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ABSTRACT | In the last years, substantial attention has

been paid to the use of radar systems in health monitoring,

due to the availability of both low-cost radar devices and

computationally efficient algorithms for processing their mea-

surements. In this article, a tutorial overview of radar-based

monitoring of vital signs is provided. More specifically, we first

focus on the available radar technologies and the signal pro-

cessing algorithms developed for the estimation of vital signs.

Then, we provide some useful guidelines that should be fol-

lowed in the selection of radar devices for vital sign monitoring

and in their use. Finally, we illustrate various specific applica-

tions of radar systems to health monitoring and some relevant

research trends in this field.

KEYWORDS | Health monitoring; multiple-input–multiple-

output; radar; signal processing; vital signs.

Manuscript received 21 February 2022; revised 11 November 2022 and
3 February 2023; accepted 7 February 2023. Date of publication 22 February
2023; date of current version 7 March 2023. This work was supported by the
University of Modena and Reggio Emilia under its Mission Oriented FAR program.
(Corresponding author: Giorgio M. Vitetta.)

This research has involved only healthy adult volunteers; a consent has been
acquired from each of them.

Giacomo Paterniani, Alessandro Davoli, Giorgio Guerzoni, Pasquale Di
Viesti, and Giorgio M. Vitetta are with the Department of Engineering
“E. Ferrari,” University of Modena and Reggio Emilia, 41125 Modena, Italy, and
also with the Consorzio Nazionale Interuniversitario per le Telecomunicazioni
(CNIT), 43124 Parma, Italy (e-mail: giacomo.paterniani@unimore.it;
alessandro.davoli@unimore.it; giorgio.guerzoni@unimore.it;
pasquale.diviesti@unimore.it; giorgio.vitetta@unimore.it).

Daria Sgreccia, Anna Chiara Valenti, Marco Vitolo, and Giuseppe Boriani
are with the Cardiology Division, Department of Biomedical, Metabolic and
Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
(e-mail: daria.sgreccia@gmail.com; annachiara.valenti@unimore.it;
marco.vitolo@unimore.it; giuseppe.boriani@unimore.it).

Digital Object Identifier 10.1109/JPROC.2023.3244362

N O M E N C L AT U R E
ADC Analog-to-digital converter.
AD Arctangent demodulation.
ANC Adaptive noise cancellation.
API Application programming interface.
ASIC Application-specific integrated circuit.
AWGN Additive white Gaussian noise.
BR Breath rate.
BPF Bandpass filtering.
CFAR Constant false alarm rate.
CV Correlation of variation.
CNN Convolutional neural network.
CSD Complex signal demodulation.
CPU Central processing unit.
CW Continuous wave.
CWT Continuous wavelet transform.
DACM Differentiate and cross-multiply.
DC Direct current.
DFT Discrete Fourier transform.
DSP Digital signal processor.
DL Deep learning.
DOA Direction of arrival.
DT Decision tree.
ECG Electrocardiogram.
EMD Empirical mode decomposition.
FMCW Frequency-modulated continuous wave.
FOV Field of view.
FPGA Field-programmable gate array.
FFT Fast Fourier transform.
GPU Graphic processing unit.
HR Heart rate.
HRV Heart rate variability.
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IDFT Inverse DFT.
IFFT Inverse FFT.
IMF Intrinsic mode function.
IR-UWB Impulse radio ultrawideband.
ISM Industrial, scientific, and medical.
IWR Industrial millimeter-wave radar.
K-NN K-nearest neighbor.
LB Learning based.
LDA Linear discriminant analysis.
LNA Low noise amplifier.
LO Local oscillator.
LS Least square.
LSTM Long short-term memory.
MAE Mean absolute error.
MEMS Micro-electromechanical system.
MF Matched filter.
MIMO Multiple-input–multiple-output.
ML Machine learning.
MMIC Monolithic microwave integrated circuit.
NN Normal to normal.
P2G Position to go.
PA Power amplifier.
PAE Peak absolute error.
PCR Pulsed coherence radar.
PRI Pulse repetition interval.
RADAR Radio detection and ranging.
RBM Random body movement.
RF Radio frequency.
RHS Right-hand side.
RMSE Root-mean-square error.
RMSSD Root-mean-square successive difference.
RX Receive.
SDNN Standard deviation of normal to normal.
SFCW Stepped frequency continuous wave.
STFT Short-time Fourier transform.
SISO Single-input–single-output.
SNR Signal-to-noise ratio.
SVM Support vector machine.
TDM Time-division multiplexing.
TI Texas Instrument.
TX Transmit.
ULA Uniform linear array.
URA Uniform rectangular array.
UWB Ultrawideband.
VA Virtual antenna.
VGA Voltage gain amplifier.
VCO Voltage-controlled oscillator.
VHSIC Very high-speed integrated circuit.
TRI Triangular index.

I. I N T R O D U C T I O N
Monitoring human vital signs, such heart and respira-
tion rates, represents a routine practice to detect patient
deterioration. Changes in vital signs can reveal the exis-
tence of serious medical problems; for this reason, early
identification of these changes can improve survival rates
in several conditions [1]. Vital signs monitoring is often

accomplished by means of wearable health devices [2];
this is due to the fact that these devices enable continuous
monitoring during daily activities. However, in various
situations, such as in the case of infected patients or
of patients suffering from mental illness or affected by
severe burns or injuries, the use of wearable sensors is
not possible or recommended. In such cases, the use of
noncontact monitoring devices, such as radar systems,
can help healthcare professionals by providing critical
information about patient state [3]. The application of
radar devices to this field and, in particular, to the esti-
mation of heart and respiration rates has become an active
research area in recent years [4], [5], [6], [7]. Actually,
the first experimental results in this field date back to
1975, when the use of short-range radar technology was
proposed to noninvasively acquire respiratory information
by comparing a microwave signal with its echo reflected
from the chest of a patient [8], [9]. In the following
years, the possibility of employing radar systems for the
wireless detection of the physiological movements due to
both heartbeat and respiration has been shown [10], [11],
[12], [13]. This has motivated the investigation of the use
of this technology in a number of medical applications,
including adult and neonatal sleep monitoring [14], [15],
[16], disaster medicine (e.g., in the detection of human
vital signs under rubbles after earthquakes [17]), and lung
cancer radiotherapy [18].

In the last two decades, a few review articles about
radar-based monitoring of vital signs have been pub-
lished [13], [19], [20], [21], [22], [23], [24]; however,
they have a limited scope since they concern the use of
specific technologies. In fact, on the one hand, works [13],
[19], [20], [21], and [25] focus on CW Doppler radars,
UWB, and radars equipped with a single TX/RX antenna
(i.e., SISO and radars). On the other hand, work [22] takes
into consideration radars equipped with antenna arrays
(i.e., MIMO and radars) and illustrates the advantages
they offer with respect to their SISO counterparts. This has
motivated the writing of this article, which aims at offering
a tutorial overview of radar-based monitoring of vital signs
and at providing some essential tips for its use in a research
laboratory. More specifically, in the remaining part of this
article, we first provide essential information about radar-
based monitoring, cardiovascular and respiration phys-
iology, and the modeling of chest displacement. Then,
we focus on the available radar technologies and describe
various radar architectures and signal processing methods
developed for radar-based estimation of vital signs; in
our description, all the available options are taken into
consideration, and their pros and cons are illustrated. This
is followed by various technical considerations, formulated
in the light of the experience acquired in our experimental
activities on radar-based monitoring, and by the analysis
of some numerical results based on the measurements
we acquired through different radar devices; our con-
siderations concern the essential technical requirements
that radar devices employed in this field should have and
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some essential guidelines to be followed in conducting
experimental campaigns. The study of all this allows us to
lay the foundations for understanding specific applications
of radar-based monitoring and relevant research trends in
this field.

This article is organized as follows. In Section II, the
basic principles, challenges, and objectives of radar-based
monitoring of vital signs are illustrated. In Section III, the
physiological fundamentals of human cardiovascular and
respiration activities are provided and simple mathemati-
cal models describing the dynamics of chest displacement
due to these activities are described. Section IV is devoted
to the four radar technologies employed in radar-based
monitoring of vital signs, and to SISO and MIMO radar
architectures; for each architecture, simple mathematical
models are provided for the samples of the baseband
signal received in the presence of a single point target.
An overview of the most important deterministic and
LB signal processing techniques employed for vital signs
monitoring is offered in Section V. In Section VI, we illus-
trate some basic guidelines to be followed in conducting
experimental activities in the considered field, analyze the
problem of extracting hear rate from radar measurements,
and comment on the assessment of estimation accuracy.
The applications of the considered radar-based techniques
for vital signs monitoring to heart and BR estimation,
heart sound monitoring, and HR variability estimation are
discussed in Section VII, whereas current research trends
on radar-based monitoring of vital signs are illustrated
in Section VIII. Finally, some conclusions are offered in
Section IX.

II. R A D A R S F O R V I TA L S I G N S
M O N I T O R I N G : B A S I C P R I N C I P L E S ,
O B J E C T I V E S , A N D C H A L L E N G E S
A system for RADAR (i.e., briefly, a radar system) is an
electronic system designed to estimate the frontal distance
(together with the angular coordinates, if an MIMO system
is employed) and/or the velocity of objects (called targets)
that, due to their electrical conductivity, are able to reflect
back the electromagnetic waves it generates. Any radar
system consists of a transmitter and a receiver that, in the
applications considered in this article, are integrated in the
same electronic device. The transmitter generates radio
waves with known properties and radiates them along
a predetermined direction using a single TX antenna or
multiple TX antennas (i.e., an antenna array), whereas
the receiver captures the waves reflected back by the
abovementioned targets.

The measurement of the distance (i.e., of the range)
of any target from a given radar system is based on the
estimation of the propagation delay of the received waves,
whereas that of its velocity on some structural changes
in such waves; for instance, if a target is approaching
the radar or is moving away from it, a variation in the
frequency of the received radio waves is observed because
of the Doppler effect. Target range and velocity can be

estimated by radar systems equipped with a single TX
and single RX antenna. The measurement of the angular
coordinates of any target requires, instead, the availability
of at least two RX antennas, that is of an antenna array
at the RX side, since it is equivalent to the estimation
of the DOA of the electromagnetic waves impinging on
the radar receiver; note that, in general, the use of a
larger number of antenna elements forming the RX array
results in a better angular resolution, i.e., in more accurate
estimates of the angular coordinates of the surrounding
targets (and, consequently, in more detailed radar images).
Modern radars, and especially those employed for vital
signs monitoring, are quite small and compact in size1

since they operate at very high frequencies and, in partic-
ular, in the microwave spectrum.2 The basic components
of these devices are a digital control board and an RF
front end, whose implementation is usually based on an
MMIC and small-sized patch antennas [26]. If microwave
frequencies are used, small-size TX and RX antennas are
implemented and electromagnetic signals characterized by
a very large bandwidth and small wavelength are radiated;
the last features make it possible to achieve an excellent
range solution and detect small movements.

Radar-based monitoring of vital signs is based on the
idea that the chest wall of human bodies reflects the
electromagnetic waves generated by a radar placed in
front of it and that its quasi-periodic vibrations, resulting
from respiration and heartbeat, modulate such waves.
Therefore, in principle, essential information about vital
signs, i.e., HR and BR, can be extracted from the reflected
electromagnetic waves [27], [28], [29] and a fundamental
objective, namely, contactless monitoring of vital signs, can
be achieved. Note also that, compared with traditional
methods, such as pneumotachography and electrocardio-
graphy, radar systems make continuous and timely BR and
HR monitoring possible without entailing an additional
work load for nurses. For these reasons, radars represent a
favorable option for hospital monitoring, especially in the
case of severe burn or infectious disease patients, sudden
infant death syndrome monitoring, sleep apnea moni-
toring, elderly home healthcare, and psychology studies.
Moreover, radar signals can be processed to extract more
refined medical information and, in particular, to detect
anomalous alterations in the sequence of heart beats.

1The size of a commercial MIMO radar device for vital signs
monitoring mainly depends on that of its RF front end, which contains
all its RF components and, in particular, its TX/RX antenna arrays.
The distance between adjacent antennas of the same array is typically
equal to half the transmission wavelength, i.e., to approximately 2 mm
at 77 GHz. The average front-end area of MIMO radars operating at that
frequency and equipped with tens of TX/RX patch antennas is on the
order of 100 cm2 (corresponding to the area of a square whose side is
10 cm; see, e.g., Fig. 17). It is also worth mentioning that the front-end
area of SISO radar devices is substantially smaller, being on the order
of 4 cm2 (see, e.g., Fig. 18).

2This portion of electromagnetic spectrum is often defined as the
interval of frequencies ranging from 1 to 100 GHz (corresponding to
wavelengths between 0.3 m and 3 mm).
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Even if the usefulness of radar systems in vital signs
monitoring is now globally recognized and a wide liter-
ature about such systems is available, various challenges
concerning signal processing techniques for vital signs
extraction are still open in this research field; here, we limit
to mention the following.

1) The estimation of HR: As illustrated in Section III-B,
the vibrations due to heartbeat are significantly
weaker than those originating from respiration. For
this reason, the contribution of the first phenomenon
to the radar signal may be hidden by that related
to the second (and much stronger) one. This makes
the task of estimating HR much harder than that of
estimating BR; additional details about this issue can
be found in Sections VI-C and VII-A.

2) The identification of anomalous alterations of heart
beats: This challenge concerns the possibility of esti-
mating HRV and detecting heart sounds; these issues
are discussed in Sections VII-C and VIII-B, respec-
tively.

3) The simultaneous observation of the vital signs of mul-
tiple people: In principle, MIMO radar systems can
be exploited to detect and estimate the vital signs
of multiple people located in a restricted area (e.g.,
in the same room; see Section V-B for further details).
However, experimental results supporting the feasibil-
ity of this idea and involving a significant number of
people are still missing in the technical literature (see,
e.g., [22, Table 1, Sec. IV]).

Finally, it is worth mentioning that the experimen-
tal results available in the technical literature about
radar-based monitoring of vital signs concern heteroge-
neous radar technologies and that there is not a broad
consensus on the best technology to be adopted in real-
world systems. For this reason, it is important to analyze
the pros and cons of each option available on the market;
this issue is discussed in Section IV.

III. P H Y S I O L O G I C A L F U N D A M E N TA L S
A N D M AT H E M AT I C A L M O D E L I N G
In this section, we first provide readers with the physio-
logical fundamentals of heart and lung functions. Then,
we concentrate on the movements of the chest surface in
human beings and illustrate some mathematical models
describing them.

A. Basics of Cardiovascular and Respiration
Physiology

The human heart is made of two separated systems,
called left and right sides. Each side consists of two
chambers, namely, an atrium and a ventricle, which are
separated and connected by an atrioventricular valve. The
main function of the left side is to pump oxygenated blood
through the aorta and the other arteries to peripheral
tissues and organs. The right side, instead, is in charge of
pumping deoxygenated blood through pulmonary arteries

to lungs. Each side is connected to arteries through the so-
called semilunar valves.

