognitive process of intelligence,
which is attributed to the proposed TR-based waveform
adaptation approach. However, there is no discussion or
justification as to how exactly the TR yields itself to
facilitate intelligence. Instead, it is merely stated that TR
depends on feedback information from the receiver to
focus the power of the transmitted waveform to target
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locations. This is considered to be a weak justification of
intelligence enabled through the PAC.

V. C O G N I T I V E C O N T R O L
In Sections III and IV regarding cognitive radio and cogni-
tive radar, it was emphasized to the reader in both cases
that the applications were proposed before the formal
introduction of the CDS framework. Instead, research into
the development of cognitive radio and cognitive radar,
despite being motivated by the principles of human and
animal cognition, was not informed by Fuster’s principles
of human cognition: the PAC, memory, attention, and
intelligence. Upon surveying the literature on cognitive
radio and cognitive radar, this was further corroborated by
the fact that there was neither mention nor consideration
of those principles of human cognition in many of the
surveyed works. Regardless, examination of both fields’
architectures reveals that, despite having no intent of
doing so, the PAC and intelligence are two principals of
CDS that has been observed to exist and be satisfied. The
aforementioned points, along with the fact that cognitive
radio and cognitive radar have gained significant attention
and diverged into their own respective fields of study,
are the reason why they cannot be classified as CDS.
Instead, they are considered to be precursors to the CDS
framework.

Section V is concerned with the concept of CC, which
was proposed by Haykin et al. [5] as the first example
of an architecture fully adhering to the CDS framework.
Unlike cognitive radio and cognitive radar, CC is guided
by the principles of Fuster’s cognition and the CDS frame-
work that were formally introduced by Haykin shortly
before CC’s introduction [1], [4], [23]. As will be dis-
cussed in Section V-B, CC is an additive architecture to
existing systems and is comprised of multiple elements or
components, including a cognitive controller. CC and the
cognitive controller are two separate entities, in which the
former is the architectural framework, and the latter is a
component within that framework. In other words, systems
over a wide range of applications, when augmented with
all elements of CC, will be classified as a CDS. Toward the
end of this section, an overview of all the works surveyed
along with key findings is presented in Table 3.

A. Background and Motivation

The design of control systems can often be complicated
due to a well-known problem encountered during the
process: the tradeoff between optimality and robustness.
It is also often desirable to have a controller equipped with
the ability to modify its behavior in the face of uncertain
circumstances. A plethora of literature has been published
in recent years dedicated to studying and proposing
techniques and algorithms to address these issues, the
most prominent being adaptive controllers and neuro-
controllers. Adaptive controllers are equipped with an
adaptation mechanism that facilitates updating of their

parameters. These updates are in response to the
varying or uncertain dynamics of the system that
they are controlling or the presence of environmental
disturbances [95], [96].

Unlike adaptive controllers that are mainly based on
parameterized mechanistic modeling, neurocontrollers are
based on black-box modeling. When it is simple to find
mechanistic models for parts of a system but too complex
for other parts, it is also possible to combine mechanistic
and black-box models to result in a hybrid model. Neu-
rocontrollers can utilize neural networks in several ways;
one such way is by implementing the controller itself using
a neural network [97]. Alternatively, instead of being a
neural network itself, the controller could rely on a neural
network that models the system under study [98].

Adaptive controllers and neurocontrollers typically per-
form well in known, structured environments and the
specified conditions that they are designed for operation
within. However, their performances are generally com-
promised when there may be unmodeled dynamics in
the system of interest. As such, the presence of a human
operator in the control loop is often necessary for critical
tasks or when functioning in uncertain and unstructured
environments. The performance issues in these controllers
arise due to their inability to collect sufficient information
required to achieve their goals or to act in a self-organized
fashion [95]. Based on the knowledge available on CC
in the psychology and neuroscience literature, researchers
have suggested that reducing human intervention in a
control loop requires that the processes of cognition be
built into the control system [99].

B. Overview of Cognitive Control

The paradigm of CC should not be thought of as a
replacement system design paradigm, but rather one that is
additive in nature [5]. When augmented with state-control
paradigms, such as adaptive control and neurocontrol,
CC can improve the performance of systems. It does so
by allowing them to process information, store knowledge,
and learn from experience over time through continu-
ous interaction with the environment. Moreover, it will
be shown that CC equips systems with the means for
effective decision-making through the concepts of learning
and planning, often resulting in improved utilization of
computational resources [5]. This is all due to the fact that
CC can be considered the first overarching function of a
CDS, which prescribes the procedures to implement and
satisfy Fuster’s pillars of cognition [100].

First, the notion of the information gap must be intro-
duced, which is related to the risk associated with an
action or decision policy. Having the aim of reducing the
information gap, it is then possible to define the overall
goal of CC as follows [5].

1) Measurements affected by noise contain available
information, which is extracted and transformed from
the measurement space to the information space.
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Table 3 Summary of Published Works on CC

2) Depending on the task at hand, available information
can be partitioned into relevant and redundant infor-
mation.

3) Sufficient information is the information required to
perform the task at hand while minimizing risk; rele-
vant information is the intersection between available
information and sufficient information.

4) The difference between sufficient information and rel-
evant information is what constitutes the information
gap.

5) The goal of CC is to adapt the directed flow of
information from the perceptual to the executive part,
so as to reduce the information gap.

Quantifying and reducing the information gap require
a suitable task-specific metric—this idea notions to a new
state that must be controlled. A dynamic system’s state
represents the minimal information defining the conditions
of the system at a point in time, and by similar thought,
the state trajectory or change in state over time represents
the system’s behavior. The state, however, is only accessible
through noisy measurements, which, in turn, requires a
perception process for obtaining a posterior distribution of
the state using an estimation method or filter. The differ-
ence between the posterior distribution’s maximal useful
information and the sufficient statistics for a given task is

the information gap. This quantity is also defined as the
entropic state, whose name comes from Shannon’s entropy,
as it is a firsthand candidate for this metric [5], [101].

As such, the mentioning of both states naturally leads to
thinking in terms of a two-state model in CC. First, there
is the state-space model describing the evolution of the
system state over time and then the entropic state model
that quantifies the information gap given the posterior
computed by perception. Both models may vary from one
cycle to the next according to statistical variations in the
environment. Thus, the role of the perceptual part in CC
involves estimating the perceptual posterior of the system
and environment, from which the entropic state of the
perceptor can be determined using Shannon’s entropy. It is
also worth noting that the feedback information passed on
to the executive part of CC is simply the entropic state,
as can be seen in Fig. 9, and as such, CC is merely the
paradigm of reducing the entropic state [5].

In the executive of CC, as shown in Fig. 9, the cognitive
controller is responsible for ensuring that the entropic state
is decreased after each cognitive cycle and finding a policy
facilitated only by rewards in each environment [24]. The
entropic rewards are defined as the decrements of the
entropic state after each subsequent cycle, which can be
predicted with the estimation method employed in the
perceptor through the use of local feedback loops. RL has
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Fig. 9. Functional block diagram of the executive part of a CDS that is equipped with CC.

been presented as the natural tool for the cognitive con-
troller in the executive part of CC based on its practice in
mammalian brains, as evidenced by the neuroscience and
computational neuroscience literature [102], [103]. The
discovery of a key RL signal in the brain that is understood
as the temporal-difference reward-prediction error is one
of the most critical findings proving the existence of RL in
mammalian brains, with the dopaminergic neurons in the
midbrain now evidently known as the means behind RL
in the brain [103], [104]. RL is a mathematical paradigm
concerned with learning the best possible actions solely
based on positive and negative reinforcement or rewards.
It is for this reason that RL demonstrates itself as a natural
tool for the cognitive controller in the executive part of CC.
In reality, the choice of cognitive controller to be adopted
is not restricted to RL, and in fact, other possible but less
effective choices include Bellman’s dynamic programming
or any sequential decision-making algorithm. One of the
main advantages of the RL framework, however, is its
ability to ensure that decreasing the entropic state not only
occurs in the immediate cycle but also in the look-ahead
horizon.

There are two distinct concepts introduced in CC, which
are employed by the cognitive controller: learning and
planning, in which the former uses actual values of the
entropic reward for a given cognitive action, and the latter
uses predicted values of entropic reward [24], [105]. Dur-
ing planning, it is first necessary for the planner to deter-
mine the choice of planned actions from the action space
with the help of the working memory, whose entropic
rewards must then be predicted. Due to local feedback
links between the executive and the perceptor, the planned

cognitive actions can be relayed from the former to the
latter. The entropic state for each planned cognitive action
is then predicted by using the estimation method or filter
employed in the perceptor under the assumption that the
noise distribution and state-space model are known [5].
It is important to note that these planned actions are
not actually carried out by the CDS on the environment
or system and instead are only used in the perceptor to
simulate and predict the value of future entropic rewards.
The predicted entropic state values are then relayed back
to the cognitive controller through the local feedback links,
and the predicted entropic reward is then determined from
the entropic state of each planned action. Based on the
results of the planning stage, the cognitive controller is
responsible for deciding on which cognitive actions to
actually execute by updating the policy in a manner to
reduce the cost of the predefined value-to-go function
and, consequently, the entropic state. The feedback links
that facilitate the carrying out of learning and planning
in CC constitute what is known as the shunt cycle in CC,
as shown in Fig. 9.

Learning is responsible for updating the executive mem-
ory with the cognitive action and its associated feedback
information and actual entropic reward for future refer-
ence. Thus, it is important to note that learning in CC
can only be done once for the selected cognitive action of
each PAC; however, the cognitive controller can perform
planning for any number of simulated future cycles and
any number of cognitive actions [5]. The limitation for
how many actions can occur during planning depends
on factors such as computational effort and expense,
and time constraints that require the planning to be
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completed before the time it takes for a single PAC to
conclude.

The presence of memory in CC is mainly to facilitate the
storage and recollection of entropic rewards. In the exec-
utive, cognitive actions and their corresponding entropic
state and rewards are stored as long-term memory in the
action space after being updated by the learning stage once
every PAC. This long-term memory represents the knowl-
edge and experience gained by the system over time in a
probabilistic manner. Furthermore, it describes the likeli-
hood of each stored action to be selected in the course of all
the interactions the cognitive controller has ever had with
the environment [24]. The working memory is short-term
in nature, existing only for the duration of each PAC before
being reset, and is used to aid the planner in searching
through the action space and facilitating planning [5].
Specifically, working memory stores knowledge about the
previous cycle’s entropic state, chosen cognitive actions,
and their cognitive rewards, which is then used by the
planner to improve its effectiveness in searching through
the action space for candidates for planned actions in the
current cycle. The coordination of planning from memory
by the cognitive controller is facilitated by the presence of
global and local feedback loops. This mechanism describes
the essence of the PAC, which also facilitates learning over
time by the system.

The manifestation of attention within a CDS can be
attributed to two main factors: first, the algorithmic mech-
anisms responsible for both learning and planning; second,
the use of the explore–exploit strategy to select the most
relevant cognitive actions to plan for from memory while
simultaneously predicting their entropic rewards [24]. The
justification behind satisfying the process of attention with
these mechanisms is reasoned to be due to the resultant
reduction of the action space. Consequently, this results
in reduced computational costs for the cognitive controller
and improved allocation of resources. Finally, intelligence,
such as attention, does not occupy a physical space within
the framework but as the distributed algorithmic mech-
anisms throughout the system, namely, facilitating the
cohesive integration and operation of all entities that play
a vital role in decision-making for action to be taken on the
environment by the cognitive controller [24]. As previously
mentioned, the paradigm of CC is additive to existing
systems and, when augmented to them, results in the
classification of the systems into the CDS framework.