The cardiac cycle consists of a rhythmic sequence of
contractions (systoles) and relaxations (diastoles) of the
heart; these events occur simultaneously in the left and
right sides. During each cardiac cycle, sounds are gener-
ated by the action of the heart muscle and the vibrations
of the cardiac valves. In the case of a healthy adult heart,
two heart sounds are detected. The first one is caused by
the contraction of the ventricular muscle during systoles
and the closing of atrioventricular valves. The second
heart sound, instead, is due to the closure of aortic and
pulmonary valves. Hemodynamic properties and HR can
be determined by recording heart sounds. As a matter of
fact, such sounds can help the physician in the diagnosis
of potential cardiovascular diseases [30], [31]. The phys-
iologic HR at rest is 60 up to 100 beats per min (bpm);
values below this range (above it) characterize the so-
called bradycardia (tachycardia).

A breathing cycle consists of two consecutive phases,
known as inspiration and expiration. In the first phase,
due to the contraction of the diaphragm and the intercostal
muscles, the thoracic volume increases; this results in a
subatmospheric pressure that allows air to flow through
the airways into the lungs. Then, air oxygen is absorbed
into the blood and carbon dioxide is transferred from the
blood to the inhaled air through the alveolar-capillary
membrane. Expiration, instead, is caused by the elastic
recoil of the lungs and relaxing muscles. In this phase, the
deoxygenated air can flow out of the lungs by increased
pressure [32], [33]. The physiologic BR at rest is 12 up
to 25 acts per minute, whereas values below this range
(above it) characterize the so-called bradypnea (tachyp-
noea).

B. Modeling of Chest Displacement

Let us focus now on the problem of modeling the
chest displacement of an arbitrary patient. As illustrated
in Section III-A, his/her inspiration (expiration) phase pro-
duces an expansion (compression) of the thoracic wall.
Moreover, the vibrations due to his/her heart beat overlap
with the thoracic breathing movement. In principle, the
time evolution of both the thoracic breathing movement
and the cardiac vibrations of the considered patient can
be measured by a radar system placed in front of his/her
chest at a fixed distance. In the absence of random and
large-scale body movements, the displacement ∆R(t) of
the chest surface measured by the radar system at the
instant t can be modeled as [34]

∆R (t) ≜ R (t)−R0 = δb (t) + δh (t) (1)

where R(t) (R0) is the radar–chest distance at time t

(distance in the absence of respiration) and δb(t) (δh(t))
represents the breath (heart) contribution to ∆R(t). It is
important to stress that the following conditions hold.
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Fig. 1. Representation of (a) computer-generated chest displacement (multiple periods of breathing activity are considered), (b) computer-

generated chest displacement (a couple of consecutive periods of breathing activity are considered), (c) contributions of breathing activity to

the chest displacement shown in (b), and (d) contributions of heart activity to the chest displacement shown in (b). In all these figures, a blue

(red) line is used to identify the signals generated based on (1) [see (6)].

1) The displacement δb(t) (δh(t)) is usually assumed to
be periodic with period TBR ( THR), with TBR > THR.

2) The contribution of δh(t) to the displacement ∆R(t) is
usually small with respect to that due to δb(t); in fact,
if δb,M (δh,M ) denotes the maximum absolute value
of δb(t) (δh(t)), it is known that 1 ≤ δb,M ≤ 5 cm and
1 ≤ δh,M ≤ 9 mm [35], [36].

A simple mathematical model describing the breath
displacement δb(t) within each period has been proposed
in [37]. According to this model, the displacement in the
inspiration phase is described by the parabolic profile

δb (t) = − δb,M

Ti Te
(t− t0)

2 +
δb,MTBR

Ti Te
(t− t0) (2)

with t ∈ [t0, t0 + Ti), whereas that in the expiration phase
by the exponential profile

δb (t) =
δb,M exp

(
−Te

τ

)
1− exp (−Te/τ)

[
exp

(
− (t− t0)− TBR

τ

)
− 1

]
(3)

with t ∈ [t0 + Ti, t0 + TBR); here, t0 is the initial instant of
the considered breathing period, Ti (Te) is the duration

of the inspiration (expiration) phase, and τ is the time
constant of the expiratory profile; note that TBR = Ti +Te.
The displacement due to the cardiac activity, instead, can
be modeled as [34]

δh (t) = δh,M cos (w1 (t− t1) + γh (t))

· exp

(
− ((t− t1)− a2)

2

a3

)
(4)

with

γh (t) = a1 sin (w2 (t− t1)) (5)

and t ∈ [t1, t1 + THR); here, t1 is the initial instant of the
considered heartbeat, and {ak; k = 1, 2, 3} and {wl; l =

1 and 2} are tunable and fixed parameters, respectively.
Note that the function γh(t) is periodic but can be easily
modified to account for HRV, i.e., for the changes in the
time interval between consecutive beats.3

The minimum and maximum values of all the parame-
ters appearing in (2)–(5) are listed in the second row and

3Additional details about HRV are provided in Section VIII-B.
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the third row, respectively, of Table 1; note that, given THR

and TBR, w1 and w2 can be computed as w1 = 2π/THR

and w2 = 2π/TBR, respectively, and both parameters are
expressed in rad/s.

The chest displacement resulting from the mathemat-
ical model expressed by (1)–(4), given the values of its
parameters4 listed in the fourth row of Table 1, is exempli-
fied in Fig. 1, where the contributions due to breathing
and cardiac activities are also shown for a couple of
consecutive periods of breathing activity [see Fig. 1(a)
and (d)]. Note that, in generating these numerical results,
t0 = (kb − 1)TBR (with kb = 0, 1, . . . , Nb − 1 and
Nb = ⌊TF /TBR⌋) and t1 = (kh − 1)THR) (with kh =

0, 1, . . . , Nh − 1 and Nh = ⌊TF /THR⌋) have been selected,
where TF is the duration of the whole observation interval;
moreover, the values adopted for the model parameters
have been selected based on the results obtained in our
experimental campaign.

Although the models illustrated above are accurate,
a simpler representation of the heart and breathing profile
has been adopted by various researchers [28], [38], [39].
More specifically, if Ti is assumed to be equal Te, the
approximate model

∆R (t) ≈ ∆R̄ (t) = δ̄b (t) + δ̄h (t) (6)

with

δ̄b (t) ≜
δb,M

2
[1− cos (wbt)] (7)

and

δ̄h (t) ≜ δh,M cos (wht) (8)

can be employed in place of that expressed by (1); here,
wb = 2π/TBR (wh = 2π/THR) represents the HR (BR).
An example of chest displacement generated according to
(6) is shown in Fig. 1, where the contributions due to
breathing and cardiac activities are also shown. From this
figure, it can be easily inferred that the results obtained on
the basis of the models (1) and (6) are not so different;
however, we should not forget that model (6) is unable to
account for the presence of both HRV and all the frequency
components5 observed in the spectrum of the received
signal.

Finally, it is worth mentioning that various sensors, such
as pressure belts, fiber Bragg gratings, and inertial sensors,
can be exploited to monitor chest surface motion (some
examples of commercial wearable sensors are described
in Section VI-B); however, all these sensors require to

4These values have been selected based on the data acquired in our
measurement campaigns.

5The spectral contribution due to respiration is represented by a few
relevant harmonics, as evidenced by our numerical results shown in
Section VI-C.

be worn by the patient under test. In a measurement
campaign for radar-based monitoring, one of these sensors
can be used as reference; this allows to separate the cardiac
activity from the dominant breathing dynamics. In fact,
as already mentioned above, the contribution of heart
beats to surface chest motion is relatively small due to
respiration. Moreover, the spectral components of heart
motion may overlap with the respiratory harmonics; this
makes separating the former contribution from the latter
one really challenging.

IV. R A D A R S Y S T E M S : T E C H N O L O G I E S
A N D A R C H I T E C T U R E S
In this section, after providing a classification of the radar
technologies employed for vital signs monitoring, some
architectures of radar systems equipped with single and
multiple TX/RX antennas are illustrated.

A. Radar Technologies and Classification

Radar systems can be divided into two categories based
on the mechanism according to which the waveform they
radiate is generated; more specifically, the first category is
made of the CW radars, whereas the second one is made
of the so-called pulsed radars. In a CW radar, the radiated
signal is transmitted continuously, whereas, in a pulsed
radar, it is sent over short periods of time. In both cases,
the transmitted signal can be modulated or unmodulated;
for this reason, radar systems can also be classified based
on the modulating waveform. In the technical literature
on vital sign estimation, the use of the following types of
radar systems has been investigated: 1) CW Doppler radar;
2) FMCW radar; 3) SFCW radar; and 4) IR-UWB radar.
In the remaining part of this section, a brief description of
each type is provided.

CW Doppler radars radiate a CW radio signal, charac-
terized by a known stable frequency, and are commonly
employed for their hardware simplicity. In these radar
systems, the chest displacement due to heart and breath-
ing activities results in a variation of the phase of the
received signal. Such a variation is inversely proportional
to the wavelength of the signal; therefore, reducing the
wavelength of the transmitted wave (i.e., increasing its
frequency) results in larger changes in the observed phase
and, consequently, allows to detect smaller displacements.
One of the main limitations of these radar systems is
represented by the fact that they are unable to measure
the frontal distance, i.e., the range between the radar and
any subject detected by it.

FMCW radars and SFCW radars radiate wideband
frequency-modulated signals. The main difference
between these systems is represented by the fact that,
in the former case, the frequency of the transmitted wave
evolves over time in a linear manner, whereas, in the latter
one, it changes in a stepwise manner. However, in both
systems, the propagation delay is extracted from the phase
variations observed in the received signal.
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Table 1 Minimum and Maximum Values of the Parameters Appearing in (1)–(5). The Values Selected for Generating the Simulation Results Shown in

Fig. 1 Are Also Listed

IR-UWB radars radiate wideband frequency-modulated
signals. In these systems, the chest distance is estimated by
assessing the delay experienced by sub-nanosecond pulses,
being this delay proportional to the distance between the
radar and any detected subject.

The abovementioned radar systems can also be classified
based on their wavelength or their maximum measur-
able range. In fact, in the first case, they are divided
into microwave radars, characterized by a wavelength of
few centimeters, and millimeter-wave (mm-wave) radars,
if their central frequency is equal to 77 GHz or, in general,
greater than 30 GHz [40]. In the second case, instead,
they can be divided into (see, e.g., [41, p. 24, Table 1]):
1) short-range radars, which are able to measure a maxi-
mum range of about 30 m; 2) medium-range radars, which
are characterized by a maximum range of about 100 m;
3) long-range radars, which achieve the largest maximum
range (of the order 250 m).

Each of the considered radar systems is endowed with
a single antenna or an antenna array at its TX and/or RX
sides. An SISO radar system employs a single antenna at
both its sides; note that, most of the CW and IR-UWB
radars considered in the technical literature on the mon-
itoring of human vital signs are of SISO type. MIMO radar
systems, instead, employ antenna arrays in their transmis-
sion and reception; various FMCW and SFCW radars of this
type are already available on the market and their use in
vital signs monitoring is currently being investigated. It is
also important to keep in mind that an SISO radar can
estimate the range and/or the distance of single/multiple
targets, whereas an MIMO radar makes the estimation of
its/their angular coordinates possible.

MIMO radar systems can be divided into statistical
radars [42], [43] and colocated radars [44], [45] based on
the distance between their TX and RX arrays. In practice,
the TX and RX antennas of statistical radar systems are
widely separated. On the contrary, the TX antennas of colo-
cated radar systems are close to the RX ones and, in partic-
ular, are usually placed on the same shield. The last feature
allows to develop compact devices; this explains why all
the MIMO radars currently being considered for vital signs
monitoring are of this type.

In an MIMO radar system, the signals radiated by dis-
tinct TX antennas are orthogonal. The simplest strategy
to synthesize orthogonal waveforms is represented by
TDM [46]. Adopting this strategy means that distinct TX
antennas are activated over disjoint time intervals so that
the signals they radiate do not overlap in the time domain.

In selecting a radar system of a specific type, the follow-
ing relevant features must be considered.

1) Its maximum detection distance: This depends on the
power radiated by the radar device, on the gain of
its antennas, and on the signal processing accom-
plished at both its TX and RX sides. If commercial
radar devices operating at the same power level are
considered, FMCW and IR-UWB devices are usually
found to achieve a higher value of maximum detec-
tion distance than their CW and SFCW counterparts.
Note also that colocated MIMO radars benefit from
the availability of antenna arrays. In fact, increasing
the overall number of radiating elements in their TX
and RX arrays results in a larger overall gain and, con-
sequently, in an increase of the maximum detection
distance, independently of the adopted modulation
format.

2) The accuracy it can achieve in range estimation: The
highest level of accuracy is attained by MIMO radars
(of FMCW, SFCW, or IR-UWB types), due to the fact
that the SNR level at their RX side is higher than that
of their SISO counterparts [44].

3) Its ability to detect multiple subjects characterized by
different DoAs: This ability is offered by MIMO radars
only6 since their RX array allows to separate signals
received from different directions [46].

4) Its overall complexity: In general, SISO radars are
significantly simpler than their MIMO counterparts.
In the category of SISO radar devices, the CW type
is undoubtedly the one having the simplest architec-
ture. In the category of MIMO radar devices, instead,
MIMO FMCW radars usually have the largest com-
plexity.

5) Its cost: In general, the cheapest radar devices are the
ones of CW type. For a given radar type, the cost of
commercial MIMO devices is at least twice that of
their SISO counterparts. The cost gap between SISO
and MIMO devices mainly depends on the size of the
employed antenna arrays and, in particular, increases
when the overall number of the antenna elements
(i.e., the overall number of RF chips) gets larger.

B. Architecture of SISO Radar Systems

In this section, a brief description of the architecture
of the radar systems employed for vital signs monitoring

6In principle, an SISO radar can be used to detect the vital signs
of multiple subjects, provided that their ranges are different (see, e.g.,
[47]). However, it is unable to estimate their angular coordinates.
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Fig. 2. Block diagram of a CW radar.

is provided. All the considered systems are equipped with
single TX and RX antennas. Moreover, in illustrating their
baseband processing at the RX side, it is always assumed
that the chest of the monitored subject, placed in front
of the radar system, can be represented as a single point
target for simplicity.7

1) CW Radars: Let us focus first on CW radar systems.
The architecture8 of a radar system of this type is repre-
sented in Fig. 2. In its transmitter, the RF signal produced
by a waveform generator (and characterized by the carrier
frequency f0) feeds a PA, whose response is applied to
the TX antenna; this antenna is placed in front of the
chest of a human being. The received signal is amplified
by an LNA, whose response undergoes frequency down-
conversion to extract its in-phase and quadrature (I/Q)
components, denoted xI(t) and xQ(t), respectively; this
task is accomplished by a couple of mixers, each followed
by the cascade of a low-pass filter (LPF) with a VGA. The
output of each VGA is sampled by an ADC, operating at the
frequency fs = 1/Ts, where Ts is the sampling period. The
nth sample of xI(t) (xQ(t)) is denoted xI [n] ≜ xI(nTs)

(xQ[n] ≜ xQ(nTs)); note that the mathematical expression
of these samples depends on the transmitted waveform.
Further mathematical details are provided in the following
for each of the three types of CW radars introduced in
Section IV-A.

a) CW Doppler radar: In this case, the waveform
generator appearing in Fig. 2 consists in an LO generating
a tone at the frequency fc. The nth sample of xI(t) and
xQ(t) can be expressed as (see, e.g., [54, Sec. II, eqs. (1)
and (2)])

xI [n] = a cos(ψ[n]) + wI [n] (9)

7As a matter of fact, the chest of the monitored subject is usually
much larger than the resolution of the employed radar sensor (and, for
this reason, should be represented as a cloud of point targets) and absorbs
a significant fraction of the incident power at its skin surface [48]. All
this is usually neglected in the technical literature.

8Note that a different architecture is adopted by CW self-injection-
locked radars and CW radars employing super-regenerative oscillators;
further details about this topic can be found in [49], [50], [51],
[52], and [53].

and

xQ[n] = a sin(ψ[n]) + wQ[n] (10)

respectively, with n = 0, 1, . . . , N − 1; here, n is the fast
time index, N represents the overall number of samples
acquired in the considered observation interval, a repre-
sents the amplitude of the useful signal component, and
wI [n] (wQ[n]) is the contribution of the AWGN affecting
the in-phase (quadrature) component

ψ[n] ≜ ψ0 + ∆ψ[n] (11)

ψ0 = 4π
R0

λ
(12)

is a constant phase shift9 due to the (fixed) distance R0

between the chest of the considered subject and the radar,
and

∆ψ[n] =
4π

λ
∆R[n] (13)

is the phase variation due to the chest displacement ∆R(t)

[see (1)]; here, ∆R[n] ≜ ∆R(t = nTs), λ = c/f0 is the
wavelength of the radiated signal, c is the speed of light,
and Ts is the sampling period. From the mathematical
results illustrated above, it can be easily inferred that
the chest displacement can be assessed by estimating the
phase variations over consecutive samples of the complex
sequence {x[n]; n = 0, 1, . . . , N − 1}, where

x[n] ≜ xI [n] + jxQ[n] = a exp (jψ[n]) + w[n] (14)

and

w[n] ≜ wI [n] + jwQ[n] (15)

is the noise contribution to x[n] (14).

b) FMCW radar: The waveform generator employed
in the transmitter of an FMCW radar (and appearing in
Fig. 2) consists in a VCO, characterized by the free running
frequency f0 and fed by a periodic ramp generator. The
frequency of the transmitted signal evolves periodically
and, within each period, changes linearly; this linear fre-
quency sweep is known as chirp. The evolution of the
instantaneous frequency over a frame consisting of Nc

consecutive chirps is shown in Fig. 3; here, T0, T , and TR

represent the chirp duration, the ramp time period, and

9The phase shift ψ0 is called DC offset. In vital sign monitoring, this
quantity depends on the distance between the employed radar and the
chest wall in front of it; however, this term may be influenced by other
factors, such as the reflections from stationary targets or from other parts
of the human body, and the noise of electronic components.
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Fig. 3. Representation of the instantaneous frequency of the RF signal transmitted in an FMCW radar system.

the reset time, respectively, so that

T0 = T + TR (16)

and the overall duration of the frame is TF = NcT0. Note
that each chirp is characterized by the chirp slope

µ ≜
B

T
(17)

where B is the width of the swept frequency interval (i.e.,
the radar bandwidth).

The kth sample of the I/Q components acquired in
the nth chirp interval can be expressed as (see, e.g.,
[41, Sec. 2.1.2, eq. (5)])

xI [k, n] = a cos (2πkfnTs + ψ[n]) + wI [k, n] (18)

and

xQ [k, n] = a sin (2πkfnTs + ψ[n]) + wQ [k, n] (19)

respectively, with k = 0, 1, . . . , N − 1 and n = 0,
1, . . . , Nc − 1 ; here, N is the overall number of samples
acquired over a single chirp

Ts ≜
T

N
(20)

is the sampling period, k (n) denotes the fast time (slow
time) index, wI [k, n] (wQ[k, n]) is the contribution of the
AWGN affecting the in-phase (quadrature) component of
the useful signal, a represents the amplitude of the useful
signal component

fn ≜ µτn (21)

is a frequency proportional to the delay

τn ≜
2Rn

c
(22)

Rn is the distance of the radar system from the chest (i.e.,
the target range) in the nth chirp interval. Note that the
phase term ψ[n] appearing in the RHS of (18) and ( 19) is
assumed constant within a single chirp and, therefore, it is
still expressed by (11).

In the considered radar system, the complex sequence

x [k, n] ≜ xI [k, n] + jxQ [k, n]

= a exp (j (2πkfnTs + ψ[n])) + w [k, n] (23)

is processed to generate an estimate of the frequency
fn, from which an estimate of the target range Rn is
easily computed on the basis of (21) and (22); here,
w[k, n] ≜ wI [k, n] + jwQ[k, n]. Consequently, range esti-
mation is equivalent to the estimation of the normalized
frequency

Fn ≜ fnTs (24)

of a complex exponential sequence.
c) SFCW radar: The transmitter of an SFCW radar is

similar to that of an FMCW radar, the only difference being
represented by the fact that the ramp generator of the
last system is replaced by a staircase waveform generator.
Therefore, the instantaneous frequency of the signal gen-
erated by the VCO employed in an SFCW radar changes in
a stepwise manner within each radiated frequency sweep.
The time evolution of the instantaneous frequency of the
signal generated by the VCO over a single frame is shown
in Fig. 4. In this figure, T0, T , and TR represent the
frequency sweep duration, the sampling time, and the reset
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Fig. 4. Representation of the instantaneous frequency of the RF signal transmitted by an SFCW radar system.

time, respectively, whereas N and ∆f represent the overall
number and the width of each frequency step, respectively.
Note that, if Nc denotes the overall number of frequency
sweeps forming a single frame, each frame lasts TF =

NcT0 s.
If we assume that the sampling interval Ts is equal

to the duration of each frequency step (i.e., the sam-
pling frequency fs ≜ 1/Ts is equal to ∆f), a sin-
gle complex sample is acquired at the RX side within
each single frequency step. Moreover, in this case, the
kth sample of the I/Q components available in the
nth frequency sweep interval can be expressed as (see,
e.g., [55, Sec II-B, eq. (13)])

xI [k, n] = a cos (2πk∆fτn + ψ[n]) + wI [k, n] (25)

and

xQ [k, n] = −a sin (2πk∆fτn + ψ[n]) + wQ [k, n] (26)

respectively; here, k, n, a, ψ[n], τn wI [k, n], wQ[k, n], and
N have the same meaning as the one illustrated for the
corresponding terms appearing in (18) and (19).

In the considered radar system, the complex sequence
{x[k, n]; k = 0, 1, . . . , N − 1}, where

x [k, n] ≜ xI [k, n] + jxQ [k, n]

= a exp (−j (2πk∆fτn + ψ[n])) + w [k, n] (27)

for any n, is processed to generate an estimate of the
normalized delay

Fn ≜ ∆fτn. (28)

Since the last quantity can also be interpreted as the
normalized frequency of a complex exponential sequence,
the frequency estimation algorithms developed for FMCW
radar systems can also be employed in SFCW systems; in
doing so, we must keep in mind that the only difference
between (23) and (27) is represented by the sign of the
argument of complex exponential appearing in their RHSs.
Finally, it is worth stressing that this similarity can be

considered as a form of time–frequency duality [56]; from
this viewpoint, an SFCW radar system can be seen as the
dual of an FMCW radar system, as evidenced in [57].

Finally, it is worth mentioning that, since, in principle,
the useful component of the baseband signal available at
the RX side in a CW radar system is a complex exponential
[see (14), (23), and (27)], the overall quality of that signal
can be assessed by representing its time evolution on a
Cartesian plane; this leads to the so-called I/Q constel-
lation graph. In general, these graphs represent a useful
way to visualize the baseband output of a CW radar and
check whether there is any distortion or I/Q imbalance.
An example of I/Q constellation graph referring to the
FMCW IWRxx43 radar system described in Section VI-A is
shown in Fig. 5. Note that the fluctuations observed in the
amplitude of the represented curve are mainly due to the
fact that the human chest cannot be modeled as a point
target, as assumed in the derivation of the signal model
(23); consequently, the received signal results from the
superposition of multiple echoes of the radiated waveform.

Fig. 5. I/Q constellation graph generated based on our experimental

data.
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Fig. 6. Block diagram of an IR-UWB radar.

2) IR-UWB Radar: The architecture of an IR-UWB radar
is represented in Fig. 6. At the TX side, a tunable Gaussian
pulse generator, triggered by a square wave generator,
is employed to generate the (baseband) output signal

s (t) =
∑

n

p (t− nT0) (29)

where p(t− nT0) represents the nth transmitted pulse and
T0 is the PRI. Note that, if T denotes the duration of
each pulse,10 the interval T0 is expressed by (16), where
TR is the so-called reset time. The time evolution of s(t)
is exemplified in Fig. 7, where Nc consecutive pulses
are represented; such pulses form a transmission frame,
whose duration is TF = NcT0 s.

The signal s(t) (29) undergoes frequency upconversion
(accomplished by means of a mixer and an LO operating
at the frequency11 f0) and power amplification before its
transmission.

Since the pulses forming s(t) (29) are not overlapped,
we can focus our attention on the echo generated by the
chest in response to the kth pulse. At the RX side, the
RF signal conveying this pulse is amplified by an LNA
and downconverted12 to extract its I/Q components. Then,
these components undergo analog-to-digital conversion at
the frequency fs = 1/Ts, where Ts is the sampling period.
If τn denotes the delay experienced by the considered
pulse, the kth sample of the I/Q components associated
with it can be expressed as (see, e.g., [58, Sec. II, eq. (4)])

xI [k, n] = a p [k, n] cos (ψ[n]) + wI [k, n] (30)

and

xQ [k, n] = a p [k, n] sin (ψ[n]]) + wQ [k, n] (31)

respectively, with k = 0, 1, . . . , N − 1 and n = 0,
1, . . . , Nc−1; here, a represents the amplitude of the useful

10In practice, T is on the order of hundreds of picoseconds.
11This frequency usually belongs to the ISM band.
12The downconversion scheme is the same as that shown in Fig. 2.

signal component

p [k, n] ≜ p (kTs − τn − nT0) (32)

n, k, and ψ[n] have the same meaning as the one illustrated
for the corresponding terms appearing in (18) and (19),
wI [k, n] and wQ[k, n] represent noise contributions (they
correspond to the samples wI [n] and wQ[n] contained in
the RHS of (9) and (13), respectively), and N is the
overall number of samples acquired over each PRI (briefly,
of fast time samples). Each of the sequences {xI [k, n]}
and {xQ[k, n]} is sent to a digital MF, that is, to a digital
filter whose impulse response is the sequence {p(T − kTs);
k = 0, 1, . . ., N − 1}. The responses of the MFs fed by
the samples of the I/Q components are denoted {x̂I [k, n];
k = 0, 1, . . . , N − 1} and {x̂Q[k, n]; k = 0, 1, . . . , N − 1},
respectively. If the chest displacement ∆R(t) is approxi-
mately constant within a single PRI, i.e.,

∆R (kTs + nT0) ∼= ∆R (nT0) (33)

for k = 0, 1, . . . , N −1 and any n, matched filtering allows
to maximize the output SNR, i.e., the ratio between the
energy of the useful component available at the MF output
and the average power of the noise component affecting it.
The target delay τn is estimated by identifying the position
of the main peak appearing in the MF response.

Finally, it is useful to point out that the following condi-
tions hold.

1) Equations (30) and (31) can be condensed in the
complex signal model

x [k, n] ≜ xI [k, n] + jxQ [k, n]

= a p [k, n] exp (jψ[n]) + w [k, n] (34)

where w[k, n] ≜ wI [k, n] + jwQ[k, n] is the noise
component.

2) In IR-UWB radar systems, the presence of clutter, i.e.,
of reflections from other stationary targets, may affect
the estimation of vital signs. The presence of clutter
in the received signal can be modeled as DC offset or
small amplitude variations in the slow time dimension
in (30) and (31).

The received signal models and range formulas provided
above for the different types of radar systems are summa-
rized in Table 2.

C. Architecture of MIMO Radar Systems

An MIMO radar system is equipped with a TX and an
RX antenna array, consisting of NT and NR elements,
respectively. As already mentioned above, in a colocated
MIMO radar, TX antennas are close to the RX ones and are
usually placed on the same shield. It is important to keep
in mind that the elements of the TX array are employed to
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Fig. 7. Example of the baseband signal s(t) (29) produced by the pulse generator of the IR-UWB radar system represented in Fig. 6.

radiate orthogonal waveforms, whereas the RX elements
receive distinct replicas of the electromagnetic echoes gen-
erated by multiple targets. In these conditions, any couple
of physical TX and RX antennas generates independent
measurements; for this reason, each of the

NV ≜ NT ·NR (35)

couples of TX/RX antennas can be replaced by a single
VA of an equivalent SISO radar. The abscissa xv and the
ordinate yv of the vth VA element associated with the pth
TX antenna and the qth RX antenna (briefly, the (p, q) VA)
are computed as13 (see, e.g., [59, Paragraph II.A, eq. (1)])

xv =
xp + xq

2
(36)

and

yv =
yp + yq

2
(37)

respectively, with p = 0, 1, . . . , NT−1, q = 0, 1, . . . , NR−1,
and v = 0, 1, . . . , NV − 1; thus, a physical array charac-
terized by NT (NR) TX (RX) elements is equivalent to a
virtual array constituted by NV channels.

Two physical arrays and the associated virtual arrays are
shown in Fig. 8(a) and (b). More specifically, in Fig. 8(a),
the 1-D virtual array associated with the given physical

13Note that these formulas apply to antenna arrays of arbitrary
shapes; their validity is not affected by antenna spacing but requires
the detectable targets to be in the far-field zone of the considered radar
system. It is also worth mentioning that, in a part of the technical
literature (see, e.g., [59, Paragraph 4.3.1, pp. 159–161]), the RHS of
(36) and (37) is multiplied by two. When this occurs, all the formulas
involving the coordinates of the VAs must be changed accordingly.

array is a ULA since it consists of NV = 1 · 4 = 4 equally
spaced and aligned virtual elements [see (35)]; note that,
in this case, yv = 0 [see (37)], because of the geometry
of the physical array and the selected reference systems,
and that the distance between two adjacent VAs is equal
to d. Putting together multiple parallel ULAs leads to 2-D
URA, such as the one shown in Fig. 8(b). The last array is
made of NV = 5 · 7 = 35 VAs [see (35)] or, equivalently,
of NVULA = 5 (NHULA = 7) horizontal (vertical) ULAs
(one of them is highlighted by a black dashed rectangle),
each composed of seven (five) VAs. Note also that, in
Fig. 8, the distance between two adjacent horizontally
aligned (vertically aligned) VAs is denoted dVH (dVV) and
that dVH = dVV is assumed. The distance between two
adjacent physical elements is usually equal to λ/2, where
λ is the wavelength characterizing the radiated waveforms;
consequently, the distances d, dVV, and dVH are all equal
to λ/4. In the following, we will focus only on uniform
(linear or rectangular) arrays. However, readers should
keep in mind that other array geometries, characterized
by a nonuniform antenna spacing, can be employed to
achieve the desired tradeoff between resolution and array
complexity [60].