C. Related Works in Cognitive Control

1) Tracking Radar: With the introduction of the CC
architecture following the development of the CDS frame-
work, cognitive radar was among the first applications to
receive attention and be augmented with CC. It has already
been introduced in Section IV that Haykin et al. [77]
recognized Fuster’s paradigm of cognition for the first time
during their work on cognitive radar. However, this work
was still carried out prior to the official proposal of the CDS

framework, and despite demonstrating a significant step
toward a more complete form of cognition, the potential
to achieve more was recognized in subsequent studies.
Consequently, cognitive radar has been revisited by Fatemi
and Haykin [25], whereby the authors implement the
principles of CC and build upon their previous work and
experimental simulations from [77].

In their work, the authors conceptually design and sim-
ulate cognitive radar according to the same benchmark
example from their previous work in [77] and augment
it with the capabilities of CC as described earlier in this
section and based on Fig. 9 [25]. The CKF is employed
to estimate the state covariance matrix in the perceptor
in each cycle, and its output is subsequently used to
formulate and determine the entropic state. The system is
described to have 382 possible cognitive actions stored in
the executive memory, representing the number of differ-
ent transmit-waveform parameter combinations possible.
The measurement noise covariance matrix is formulated
in a manner such that it is a function of the waveform
parameters decided by the cognitive controller for each
cycle [25]. As such, each cognitive action taken after the
conclusion of a cycle of the PAC results in the measurement
noise covariance matrix and, consequently, the output of
the perceptor being affected. Otherwise, guidelines for
short-term memory storage of entropic rewards for the
cognitive controller are also described in the study, serving
the function of working memory.

In the first experiment, three distinct scenarios are stud-
ied. The first is the absence of CC on the system (fixed
radar waveform). The second scenario, which is practically
the approach implemented from [77] but with RL instead
of dynamic programming, involves the cognitive controller
with learning and no planning; the algorithm knows only
the values of entropic rewards from the previous step. The
third and final scenario introduces planning and imple-
menting an explore-only approach in the planning phase,
meaning that no regard is given to the cost function in
the learning algorithm, and the algorithm is repeated for
three different cases: the exploration of only one, two,
or three random cognitive actions in each cycle of the PAC.
It can be argued that, although planning occurs, the fact
that the chosen cognitive actions are all random due to
the explore-only approach casts doubt upon whether the
cognitive process of attention is truly fulfilled.

In the author’s experimental simulations, 50 cycles were
conducted over one thousand Monte Carlo runs to mini-
mize the effects of randomness [25]. In the scenario with
no planning and only learning, performance in entropic
state reduction is negligibly better than in the fixed wave-
form and is reasoned to be due to the total number of
cycles being much less than the number of possible cogni-
tive actions (50 versus 382) [25]. However, in the scenario
with different numbers of planned cognitive actions per
cycle, it was observed that, even with just one random
cognitive action in the planning phase, which is much
less than the total number of possible cognitive actions,
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it is enough to demonstrate a considerable improvement of
four orders of magnitude in entropic state reduction [25].
Furthermore, the cases of two or three random cognitive
actions displayed the same reduction in the entropic state
but with faster convergence. Overall, the planning pro-
cess in CC was demonstrated to significantly enhance the
entropic state of the model compared to traditional fixed
waveform methods regardless of the random selection of
the planned cognitive actions. We postulate that future
studies to explore effective mechanisms to select relevant
candidates for planned actions may yield further potential
improvements in the system and an opportunity for future
researchers. One issue that we must bring to the reader’s
attention is that, although the entropic state is technically
a measure of the perceptor’s accuracy, no other indicators
or measures of performance are provided or described
in this study. This is a concern because it is crucial for
research in the field of CDS to ensure that the advantages
of their applications are clearly articulated and presented
in the literature, especially when it comes to interpretable
performance measures. The importance of being able to
objectively compare the performance of proposed CDS
models with that of previously proposed methods for simi-
lar applications, and thus serving as benchmarks, is crucial.
This is especially true when it comes to further attracting
future research interest toward advancing the state of CDS.

Further experimental simulations conducted in the
study aimed to observe the performance of three differ-
ent algorithms as the cognitive controller in CC, such as
dynamic optimization, Q-learning, which is an RL algo-
rithm, and a newly proposed algorithm by the authors,
which incorporates Q-learning combined with the learn-
ing and planning mechanisms The proposed algorithm,
which was set to plan for three cognitive actions, out-
performed both Q-learning and dynamic optimization in
reducing the entropic state and had the advantage of
having a smaller computational load [25]. In a trial of
250 cycles to allow for convergence to optimality, the
proposed algorithm reached an entropic state value of
100.4 compared to approximately 100.7 by both Q-learning
and dynamic optimization [25]. To conclude, the authors
state that, although the Q-learning algorithm offers a
computationally tractable solution, it can be inefficient
in performance [25]. As such, it may be worthwhile for
future research to be directed toward the formulation of
algorithms tailored specifically for the role of the cognitive
controller in such applications where planning is a critical
task.

2) Communication-Based Train Control: CBTC systems
are automated train control systems that use bidirec-
tional train-ground or T2W wireless communications to
ensure rail vehicles’ safe and efficient operation. These
systems help to improve the utilization of railway net-
work infrastructure while enhancing the service provided
to customers. However, there are also challenges asso-
ciated with both train-ground communications and train

control, which are generally addressed as separate issues
in the literature. CBTC systems generally use WLAN as
the medium for information transmission between train
and wayside equipment. However, transmission errors and
MAC layer handoffs have been widely recognized to be
inevitable since most of the current IEEE 802.11-based
WLAN standards are not designed for high-mobility envi-
ronments [106]. As such, information exchanged between
trains and wayside equipment is commonly affected by
packet delays and drops in train-wayside communications.
Consequently, uncertainties in the information regarding
the train’s state are increased, leading to imperfect control
commands and substantial energy expenditures during
the compensatory traction process to return to the train’s
optimal state.

Studies have been proposed in [107], which lump the
aforementioned issues into one problem and attempt to
solve the challenges in a CC-inspired approach. In their
work, the authors use the entropic state to describe the
packet delay and drop of information exchanged between
the train-ground communication and the train control
center, and quantitatively describe the former’s effects on
the latter’s performance [107]. WLAN is adopted as the
medium for train-ground communication as commonly
used in urban rail transit systems worldwide [108]. The
linear-quadratic cost is used as the performance mea-
sure for the train control’s performance, and Q-learning
is then used to obtain the optimal policy based on this
measure and the entropic state. The wireless channels are
modeled as finite-state Markov chains with multiple state
transition probability matrices to characterize high-speed
railway and Rayleigh fading. The CC model is responsible
for ensuring reliable and uninterrupted wireless commu-
nications and handoffs to ensure that the current train
obtains accurate information about the front train. As such,
the authors postulate that, with improved communication
between the train and control center using CC, the resul-
tant improved flow of information will allow for more
robust control of CBTC systems in terms of accelera-
tion, deceleration, speed, distance, and emergency braking
profiles [107].

Through experimental trials with measurements
extracted from antennas on a train from the Yizhuang
Line of the Beijing Subway, as shown in Fig. 10, and
subsequent MATLAB simulations, more stable velocity
control was demonstrated between the system’s front and
back trains with the proposed approach [107]. With CC,
wholly smooth and much safer behavior was observed,
compared to other control policies, such as the SMDP and
greedy policies, which exhibited slight perturbations in the
difference in velocities of front and back trains. Further
results showed that the handoff delay was significantly
reduced with CC to 0.2 s, half of the train response time
parameter, compared to handoff delays of 1 s by the SMDP
and greedy policies [107]. Finally, when observing the
failure rate of the CBTC system under different policies,
it is clear that the CC method proposed is most effective
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Fig. 10. Experimental setup used to collect data from for the study

in [107]. (a) Tunnel where measurements were taken and recorded.

(b) Shark-fin antenna located on the measurement vehicle. (c) Yagi

antenna. (d) Access point in a section of the tunnel installed on the

wall.

due to having the highest availability of 99.78%. This
value equates to unavailability rates of the magnitude
of 10−3 using CC compared to the SMDP policy with
10−2 and the greedy policy with 10−1 [107]. Overall,
the effectiveness of the proposed approach was proven
through these results; however, the authors suggest that
further research effort is necessary to investigate more
advanced train-ground communication technologies, such
as relaying, to improve the performance of CBTC systems
further.

The studies performed in [107] were extended to CBTC
systems in smart grids by Sun et al. [109]. In this work,
the authors implement regenerative braking to restore
energy to the smart grid and analyze the cost-aware power
management problem of CBTC systems in such networks.
Furthermore, a more practical performance measure is
adopted, involving the total financial cost of the system’s
energy consumption. Ultimately, when applied to simula-
tions of a subway line in Beijing, the proposed CC approach
achieved energy consumption and financial cost reductions
of approximately 17% and 22%, respectively, over conven-
tional CBTC control schemes [109].

Conducting very similar studies and extending further
in the field of CC-based CBTC systems, the literature
in [110] proposes and implements a T2T communication
system based on the improved reliability and latency from
using LTE-M. The LTE-M protocol is proposed as the wire-
less communication system for next-generation urban rail

transit but is associated with shortages associated with
handoff schemes that result in long-time interruptions
between trains and wayside equipment [111]. The CC
T2T approach for CBTC systems aims to solve the handoff
and interruption issues and further improve the system’s
quality of service through a newly proposed quantitative
resilience measure based on the entropic state [110].
The proposed approach was demonstrated to be supe-
rior to traditional WLAN and T2W approaches in terms
of velocity stability, smoother acceleration, and reduced
handoff delay. Future works discussed involve including
more parameters in the resilience measure, such as the
throughput, train speed, and effects of sensing and actua-
tion delays. Moreover, the investigation of more advanced
wireless technologies, such as MIMO and millimeter-wave
techniques, is postulated to show potential in reducing
communication times and overall system performance
even further [110].

We note that the methodologies claim to adhere to the
CC framework in the three studies discussed. Upon closer
examination of the literature, however, it is evident that
the implementation of memory as a cognitive process is
neglected, and its presence is barely justified. In general,
the methodology outlined in the literature for CBTC appli-
cations requires more careful consideration of the CDS
principles. This deficiency poses an opportunity to further
support and justify the validity of the surveyed studies in
implementing the CC model as per the CDS framework.
As such, further research efforts in this regard may aid in
further driving interest in this application and the entire
field of CDS.

3) Smart Grid Control: The smart grid is considered a
new paradigm for integrating advanced technologies, such
as sensing and measurement, information communication,
control and decision-making, and energy and power with
grid infrastructure [112]. Autonomous energy manage-
ment systems are a crucial component of smart grids that
combine power suppliers, consumers, distributed energy
resources, and energy storage units. Comprised of these
elements is the microgrid, which facilitates interaction
between power suppliers and electricity users to motivate
users to participate in energy management. These inter-
actions lead to the concept of DRM, which is tasked with
balancing energy supply and demand and maintaining the
stable operation of the microgrid. However, the perfor-
mance of DRM in a microgrid depends on stable wireless
communications, and in general, there are still challenges
that exist in this regard [113].