Let us focus now on a radar system employing the ULA
represented in Fig. 8(a) and assume that: 1) L point targets
are detected by this system and 2) the position of the ith
target (with i = 0, 1, . . . , L − 1) can be deemed constant
in the frame interval in which it is detected (i.e., over an
interval lasting TF s). In this case, the useful component
of the received signal consists of the superposition of L
contributions, each associated with a different target. More
specifically, the contribution given by the ith target is given
by

x
(v)
i [n] = a

(v)
i exp

(
jψ

(v)
i [n]

)
(38)

Table 2 Received Signal Model and Range Formulas for the Considered Radarsystems
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Fig. 8. Representation of (a) ULA and (b) URA. In both cases, the physical array and the associated virtual array are considered.

for the CW radar system described in Section IV-B1.a
[see (14)]

x
(v)
i [k, n] = a

(v)
i exp

(
j
(
2πkf

(v)
i Ts + ψ

(v)
i [n]

))
(39)

for the FMCW radar system described in Section IV-B1.b

[see (23)]

x
(v)
i [k, n] = a

(v)
i exp

(
−j

(
2πkτ

(v)
i ∆f + ψ

(v)
i [n]

))
(40)

for the SFCW radar system described in Section IV-B1.c

[see (27)] and

x
(v)
i [k, n] = a

(v)
i p

(
kTs − τ

(v)
i − nT0

)
exp

(
jψ

(v)
i [n]

)
(41)

for the IR-UWB radar system described in Section IV-B2

[see (34)]. In (38)–(41), it is assumed that the following
conditions hold.

1) The integer v denotes the index of the selected VA (we
assume that v = 0, 1, . . . , NV − 1).

2) The positive real a(v)
i is the amplitude of the contri-

bution due to the ith target and observed on the vth
VA.

3) The phase ψ(v)
i [n] can be expressed as

ψ
(v)
i [n] = ψ

(v)
0,i + ∆ψi[n] (42)

where

ψ
(v)
0,i =

4π

λ
(R0,i + v d sin (θi)) (43)

∆ψi[n] is still expressed by (13), θi is the azimuth of
the ith target, and R0,i is the range of the ith target
assuming zero chest displacement.

4) The frequency f (v)
i is given by

f
(v)
i = µτ

(v)
i (44)

whereas the delay τ (v)
i can be approximated as

τ
(v)
i ≈ 2

c
(R0,i + v d sin (θi)) (45)

if we assume that R0,i is much larger that the vari-
ations experienced by the ith target range in the
considered frame interval [see (1)].

Finally, it is important to point out that, in CW and
IR-UWB radar systems, the azimuth of a given target influ-
ences the phase of the received signal component asso-
ciated with it, whereas in FMCW (SFCW) radar systems,
it influences also the normalized frequency (normalized
delay) characterizing that component. However, in any
case, an estimate of the DOA of the electromagnetic echo
originating from a given target is computed based on the
phases referring to that target and observed over multiple
antennas of the same RX array.

V. S I G N A L P R O C E S S I N G A L G O R I T H M S
F O R V I TA L S I G N S M O N I T O R I N G
In this section, we first describe the most important deter-
ministic and LB processing methods that can be employed
to extract vital signs from the measurements provided by
the SISO radar systems described in Section IV. Then,
we provide essential information about the processing
accomplished in colocated FMCW and SFCW MIMO radars
for estimating the vital signs of multiple people. Finally,
we illustrate some numerical results generated by applying
some of the considered methods to a synthetically gener-
ated dataset.

A. Deterministic Detection and Estimation
Algorithms for SISO Radars

The majority of the radar-based methods for vital signs
monitoring appeared in the technical literature have the
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following features: 1) they are deterministic [i.e., model-
based (MB)] since their derivation is based on our prior
knowledge about the structure of radar echoes and 2) they
extract vital signs from the phase of the received signal.
As far as the last point is concerned, it is useful to focus
first on an SISO CW Doppler radar for simplicity and to
reconsider the phase expression [see (11)]

ψ[n] ≜ ψ0 + ∆ψ[n] (46)

provided in Section IV-B1.a for the nth received signal
sample (where n denotes the fast time index). As already
illustrated in in Section IV-B1.a, the constant ψ0 appear-
ing in (46) represents the so-called DC offset, whereas
[see (13)]

∆ψ[n] =
4π

λ
∆R[n] (47)

is a time-varying term related to the body movement
induced by breath and cardiac activities and, consequently,
conveys the information we are interested in. This explains
why the first step accomplished by the deterministic meth-
ods developed for CW Doppler radars consists in extract-
ing the phase of the received signal sequence {x[n]},
as shown in Fig. 9, where a block diagram is repre-
sented to describe the overall processing they accomplish.
As shown in this figure, phase extraction is carried out
by the first block, which generates the Nr-dimensional
vector

ψ̂ ≜ [ψ̂ [0] , ψ̂ [1] , . . . , ψ̂ [Nr − 1]]T (48)

on the basis of the sample sequence {x[n]} (whose ele-
ments are collected in the vector x appearing in Fig. 9);
here, Nr is the overall number of measurements and ψ̂[n]

represents an estimate of ψ[n] (46), i.e., of the phase of
the complex sample x[n] (which is expressed by (14) in
the case of a single point target). Given the vector ψ̂ (48),
estimates of the BR and HR can be evaluated by applying
the so-called periodogram method [61], i.e., by identifying
the dominant frequency components in the amplitude
spectrum of {ψ̂[n]}. In fact, it is known that: 1) the highest
peak in the abovementioned spectrum is found at the
breath frequency in normal respiration conditions and 2)
the HR is higher than the BR (at least more than two times
higher). For these reasons, an estimate f̂b of the BR fb

(expressed in acts/s) can be computed as

f̂b = b̂ fr (49)

where

b̂ = arg max
b̃∈{0,1,...,N0/2}

|Yb̃| (50)

Yb̃ ≜
1

Nr

Nr−1∑
n=0

ψ̂[n] exp
(
−j2πn b̃ /N0

)
(51)

N0 ≜ M Nr (52)

M is the oversampling factor and

fr ≜
1

N0Ts
(53)

for the CW Doppler radar system described in Section IV-B.
Note that: 1) Yb̃ (51) represents the b̃th element of an
orderN0 DFT of ψ̂ (48) and can be efficiently computed by
adopting an FFT algorithm of the same order, as shown in
Fig. 9; 2) the strategy expressed by (50) aims at identifying
the dominant spectral component in the spectrum of the
sequence {ψ̂[n]}; and 3) for a given M , the adoption of
a larger Nr (i.e., of a longer observation time) allows to
achieve a better spectral resolution.

A similar procedure can be employed for estimating the
HR fh. However, in this case, FFT processing is preceded by
BPF to cancel all the spectral components whose frequency
falls outside the interval in which the heart frequency is
expected (see Fig. 9). Then, an estimate f̂h of fh can be
evaluated as

f̂h = ĥ f̄r (54)

where

f̄r ≜
1

N̄0Ts

(55)

ĥ = arg max
h̃∈{0,1,...,N̄0/2}

|Zh̃| (56)

Zh̃ (51) represents the h̃th element of an order

N̄0 ≜ M̄ Nr (57)

DFT of the BPF output vector (whose size is equal to Nr)
and M̄ denotes the adopted oversampling factor. It is worth
pointing out that the following conditions hold.

1) Since some prior knowledge about the minimum and
maximum BRs to be detected is usually available, the
search interval in the RHS of (50) can be restricted
to reduce the overall computational cost of the search
for the maximum over the set {|Yb̃|}. Similar consid-
erations hold for (56) since {|Zh̃|} takes on significant
values in a restricted frequency range because of the
employed BPF.

2) The topology and order of the bandpass filter
employed in HR estimation depend on the required
selectivity; for instance, a fourth-order digital bi-quad
filter and a fifth-order low-pass Butterworth filter
have been adopted in [62] and [63], respectively. The
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main problem in filter design is represented by the
selection of its passband since the spectral compo-
nents due to BR (HR) should not fall inside (out of)
it. In general, the lower limit fL and the upper limit
fU of the filter passband should be selected in a way
that fL ≥ 2/TBR and fU ≤ 3/THR, where TBR (THR)
is the breath (heart) period (see Section III-A).

3) Generally speaking, the evaluation of an order N0

(N̄0) FFT in BR (HR) estimation leads to partitioning
the frequency interval in N0 (N̄0) frequency bins, all
having the same size. The quantity b̂ (50) [ĥ (56)]
represents an estimate of the index of frequency bin
inside which the fundamental frequency of respira-
tion (heart) signal falls, whereas fr (53) [f̄r (55)] is
the bin size.

4) Since the phase vector ψ̂ is real, the FFT output vec-
tors Y and Z are Hermitian symmetric; this explains
why only a portion of their elements is involved in
the search required by (50) and (56) .

Let us focus now on the extraction of phase information
in CW Doppler radars [64], [65], [66]. This is usually
accomplished by means of the AD technique. This means
that the nth element of the vector ψ̂ (48) is evaluated as14

ψ̂[n] = arctan

(
xQ[n]

xI [n]

)
(58)

for n = 0, 1, . . . , Nr−1. If xI [n] or xQ[n] are equal to zero,
the last equation is replaced by

ψ̂[n] = arcsin (xQ[n]) (59)

and

ψ̂[n] = arccos (xI [n]) (60)

respectively. It is important to point out that the following
conditions hold.

1) CW radar systems suffer from a DC offset,15 which is
due to the direct coupling between TX/RX antennas;
the reflections from stationary objects surrounding
the considered subject, and the self-mixing of the
LO employed in the radar system. A large DC off-
set may saturate the baseband amplifier and clip its
output signal. The contribution of a DC offset and
potentially strong low-frequency components to the
received signal phase is commonly suppressed by a
coupling capacitor inserted between the radar mixer
and the baseband amplifier following it; however,

14The arctan(·) operator can also be replaced by the arctan2(·)
operator in order to extend the codomain from (−π /2, π/2) to
(−π , π).

15The presence of a DC offset can be detected by representing the
I/Q constellation graph of the baseband received signal (see, e.g., [67,
p. 54962, Fig. 4]).

this may affect the useful signal component if the
detected target is moving slowly or stops for some
time. To overcome this limitation, a DC coupled radar
system has been proposed in [68]. Other techniques
have been proposed in [70], [69], and [67] and are
based on polynomial fitting and on an LS approach.

2) The estimated phase sequence {ψ̂[n]} may exhibit
some discontinuities. In fact, a discontinuity appears
in the extracted phase whenever the condition16

[see (47)]

∆ψ̂n+1,n ≜ |ψ̂ [n+ 1]− ψ̂[n]| = 4π

λ
∆Rn+1,n ≥ 2π

(61)

is met; here, ∆Rn+1,n ≜ |R̂[n+1]−R̂[n]|. This means
that, whenever the range variation ∆Rn+1,n observed
over two consecutive sampling epochs exceeds half
a wavelength, the value of the estimated phase
becomes ambiguous. Note that this problem becomes
more relevant as the frequency f0 of the radiated
signal increases (for instance, if f0 = 77 GHz,
any displacement exceeding 2 mm produces a phase
ambiguity).

3) The phase sequence {ψ̂[n]} always undergoes a trans-
formation known as unwrapping; unwrapping aims
at ensuring that the variation between two consec-
utive elements of this sequence does not exceed π.
In practice, this result is achieved by adding a multiple
of 2π to some of the elements of the sequence {ψ̂[n]}.
However, the use of unwrapping may introduce errors
in the presence of abrupt phase variations. In this
case, the extended differentiate and cross-multiply
(DACM) algorithm proposed in [71] or its modified
version [72] should be employed to achieve precise
phase unwrapping.

Finally, it is worth mentioning that an alternative to the
arctangent method is represented by the CSD technique.
This technique is based on the idea that the received signal
can be seen as a frequency-modulated waveform [see (6)
and (47)]. Therefore, an approximate model, based on the
first-order Bessel functions, can be derived for it [73]. This
allows to separate the contribution due to the periodic
movement of the chest from the one associated with the
position of the body [i.e., with the term ψ0; see (12)].
In particular, the Fourier analysis can be directly applied
to the sequence {x[n]} [see (14)] to estimate both BR and
HR.

The architecture of the deterministic methods developed
for FMCW, SFWC, and IR-UWB radars can also be rep-
resented through the block diagram in Fig. 9. However,
in these cases, the following changes are made.

1) The parameter Ts appearing in the RHSs of (53)
and (55) is replaced by the PRI Tp in the case of

16In the derivation of the following result, the arctan2(·) operator
is assumed in place of the simpler arctan(·).
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Fig. 9. Representation of the signal processing chain characterizing

various deterministic methods for vital sign estimation.

IR-UWB radar system and by the chirp (i.e., by the
frequency sweep) duration T0 in the case of an FMCW
(SFCW) radar system.

2) The algorithm for extracting phase estimation [i.e.,
for generating the vector ψ̂ (48)] is more compli-
cated.

As far as the last point is concerned, further details are
provided in the following.

1) FMCW and SFCW Radars: Let us concentrate first on
the simplest method that can be adopted in an FMCW
radar system for the extraction of the abovementioned
phase information. This method processes the received
signal samples acquired over a single transmission frame
(made of Nc consecutive chirps; see Section IV-B) and
consists of the following steps.

1) The N ′
0 × Nc complex matrix X = [X[l, n]] is com-

puted; here,

X [l, n] ≜
1

N

N−1∑
k=0

x [k, n] exp
(
−j2πnl/N ′

0

)
(62)

with l = 0, 1, . . . , N ′
0 − 1 and n = 0, 1, . . . , Nc − 1.

Note that X[l, n] represents the lth coefficient of an
order N ′

0 DFT of the signal samples acquired over the
nth chirp of the considered transmission frame.

2) The index of the frequency bin

l̂ ≜ arg max
l̃∈{0,1,...,N′

0−1}

∣∣∣∣X [
l̃, n

] ∣∣∣∣ (63)

associated with the target (i.e., with the chest of the
subject under test) is identified.