A CC approach for optimizing the performance of micro-
grids is proposed by Fang et al. [114], in which the
authors aim to specifically address the issues relating
to unstable wireless communications affecting the DRM
scheme. Expressly, the authors acknowledge and address
the complicated wireless environments that are often dif-
ficult to obtain precise models. The proposed distributed
CC model framework is embedded in both the user agents
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Fig. 11. Diagram representing an example system model of a

residential district microgrid.

and the MCC. The entropic state describes the expectation
of purchase demand deviation in the user agents and
the difference between the estimate and actual purchase
demands in the MCC. A graphical illustration of an exam-
ple microgrid system model can be seen in Fig. 11. Entropic
state functions are formulated to represent the entropic
states, as just mentioned, which are then used to decide
the cognitive actions to be taken by the user agents or
the MCC. The cognitive actions of the user agents involve
switching to different wireless channels, while the MCC
involves the adaptation of the demand deviation [114].
Furthermore, real-time pricing strategies are proposed to
maximize the global benefit of all subscribers and indicate
the DRM performance. Finally, Q-learning is introduced
as the means for the cognitive controller and learning
to generate optimal policies that maximize rewards by
perceiving the system through the agents and performing
cognitive actions based on learned experiences.

The performance of the author’s proposed integrated
CC scheme was compared against the performance of a
traditional control scheme, a CC scheme only in the MCC
agent, and a CC scheme only in the user agents [114].
Overall, the proposed integrated model demonstrated the
lowest entropic state of all other approaches with a mean
value and a standard deviation of 2.217 and 1.432, respec-
tively, compared to 3.678 and 2.614 in the absence of
CC, representing an improvement by a margin of approx-
imately 60% and 54% in mean and standard deviation,
respectively. Furthermore, the author’s proposed scheme
can achieve an increased benefit for social users of up
to 22% throughout the day, which is also a measure
of the DRM’s performance in keeping up with supply
and demand in a more stable, efficient, and generally
improved manner [114]. Although the literature acknowl-
edges the need for attention as a cognitive process to
satisfy a CDS, no mention of how this is implemented
or satisfied in the proposed system is provided. As such,
future research efforts directed toward extending the work
in [114] to implement attention, either through a planning

mechanism similar to that in [25] or any other approach,
may realize even further improvements, validating the
viability of CC as a state-of-the-art approach in this appli-
cation.

A CDS is proposed as a supervisor for smart grid net-
works using a CC approach by Oozeer and Haykin [115],
as depicted in Fig. 12. In their work, the authors introduce
a new way of calculating the entropic state tailored to
the smart grid application and utilize it in implementing a
control-sensing mechanism to identify and detect bad data
from sensor measurements in the grid network. The bad
measurements resulting from erroneous readings, faulty
hardware components, or disturbances in power systems
often result in a series of domino effects that hinder the
state estimation process and can be detrimental to the
performance of typical control systems [115].

In the author’s proposed framework, the dc state esti-
mator, being considered the recipient of measurements in
the network, is regarded as the environment in which the
CDS acts. A generative model based on the CUSUM is
employed to classify the observables from the environment
and accumulate knowledge of the states for a fixed window
of time. Then, a KF is employed to filter the states and
output updated estimates for future cycles. The cognitive
controller is then responsible for learning and planning,
which is made possible by the shunt cycles, as shown in
Fig. 12, and for providing the network with the means to
prioritize and disregard specific measurements for optimal
state estimation by configuring the weights assigned to
each sensor or meter. The shunt cycles facilitate planning
by operating through local feedback links between the
perceptor and executive to simulate the entropic reward
values of planned cognitive actions in each PAC, with the
help of the memory mechanism in the perceptual and
executive parts [115]. RL through the BUCB algorithm
is used to optimize the newly tailored entropic state of
the system based on the results of the planning stage and
provide a means for the cognitive controller to learn the
best policy of cognitive actions. In this case, the cognitive
actions consist of discrete weights attributed to sensors or
meters [115]. The working memory then stores knowledge
of the chosen actions applied to the system after each PAC,
which forms the basis for planning in subsequent cycles
through the mechanism of attention.

The proposed CC approach is evaluated with exper-
imental simulations on a four-bus network to observe
its performance in detecting and correcting bad data by
reconfiguring measurement weights of various meters in
the network. With CC, the system was demonstrated to
act dynamically and choose the best set of meters simul-
taneously to obtain readings from and effectively assign
the best weight to each measurement for optimal state
estimation [115]. Upon a meter malfunction, only a couple
of PACs are necessary to learn from the situation and adapt
by decreasing the weight of that malfunctioning meter.
It is also shown that the cognitive controller’s assignment
of weights to the different measurements is done in a
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Fig. 12. Architectural structure of a CDS framework presented in [115] with CC applied as the supervisor of a smart grid network.

manner to adapt to the probabilistic characteristics of noisy
signals, and the mse of the estimates achieved with the
cognitive controller is much lower than without the use
of CC [115]. Furthermore, the authors show that, when
faced with cyberattacks known as FDI attacks, it is also
possible to use the entropic state as a metric to detect
such cyberattacks. However, it is stated that the model
must expand its structure to include CRC to actually deal
with and eliminate the risk associated with these types of
attacks, which the authors address in later studies [116]
that we focus our discussion on in Section VI.

Otherwise, a limitation of the proposed framework in
dealing with bad measurement data is that it is not
practically scalable to real smart grid networks, which
usually have thousands of meters. The reason given for
this is due to the computationally costly requirement of
an inverse calculation during state estimation. Regardless,
the proposed model was more accurate, less prone to false
positives, and computationally less expensive than the
existing detection approaches proposed in [117]. Finally,
it was also noted that the BUCB algorithm in the proposed
CC model is likely to face issues when scaling up to more
extensive networks in terms of response time in figuring
out optimal configurations in the face of meter malfunc-
tions [115]. In such a case, with more careful tuning and
by tweaking the algorithm’s sensitivity higher, it may be
possible to decrease its response time.

4) Other Works: Several studies have applied the CC
framework to other fascinating areas, fields, and appli-
cations in recent years. One such example of an inter-
esting study has been proposed by Mazzù et al. [118],
in which the authors implement a cognitive controller
for far-distance object detection and tracking based on
IR images or videos. Following the CDS framework, the
CC-based approach uses multiple independent KFs and
exploits their cooperation to understand object movement
by taking advantage of the different dimensions that
objects present themselves in at different distances [118].
The architecture of the proposed technique is described
as a DBN to represent the perceptor and controller in a
probabilistic way and provide the tools for signal process-
ing [118]. The Q-learning algorithm is adopted in the
cognitive controller for ensuring that the optimal policy
is adhered to by representing the action-reward space
as an HMM, and for further details on the implementa-
tion of the proposed approach, we refer the reader to
the studies [118]. The results of the proposed method
were compared against sever other state-of-the-art track-
ers, including the mean-shift algorithm [119], the fusion
filter [120], which uses a covariance matrix trace-based
fusion scheme, a modified particle tracker [121], and the
least soft-threshold squares tracker [122]. With a dataset
consisting of public real image sequences, the proposed
technique was demonstrated to achieve tracking results
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with mses comparable to the other mentioned techniques,
despite being a suboptimal implementation [118]. From
our investigation of the literature, it is also evident that
the proposed technique tends to struggle to perform in the
presence of significant clutter. As such, this challenge may
be addressed by using more state-of-the-art and robust
filters, such as the CKF.

Fatemi et al. [123] propose another compelling appli-
cation of CC, where the proposed approach is used to
address the problem of observability in complex stochastic
networks. The authors propose a goal-seeking supervisory
system based on the CDS framework that regards the
network as the environment. The responsibility of this
supervisory system is to reconfigure and optimize sensory
parts of a network to optimize and improve observability
dynamically [123]. The CDS achieves this by reconstruct-
ing hidden states of the network based on information
gathered from monitor nodes (a subset of nodes whose
outputs are accessible to the CDS). Bayesian filtering is
employed in the perceptual part of the system to recon-
struct the physical state of the network. At the same time,
CC is responsible for improving the accuracy of the recon-
structed states in each PAC by controlling the information
flow through the reconfiguration of sensors [123]. The
CDS may need to increase the number of monitor nodes
or remove redundant nodes to maximize the informa-
tion available to the perceptor in the subsequent cycles.
For more details on the implementation, which relies on
advanced knowledge of graph theory techniques and the
results of experimental simulations, we refer the ready
directly to the literature [123]. However, the study results
provide a good theoretical foundation for future studies
regarding the efficient management of nodes or sensors
in a network, especially in applications where physical
sensing systems may be networked together like cognitive
radar and cognitive radio technologies.

VI. C O G N I T I V E R I S K C O N T R O L
In this section, CRC is introduced as the second overar-
ching function and architecture, which fully adheres to
the CDS framework. CRC extends upon CC by introducing
another subsystem to the CDS, which is responsible for
detecting and accounting for risky or uncertain events [5].
As with CC, any system augmented with the elements of
CRC can be classified as a CDS.

Within Section VI, an exposition on the CRC architecture
and a survey of recent works in the field will be presented
to the reader. As proposed by Haykin [7] and Haykin
et al. [8], CRC has yet to receive as much attention in the
literature as its CC counterpart, and the first two precur-
sor systems cognitive radio and cognitive radar. However,
as will be demonstrated, CRC presents the potential to
completely revolutionize a wide range of existing system
types by providing them with the ability to identify, adapt
to, and mitigate the effects of risky or uncertain events, and
can even result in significant performance improvements.
A detailed summary of all the surveyed works on CRC

along with their key findings is presented at the end of
the Section in Table 4.

A. Background and Motivation

In the world we live in today, which is experiencing
a proliferation in the adoption and integration of CPSs
with the physical world, environments are unavoidably
prone to the unexpected occurrent of unpredictable events.
CPS is defined as a new generation of embedded systems
that leverage the power of interconnectivity and integrate
aspects of the cyberworld with physical systems. These
systems are transforming the way modern society lives,
moves, and interacts in the physical world and are evident
worldwide in infrastructure, air or ground transportation,
electricity grids, and much more. Consequently, physical
systems now more than ever are confronted with cyber-
security issues that can result in unexpected occurrences
or uncertainties that may bring forth threats to safety or
security breaches [124].

When a situation arises with a physical system, whereby
the information is unknown and, therefore, difficult to
deal with, the system is, thus, said to be dealing with
uncertainty. When physical systems experience uncertainty,
it is imperative to deal with and handle such unexpected or
adverse events, collectively defined as risks. An illustrative
example of such a scenario involving risk, as described
in [7], considers an autonomous vehicle moving within
a lane in a crowded street. Supposing a cyclist suddenly
rushed out of their designated lane and across to the
other side of the street in front of the autonomous vehicle.
This situation has resulted in a sudden and dramatic risk
to both parties. Consequently, there has been a growing
focus in the literature concerned with providing physical
systems with the means to function under the presence
of uncertainties and bring risk-sensitive actions under con-
trol. In response, CRC is proposed as an architectural and
functional model for risk control mechanisms, which is
classified under the CDS framework.

B. Overview of Cognitive Risk Control

Inspired by the principles of neurophysiology, specifi-
cally predictive adaptation, the CRC model was first the-
orized in 2017 by Haykin [7] and then fully formulated
shortly after by Haykin et al. [8]. CRC is essentially an
extension of the CC framework discussed in Section V.
There are two modes of operation in CRC: version I
and version II. In version I, which deals with the system
operating free of uncertainty, the CRC model reduces to
the CC framework, as illustrated in Fig. 12. Otherwise,
when operating in the presence of uncertainties, the CRC
model switches to version II, which is much more complex
in terms of structure and computation and will be the focus
of discussion in this section.

The CRC model introduces a subsystem to the executive
side of the CC model to allow for more elaborate think-
ing, which requires the introduction of a new component
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Table 4 Summary of Published Works on CRC

termed the classifier, as seen in Fig. 13. It can also be
seen in Fig. 13 that there are two pairs of switches:
switches 1 and 2, and switches 3 and 4. When operating
under version II, switches 1 and 2 are open, which prevents
the controller from directly acting on the physical system
and providing feedback to the executive memory. Instead,
a perturbed cognitive action is sent to the classifier along
with a set of past actions from the executive memory.
The classifier is then responsible for decision-making and
subsequently updating the executive memory [8]. In con-
trast, when the physical system is operating free from

uncertainty, or under version I, switches 1 and 2 are closed,
while switches 3 and 4 are opened. In this situation, the
controller can act on the physical system and update the
executive memory directly.

The perturbed cognitive action of the classifier is of
probabilistic origin, and the prospective past experiences
from the executive memory are also probabilistic since they
are randomly chosen from their own action space. In recog-
nizing these facts, the Bayesian paradigm is invoked as the
means for decision-making, setting the stage for CRC [8].
Using Bayes’ rule, the probability of the perturbed action’s

Fig. 13. Architecture of the risk-sensitive subsystem responsible for dealing with risk in the CRC framework.
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Fig. 14. Architecture of the CRC framework. The green elements represent the newly introduced risk-sensitive cognitive subsystem.

posterior given a past experience is calculated for each of
the past experiences in the selected set. The experience
with the highest probability is subsequently defined as
the risk-sensitive cognitive action directed to the physical
system [8].

TSC is a function required in a CRC framework capable
of exploiting the presence of the pairs of switches and
controlling their configuration depending on the presence
or absence of uncertainties. The basis for defining the pro-
cedures of TSC is the entropic rewards from the feedback
channel. In CRC, the entropic reward can only assume
positive or negative values and can never be zero. The
key to defining TSC is in these two properties: positive
rewards indicate the absence of uncertainty, and negative
rewards indicate uncertainties [8]. With this approach, the
choice of function to compute the rewards and the tuning
of design parameters in the chosen function are critical
considerations for implementing CRC in physical systems.
Therefore, in summary, when uncertainties are absent, the
entropic reward must be positive, and thus, switches 1 and
2 are closed, while switches 3 and 4 are open. Conversely,
when uncertainties are present, the entropic reward must
be negative, and therefore, switches 1 and 2 must be
opened, while switches 3 and 4 are closed.

The resultant overall architecture of the CRC framework
can be seen in Fig. 14, where the previously discussed

risk-sensitive subsystem and its components, the classifier,
and executive memory are colored in green. In the frame-
work’s literature, several sections are dedicated to dis-
cussing the PAC, its role within the framework, and the bio-
logical motivations behind its implementation in this archi-
tecture [8]. As for the cognitive process of memory, it man-
ifests in the executive memory, which retains long-term
knowledge of past experiences and actions, as well as in
the working memory, which acts as a short-term memory
interface between the perceptual and executive parts to
help carry out learning and planning within each PAC [8].
There is no difference in the attention mechanism in
CRC compared to CC and, as such, is identical to the
methodology in CC, as discussed in Section V. Finally, the
coordination of processes and mechanisms enabling algo-
rithmic decision-making to pick a strategy for an optimal
solution is explained as the facilitator of intelligence in this
cognitive framework, along with the presence of local and
global feedback loops.

C. Related Works in Cognitive Risk Control

1) Radar and Communications: Due to the fourth indus-
trial revolution, an increasing number of breakthroughs
have been witnessed in various fields, especially in areas
of research involving UAVs [125] and CAVs [126]. In most
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current designs of these systems, multiple sensory systems,
each with different merits and limitations, are required,
such as LiDAR, radar, radio, and camera, to name just
a few. These sensors provide multidomain information to
a central computer, which is then responsible for mak-
ing decisions to control various aspects of such systems,
such as steering angles or acceleration and deceleration.
The safety and security issues related to these fields,
specifically with CAVs, have been extensively discussed by
Feng and Haykin [127]. In this article, the authors also
envision a new class of risk-sensitive, autonomous, con-
nected, and electric vehicles, introduce the CDS, namely,
its special function of CRC as the supervisor of these
vehicles, and present a comprehensive overview of the
theory involved [127].

The first experimental studies using the CRC frame-
work were also performed by Feng and Haykin [128].
The authors study and apply the framework to a CVR
system for self-driving cars. In their work, recognizing
the threats posed to autonomous vehicles in the pres-
ence of uncertainties, the authors strive to improve the
performance of vehicular radar systems in the face of
such threatening circumstances. The literature describes a
simple vehicle-following scenario and presents the archi-
tectural structure of the CRC tailored to the task of
transmit-waveform selection in vehicular radar systems.
In the described scenario, a host vehicle is moving forward,
and ahead of it is a target vehicle moving in the same
direction, both described by their own velocities and accel-
erations. Details on state-space dynamics and modeling of
the scenario are provided, and we refer the reader directly
to the literature in [128] for these specifics. The purpose
of the proposed model is to deal with risky events caused
by other physical entities robustly when applied as the
supervisor for transmit-waveform selection in the radar
system.

In their work, the authors modify the perceptual part
of the CDS by removing the Bayesian generative model
since, in the case of vehicular radars, observables are
usually taken in a way that can be directly processed
by the Bayesian filter [128]. Therefore, the Bayesian
filter is now at the bottom of the perceptor, and the
entropic-information processor is brought in to take its
original place and maintain the feedforward link. Oth-
erwise, the proposed work follows the same structure,
as depicted in Fig. 14. The KF is chosen to model the
vehicle-following scenario as the Bayesian filter and is
formulated according to the choice of transmit waveform,
which combines the LFM waveform with Gaussian ampli-
tude modulation. The entropic state is computed using the
filtered posterior from the KF as input by invoking Shan-
non’s information theory. The entropic state calculates the
entropic or internal rewards using a defined function and
then passes them on to the executive. The TSC mechanism
of the CRC framework is controlled by passing the internal
rewards through a defined function, which is then subject
to certain conditions and thresholds formulated within the

literature to determine the presence or the absence of
uncertainty [128]. A nearest-neighbor classifier is adopted
in this work to select the particular memorized experience
most similar to the perturbed cognitive action when CRC is
triggered. The rest of the methodology follows the typical
CC framework discussed in Section V and is also illustrated
within the red dashed border in Fig. 14.

Through experimental simulations, the proposed CRC
model using Q-learning for RL was compared against other
approaches, such as a radar with fixed transmit waveform,
the CC framework, and just Q-learning on its own for
waveform design [128]. The performance of each model
was compared using the RMSE computed against each
model’s five states: velocity and acceleration of the host
vehicle, the longitudinal distance between the host and
target vehicle, and finally, the velocity and acceleration of
the target vehicle. Simulation results showed that the pro-
posed model demonstrated the lowest RMSE for each state
from presented qualitative graphs, with CC and Q-learning
having very comparable performance [128]. These results
demonstrate that the executive’s learning algorithms will
result in better decision-making and choices of action
regardless of the choice of algorithm. The authors intro-
duce a structural uncertainty term to the system model
during the trial to induce a risky scenario in the exper-
imentation, which lasts for less than a second. This sce-
nario demonstrated that the Q-learning and CC algorithm
could not adapt to this uncertainty and instead showed
significant spikes and erratic behavior in the RMSE and
required upward of eight seconds to recover. However,
the proposed CRC model relative to the other approaches
was only slightly affected in terms of RMSE and recov-
ered within a matter of 2 or 3 s at most. Overall, the
model achieved impressive results and was also deemed a
promising alternative to traditional approaches in handling
uncertainties and risky events in vehicular radar [128].

Further studies by Feng and Haykin were conducted
in [129], where the authors seek to address the V2V
communication problem in CAVs and UAvs. Specifically,
the literature proposes and implements CRC in a CAV
integrated within a UAV-CAV network to fend against
malicious entities that may be equipped with the means
for intelligent jamming. A system model is described in
the literature, along with the proposed methodology for
antijamming V2V communications, which includes formu-
lating the environment in a manner that characterizes
wireless channels between vehicles. The overall approach
can be summarized as follows: first, power control for
transmission is carried out with RL based on what is
perceived by the system. Based on the selected power, TSC
is used to determine whether the threshold for activation
is reached, triggering CRC or not. If TSC is not triggered,
then the power selected is executed as the cognitive action
on the system. Otherwise, if TSC is triggered and CRC is
active, channel and power reselection is carried out by the
classifier and executive memory to escape the presence
of possible jamming attacks, which are carried out as
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Fig. 15. Configuration of experimental simulations for CRC in a

UAV-CAV network for antijamming in the presence of hybrid attackers

(adapted from [129]).

cognitive actions [129]. Novel power utility metrics are
defined to evaluate the performance of both the transmit-
ting (host) vehicle and the malicious entity with intelligent
jamming in adjusting their transmission powers to achieve
their respective goals.

The experimental configuration of the author’s pro-
posed studies can be seen in Fig. 15, which involves
an intelligent CAV jammer, a static UAV jammer flying
at a height above the transmitting (host) and receiving
(target) vehicle. From the literature’s results, the proposed
CRC antijamming model was able to achieve the greatest
power utility among other strategies. This includes the
fixed strategy where the host vehicle stays in a fixed
channel and transmits a constant power and a random
strategy where the host vehicle keeps changing both chan-
nel and power randomly as an intuitive countermeasure to
attacks [129]. At the same time, the proposed approach
was most effective at reducing the power utility of the
intelligent-jamming CAV. Furthermore, four channels were
defined that could be selected by the host vehicle, whereby
the UAV is occupying a fixed number of channels and
transmitting at various powers. As the power transmitted
by the UAV jammer in each channel was increased, the
probability of the host vehicle selecting those channels
to switch subsequently decreased. Also, as the height of
the UAV increases over five hundred meters, its jamming
effects were negligible since, at that point, the probabil-
ity of a channel being selected was equal for all four
channels [129]. Finally, the throughput of each approach
was compared, from which the authors infer a maximum
achievable throughput improvement in their proposed
model of approximately 45% and 210% compared to the
random and fixed strategies, respectively. It is postulated
that such success may also be possible with this model
in more complex networks facing even more sophisticated
types of attacks [129]. The authors further verified these

findings in a similar continuing study, in [130], which is
focused on the analysis of the framework applied to CAVs
that are subject to factors causing performance degrada-
tion issues encountered in more complicated scenarios.

Inspired by their previous success in applying the CRC
model to transmit-waveform selection in CVR and for anti-
jamming in V2V networks, the same authors proposed sev-
eral further studies. For example, Feng and Haykin [131]
use the insight gained from the two previously discussed
works in this section to improve the performance of
transmit-waveform selection in CVR with the assistance of
5G V2V communications. In this new study in [131], the
methodology of incorporating the CRC into the design is
almost identical as previously discussed in [128], differing
mainly in the fact that the system model equations are
now expanded to leverage information exchanged from
V2V communications, such as location, velocity, and accel-
eration in the transmit-waveform selection process. The
V2V-based approach for CVR realized even more improved
performance in terms of robustness than in the previ-
ous study without V2V communications. For instance, the
RMSE of each state with the V2V-assisted CRC approach
and regular CRC is comparable most of the time. However,
when the uncertainty is introduced, the newly proposed
approach’s peak RMSE is nearly half that of what is
achieved without V2V assistance and is much smoother as
it recovers back to optimal performance, instead of erratic
and jerky behavior [131].