3) Phase extraction is accomplished through the AD
method (followed by phase unwrapping) but does
not involve the time-domain samples of the received
signal (i.e., the samples {x[k, n]}). In fact, the sam-
ples xI [n] and xQ[n] are replaced by ℜ{X[l̂, n]} and
ℑ{X[l̂, n]}, respectively, in (58)–(60) (here, ℜ{x}
and ℑ{x} denote the real part and the imaginary part
of x, respectively).

It is important to point out that the following conditions
hold.

1) The procedure described above generates, as a by-
product, an estimate of the range of the target, i.e.,
of the distance between the radar and the chest wall
of the subject under test. In fact, given l̂ (63), such an
an estimate is given by

R̂0 = l̂Km (64)

where, in the case of an FMCW radar system

Km ≜
c

2µN ′
0Ts

(65)

is the bin-to-meters conversion factor. Based on (17)
and (20) (with N = Nr), the last formula can be
easily put in the form

Km ≜
cNr

2N ′
0B

(66)

where B is the radar bandwidth. The last formula and
(64) lead to the conclusion that a larger bandwidth
leads to a better granularity in range estimation,
i.e., results in a better range resolution (see also
Section VI-A).

2) Some methods, similar to the ones described above
for CW Doppler radars, are available for the com-
pensation of a DC offset or of large movements; in
fact, they are based on filtering techniques or on
polynomial fitting [21], [67], [69].

3) If the distance between the chest wall and the radar is
known with a certain accuracy (e.g., when the radar is
employed for monitoring the vital signs of a patient in
a bed), a procedure for reducing the region of interest
(ROI) can be implemented to simplify the estimation
of l̂. In particular, l̂ can be searched in the ordered set
{lm, lm + 1, . . . , lM}, made of lM − lm + 1 elements;
here, lm = ⌊Rm/Km⌋, lM = ⌈RM/Km⌉, and Rm

(RM ) is the minimum (maximum) expected range.

The method illustrated above for an FMCW radar system
can also be employed for an SFCW radar system because
of the duality relating such systems (see Section IV-B1.c).
The only difference is represented by the fact that the
definition (62) is replaced by

X [l, n] ≜
1

N

N−1∑
k=0

x [k, n] exp
(
j2πnl/N ′

0

)
(67)

with l = 0, 1, . . . , N ′
0 − 1 and n = 0, 1, . . . , Nc − 1. This

means that an N ′
0 DFT is replaced by an IDFT of the same

order, which is efficiently evaluated through an IFFT.

2) IR-UWB Radars: The AD method described in
Section V-A can also be employed for phase extraction in
IR-UWB radar systems. In this case, however, the samples
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Fig. 10. Representation of the signal processing described in

Section V-B and employed for estimating the position (range and

azimuth) and the vital signs (HR and BR) of multiple people by means

of a colocated MIMO radar.

xI [n] and xQ[n] appearing in the RHS of (58) are replaced
by xI [k̂, n] and xQ[k̂, n] [see (30) and (31)], respectively,
with n = 0, 1, . . . , Nc − 1; here, k̂ denotes the value of the
fast time index k corresponding to the main peak detected
at the MF response.17 Note also that phase estimation is fol-
lowed by phase unwrapping and that, given k̂, an estimate
τ̂ of the delay characterizing the detected target can easily
computed; this allows to evaluate the estimate R̂0 = τ̂ c/2
of the distance R0 between the radar and the chest of
subject under test [see (12)].

Finally, it is worth mentioning that the following condi-
tions hold.

1) The clutter contribution to the samples {x[k, n]} can
be removed by applying a high-pass filter to this
sequence. However, if the clutter produces small
fluctuations along the slow-time axis, algorithms
based on polynomial fitting can be employed for its
removal [67].

2) The SNR of the received signal can also be improved
by resorting to noise reduction techniques. An exam-
ple of such techniques is provided in [74, Sec. 3.2],
where the EMD is exploited for noise mitigation.
In this case, the sequence {x[k, n]} is decomposed
into a superposition of intrinsic subsignals, defined
at precise instantaneous frequencies and called IMFs.
This method allows to retain only the most important
frequency components of the input signal and to filter
out the oscillations associated with noise components.

Some alternatives to the FFT-based estimation method
described above are also available in the technical lit-
erature. These are based on the evaluation of a fourth-
order cumulant [75] or of a CWT; note that the use of
the CWT in place of the FFT allows to analyze how the
frequency components of the received signal phase evolve
over time [74].

B. Estimation of Vital Signs of Multiple Subjects
Through MIMO Radars

In the last few years, increasing attention is being paid
to MIMO radar systems, mainly because they make range
and DOA estimation of multiple targets possible. The use

17It is assumed that k̂ does not change in the considered frame
interval for simplicity.

of MIMO FMCW, IR-UWB, and CW radar systems for the
monitoring of vital signs has been investigated in [62],
[76], [77], [78], [79], [80], [81], and [82]. More specifi-
cally, the use of MIMO FMCW radars operating at 77 and
120 GHz has been studied in [62], [76], [77], and [79],
whereas the simultaneous use of two FMCW radars, each
endowed with single ULA, but one operating at 24 GHz and
the other one at 77 GHz, has been investigated in [78].
Nosrati et al. [82], instead, focused on the use of beam-
forming in MIMO CW radar systems.

Let us illustrate now some key concepts that are useful
to understand the processing accomplished at the RX side
of an MIMO radar system. To begin, we focus on an FMCW
MIMO radar equipped with NT TX and NR RX antennas
[and, consequently, with NV = NT NR VAs; see (35)].
Under the assumptions illustrated in Section IV-C, the
signal samples acquired in a single frame through the NV

VAs can be collected inN×NV×Nc matrix x ≜ {x(v)[k, n]},
where

x(v) [k, n] ≜
L−1∑
i=0

A
(v)
i,n exp

(
j2πk F

(v)
i,n

)
+ w(v) [k, n] (68)

with k = 0, 1, . . . , N − 1, n = 0, 1, . . . , Nc − 1, and v = 0,
1, . . . , NV − 1; here, L is the overall number of targets,
and A

(v)
i,n (F (v)

i,n = f
(v)
i,n Ts) is the complex amplitude (the

normalized version of the frequency f
(v)
i,n ) characterizing

the ith target observed on the vth VA in the nth chirp
interval. A processing method that can be adopted in
this case to estimate the range, the DOA, and the vital
signs of multiple people in the considered radar system
is described by the block diagram represented in Fig. 10.
Such a method consists in the four steps listed as follows.

1) Computation of the range–azimuth map: A size N ′
0 ×

NA 2D-FFT of the N × NV input matrix x[n] =

[x(v)[k, n]] (with k = 0, 1, . . . , N − 1 and v =

0, 1, . . . , NV −1) is computed in the nth chirp interval
(with n = 0, 1, . . . , Nc−1); this produces theN ′

0×NA

matrix

Xn =
[
X(n) [l,m]

]
(69)

with l = 0, 1, . . . , N ′
0 − 1 (see Section V-A1) and m =

−NA/2, −NA/2 + 1, . . . , NA/2 − 1. Then, the nth
range–azimuth map is evaluated as

J[n] ≜
[
|X(n) [l,m] |

]
(70)

with n = 0, 1, . . . , Nc−1. Note that N ′
0 = NM (NA =

NV MV ), where M (MV ) denotes the oversampling
factor adopted in the fast time (VA) domain.
It is worth mentioning that, in the technical litera-
ture on radar systems (see, e.g., [41, Sec. “Velocity
estimation”]), the first step in the signal processing
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chain at the RX side often consists in the computation
of a range-Doppler map, in place of the considered
range–azimuth map; this aims at jointly estimating
the range and velocity of all the targets detectable
in the considered propagation environment. How-
ever, in vital signs monitoring, the presence of one
or more static subjects is usually assumed. For this
reason, on the one hand, Doppler estimation is not
meaningful; on the other hand, the localization of the
monitored subject in a room or a bed is required to
generate accurate estimates of his/her vital signs.

2) Peak detection: The peaks appearing in the nth range–
azimuth map J[n] are detected by means of a proper
method (for instance, the so-called CFAR method can
be adopted [83]) since each of them reveals the
presence of a potential target. Let us assume that,
independently of n, L̂ peaks are detected in the nth
range–azimuth map J[n] and that the position of the
ith peak (with i = 0, 1, . . . , L̂ − 1) is identified by
the couple (l̂i [n], m̂i[n]) (with n = 0, 1, . . . , Nc − 1).
Then, the estimate

R̂i[n] = Km l̂i[n] (71)

of the range and the estimate

θ̂i[n] = arcsin (m̂i[n] fr) (72)

of the azimuth are evaluated for the target associated
with the ith peak; here, Km is expressed by (65) and
fr = 2/NA [see (21), (22), and (53)]. Given the set
{(l̂i [n], m̂i[n]); i = 0, 1, . . . , L̂−1 }, the L̂×Nc matrix

X̄ = [X̄[i, n]] (73)

is generated; here,

X̄ [i, n] = X(n)
[
l̂i [n], m̂i[n]

]
(74)

with i = 0, 1, . . . , L̂− 1 and n = 0, 1, . . . , Nc − 1.
3) AD and phase unwrapping: In this step, the ith row of

the matrix X̄ (73) undergoes AD followed by phase
unwrapping (with i = 0, 1, . . . , L̂ − 1); this produces
the phase vector

ψ̂i ≜ [ψi [0] , ψi [1] , . . . , ψi [Nc − 1]]T . (75)

4) BR and HR estimation: The phase vector ψ̂i undergoes
FFT processing (with i = 0, 1, . . . , L̂ − 1); this pro-
duces the Nm-dimensional spectrum Ȳ i [whose b̃th
element is expressed by (51)]. Then, an estimate b̂r[i]
(ĥr[i]) of the BR (HR) associated with the ith target
is evaluated on the basis of (50) [see (56)].

At the end of the procedure described above, the range
estimate

R̂i =
1

Nc

Nc−1∑
n=0

R̂i[n] (76)

and the azimuth estimate

θ̂i =
1

Nc

Nc−1∑
n=0

θ̂i[n] (77)

can be computed for the ith target by averaging the
corresponding estimates evaluated over each of the Nc

chirps forming the considered transmission frame (with
i = 0, 1, . . . , L̂− 1).

Finally, it is important to point out that the procedure
illustrated above for an MIMO FMCW radar system can be
easily adapted to MIMO IR-UWB and SFCW radars; in the
last case, FFTs must be replaced by IFFTs.

C. Numerical Results

In this section, we show some numerical results gener-
ated by applying various estimation methods illustrated
above to a set of synthetically generated data. We first
focus on an SISO FMCW radar and an SISO SFCW radar,
both placed in front of the chest of a single subject at the
distance d = 0.5 m. The following assumptions have been
made in generating our dataset.

1) The model described by (1)–(4) is adopted for the
chest displacement of the monitored subject (mod-
eled as a single point target for simplicity); its param-
eters are the same as those listed in the fourth row of
Table 1).

2) The signal models expressed by (23) and (27) for
FMCW and SFCW radars, respectively, have been
employed. Moreover, the following values have been
selected for their parameters: carrier frequency f0 =

77 GHz (the corresponding wavelength is λ = c/f0 =

3.9 mm); bandwidth B = 2 GHz; number of sam-
ples N = 256 (in the time domain for each chirp
of the FMCW radar, in the frequency domain for
each frequency-modulated pulse of the SFCW radar);
chirp (pulse) repetition period T0 = 0.06 s for
the FMCW (SFCW) radar; number of chirps/frame
(pulses/frame) Nc = 1034 for the FMCW (SFCW)
radar; and ADC sampling frequency fs = 9 MHz
(fs = 7.8 MHz) for the FMCW (SFCW) radar. More-
over, the ramp parameters of the FMCW are: reset
time TR = 0, ramp time T = N/fs = 28 µs, and
chirp slope µ = 70.312 MHz/µs.

3) In both systems, the frame duration is TF = NcT0 ∼=
60 s; this parameter represents also the duration of
our observation interval.
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Fig. 11. Representation of the elements of the phase vector ψ̂ (48)

resulting from synthetically generated measurements. Both FMCW

and SFCW radar systems are considered.

4) The real and imaginary parts of the AWGN noise
samples {w[k, n]} appearing in the RHS of (23) and
(27) have zero mean and variance σ2

n = 0.1.

Our synthetically generated data have been processed
by means of the deterministic method described in
Section V-A: its overall architecture is represented in Fig. 9.
The AD method followed by phase unwrapping has been
used for phase estimation and the following choices have
been made: 1) DFT orders N ′

0 = 512 and N0 = N̄0 =

MNc = 4 · 1034 = 4136; 2) Km = 31 [bin-to-meters
conversion factor; see (65)]; and 3) the bandpass filter
employed in HR estimation is a fourth-order Butterworth
filter and the lower (upper) limit of its passband is fL =

50/60 ∼= 0.83 Hz (fU = 100/60 ∼= 1.7 Hz), so that its
bandwidth is BBP = fU − fL

∼= 0.87 Hz.
The elements of the phase vector ψ̂ (48) obtained for

the FMCW and SFCW radar systems are represented in
Fig. 11. The amplitude spectrum obtained at the output
of the slow-time FFT (IFFT) executed for phase estimation
in the FMCW (SFCW) radar system is shown in Fig. 12,
whereas the amplitude spectrum evaluated after BPF of the
phase vector is shown in Fig. 13. The results obtained for
the considered radar systems are similar and deserve the
following comments.

1) The phase signal does provide information about the
dynamics of chest displacement; in fact, comparing
Fig. 11 with Fig. 1 leads to the conclusion that its
evolution is similar to that characterizing the chest
displacement in the considered scenario.

2) The peaks appearing in the amplitude spectrum
shown in Fig. 12 are associated not only with the BR
and the HR but also with the harmonics of the BR.
Note, in particular, that the third harmonic falls inside
the passband of the filter and that its presence may
lead to a wrong estimate of the HR.

3) Based on the available spectra, the estimates b̂r =

17.9 acts/min and ĥr = 58.8 acts/min evaluated for

Fig. 12. Representation of the amplitude spectrum referring to the

phase vector ψ̂ shown in Fig. 11. The dashed vertical lines identify

the exact values of BR and HR. Both FMCW and SFCW radar systems

are considered.

the BR and the HR, respectively, are very accurate
since the exact values of these rates are br = 18
acts/min and hr = 60 acts/min, respectively.

Let us focus now on an MIMO FMCW radar system
placed in front of the chest of three static subjects (the
ith subject is denoted Si, with i = 1, 2, and 3), whose
range (R), azimuth (θ), HR (hr), and BR (br) are listed in
Table 3. In this case, the following assumptions have been
made in synthetically generating our dataset.

1) The chest displacement characterizing each person is
modeled by (1)–(4); moreover, the values of all the
model parameters are the same as those employed in
Sections III-B and V-A.

2) The signal models expressed by (39) and (40) have
been adopted.