All of the studies just introduced and discussed have cul-
minated in the most recent work of Feng and Haykin [132],
whereby the authors now propose integrating CVR and
V2V communications with a C-CRC model to bridge both
systems with each other. The advantages of mutual assis-
tance are studied with C-CRC by exploiting information
originating from one of those systems, which may be
insightful for the other system. Furthermore, unlike previ-
ous studies, a nonlinear target-tracking model is adopted,
and a CKF is employed for the analysis [132]. In this
approach, the formulation for the interference measure in
V2V communications includes results from tracking and
other practical factors inferred from those results, such as
vehicle mobility and channel availability. The CVR is also
reliant on information from the communication system to
switch its operation based on a one- or two-vehicle model,
where the latter indicates the presence of a second vehicle
participating in target-tracking [132]. Both the CVR and
the V2V communication systems are considered separate
CRC models with their own risk-sensitive subsystem and
associated TSC mechanism. Furthermore, the TSC in each
system plays a role in their dual system in determining
what information should be passed from one to another.
C-CRC is responsible for the coordination between the two
CDSs, and the overall process of the proposed architecture
is shown in Fig. 16.

Going even further, the authors formulate the channel
selection problem as an MAB problem, which is solved
using the UCB algorithm [133]. With the approach, in each
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Fig. 16. Process flow diagram of the proposed C-CRC model (adapted from [132]) for bridging CVR and V2V communication systems in CAV.

PAC involving a channel selection, the channel choice to
switch to is the corresponding channel with the highest
index defined by the UCB algorithm. A regret measure is
introduced as a common performance metric in MAB prob-
lems and is used to evaluate the degree of how unnecessary
or redundant a channel switch is [134]. The experimental
simulations involved are identical to that illustrated in
Fig. 15 from [129], except for the UAV jammer’s presence.
Otherwise, the authors show that the proposed C-CRC
model outperformed other radar approaches, such as fixed
transmit waveform and Q-learning by up to 70% and
67%, respectively, in reducing the peak RMSE reached in
tracking the longitudinal distance of the car and jammer
when faced with uncertainty. The traditional CRC design
in [130] had comparable performance but was still inferior
to the C-CRC in RMSE peak reduction by a margin of 41%.
The trend of C-CRC achieving improved scores is apparent
across all measures, such as tracking performance in terms
of the utility of power selection in the vehicle and jammer
communications, the total regret from channel selection,
and, finally, user utility.

A limitation, however, is observed in the literature
regarding the ability of V2V communications to keep
up with crowded networks in certain environments or
conditions. From further analysis of results relating to
the effects of channel availability on power and channel
selection, it is evident that the user utility will decrease,
while jammer utility increases with less spectrum oppor-
tunity [132]. This scenario also results in a higher regret
measure for the host vehicle, a lower MAB-related reward,
and increased switching costs relating to channel selection.
As such, vehicular networks with many entities sharing the
available wireless resources in a local environment pose

interesting and practical problems concerning V2V per-
formance that require further attention from the research
community. The authors also conclude by mentioning the
investigation of security issues in large-scale adversarial
CAV networks to be within the purview of their future
research efforts.

2) Cybersecurity in Smart Grids: The deployment of
smart grids in critical infrastructures requires thought-
ful consideration of safeguarding against vulnerabilities
and malicious attacks [135]. Despite its advantages, the
intimate interconnectivity of cyber and physical systems
in smart grids also introduces important issues relating
to cybersecurity [136], [137]. A family of new attacks
known as FDI or BDI attacks has been recently consid-
ered to be some of the biggest threats to smart grid
networks [138], [139]. These attacks involve the intro-
duction of maliciously crafted data packages to circumvent
conventional statistical detection and removal approaches.
The result of these attacks, when successfully injected into
a system, is a negative influence on the estimation of
states, which can lead to a cascade of incorrect control
decisions with disastrous consequences. The current lit-
erature on FDI attacks in smart grids focuses mainly on
the detection aspect of this problem [140]; however, there
is a dearth of literature examining the issue of bringing
these malicious attacks under control once detected. Fur-
thermore, due to the reliance of most detection techniques
on predefined thresholds, these techniques are useless
when attackers know the detection method and the related
threshold.

In response to these issues, Oozeer and Haykin [115]
expanded upon their CC approach for smart grid attack
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detection, as discussed in Section V-C, to propose an
improved CRC-enabled model capable of also defending
against such attacks in [116]. In the original studies,
the entropic state was used as a metric to detect the
occurrence of FDI attacks indicated by the entropic state
dropping below a defined threshold, thus setting the stage
for TSC in the extended CRC version of the model. With
the expanded framework, when an FDI attack is detected,
and TSC is triggered, the cognitive controller is rendered
inactive, while CRC is activated to defend against these
attacks [116].

In this scenario involving CRC, realizing that FDI attacks
aim to cause deviation in specific states to trigger a cas-
cade of bad control decisions, the authors mention that
the action space involved differs from CC. Rather than
having an action space consisting of possible measurement
weights as in the cognitive controller, CRC involves select-
ing tuning parameters to be applied to the dc system’s
configuration matrix [116]. First, however, the predictor
or classifier must recognize the states at risk after an
attack is detected. The affected states are identified by
whether they exceed the maximum deviation allowed by
a formulation dependent on each estimate’s mean stored
in the perceptual memory, as described in the litera-
ture [116]. Subsequently, upon identification of the states
under attack, the planner is responsible for carefully select-
ing tuning parameters in the columns of the dc system’s
configuration matrix corresponding to the affected states
without disrupting the estimation of other states [116].
During this planning phase of operation, each shunt cycle
is dedicated to addressing the risks associated with one
of the states at a time, and a new reward associated
with a particular action in the cycle is determined. The
BUCB algorithm, as proposed in [115], is then respon-
sible for optimizing the policy in a manner prioritizing
actions that will bring current states under attack back to
a state closest to past perceptual memories. The actions
achieving the highest quantile from the BUCB algorithm,
similar to CC, are stored in the working memory and
applied when the shunt cycles have elapsed. Once the
affected states are brought back within the acceptable
ranges, the risk is then considered under control, and
no more actions will be applied to those columns of the
system configuration matrix. Finally, when the attacks
are identified to have ended, a mechanism is introduced
by equipping the TSC with memory and a watchdog
timer responsible for restoring the system configuration
to its unaltered form and marking the end of the current
PAC [116].

The experimental simulations conducted within the
author’s studies are similar in configuration to those con-
ducted in their previous studies from [115], which involve
the IEEE four-bus and 14-bus networks. In the four-bus
network, the literature demonstrates how the cognitive
controller and CRC can work in conjecture to bring FDI
attacks under control once they have been introduced
to the system. The network configuration matrix of the

system is detailed in the study along with other pertinent
parameters, and it is mentioned that the simulations run
for a total of 2000 s while allowing for 15 shunt cycles
in each PAC for learning and planning. The action space
for CRC consists of 63 possible tuning values, whereby
relevant columns of the network configuration matrix can
be tuned with a specified range of values. Three states
are measured in the four-bus network, and an attack is
introduced to the first two states 1000 s into the simulation
lasting for 300 s. FDI attacks are simulated by shifting
the phase angles of the desired states by specified val-
ues [116]. From the graphs of the results provided in the
study, the proposed CRC model was shown to effectively
detect the injected attacks through the sharp drops in the
entropic state and subsequently identify which states are
affected. Otherwise, the unaffected state is dealt with as
normal using the CC part of the model. The CRC only
takes 20 cycles until the estimates or measurements for
the affected states are brought under control and restored
to a tolerable threshold before the attacks occur [116].
When the attacks end, the proposed model still operates
under CRC for 39 additional cycles, the reason cited by the
authors being that the model is ensuring that conditions
regarding the matching of current and past experiences
are met. Subsequently, the adjusted network configuration
matrix is restored to its normal state before triggering TSC
and invoking CRC. When experimenting with the model
on the larger 14-bus network to demonstrate scalability
as more states are under attack, which also involved
raising the number of shunt cycles conducted to 20, the
performance is deemed consistent with the previous trial.
The CRC model is able to detect the attacks on the six
affected states out of 13 states instantaneously. The attacks
are brought under control, and the states are restored to
appropriate levels within seconds, while the CDS requires
around 61 cycles until it switches back to the CC mode.
Overall, the experimental results demonstrate the effec-
tiveness of the CRC approach for FDI attacks [116].

However, the limitations of the proposed studies are that
the detection time can be affected and increased when
other types of FDI attacks, such as the slowly evolving
ramp attack, are applied [116]. Furthermore, scaling up
the architecture to bigger and more realistic networks will
require more shunt cycles to be conducted in each PAC,
thus posing significant challenges in terms of computing
power and efficiency. This issue is further exacerbated
by the fact that, in the presence of other types of FDI
attacks, such as evolving ramp attacks, an increased sam-
pling time of the dc estimator is required to overcome
them. Another potential use of this CDS in this application
that the author’s studies have not explored is to not only
identify attacked states but also to identify which sensors
or meters have been attacked. A final remark is made in the
literature, whereby it is postulated that enacting a defined
threshold on the absolute estimated error of the estimated
measurements could be used as an approach to identify the
attacked meters in a network [116].
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VII. C O G N I T I V E I N T E R N E T O F
T H I N G S : R I S E O F A N E W C D S
This section covers the topic of CIoT, which is a field that
has been given less attention than the previously discussed
fields of cognitive radio, cognitive radar, CC, or CRC.
In the aforementioned fields, it can be said that practi-
cal architecture and methodology were presented upon
the initial proposal of each application in the literature.
However, this is not the case for CIoT, which instead has
only been theoretically discussed in the literature. Several
theoretical frameworks have been proposed and, however,
offer no practical value or direction toward the actual
implementation of a CIoT architecture.

As will be shown Sections VII-B and VII-C, despite the
proposal of theoretical frameworks for CIoT, there is still
a lack of sufficient effort toward the implementation and
description of a methodology, which would facilitate an
effective and practical application of the CDS principles
in the field of IoT. The authors hope that the following
survey on the motivations, outstanding issues in IoT, and
the subsequent theoretical CIoT framework proposed will
facilitate and accelerate further research in the field and
ultimately result in the same successes witnessed in the
previous applications augmented with CDS capabilities.
Finally, a summary of the surveyed works along with any
key findings is detailed in Table 5.

A. Background and Motivation

In the wake of the fourth industrial revolution, the
augmentation of electronic devices with the power of the
Internet has become prevalent. Many aspects of life, span-
ning areas such as wearable technology, healthcare, home
appliances, and transportation, are becoming increasingly
interconnected. The IoT is envisioned as a full-scale inte-
gration of all physical objects with the cyberworld and the
evolution from simple control systems based on sensors
and actuators to more expansive systems able to exchange
data between devices over the Internet for more efficient
and accurate decision-making.

Embedded systems are one of the main components
of IoT devices, designed to conduct certain functions
within larger systems, and are responsible for controlling
many devices in common everyday use. CPSs have seen
tremendous benefits from the proliferation of IoT. Research
toward the applications and advancements of IoT technol-
ogy has gained significant attention from industrial and
academic communities in the past years, further acceler-
ating progress in the field. Furthermore, many enabling
technologies continue to be developed as time continues,
fuelling innovations that have led to new low-cost, low-
power hardware, and the creation of new communica-
tion protocols and novel technologies, such as RFID and
NFC [141].

IoT continues to revolutionize many industries as its
applications and benefits grow, spanning domains such as
transportation, healthcare, agriculture, communications,

smart grids, commerce, infrastructure management, min-
ing, manufacturing, and many more [142]. In this new
age, the cyber–physical world demands new autonomous
data-driven self-decision-making capabilities in a resource-
constrained environment. The power of IoT to decentralize
computing power and increase the availability of data
has helped to overcome local computing power issues in
embedded systems [143]. This power is especially true
for training a new generation of control algorithms that
use ML and artificial intelligence models. In recent years,
especially in the manufacturing industry, IoT has allowed
companies to collect vast amounts of data through newly
developed MESs. These datasets are valuable for compa-
nies as they could be thoroughly and rigorously analyzed
for insights to improve operations, utilize resources more
efficiently, and reduce costs [143]. The heterogeneity of
the various sensors deployed in IoT systems also presents
unique challenges in managing different types of data and
the complexity of integration. Furthermore, parallel and
distributed processing and the processing of nonlinear,
high-dimensional data are also limiting factors in the anal-
ysis of datasets as they grow to larger sizes [6]. Therefore,
the exploitation of such data in the most effective manner
presents challenges that have sparked the need for a new
framework of analysis and action implementation.

Big data-driven applications demand more intelligent
decision-making to allow for more flexible and effi-
cient operations through cooperative self-organized and
self-optimized behaviors [144], [145]. As such, many
frameworks have been proposed to improve IoT systems’
decision-making capabilities to manage the flow of infor-
mation and responsive action more effectively [142]. More
specifically, a field of research that has recently been
proposed and gaining traction in the research community
is CIoT [6]. The CIoT approach strives to incorporate
cognitive capabilities into IoT systems in a framework
inspired by human cognition [146].

B. Overview of Cognitive Internet of Things

In the studies relating to CDS, all the previously dis-
cussed areas of study, such as cognitive radio, cognitive
radar, CC, and CRC, were initially studied and pioneered
by Dr. Haykin. The proposed cognitive frameworks in the
mentioned areas have enabled and fuelled the research
community to further drive advancements in their fields.
Furthermore, a significant factor contributing to the expo-
nential growth in almost all of the mentioned research
fields has been the presence of such frameworks to provide
a foundation providing structure to the academic commu-
nity. The IoT, however, is a relatively newer application
of CDS, which has not yet received considerable attention
among scholars. In recent years, however, there has been a
noticeable ramping up in effort in the literature to establish
a CIoT framework inspired by the trailblazing work of
Dr. Haykin with CDS.

The first and most influential general framework pre-
sented in the literature for CIoT was proposed by
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Table 5 Summary of Published Works on CIoT

Wu et al. [6] to enhance the intelligent allocation of
resources, automatic network operation, and intelligent
service provisioning. An illustration of the proposed, gen-
eralized CIoT framework is depicted in Fig. 17, which is
described as a bridge between the physical world (with
general physical or virtual objects or resources) and the
social world (with human demand, social behavior, and
others) [6]. There are four significant layers in the CIoT
framework, as can be seen in Fig. 17. The first layer is the
sensing control layer and is comprised of a perceptor to
sense the physical environment through incoming stimuli
and actuators to control the perceptor via the environment.
Next, the data-semantic-knowledge layer is responsible
for effectively analyzing data from the perceptor to form
useful knowledge. The useful knowledge abstracted from
the previous layers is then used in the decision-making
layer to facilitate reasoning and planning among interac-
tive agents. The dual function of this useful knowledge is
to support human and social services, and stimulate action
and adaptation to the physical environment [6]. Finally,
the service evaluation layer interfaces with social networks
and manages on-demand provisioning. Novel metrics are
proposed to evaluate the quality of the services provided,
which are passed as feedback to the decision-making
layer to present an overall structure governed by cost
and profit dimensions while considering computational,
storage, energy, and device utilization efficiencies [6].

The PAC is the first cognitive process of the pro-
posed CIoT framework, just as in a CDS. However, the
remaining four cognitive processes in the author’s CIoT
framework are massive data analytics, semantic deriva-
tion and knowledge discovery, intelligent decision-making,
and on-demand service provisioning [6]. Massive data
analytics in this framework is concerned with develop-
ing algorithms for effective analytics of massive amounts
of data and overcoming current issues with heteroge-
neous data. These algorithms can be classified into one of
four groups: heterogeneous, nonlinear, high-dimensional,
or parallel and distributed data processing algorithms.
Skar’s theorem to address heterogeneous data and the
use of kernel-based learning for nonlinear data [6] are
some examples of techniques presented to deal with some
of the encountered data issues. With semantic derivation

and knowledge discovery, the former deals with extrap-
olating context, ontology, and semantic standardizations,
and the latter utilizes techniques that fall under the asso-
ciation, outlier, or cluster analysis approaches to achieve
intelligence by realizing underlying correlations from the
data [6]. Intelligent decision-making concerns itself with
reasoning, planning, and selecting the most optimal course
of action for an agent to deliver an optimal solution for the
problem at hand. The authors suggest multiagent learning
and game theoretic approaches as suitable candidates for
intelligent decision-making [6]. Finally, on-demand ser-
vice provisioning entails the support of various services
to human or social networks, such as infrastructure-as-
a-service, platform-as-a-service, sensing-as-a-service, and
everything-as-a-service, which are topics already exten-
sively investigated (see [147] and [148]) and, therefore,
not a significant focus of the proposed framework [6].

Rather than following the exact structure of a CDS, this
framework diverges slightly in structure and ontology. For
example, the sensing control layer is directly related to the
PAC in terms of perceiving and interacting with the envi-
ronment in the presence of local and global feedback loops.
Although the description of the proposed CIoT framework
accounts explicitly for the PAC and intelligence, memory
and attention are not explicitly mentioned as cognitive
processes, contrary to the guidelines of the CDS frame-
work. However, despite this, we note that both memory
and attention can be identified to exist but under different
ontologies. Specifically, memory is addressed as a need to
be able to store whatever is learned about the physical
environment or social networks [6]. As for attention, it is
described in the framework as the mechanism behind
the ability to adapt via resource-efficient mechanisms that
allow for effective and robust decision-making [6].

C. Related Works in Cognitive IoT

1) Cognitive IoT Frameworks: The possibilities of broad
adaptability of CIoT to different scenarios have motivated
the academic community to continue expanding the lit-
erature on CIoT research and applying the framework to
various applications and contexts. As such, since the work
of Wu et al. [6] in proposing the CIoT framework was
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Fig. 17. Schematic of the theoretical CIoT framework adapted from [6] with the breakdown of the layers and processes.

previously discussed, there have been more recent studies
proposing more refined frameworks that adhere to the CDS
structures.

Acknowledging the efforts made in [6], Feng et al. [149]
proposed a CIoT framework that is designed in exact
accordance with the CDS structure and specifically tai-
lored the discussion to the application of smart homes.
According to the authors, a smart home is viewed as an
environment where the control of different home appli-
ances is managed remotely and automatically, with the
overall goal of improving the resident’s quality of life. This
application of CIoT is fascinating due to its parallels with
many fiction and science-fiction fantasies in the way the
authors envision it. For instance, a scenario is discussed in
the literature, which describes a person gradually falling
asleep on a sofa during the weekend. A smart home comes
into play by slowly decreasing the light intensity, adjusting
the air conditioner settings, enabling the home alarm sys-
tem, and adjusting other settings or appliances to provide
an optimal sleeping environment. Although the literature’s

scope does not extend beyond a theoretical discussion, the
studies form a solid foundation for further research and
advances in the field.

For a CIoT implementation in the smart home, an appro-
priate set of sensors to perceive the environment must be
equipped in the household. Such sensors are dependent on
the application of interest and, in this particular scenario,
may include light sensors on blinds and curtains to control
light shed through windows, acoustic sensors on doors
and TVs for voice control, and temperature sensors to
control the heating and air conditioning, and can even
go as far as pressure sensors in couches, which would try
to detect the state of the resident and adjust to become
a bed [149]. With these signals rallied to a real-time
control system built over a network, control signals are
sent to corresponding actuators in that network. The
sensing and actuating mechanisms described and, more
importantly, the feedback links from the perceptors that
carry information to the executive serve to satisfy the PAC
in the author’s framework [149]. The cognitive process
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of memory is implemented through perceptual memory
and executive memory. The perceptual memory recognizes
distinctive features using a Bayesian model and subse-
quently categorizes them statistically using a Bayesian
filter [149]. In the executive memory, which keeps track of
past chosen actions and their corresponding effectiveness,
RL is adopted as the learning mechanism responsible for
choosing the best action based on environmental rewards,
maximizing the accumulated rewards over time as a con-
sequence of the selected actions [149]. Attention is present
in both the executive and perceptual, and is responsible for
the efficient use of resources, such as directing informa-
tion gathering and allocating processing power based on
strategic importance. Essentially, attention is described by
the authors to be facilitated by a hierarchical, multilayered
structure of Bayesian modeling and RL in the perceptual
and executive parts, respectively [149]. Finally, as familiar
with the CDS framework, intelligence builds upon the
previous three cognitive processes to facilitate optimal
decision-making.

Another CDS-inspired framework, specifically for on-
device sensing, was proposed by Pérez-Torres et al. [150].
The motives and purpose of this framework differ slightly
compared to the ones just previously discussed in which
this framework serves to specifically address issues associ-
ated with the energy and computational power limitations
on mobile devices. Generally, mobile sensing systems are
designed to assume limited energy and computing power
for processing the vast amounts of real-world data nec-
essary for current IoT applications and standards [150].
Therefore, ML and other data preprocessing needs are
often offloaded to cloud-based solutions, often associated
with their own challenges [151]. Furthermore, with the
advancements in research areas, such as smart cities and
transportation, specific sensors in IoT devices, especially
location sensors, can play a critical role in tackling scal-
ability issues but often consume significant amounts of
power from smart devices [152]. The proposed on-device
CIoT framework aims to amortize the energy requirements
of mobile systems, such as smartphones, by learning an
expanded spatiotemporal model of user mobility from
detected stay points and frequently visited areas. Through
event-driven processing, the system will orchestrate the
asynchronous operation of the PAC within the CDS, accord-
ing to and only when mobility events are detected, provid-
ing the system with an opportunity to reach idle states and
save power [150].

Within the author’s framework, time and memory hold
relevant roles for the continuous operation of the PAC,
where the former allows the incremental learning of infor-
mation about the surroundings to produce a VRE. The
VRE is an internal memory structure for elaborating infer-
ences and predictions about future states and is in the
perception block of the proposed framework depicted in
Fig. 18 [150]. As the CDS adapts with time, the authors
discuss memory blocks as a way of focusing system atten-
tion to time windows that may have significant amounts

of information, just as the perceptual attention in a CDS
focuses on extracting relevant context information. In the
perception, the authors propose using pattern recognition
or ML techniques, such as SVMs or ANNs, to identify
relevant events [150]. Upon detecting an event, the VRE is
updated through the information learned from the higher
level analysis of perceptual memory. The PRM, as seen
in Fig. 18, is responsible for producing meaningful inter-
pretations of observed events and provides the cognitive
controller with estimates of future states to account for
future system reactions. The working memory, which is in
the PRM, thus, has the primary goal of mapping the sys-
tem’s interpretations with possible responses and associat-
ing the perceptual and executive memories [150]. Finally,
the executive is explained as the mechanism responsible
for dynamically adapting the system’s behavior toward
the defined goal by selecting the most appropriate policy
for the cognitive actions to actuate in the environment.
Further details and specifics about the practical imple-
mentation of the framework, specifically the cognitive
controller, can be found in another study published by
Pérez-Torres et al. [152].