Fig. 13. Representation of the amplitude spectrum of the sequence

generated through BPF of the phase vector ψ̂ shown in Fig. 11. The

dashed vertical lines identify the exact values of BR and the third

harmonic of HR. Both FMCW and SFCW radar systems are considered.
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Fig. 14. Contour plot of the range–azimuth map generated based

on our synthetically generated data (an MIMO radar system is con-

sidered). The peaks P1, P2, and P3 detected by the CFAR algorithm

are identified by small circles, whereas black crosses indicate the

position of the centroid of each cluster of peaks.

3) The values of the parameters f0, B, N , T0, Nc, fs, TR,
and µ of the MIMO radar are the same as those listed
for the SISO FMCW radar considered above.

4) The MIMO radar is endowed with a virtual ULA like
the one shown in Fig. 8(b); the overall number of VAs
forming this array is NV = 16, whereas the distance
between adjacent virtual elements is d = λ/4.

Our data have been processed by the deterministic algo-
rithm illustrated in Section V-B; N ′

0 = 2 and NA = 4 have
been selected in the computation of the 2D-FFT output
Xn (69). The range–azimuth map J[0] generated based
on the measurements acquired through the MIMO radar
in the first chirp interval is represented in Fig. 14. The
peaks detected by the CFAR algorithm are indicated by
small circles, whereas black crosses are used to identify the
centroids18 of each cluster of adjacent peaks. The elements
of the phase vector ψ̂ (48) and of its amplitude spectrum in
correspondence of the centroid obtained for the first (clos-
est to the radar) target are shown in Fig. 15(a) and (b),
respectively, whereas the estimates of the positions of the
three subjects together with the estimates of their BR and
HR are listed in Table 3. From these results, the following
conclusions can be easily inferred that the following con-
ditions hold.

1) The range–azimuth map allows to detect all the sub-
jects and estimate their position.

2) The phase vector associated with each centroid pro-
vides important information about the dynamic of the
chest displacement of the subject associated with it.

3) The position and vital signs estimated for each subject
are reasonably accurate.

18Note that each centroid represents the position estimated for one
of the subjects.

Table 3 Exact Values and Corresponding Estimates of the Range (R),

Azimuth (θ), BR (br), and HR (hr) of Three Distinct Subjects

D. Detection and Estimation Algorithms
Exploiting LB Methods

Various deterministic algorithms may fail in compli-
cated, highly dynamic, and time-varying scenarios [55].
In such cases, LB methods and, in particular, ML and
DL techniques [84], may be extremely useful since they
are able to: 1) learn the regularities characterizing the
raw data acquired by radar systems and 2) automatically
extract information from them. Note that, on the one

Fig. 15. Representation of (a) elements of a phase vector generated

on the basis of the measurements acquired through an MIMO FMCW

radar during a single chirp interval and (b) its amplitude spectrum.

The target closest to the radar is considered.
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hand, ML techniques exploit a customized set of features,
manually extracted from the available raw data by means
of different processing techniques. On the other hand,
DL techniques can learn specific data patterns and extract
useful information directly from the same data through
the use of neural networks; this approach requires limited
expertise on signal analysis in radar systems. Each class
of methods includes supervised and unsupervised learn-
ing techniques. Generally speaking, supervised techniques,
mainly used for solving classification or regression prob-
lems, are based on the idea of exploiting a labeled dataset
for learning from them through a specific procedure, called
training. Training aims at the identification of the model,
i.e., at estimating of the probability density function (also
called predictive distribution) on the basis of which the
available dataset has been generated. Given the model
learned during training (i.e., the predictor), the label
associated with a completely new observation or the value
of a continuous variable related to it can be predicted in
a way that a specific loss (known as generalization loss)
is minimized; such tasks are known as classification and
regression. The well-known ML methods for classification
are the K-NN, the SVM, and the ensemble classifier [85].

Unsupervised methods, instead, do not require a labeled
dataset and learn some specific properties of the mecha-
nism on which the generation of the considered dataset
is based. They can be exploited to solve specific technical
problems, such as data clustering, dimensionality reduc-
tion, and feature selection. In practice, data clustering
aims at partitioning the available dataset in a number
of groups such that data points in the same group are
dissimilar from the data points belonging to all the other
groups. Dimensionality reduction is employed to generate
a reduced dimensionality representation of the observa-
tions, whereas feature selection consists in deriving a
vector-valued function that produces a useful and lower
dimensional representation of the available feature.

In general, the dataset employed to train a specific
LB method contains Nt couples, each of which con-
sists of a Dr-dimensional real vector of features and a
Dt-dimensional real vector of labels. The size Nt of the
dataset can be reasonably small in the case of ML (say,
between a few dozen and a few hundred) but is substan-
tially larger in the case of DL (say, at least one thousand).
In the case of radar-based monitoring of vital signs, a vec-
tor of customized features can be obtained from the phase
vector ψ̂ (48) through a procedure called feature extrac-
tion and can be processed for classification purposes. For
instance, different breathing diseases could be recognized
based on several features, such as the breathing frequency,
the chest displacement, and the variability of the breathing
frequency in short and long observation times. Generally
speaking, for all the radar topologies, the extracted fea-
tures can be grouped into three different classes, namely,
time, short-term, and time–frequency domain features.
Time features are represented by various characteristics
of the evolution of the elements of the phase vector ψ̂,

Fig. 16. Block diagram representing the signal processing chain

of a radar-based system employing an LB method for vital signs

monitoring.

such as their average (or maximum) peak amplitude, the
variability of their amplitude, and the number of peaks.
Short-time features (time–frequency domain features),19

instead, allow to monitor how the energy (the spectral
content) of the elements of the phase vector ψ̂ evolves
over time. The abovementioned features can be employed
for both classification and regression, as exemplified in
Fig. 16, where the overall signal processing chain of a radar
system employing an LB method is illustrated.

An alternative to ML methods is provided by DL meth-
ods. In the last case, feature extraction is automatically
accomplished by a neural network and, if classification
is required, a softmax layer is employed to evaluate the
probability that a certain observation is associated with
one of the given classes.

A limited literature on the use of ML and DL methods
in radar-based monitoring of vital signs is available. The
use of ML methods in CW Doppler radar systems for vital
signs monitoring has been investigated in [86], [87], [88],
and [89], while an unsupervised method for DC offset and
clutter suppression using FMCW radars has been investi-
gated in [90]. Moreover, an HR estimation technique based
on a CNN has been developed in [91] for an IR-UWB
radar system. In particular, supervised methods have been
exploited for classifying breathing disorders, heart sound
classification and for removing the high-order harmonics
from the phase vector ψ (48) in [87], [89], and [86],
respectively. An artificial neural network (ANN) for the
reliable detection of heartbeats through a CW Doppler
radar has been proposed in [88]. The adopted ANN is
composed by a cascade of multiple layers with a different
number of neurons and its architecture is quite simple;
its main drawback is represented by its inability to cope
with time series, i.e., to extract features related to the time
evolution of the observed signal.

VI. S O M E C O N S I D E R AT I O N S O N
R A D A R S E L E C T I O N A N D O N I T S U S E
I N E X P E R I M E N TA L C A M P A I G N S
In this section, we illustrate some important lessons that
we have learned from our experimental work conducted
on healthy adult volunteers in the laboratories of the
Department of Engineering “Enzo Ferrari” and of the Car-

19Different tools for time–frequency analysis, such as the CWT and
the STFT, can be employed to extract these features.
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diology Division, Department of Biomedical, Metabolic and
Neural Sciences, University of Modena and Reggio Emilia,
Modena, Italy. First, we focus on the essential requirements
that radar devices employed for vital signs monitoring
should meet. Then, we provide some guidelines for devel-
oping an experimental setup and illustrate some numerical
results about the estimates of vital signs extracted from our
experimental measurements. Finally, we comment on how
to assess estimation accuracy in vital signs monitoring.

A. Fundamental Requirements of Radar Devices

Nowadays, a number of compact radar devices, not
explicitly developed for medical applications and operating
in the mm-wave spectrum, are available on the market
at various prices. A radar system employed for vital signs
monitoring needs to satisfy various technical requirements
that are influenced by the environment in which mea-
surements are acquired [92]. These requirements concern:
1) the maximum distance of the radar from the body of
the subject under test; 2) its bandwidth and its operating
frequency f0; 3) its displacement resolution; and 4) its
angular resolution. Different values of the parameters
mentioned above may have a substantial impact on the
achievable accuracy, as illustrated in the following.

The maximum distance at which a radar should oper-
ate depends on the considered application. If long-range
detection is required, a high transmission power and/or
highly directive antennas should be employed to guarantee
a proper SNR at the RX side [93]. The power radiated by
colocated MIMO radars employed in vital signs monitoring
is small; however, in this case, beamforming techniques
can be employed to constructively combine the signals
received by multiple antennas, thus enhancing the overall
SNR. It is also important to keep in mind that any radar sys-
tem, independently of its antennas and maximum radiated
power, is characterized by a maximum unambiguous range
(denoted Rmax), that is, by a maximum distance beyond
which target range is not correctly estimated. In the case
of FMCW or SFCW radars, Rmax can be expressed as20

Rmax = N
c

4B
(78)

where B is the bandwidth of the radiated signal and N is
the overall number of samples acquired in a chirp interval
(frequency sweep) by an FMCW (SFCW) radar. Then, for a
given bandwidth, Rmax can be raised by increasing N , i.e.,
by adopting a higher sampling rate at the RX side.

The bandwidth of the radiated signal plays a fundamen-
tal role in radar-based monitoring of vital signs. In fact,
a larger bandwidth results in a better range resolution,
i.e., in an improved ability to discriminate multiple targets
in range as well as to generate a more detailed image

20If an FMCW radar system is considered, this result originates from
the fact that the frequency fn (21) can be unambiguously estimated if
it does not exceed half the sampling frequency fs ≜ 1/Ts.

of an extended target. Since the bandwidth is usually a
fraction of the carrier frequency, this consideration has
motivated the adoption of operating frequencies that fall in
the mm-wave spectrum, i.e., that belong to the frequency
range21 (30, 300) GHz. The selection of a higher operating
frequency (i.e., of a shorter wavelength λ) has various
implications. First, it leads to a higher phase sensitivity,
that is, to faster changes in the received signal phase
observed in the presence of the small movements to be
detected in vital signs monitoring [see (11)–(13)]. This
is certainly beneficial, provided that the phase ambiguity
problem does not arise (i.e., that the observed phase vari-
ations remain within the range (−π, π)). The last problem
can be circumvented by increasing the sampling rate of
the received signal; this has also a beneficial effect on
the maximum range at which a target can be detected,
as already mentioned above. A change in the operating
frequency of the radar has also a significant impact on
the penetration depth of the radiated EM waves through
human tissues [21]. Readers should keep in mind that:
1) microwave signals are partially reflected and partially
absorbed by the human skin [94]; 2) the attenuation
of the reflected EM field increases with its frequency;
3) the penetration through human skin, instead, decreases
with frequency (for instance, the skin penetration depth is
2.7 mm at 10 GHz and just 0.5 mm at 60 GHz [95], [96]);
4) the EM wave reflection due to body tissues becomes
stronger as the operating frequency increases; and 5) the
quality of the echo of an mm-wave radar is negligibly
affected by the thickness of the clothes of the monitored
subject [97]. Based on these results, we can state that,
when an mm-wave radar device is employed in vital signs
monitoring of a still subject, the phase and amplitude
fluctuations observed in its received signal really originate
from the chest and skin displacement stimulated by his/her
cardiopulmonary activity.

The displacement resolution can be defined as the
minimum measurable displacement over two consecutive
frames transmitted by the considered radar device (such
frames are separated by a time interval lasting T0 s, see
Section IV-B). Based on (61), the displacement ∆Rk,k+1

experienced by a point target between the kth frame and
the subsequent (i.e., the (k+ 1)th) frame can be expressed
as

∆Rk,k+1 =
λ

4π
∆ψk,k+1 (79)

where ∆ψk,k+1 is the phase variation observed in the
electromagnetic echo. If δb,M denotes the maximum chest
displacement due to breathing (see Section III-B), the
inequality

∆Rk,k+1

T0
≥ 2δb,M

TBR
(80)

21The corresponding wavelengths range from 1 and 10 mm.
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should be satisfied to achieve a sufficient resolution in
detecting chest movements. The last inequality can be
rewritten as

T0 ≤
TBR

2δb,M
Rk,k+1 (81)

or, equivalently, as

T0 ≤
TBR

2δb,M

λ

4π
∆ψ̂k,k+1 (82)

due to (79). If we assume that δb,M is equal to 4λ
(where λ ∼= 4 mm, if the employed radar system oper-
ates at 77 GHz) and keep in mind that22 the inequality
∆ψk,k+1 < 2π must be satisfied to avoid any phase
ambiguity, from (82 ), it is easily inferred that

1

T0
>

16

TBR
(83)

so that the selected frame rate must be substantially higher
than the breathing frequency. Similar considerations can
be formulated for the displacement due to heart activity;
the only difference is represented by the fact that TBR

is replaced by THR. Then, achieving sufficient accuracy
in the estimation of BR and HR requires the selection of
a proper frame rate 1/T0. In practice, as already men-
tioned in Section III-A, the typical values of BR at the
rest range from 10 to 25 acts/min (i.e., from 0.2 and
0.4 Hz), whereas those of HR from 50 to 100 acts/min (i.e.,
from 1 to 1.67 Hz); under stress conditions, the BR and HR
increase up to 40 acts/min (0.67 Hz) and 180 acts/min
(3 Hz), respectively. Therefore, based on (83), the frame
rate should be on the order of 25 Hz at rest and 45 Hz
under stress. It is also worth mentioning that, whatever the
selected frame rate, a sufficiently long observation time is
required to generate reasonably accurate estimates of vital
signs through spectral analysis. In practice, using a com-
mercial MIMO radar, such estimates should be extracted
from the radar measurements acquired on a time interval
that covers at least three periods of breathing (and, con-
sequently, about ten periods of heartbeat), i.e., lasting at
least 10 s at rest; this unavoidably introduces some latency
in vital sign estimation.

Let us focus now on the angular resolution. This param-
eter plays an important role when an MIMO radar is
employed to detect the vital signs of multiple people,
characterized by different angular coordinates. The achiev-
able angular resolution is strictly related to the number
of virtual channels NV made available by the employed
radar system. If this system is endowed with a single ULA
characterized by NV equally spaced channels, the angular

22This expression is valid if the arctan2(·) operator is employed,
as illustrated in Section V-A.

Fig. 17. Photographs of (a) IWRxx43 radar front end and (b) both

sides of the P2G module.

resolution ∆θ can be evaluated as

∆θ =
λ

2d (NV − 1)

180◦

π
(84)

where d is the distance between two adjacent virtual
elements; for instance, if d = λ/4, the resolution is equal
to 2/(NV − 1) rad.

In our measurement campaigns performed in a hospital
environment (see Section VI-B), two colocated FMCW
radars, namely, the IWRxx43 TI radar [98] and the P2G
FMCW radar23 [99], have been employed. The former
device is manufactured by TI and operates at the frequency
f0 = 77 GHz, whereas the latter one is manufactured
by Infineon and operates at the frequency f0 = 24 GHz;
the difference in their transmission frequencies allowed
us to assess the potential advantages originating from the
use of higher frequencies and/or from the exploitation of
frequency diversity. The front end of these devices is shown
in Fig. 17. It is important to note that in our application
TF = 60 s, i.e., the duration of each transmitted frame
is equal to that of the whole observation interval and the
chirp duration T0 = T +TR is characterized by a long reset
time since TR > T .

The TI radar is endowed with an array composed by
NT = 3 (NR = 4) TX (RX) antennas [see Fig. 17(a)];
therefore, it makes available a virtual array consisting
of NV = 3 · 4 = 12 (virtual) antenna elements [see
(35)]; these elements form two different horizontal ULAs
composed by NHULA1 = 8 and NHULA2 = 4 virtual
channels; therefore, only NVULA = 2 aligned channels
are available along the vertical direction. The horizontal
(i.e., azimuthal) resolution and the vertical (i.e., elevation)
resolution are ∆θ ≃ 16.6◦ and ∆ϕ = 45◦, respectively
[see (84)]. In our work, the following values of the radar
parameters have been selected: 1) frequency slope µ =

86 MHz/µs; 2) overall number of samples per chirp N =

256; 3) ADC sampling frequency fs = 9 MHz; and 4) chirp
duration T0 ≈ 60 ms. These choices entail that: 1) the

23Detailed descriptions of these devices are avail-
able at https://www.ti.com/tool/IWR1843BOOST and at
https://www.infineon.com/cms/en/product/evaluation-boards/demo-
position2go/
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Fig. 18. Photographs of both sides of the XM112 UWB radar.

bandwidth of the radiated signal is B = µT ≃ 2.45 GHz
since the ramp-up time is T = N/fs = 18.4 µs and
2) the maximum unambiguous distance isRmax ≃ 15.67 m
[see (78)].

The P2G radar is equipped with an array composed by
NT = 1 TX and NR = 2 RX antennas (see Fig. 17(b)].
Therefore, a virtual array ofNV = 1·2 = 2 virtual elements
[see (35)], forming a horizontal ULA, is available. In our
work, the following values of the radar parameters have
been selected: 1) µ = 0.78 MHz/ms; 2) overall number of
samples per chirp N = 256; 3) ADC sampling frequency
fs = 1 MHz; and 4) chirp duration interval T0 ≈ 60 ms.
In this case, the ramp-up time is T = N/fs = 256 µs, the
bandwidth of the radiated signal is B = 200 MHz, and the
maximum unambiguous distance is Rmax = 192 m. There-
fore, this radar device can be employed for long-range
applications but achieves a lower range resolution than the
TI IWR1843 radar.

A short measurement campaign was also conducted in
an office environment (see Section VI-B). In that case,
an XM112 PCR UWB radar has been employed (see
Fig. 18). This device, manufactured by Acconeer,24 oper-
ates at the frequency f0 = 60 GHz and is of SISO type. Its
PRI T0 is equal to 76.9 ps, its transmission frame consists
of Nc = 621 pulses, and its range resolution is equal to
0.5 mm. Acquiring our measurements from the XM112
UWB radar, a minimum (maximum) range Rm = 50 cm
(RM = 80 cm) has been assumed since the distance of the
monitored subject from the radar itself always belonged to
the interval [Rm, RM ].

B. Data Acquisition

The typical differences between the datasets analyzed
in the technical literature about radar-based monitoring of
vital signs concern (see Table 6):

1) the overall number of subjects involved in the data
acquisition procedure;

2) the heterogeneity of the acquired dataset and, in par-
ticular, the positions of the involved subjects with
respect to the employed radar (e.g., sitting and lying
down) and their physical conditions (e.g., in a rest
condition, under strain, sleeping, and so on).

24See https://www.acconeer.com/company/ for further details.

The overall number of subjects ranges from few units
to a few dozens. Readers should keep in mind that the
analysis of deterministic and ML methods does not usually
require a large number of measurements, whereas that of
DL techniques needs large and heterogeneous datasets. For
instance, the measurements analyzed in [100] have been
acquired from ten people (more precisely, six males and
four females), whose distance from the employed radar
system ranged from 20 to 80 cm. On the contrary, a much
larger dataset was needed to train and test an LSTM net-
work in [101]. In the last case, the overall acquisition time
of the whole dataset is equal to 18 900 s (corresponding to
approximately 5 h); moreover, the acquired measurements
refer to 30 different subjects.

The heterogeneity of the acquired dataset can be
improved by observing the considered subjects in different
positions (e.g., in front of the radar with the chest facing
toward the antennas or on its left/right side) but always at
a fixed distance from the employed radar systems [29].
Subjects can also be placed at different distances from
radar systems, but, in this case, their angular coordinates
should not change (see, e.g., [100, Sec. III]).

The measurements analyzed in most of the technical
literature refer to people breathing at rest. However, espe-
cially in last years, contactless systems based on radar
technology have been employed for HR and BR monitoring
of subjects in different breathing conditions. For instance,
the measurements of the dataset employed in [102] have
been acquired in apnea, during the Valsalva maneuver25

and in two different positions (tilt-up and tilt-down).
The selection of proper reference sensors represents

another important technical issue to be considered before
starting a measurement campaign. In fact, the data col-
lected from reference sensors are always required for
the validation of deterministic algorithms [67], [103] or
for training LB methods [91]. In the measurement cam-
paigns described in the technical literature, various med-
ical instruments, such as electrocardiographs and wear-
able sensors, have been used. Wearable sensors include
elastic bands with built-in electrodes [104], MEMS, pulse
oximeters, or Bragg grating sensors [105]. Most of the
commercially available wearable sensors are easy to use
since they provide excellent user interfaces and APIs for
Python or MATLAB programming environments. However,
an important issue to be considered before selecting a
specific reference sensor is the possibility of accurately
synchronizing the timing of its measurements with that of
the data provided by the employed radar device.

A long measurement campaign is being conducted by
the authors of this article at the Cardiology Division,
Department of Biomedical, Metabolic and Neural Sciences,
University of Modena and Reggio Emilia (Hospital of

25The Valsava maneuver is performed by moderately forceful
attempted exhalation against a closed airway; this can be practically
implemented by expiring against a closed glottis.
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Fig. 19. Photograph of the setup employed in our measurement

campaigns conducted in the hospital; both the IWRxx43 and the P2G

radars are used.

Modena), on healthy adult volunteers.26 The experimen-
tal setup adopted in this case is shown in Fig. 19. The
two FMCW radar sensors described in Section VI-A are
mounted on a wooden bar, which, in turn, is put on a
tripod. Moreover, their antenna arrays are oriented toward
the chest of each subject, always lying down a bed, whose
upper part is slightly tilted. The typical vertical (horizon-
tal) distance dh (dv) between the radars (the tripod) and
the subject under test is approximately equal to 75 cm (50
cm); our tripod allows to move up or down the radars
so that the distance between them and the monitored
subject can be modified. In our measurements, different
positions are being considered for the subject under test.
In practice, he/she is sitting or lying down on the bed
with different tilting angles; in the first case, his/her
movements are very small and this makes the estimation
of HR and BR potentially very accurate, whereas, in the
second one, the tension of his/her muscles may affect
the estimation of vital sign parameters. In our setup, the
reference sensor is the Shimmer3 device manufactured
by Shimmer [106]. This device, controlled by means of a
simple user interface, is able to send data over a Bluetooth
connection and is equipped with five electrodes (right
hand side midaxillary, left-hand side midaxillary, right leg,
left leg, V1; see [106, p. 6, Fig. 3-2]), which need to
be placed in specific positions of the chest of the subject
under test. In our acquisitions, the reference ECG signal is
read from the voltage difference between the left leg and
RHS midaxillary (LL-RA) electrodes. The breathing signal,
instead, is generated by measuring the impedance between
these two electrodes; in practice, these electrodes are

26Original data will be made available upon submission of a reason-
able request to the authors.

used to inject a weak high-frequency (10 kHz) alternating
current in the chest tissues and the voltage variations due
to chest displacement are measured. Then, an estimate of
the chest impedance variations is obtained by computing
the ratio between the measured voltage and the injected
current; finally, breathing dynamics are inferred from such
variations (further details about this method can be found
in [107]).

Due to the availability of a proper API, Shimmer3
measurements can be easily synchronized in time with
those acquired through the IWRxx43 radar or the P2G
radar so that data acquisition can be accomplished in real
time. In fact, the Shimmer3 device offers the possibility of
sharing the time reference (namely, the CPU timestamp)
with our radar devices; this has allowed us to synchronize
the reference and the probing signals with great accuracy.
As already mentioned above, in our experiment, each
data acquisition refers to an observation interval lasting
TF = 60 s. However, since the radars and the reference
sensor are characterized by different frame rates, the
samples of each of the two signals (namely, the ECG and
breathing signals) provided by the Shimmer3 sensor are
stored in a sequence of vectors, each having size Nc,S =

15317, whereas the received signal samples provided by
the IWRxx43 (P2G) radar are stored in a 3-D matrix of size
N×NV ×Nc,TI = 256× 4× 997 (N×NV ×Nc,P2G = 256×
2 × 933). It is also worth mentioning that, in general,
if the construction of a dataset requires that acquisitions
originating from the given reference sensor and those
coming from the employed radar device have the same
length, a subsampling or upsampling procedure can be
adopted for the reference or the radar signals.

Independently of the nature of the algorithm to be tested
on the acquired measurements, it is highly recommended
to build up a reasonably large dataset since the chest
dynamics of distinct subjects can exhibit very different
characteristics. Moreover, in our measurement campaigns,
in order to guarantee a sufficient variability in the gener-
ated dataset, the subjects under test are being observed
in different conditions. In practice, the following condi-
tions are considered in our data acquisitions: 1) breath-
ing normally, at rest; 2) during inspiratory (expiratory)
apnea (for as long as he/she could, ending the acquisition
with normal breathing); 3) hyperventilating (for as long
as he/she could); 4) during the Valsalva maneuver; and
5) after making an effort. In the last case, the subject under
test is required to move up a step and down from it for at
least one minute).

As already mentioned in Section VI-A, an additional
measurement campaign has also been conducted in a
different environment and, in particular, in one of the
research laboratories of the Department of Engineering
“Enzo Ferrari.” The experimental setup adopted in this
case is shown in Fig. 20. An XM112 IR-UWB radar has
been mounted on a small tripod, which, in turn, has been
positioned on an office desk in front the chest of the
monitored subject (sitting on chair at a horizontal distance
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Fig. 20. Photograph of the setup employed in our measurement

campaign conducted in a university laboratory.

dh approximately equal to 70 cm). Our measurements have
been acquired from five healthy subjects; the resulting
dataset consists of N̄ = 45 waveforms, each referring to an
observation interval that lasts TF = 60 s and represented
by Nc,AC = 5926 complex samples. The Shimmer3 device
has been employed again as a reference sensor and its
output has been synchronized with that of the XM112
device. The data collected by the reference sensor have
been stored in a vector of size Nc,S = 15 317, assuming
an average frame rate equal to 100 samples per second.

C. Numerical Results

In this section, the estimation methods described in
Section V-A are applied to the measurements acquired
through our three radar devices described in Section VI-A.
Our objective is estimating the BR and HR in the fol-
lowing two scenarios: 1) a single subject lying down on
a bed at a distance Rref = dv = 0.75 cm from the
radar sensor (see Fig. 19) and 2) a single subject sitting
on chair at a horizontal dh = 70 cm from the radar
sensor (see Fig. 20). In our study, emphasis is put on
the extraction of HR from radar measurements since this
represents a substantially more challenging task than BR
estimation.

Let us focus now on the first scenario. In this case, the
signal samples acquired through the four (two) VAs of
the IWRxx43 (P2G) radar in the kth chirp interval with
k = 0, 1, . . . , Nc,x − 1 and x = TI (P2G) are processed by a
beamforming algorithm [45]; this allows to constructively
combine the echoes impinging on the RX array along a
specific direction and to produce a single N th dimensional
column vector xk; this vector feeds the range estimation
and bin selection block shown in Fig. 10. The processing
accomplished by the last block is based on (62) (a tape
meter is used to compute the reference range Rref). More-
over, this block produces the couple (l̂ [k], ψ̂[k]), consisting
of the bin index l̂ [k] and the phase estimate ψ̂[k], for any
k. It is worth mentioning that: 1) an estimate R̂[k] of the

target range is evaluated as

R̂ [k] = l̂ [k] Km (85)

where

l̂ [k] = arg max
lm≤l̄≤lM

|X [l, k] |2 (86)

X[l, k] is defined by (62), lm = 21, lM = 33, Km = 32.6 m
(lm = 2, lM = 3, and Km = 2.6 m) for x = TI (x = P2G)
and 2) N0 = 512, Rm = 0.65 m, and RM = 1 m have been
selected for both radar systems. Note that R̂[k] (85) does
not necessary coincide with the reference range Rref since
the following conditions hold.

1) Some errors are unavoidably introduced in the range
measurement procedure. In fact, it is not easy to
identify exactly the point of the chest on which the
beam radiated by the employed radar is focused since
the antennas of both radar devices are not highly
directive.

2) The range estimate R̂[k1] computed in the k1th chirp
interval may be slightly different27 from the estimate
R̂[k2] obtained in the k2th chirp interval, with k1 ̸= k2.

The elements of the unwrapped phase vector

ψ̂ ≜ [ψ̂ [0] , ψ̂ [1] , . . . , ψ̂ [Nc,x − 1]]T (87)

computed on the basis of the measurements that have
been acquired through the TI (P2G) radar in a single
observation interval are represented by the red (green) line

27Note that, in principle, information about chest displacement is
contained in the sequence {R̂[0], R̂[1], . . . , R̂[Nc,x − 1]}, but, in gen-
eral, its elements are too noisy for reliable detection of vital signs.

Fig. 21. Representation of the normalized unwrapped phase

extracted from our IWRxx43 radar measurements (red line) and P2G

radar measurements (green line). The breath signal acquired through

our reference sensor is also shown (blue line).
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Fig. 22. Representation of the amplitude spectrum of (a) breath

signal acquired through our reference sensor (blue line) and (b) nor-

malized unwrapped phase extracted from our IWRxx43 radar mea-

surements (red line) and P2G radar measurements (green line).

in Fig. 21 (note that in order to ease the interpretation
of these results, the elements of the two phase vectors
have been normalized28); in this case, AD followed by DC
offset removal and phase unwrapping is employed. The
results shown in Fig. 21 deserve the following comments:
1) the two radar signals represent the dynamics of the
chest due to both breathing and cardiac activities and 2)
the phase trajectories computed based on the measure-
ments provided by the two radars overlap, even if these
devices operate at different frequencies and exhibit similar
evolutions as the signal provided by our reference sensor
(Shimmer3; see the blue line appearing in Fig. 21). The
amplitude spectrum generated by applying an FFT of order
N ′

0 = Nc,S = 15 317 to each of the signals represented in
Fig. 21 is shown in Fig. 22. These results evidence that: 1)
the spectral peak associated with breathing (in correspon-
dence of 21 acts/min) is much larger than the one related
to heart beat (visible at approximately 61 acts/min) and
2) the second-order harmonic of breathing is clearly visible
at approximately 21 × 2 = 42 acts/min, whereas its third
harmonic is expected at 21 × 3 = 63 acts/min.