Acknowledging the infancy of the research in the field
and the proposed on-device CDS framework, the authors
provide a case study of an implementation of their pro-
posed approach. Datasets from real-world trials conducted
with smartphones were used to demonstrate through
experimental simulations that it was possible to achieve
energy savings ranging from 25% to 66% with the pro-
posed framework [150]. Furthermore, the computational
and energy overhead of the CDS framework were not
substantial enough and managed to outperform in terms
of energy savings compared to the case of just periodically
disabling modules, such as the GPS. Several challenges are
highlighted, including the privacy and security of mobile
information, and vulnerability to data manipulations due
to the system’s reliance on perception, bringing up fur-
ther security challenges. However, with further research
effort and attention to this young field, the authors pos-
tulate that devices enhanced with this CDS framework
will prove to be invaluable in applications such as mobile
health, travel assistants, and mobility mining for logistics,
and further accelerate the arrival of a fully connected
world [150].

2) Cognitive Radio for IoT: In the last decade, many
advancements have been made in microelectronics, specif-
ically in the development of new, cheaper, and more
power-efficient embedded systems and communication
protocols and technologies, such as RFID, NFC, and WSNs.
Furthermore, the widespread adoption of M2M technolo-
gies, which connect machines, devices, and objects to the
Internet, plays a significant role in facilitating intercon-
nectivity among large-scale heterogeneous systems. All the
mentioned factors play a direct role in accelerating the
growth and proliferation of IoT and bring forth new issues
and challenges that stand in the way of future growth.
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Fig. 18. Schematic of the components and processes of an on-device CDS sensing framework for the IoT system (adapted from [150]).

The need for cognitive radio in IoT as promis-
ing enabling communication technology is presented by
Rawat et al. [141]. The authors highlight the new tech-
nologies enabled by IoT and the major problems posed,
most critically the spectrum and bandwidth allocation for
the quickly increasing number of IoT devices deployed.
An inefficient radio band allocation and routing manage-
ment would effectively create a bottleneck in IoT develop-
ment, as, when systems grow larger, they also become less
feasible due to the reduced spectrum availability. Making
the point that the growth of IoT has already displayed
adverse effects from spectrum congestion, the authors
survey the literature on applying cognitive radio to IoT
to address those issues [141]. The survey covers and
discusses topics including, but not limited to, the emerg-
ing challenges of autonomy, scalability, energy efficiency,
and heterogeneity in terms of user equipment capabili-
ties, complexity, and environments [141]. Furthermore,
a taxonomy is provided of the literature that classifies the
approaches of each study into two classifications: those
that address flexible and efficient networking and those
tackling the issues of heterogeneity. Finally, future chal-
lenges are presented to steer future research directions and
further expand progress in this area.

Khan et al. [21] further the discussion and emphasize
the need for cognitive radio-enabled IoT with a more
recent review. In their work, the authors thoroughly cover
and survey topics that address topics such as the stan-
dardization efforts with IoT and cognitive radio, potential
applications, spectrum-related work, and highlighting

issues and challenges. Furthermore, the authors extend
and go beyond previous literature by summarizing archi-
tectures and frameworks with prototypes and real-world
scenarios. For more details and a discussion on research
challenges and issues on this specific topic of cognitive
radio for IoT, we refer the readers to [21] and [141] for
recent surveys on the field.

VIII. D I S C U S S I O N A N D O P E N I S S U E S
The CDS framework’s potential to revolutionize the design
of physical systems has been made evident throughout this
survey. Specifically, the need for and capability of CDS as a
solution to reduce or eliminate human intervention in the
operation of real-world systems in various applications has
been highlighted by the increasing research interest in the
field. These points hold especially true when considering
the applications of cognitive radio and cognitive radar,
which have both received considerable attention from the
research community, as can be deduced from the signifi-
cant advances made in each of the respective fields and
the fact that they have diverged into their own respective
fields of study. In comparison, the other surveyed areas of
the CDS framework, such as CIoT, CC, and CRC, are still
relatively young and, therefore, present more interesting
challenges and opportunities yet to be addressed. However,
it is in the authors’ beliefs that further research into the
area of CC and CRC, specifically toward implementing
those architectures into new applications, is one of the
most significant potential avenues for future researchers
to make an impact.
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This section will summarize the key findings and trends
observed in the surveyed literature, offering insight into
their challenges and limitations while suggesting worth-
while avenues for future research efforts. A timeline sum-
marizing the key milestones and advancements of CDS
discussed in this section is graphically illustrated in Fig. 1.

A. Cognitive Radio

Cognitive radio has been demonstrated to be an effective
approach for solving the issues relating to the scarcity
of the electromagnetic spectrum, allowing users not oth-
erwise licensed to use a range of frequencies to do so
in a manner without any degradation of availability or
performance for the licensed entity. Spectrum sensing is
considered one of the most important tasks in cognitive
radio and has also seen most of the published studies in
this field. Traditionally, this task relied on a priori knowl-
edge of primary user signals; however, the state-of-the-
art techniques surveyed in this article use nonparametric
approaches, which eliminate the need for such knowledge
while demonstrating robustness to disturbances and low
SNR conditions. Some of these techniques involve the
use of ML algorithms, such as CNNs. On the other hand,
channel-state estimation and spectrum access techniques
have not received the same amount of attention. Regard-
less, heightened interest has been demonstrated toward
the use of ML and ML in cognitive radio, as surveyed
in [153], a trend that we also note to be prevalent in other
aspects of CDS research, as we will demonstrate further in
this section.

Open challenges in cognitive radio that has been
brought to this survey’s attention include the need for fur-
ther research in cooperative sensing techniques, especially
in terms of security in the cooperation amongst cogni-
tive users as networks scale in size and the possibilities
of being targeted by malicious attacks. The major open
challenge in cognitive radio could be argued to be that
this application has yet to be revisited since the proposal
of the CDS framework. It was demonstrated in this survey
that cognitive radio, while motivated by human cognition,
does not adhere to Fuster’s principles of cognition and
the CDS framework. Instead, cognitive radio is considered
a precursor to the CDS framework’s development. Thus,
it can be hypothesized that, with efforts directed toward
adapting cognitive radio to adhere to the CDS principles,
additional functionalities or improvements in utility and
performance may be realized. For instance, by implement-
ing cognitive radio with CC, it can be hypothesized that
more effective policies for accessing and distributing the
available spectrum can be realized with RL and its learning
and planning mechanisms. Similarly, this theory can be
extended to consider the application of CRC in cogni-
tive radio by accounting for and mitigating uncertainties
associated with detecting and accessing unstable spectrum
holes. Both mentioned approaches may result in improved
performance and reliability of cognitive radio and even

address the spectrum issue by increasing the utilization of
the RF spectrum.

The proliferation of 5G communication standards,
which consume more power than traditional standards in
current electronic devices, poses a rewarding challenge
for future researchers. This is an identified area, whereby
significant contributions can yet be made by the CDS
framework for cognitive radio, which is closely related to
the field of CIoT. Auspiciously, by augmenting such devices
with cognitive radio capabilities and further investigating
how the CDS framework can learn user behavior and pref-
erences, improved power consumption rates and quality of
service can be realized.

Finally, as will also be noted in Section VIII-B with
cognitive radar, there is a dearth of literature studying the
practical validity of cognitive radio in physical environ-
ments. A cognitive radio testbed would provide researchers
with an effective means to accurately evaluate experimen-
tal results in real scenarios and potentially reduce costs
substantially.

B. Cognitive Radar

Inspired by the echolocation abilities of bats, cognitive
radar is a notable example of biomimicry in engineering
design—whereby the cognitive radar adapts its transmitted
waveform depending on the task at hand and based on its
perception of the environment. Like cognitive radio, cog-
nitive radar has received significant amounts of attention
and effort from the research community. As covered in
this survey, significant advancements have been made in
performance in various applications with cognitive radar
compared to traditional fixed transmit-waveform radar
systems. The literature on waveform design for cognitive
radar has improved accuracy in single-target and mul-
titarget tracking scenarios and targets in dense, urban,
multipath environments. Furthermore, waveform design
techniques have been proposed to integrate radio com-
munications with cognitive radar to use information from
multiple radars in tandem, offering significant opportu-
nities for intelligent surveillance and monitoring applica-
tions. It has also been demonstrated that cognitive radar
relies heavily on estimation techniques for perception, such
as the KF and CKF. We postulate that investigation into
more advanced or recent techniques may prove to be a
fruitful avenue for future researchers. An example of such
is the novel SIF proposed in [154], which is a suboptimal
filter that demonstrates an inherent amount of robustness
to uncertainties due to a switching gain.

The issues related to the lack of adherence of cognitive
radio to CDS principles are also present with cognitive
radar. Mainly, it has been observed that most of the litera-
ture on cognitive radar does not refer to or adhere to the
cognitive processes of the CDS framework. However, the
difference is that cognitive radar was eventually revisited
by the researchers behind the framework, whereby it was
shown that cognitive radar with CC can demonstrate signif-
icant improvements in tracking accuracy. As such, most of
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the issues associated with cognitive radar’s implementation
as an adherent CDS can be attributed to those limitations
inherent with CC. This is especially apparent when con-
sidering that most of the surveyed literature inferred that
the main limiting factor for further improvements with
cognitive radar is its computational processing overhead.
This is an issue that arises in cognitive radar during
the transmit-waveform selection process by the cognitive
controller, as well as in the learning and planning process
involved. The cause of this issue has been attributed to the
complex nature of the transmit-waveform’s action space in
such applications. As such, research toward addressing the
computational efficiency of CC for cognitive radar systems
would enable and facilitate conducting practical experi-
mentations to confirm the superiority of such systems in
real-world scenarios and not just in simulated settings.

C. Cognitive Control

CC has been introduced as a general architecture of
CDS that is additive to current system designs, including
adaptive controllers and neurocontrollers, allowing them
to learn from interactions and experience and perform
more robustly in realistic environments. The information
gap or entropic state was introduced and described as the
measure that the cognitive controller aims to minimize.
In doing so, the entropic state also controls the state of
the perceptor. The CC framework, as demonstrated in this
survey, has been successfully implemented in various fields
and applications, and resulted in significant benefits and
improvements in various aspects.

The benefits hypothesized to be brought by the CDS
framework were verified for the first time with CC involved
in the waveform design of cognitive radar systems. Specif-
ically, it was shown that the new and fully cognitive
CC-enabled cognitive radar was able to achieve further
improvements in terms of tracking and state estimation
accuracy, as also discussed earlier in this section. Other
innovative applications involve CBTC systems, where CC
was responsible for ensuring reliable communications
between the trains and control centers to improve the
control performance, efficiency, and costs associated with
these systems. CC in CBTC was shown to improve the
smoothness of train acceleration and braking profiles while
reducing energy expenditures, all while lacking proper
implementations of attention and memory. As such, it can
be postulated that investigation and research into the
implementation of these two mechanisms to fully complete
the adherence of CBTC systems to the CC architecture
will yield further improvements. When tasked with the
supervision of a smart grid, CC can detect bad measure-
ments through the entropic state and account for them
by configuring the importance of affected meters in the
network to maintain the smooth and reliable performance
of the grid and power distribution. In such applications,
it has been demonstrated that CC can effectively reconfig-
ure the weights of measurements from sensors when they

may be malfunctioning to maintain accurate estimation
of the system states regardless of the presence of faulty
meters and bad measurements. Another interesting exam-
ple involved implementing CC as a supervisor of complex
stochastic networks to study the problem of observability,
where the model is responsible for selecting the optimal
subset of monitor nodes to observe from an entire set.
This application may be useful in situations where costly
sensors must be placed on an experimental setup, and as
such, CC may be used to determine the optimal number
and configuration of sensors to observe the system.

In all the mentioned applications, the KF and RL play
critical roles in the operation of CC, and as previously men-
tioned, it may be promising to explore the use of robust
estimation techniques, such as the SIF. Also, it has been
demonstrated that the computational overhead associated
with the Q-learning algorithm for RL, as commonly used in
the literature, is considered a limiting factor. These issues
require further investigation to ensure the applications’
scalability to real-world scenarios, as repeatedly noted in
the surveyed literature to be a significant open issue.

We bring to the reader’s attention several observations
made from our review of the surveyed studies on the CC
literature. First, the CC architecture has not yet received
the same level of attention in the research literature as
precursor applications such as cognitive radio and cogni-
tive radar. We attribute this to several reasons, with one
being the relative novelty of the CDS field. Despite being
proposed a decade prior to the writing of this survey,
the CDS framework and its first application of CC were
the subjects of many noninsignificant refinements in terms
of theory and implementation throughout the subsequent
years. Over those years, the authors have only applied their
framework to cognitive radar applications. This brings us
to the second limiting factor contributing to the lack of
a plethora of literature applying CDS and CC, which is
the fact that the agnostic nature of the framework and
its potential use in other applications has not been ade-
quately showcased. As such, we believe with this survey,
and further research efforts applying these concepts to
other new applications will fuel accelerating growth in the
field. Finally, we acknowledge that, while, in theory, the
concepts of CC and the cognitive processes entailing may
be rather straightforward, the task of practically imple-
menting them may be much more difficult. A cognitive
process in one application and the methodology behind
its implementation may not necessarily be as intuitively
applied and transferred to other applications. Thus, these
extra considerations compound the difficulty and increase
the barrier to entry to CDS research.

Otherwise, the CC framework demonstrates significant
potential in improving the performance of traditional
systems by equipping them with a sense of cogni-
tion and intelligence. With the combined findings in
this field, many applications can benefit by being aug-
mented with CC through future research. Such examples
include the controls of industrial plants and their physical
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processes, patient monitoring and diagnostic testing in
smart e-Health systems, and countless other possibilities.
This is all in virtue of the agnostic nature of CDS and CC,
specifically in their additive design nature, allowing their
implementation alongside existing systems without the
need for significant or intrusive modifications to existing
infrastructure.

D. Cognitive Risk Control

The CRC extends the CC framework to account for and
manage the risks or uncertainties that a system may face
by introducing a risk-sensitive subsystem to the CC model.
When such a situation is detected in this architecture,
the entropic state is formulated so that its sign becomes
negative. The reversal of this sign triggers the activation
of the risk-sensitive subsystem to bring the risk under
control and adapt accordingly. This subsystem introduces
a classifier to decide upon the best course of action in risky
scenarios based on a set of planned prospective actions
according to past learned experiences. When the risk
vacates, the subsystem is deactivated and circumvented,
and the control of the system is back solely in the hands of
CC. The CRC framework has been implemented and found
useful in securing the wireless communications between
autonomous vehicles from malicious attacks, offering even
better performance than CC in the same task.

Similarly, CRC has been extensively researched in the
context of autonomous vehicles as a means of controlling
the communication between other vehicles, target track-
ing, and fending against malicious entities, which may be
jamming communications. In such cases, CRC has been
demonstrated to be effective in transmit-waveform selec-
tion of the CVR systems under the presence of structural
or external uncertainties. As well, when responsible for
V2V communications of a network of CAV, CRC enables the
detection of jamming attacks and the switching of channels
to overcome them. In addition, a C-CRC model has been
proposed, which coordinates between two separate CRC
models, each of which is responsible for the CVR or vehic-
ular communications of CAvs. With C-CRC, each model is
formulated to depend on information from its complement
model to improve the tracking performance and maintain
constant and effective communication by guarding against
jamming attacks. Overall, CRC has been demonstrated to
improve tracking accuracy, communications, and safety in
autonomous vehicle systems.

Furthermore, in smart grid networks, instead of just con-
figuring the meters or measurements in a network like CC,
CRC can adapt the entire system to manage and eliminate
the effects of FDI attacks on the system’s states in seconds.
Specifically, CRC was implemented to reconfigure the sys-
tem matrix in the presence of FDI attacks to overcome and
mitigate their effects while maintaining accurate estimates
of the smart grid’s states. With a suggested formulation
provided in [115], it is postulated that the model may be
expanded upon to identify exactly which sensors in the grid
network are subject to the attack.

Among the biggest concerns with CRC, as in CC, is the
computational complexity of the model and the process-
ing power required for its operation. There is a consen-
sus in the surveyed literature that the number of shunt
cycles for learning and planning in most studies did not
prove to be sufficient and must be significantly increased,
further supporting the need for efforts to improve the
computational efficiency of such models. These issues
are a significant obstacle to realizing such technology in
real-world, practical settings, which we stress as criti-
cal considerations that require further effort and atten-
tion. Otherwise, we believe that the greatest potential
for future research lies in the investigation of imple-
menting the CRC architecture to novel applications and
systems to spark the rise of a new class of intelligent
cognitive systems with capabilities exceeding that of their
predecessors.

E. Cognitive Internet of Things

The last application of the CDS framework surveyed
in this article is CIoT, which aims to tackle the issues
associated with the various problems faced by IoT devices.
These problems include limitations in energy and com-
pute power, connectivity issues due to the mass growth
of devices, heterogeneity of data from different sensors,
and standardization and scalability. CIoT has also been
envisioned as a means to control all aspects of sensors
and actuators in connected environments, such as smart
homes. In a scenario such as the smart home, CIoT would
be equipped to determine the house occupants’ state and
adjust their environment accordingly, such as by dimming
the lights, lowering the volumes of electronics, and arming
the home security system when they are falling asleep.
Another use of CIoT has been studied, which involves using
an on-device CDS to learn the mobility of users through
their mobile devices and improve the computational and
power efficiency of the device by enabling it to adapt
accordingly to their habits.

However, the field of CIoT is still in its very early stages.
Although there has recently been interest in researching
an appropriate framework or structure, the availability
of substantial efforts to experimentally validate them is
extremely limited and mostly not attempted yet. Instead,
the field’s surveyed literature presents theoretical per-
spectives that bring to light the opportunities for future
research to investigate and experimentally validate the
viability of the proposed frameworks. Finally, the need
for cognitive radio technology in CIoT has been repeat-
edly expressed in the surveyed studies to combat the
increasing scarcity of the electromagnetic spectrum due to
the mass number of electronic devices continuously being
deployed.

F. Emerging Trends and Future Works

In summary, there are several trends and challenges
apparent from the studied works and recent advances in
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the field of CDS, which have been discussed. Most impor-
tantly, however, there is a consensus among researchers
that the potential for ML techniques to revolutionize
research in this domain further presents much promise
and cannot be ignored. The cognitive processes of memory
and attention in CDS may benefit the most from such
models, and one example of how this can be implemented
is through an anomaly detection model in the perceptor,
the executive, or both. An autoencoder is a type of neural
network, which can be used, for instance, to assist in the
detection of risk in CRC and TSC. They may be helpful as
autoencoders learn to replicate the most salient features
from data, and risky scenarios can be defined as anoma-
lies with characteristics assumed to differ from normal
scenarios noticeably, which will be replicated poorly by
autoencoders. The use of ML models in the CDS framework
is associated with its own set of issues and challenges. Due
to the sequential nature of data and its availability in a
CDS, online learning methods are critical to update the
best predictor for future data at each step and dynamically
adapt to new patterns. However, online learning methods
are prone to catastrophic interference, where previously
learned information is abruptly forgotten upon newly
learned information. It is also imperative to consider both
an online and an incremental learning approach, where
input data are continuously used to extend the model’s
existing knowledge. Accordingly, the classifier in CRC may
also benefit from using more state-of-the-art ML models,
bearing in mind the factors mentioned above.

It is worth noting that there has been a relatively
slower uptake and advancement in some regards of the
field of CDS. Some elements of the framework, such as
the cognitive processes, for example, are often easier to
capture than others. In some applications, this difficulty
may be more significant for one or more of the cognitive
processes. Furthermore, when it may be simple to capture
these elements, the matter may be further complicated
again by the fact that it is also often difficult to package and
coordinate the utility of these processes in one coherent
system. We mention these facts as we believe that they
are relevant and even the main answer when asking the
question as to why there is a lack of practical, physical
adoption, or implementation in the literature and, instead,
an abundance of experimental simulations in place to
verify the proposed research. There is no question that
many advantages can be brought to existing systems with
the adoption of CDS principles, and it is recognized that
this may be a simpler task in theory than it is in practice.
However, with this survey, we hope to bridge these gaps
and narrow the barrier of entry, which exists between
theory and practice. Furthermore, regardless of whether
or not future research efforts include all elements of CDS
in their work, incremental improvements, nonetheless,
contribute significantly to helping advance the field and
attracting further research.

Other noteworthy and emerging ML-based techniques
that will likely support the advancement of CDS in the

next years include adaptive ML, xAI, NLP, and physics-
based ML. These areas will likely improve the intelligence
and language capabilities of CDS, which will ultimately
improve system efficiency and uptake. Users will become
more comfortable with these systems as they become more
embedded within our society.

We leave the reader with final comments and insight
into the fields of CC and CRC, both of which we regard to
be in their infancy. Although the potential impact of these
CDS frameworks on the literature can be considered rather
significant, the applications in which they have been imple-
mented are still rather limited. However, a wide range of
unexplored applications may benefit from being equipped
with CDS functionality, which presents low-hanging fruit
for future researchers. In particular, we envision the emer-
gence of a new class of CDS in various fields, one such
example being cognitive robotics and mechatronic systems
to advance further the capabilities of autonomous systems,
such as self-driving vehicles, humanoid robots, and possi-
bly even terrestrial and extra-terrestrial crafts and drones.
Furthermore, a cognitive supply chain management frame-
work to improve logistical aspects, such as inventory man-
agement, route and path planning, and navigation in many
industries may yield considerable time and cost reductions.
A cognitive healthcare approach in decision-making and
coordination of resources in healthcare settings is also
envisioned as an area that can witness rapid advance-
ment in the coming years. Similarly, a cognitive industrial
process control in various production or manufacturing
settings involving chemical or mechanical processes may
facilitate a more effective and robust integrated approach.
Such an approach to process controls could enable the
design of larger, more complex processes and result in
overall increased benefits in terms of reliability, safety, and,
most importantly, economics. Furthermore, the ability to
predict if a product will fail before it is fully manufac-
tured or assembled will improve product reliability and
reduce manufacturing costs (e.g., battery cells in electric
vehicles) [155]. The list of applications mentioned is not
exhaustive whatsoever, but rather the contrary, as we
believe that the possibilities with the CDS framework are
limited only by human imagination.

IX. C O N C L U S I O N
In this survey, CDSs and their various applications have
been thoroughly surveyed to present the first effort to
consolidate the information from the plethora of literature
published in this young and developing field. Cognitive
radio and cognitive radar, which are the earliest and most
significantly researched applications motivated by human
cognition, are introduced and discussed along with the
most recent works and advances in each of the respective
fields. It was also shown and discussed that these two fields
were considered to be precursors to the CDS framework
in which they were proposed prior to its introduction
in the literature. Similarly, other more recently proposed
applications of the framework that has yet to receive
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critical attention from the literature, such as CC, CRC,
and CIoT, are also introduced and extensively surveyed
for the first time in this work. The methodology behind
this study was driven by the mission to motivate and
facilitate further research into CDSs. We achieved this
by informing the reader of the advances in each specific
area, detailing the surveyed literature’s advantages and
limitations, and offering suggestions and directions for
future efforts. In conclusion, the contents and findings of
this survey will serve as the foundation for future research
and prove valuable to the efforts of other researchers in
this exciting new field.
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