The heart signal can be extracted from the unwrapped
phase through BPF [28]. In this case, a fourth-order band-
pass Butterworth is used to select the spectral components
whose frequencies belong to the interval [0.91, 3] Hz; its
output is shown, for both radars, in Fig. 23 (the ECG signal
generated by the reference sensor is also represented).
Note that, in the considered observation interval, the peak-
to-peak period of the radar waveforms is comparable to
the NN peak interval characterizing the ECG signal.29

However, the heart and the ECG signal are not perfectly

28A min–max normalization has been applied to the vector ψ̂ (87);
the kth element ψ̄[k] of the normalized phase vector is evaluated
as ψ̄[k] = (ψ̂[k] − min(ψ̂))/(max(ψ̂) − min(ψ̂)), with k = 0,
1, . . . , Nc,x − 1.

29In an ECG signal, NN intervals are represented by the time inter-
vals between adjacent peaks resulting from sinus node depolarizations.

Fig. 23. Representation of the heart signal (normalized unwrapped

phase) extracted from our IWRxx43 radar measurements (red line)

and P2G radar measurements (green line). The ECG signal acquired

through our reference sensor is also shown (blue line).

aligned; this suggests that the heart frequency, i.e., the
distance between two consecutive peaks, is not completely
stable during the observation time. This is confirmed by the
amplitude spectrum of the bandpass filter output gener-
ated in response to the two radar signals; the resulting two
spectra are represented in Fig. 24, where the amplitude
spectrum of the response of the same bandpass filter to
the breathing signal acquired by the reference sensor is
also shown. Note that, in all these amplitude spectra, three
spectral peaks are visible between 60 and 70 acts/min, i.e.,
in the frequency range in which the spectral contribution
due to heartbeat is expected. This is due to the fact that: 1)
the third-order harmonic of the breathing signal is close to
the fundamental frequency of the heart beat so that the
spectral contribution of the former signal may partially
overlap with that of the latter one; 2) as suggested by

Fig. 24. Representation of the amplitude spectrum of (a) heart

signal acquired through our reference sensor (blue line) and (b) nor-

malized unwrapped phase extracted from our IWRxx43 radar mea-

surements (red line) and P2G radar measurements (green line).
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Fig. 25. Representation of the normalized unwrapped phase

extracted from our XM112 radar measurements (red line). The breath

signal acquired through our reference sensor is also shown (blue

line).

the time-domain signals shown in Fig. 21, the HR changes
during our observation interval (lasting 60 s) and this
entails some spectral broadening. In principle, the last
phenomenon can be mitigated by reducing the duration of
the observation interval over which spectra are computed;
however, an excessive shortening of this interval may lead
to an inaccurate estimation of the frequency components
due to heart activity.

Let us take into consideration now the second scenario.
The signal processing chain employed in this case is repre-
sented in Fig. 9. The elements of a normalized unwrapped
phase vector ψ̂ (87), referring to a single observation
interval and available after DC offset removal, are shown,
together with the breath signal generated by our reference
sensor, in Fig. 25. From these results, it is easily inferred
that: 1) the phase evolution follows the dynamic of the
chest of the monitored subject and 2) the dynamic of
heart manifests itself as small fluctuations in the observed

Fig. 26. Representation of the amplitude spectrum of (a) breath

signal acquired through our reference sensor (blue line) and

(b) unwrapped phase extracted from our XM112 radar measurements

(red line).

Fig. 27. Representation of the heart signal (normalized unwrapped

phase) extracted from our XM112 radar measurements (red line). The

ECG signal acquired through our reference sensor is also shown (blue

line).

phase. The amplitude spectra generated by applying an
FFT of order N ′

0 = Nc,S = 15 317 to each of the signals
appearing in Fig. 25 are shown in Fig. 26. The estimate of
the BR, b̂r = 13.8 acts/min, is easily found by identifying
the position of the main spectral peak; the amplitude of
this peak is higher than that of the peak originating from
heart, which is visible at the frequency ĥr = 78 acts/min.
Note also that, similar to what has been observed in the
first scenario, in the amplitude spectrum, three spectral
peaks are visible between 70 and 80 acts/min, i.e., in the
frequency range in which the spectral contribution due to
heartbeat is expected. This is mainly due to the fact that the
HR changes during the observation interval. In our signal
processing chain, a fourth-order bandpass Butterworth
filter has been employed to extract the heart signal from
the unwrapped phase. This filter allows us to select the
spectral components belonging to the interval [0.91, 3]
Hz; its output is shown in Fig. 27, where the ECG signal
generated by our reference sensor is also represented. Note
that, in the considered observation interval, the peak-to-
peak period of the radar waveform is comparable to the
NN peak interval characterizing the ECG signal.

Finally, it is worth pointing out that the use of a band-
pass filter represents a conceptually simple solution to the
problem of extracting the HR components from the phase
signal provided by a radar device. Actually, this filter needs
to be adapted to the specific conditions of the patient under
test. If his/her BR increases unexpectedly (e.g., in the case
of hyperventilation), the spectral components associated
with the breathing activity may not be canceled by this
filter and may overlap with the components due to heart
beat.

D. Estimation Accuracy

Let us suppose that an N̄ -dimensional set D ≜
{(b̂r , ĥr , br , hr); r = 0, 1, . . . , N̄ − 1}, where b̂r and ĥr
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denote the estimates of the BR br and of HR hr, respec-
tively, is available after that all our radar-based measure-
ments have been processed. Then, the accuracy achieved
in vital sign estimation can be assessed by evaluating the
MAE

ε̂m,x ≜
1

N̄

N̄−1∑
i=0

|x̂r [i]− xr [i] | (88)

the PAE

ε̂x ≜ arg max
0≤i≤N̄−1

|x̂r [i]− xr [i] | (89)

and the RMSE

ε̄x ≜

√∑N̄−1
i=0 (x̂r [i]− xr [i])2

N̄
(90)

where x = b (x = h) if BR (HR) is considered. Other
relevant parameters are represented by the CV

γ̄x ≜
ε̄x

1
N̄

∑N̄−1
i=0 x̂r [i]

(91)

and the Pearson coefficient

ρ̄x ≜

∑N̄−1
i=0 (x̂r [i]− x̄r)√∑N̄−1
i=0 (x̂r [i]− x̄r)

2

∑N̄−1
i=0 (xr [i]− x̄′r)√∑N̄−1
i=0 (xr [i]− x̄′r)

2
(92)

where

x̄r =
1

N̄

N̄−1∑
i=0

x̂r [i] (93)

x̄′r =
1

N̄

N̄−1∑
i=0

xr [i] (94)

x = b (x = h) if BR (HR) is considered and xr[i] represents
the BR (HR) provided by the adopted reference sensor.
Note that the value of the parameter ρx (92) falls in
the interval [−1 , 1]; a positive (negative) unitary value
is found when the two available datasets (namely, the
dataset generated through the employed radar device and
that acquired from the reference sensor) exhibit a positive
(negative) correlation, whereas a null value means that
they are completely uncorrelated.

Typical values of the MAE, the RMSE, the CV, and the
Pearson coefficient evaluated in radar-based monitoring of
vital signs can be found in [67], [108], and [27]. In those
articles, a reasonable estimation accuracy is achieved if:
1) the MAE and RMSE for BR (HR) estimation are in
the order of some acts (beats) per minute; 2) the CV is
close to 5% for both BR and HR estimation; and 3) the

Table 4 RMSE (εx ), PAE (̂εx ), MAE (̂εm,x ), CV (γx ), and Pearson Coefficient

(ρx ) Referring to the BR (HR) Estimates {b̂r} ({ĥr}) Computed Based on

the Dataset Acquired in Our First Scenario (the Measurement Unit, m.u.,

Is Specified for Each Parameter)

Pearson coefficient is greater than 70%. It is also important
to remember that estimation accuracy can be improved
through the development of a proper measurement setup;
for instance, a small laser device can be employed to
verify that the employed radar device is really pointing
toward the center of the chest of the patient under test.
Another relevant technical issue to be considered is rep-
resented, as already mentioned in Section VI-C, by the
availability of an accurate synchronization between the
radar and the reference sensor; unluckily, if the radar
and reference devices have independent local clocks,
full synchronization cannot be achieved and an accu-
rate evaluation of the parameters defined above is not
possible.

Let us now analyze some results obtained based on
a limited set of the measurements acquired in the first
scenario described in Section VI-B (and involving the
IWRxx43 and P2G FMCW radars, and the Shimmer3 ref-
erence sensor). We assume that the following conditions
hold.

1) All our measurements have been acquired from
13 young healthy subjects lying down on a bed and
each of them refers to an observation interval lasting
60 s.

2) The HR and BR estimates have been computed by
resorting to the processing chain described in Fig. 9
and in Section V-A1.

3) The size of the dataset DTI (DP2G) referring to the
IWRxx43 (P2G) radar is N̄ = 45 (on the average,
three distinct measurements have been acquired from
each subject).

The values of MAE, PAE, RMSE, and CV evaluated based
on the available datasets are listed in Table 4, whereas
the pairs {(br , b̂r)} ({(hr , ĥr)}) are represented on a
Cartesian plane in Fig. 28 (Fig. 29) for both the IWRxx43
and P2G FMCW radars. Moreover, in Figs. 28 and 29, the
lines generated through a linear fitting of the available
pairs are also shown. These results deserve the following
comments.

1) The estimates of BR and HR evaluated through both
our radar devices are reasonably accurate.

2) Radar based-estimates are highly correlated with the
measurements provided by our reference sensor.
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Fig. 28. Representation of 45 couples {(br, b̂r)}; the BRs estimated

through an IWRxx43 (P2G) radar are identified by a red (blue) marker.

3) The IWRxx43 radar achieves a better accuracy on BR
estimation than the P2G radar; on the other hand,
the latter device outperforms the former one in HR
estimation.

4) The accuracy of the HR estimates is worse than those
of BR estimates since the latter rely on stronger and
cleaner spectral information (see Figs. 24 and 26).
Note also that the RMSEs and peak errors of HR are
in the order of few acts/min.

As far as the last issue is concerned, it is important to
keep in mind that: 1) the HR frequency may overlap with
(or be very close to) the third-order harmonic of breath
and 2) the displacement due to heart is very small and may
be not fully detected by our radar devices, if they are not
accurately oriented toward the chest of the subject under
test.

Let us now analyze some results obtained based on
all the measurements acquired in the second scenario
described in Section VI-B (and involving the XM112 UWB

Fig. 29. Representation of 45 couples {(hr, ĥr)}; the HRs estimated

through an IWRxx43 (P2G) radar are identified by a red (blue) marker.

Table 5 RMSE (εx), PAE (̂εx), MAE (̂εm,x), CV (γx), and Pearson Coefficient

(ρx ) Referring to the BR (HR) Estimates {b̂r} ({ĥr}) Computed Based on

Our Dataset Acquired in Our Second Scenario (the Measurement Unit,

m.u., Is Specified for Each Parameter)

radas and the Shimmer3 reference sensor). We assume that
the HR and BR estimates have been computed through
the processing chain described in Fig. 9 and in Section V.
The pairs {(br, b̂r)} and {(hr, ĥr)} obtained in this case
are represented in Fig. 30, whereas the corresponding
values of the parameters defined in this section are listed in
Table 5. Comments similar to those expressed for the first
scenario also apply to these results. In fact, the estimation
errors estimated in the last case are comparable with those
listed in Table 4 and referring to the two FMCW radars we
employed.

VII. A P P L I C AT I O N S O F T H E R A D A R
T E C H N O L O G Y T O V I TA L S I G N S
M O N I T O R I N G
In this section, we propose a synopsis of the technical
literature concerning the following specific issues: 1) the
monitoring of HR and BR; 2) the experimental setups
adopted in vital sign monitoring; and 3) the monitoring
of heart sounds.

A. HR and BR Monitoring

The use of radar systems for monitoring HR and BR has
been investigated by several research groups, whose work

Fig. 30. Representation of 45 couples {(br, b̂r)} and {(hr, ĥr)} esti-

mated on the basis of the measurements acquired through an XM112

UWB radar.
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has allowed to assess the performance achieved by differ-
ent radar prototypes operating at distinct frequencies and
radiating heterogeneous signals. As far as the use of the
radar technologies described in Section IV-A is concerned,
it is worth mentioning that the following conditions hold.

1) CW Doppler radars operating at 2.4, 5.8, and 24 GHz
have been employed to measure respiration, heart-
beat, or motion activity in [3], [109], [110], and [15];
in [111]; and in [88], [112], and [27], respectively.
In [113], instead, a 24-GHz CW radar sensor is
employed for cuffless blood pressure measurement,
whereas in [114], a dual radar system operating at
5.8 and 120 GHz is adopted to measure respira-
tion, heartbeat, HRV, blood pressure, and other vital
parameters.

2) FMCW radars operating in the C- and X-bands at
24, 60, 77, and 122 GHz have been used to simul-
taneously estimate of the vital parameters of multiple
people in [29], [115], and [116]; in [117] and [108];
in [67] and [38]; and in [118], respectively.

3) SFCW radars operating at frequencies lower
than 3 GHz and in theX-band have been exploited for
the estimation of the vital signs parameters of single
or multiple people in [119] and [120] and in [121]
and [122], respectively.

4) IR-UWB radars operating in the C-, X-, and E-bands
and having large bandwidths (2–3 GHz) have been
employed to measure vital parameters with high accu-
racy in [28], [74], [123], [124], [125], and [91].

MB and LB methods have been employed for the pro-
cessing of the measurements provided by the above men-
tioned radar systems; moreover, such measurements have
been acquired over population of different sizes. Essential
information about the adopted processing methods and
the size of the involved population are summarized in
Table 6; note that, in this table, the size Np of the
population (low, L, medium, M, or high, H) on which it has
been tested has been specified.30 Some details about the
most important processing methods and the main results
achieved through their use are provided in the following.

1) CW Doppler Radars: Three novel deterministic tech-
niques for estimating vital signs have been developed
in [109], where a radar system operating at 2.4 GHz
has been tested on a (single) human subject located at
a fixed distance. These techniques are based on: 1) the
FFT processing of the time-domain phase signal estimated
through AD (see the block diagram represented in Fig. 9
and in Section V-A); 2) the computation of the auto-
correlation of the phase vector ψ̂ (48) to estimate the
period of the time-domain phase signal; and 3) the FFT
processing of the abovementioned autocorrelation. The
last two techniques are shown to achieve a better accuracy
than the first one. Other interesting results are offered
in [3], in which a deterministic method based on the

30In this table, the population size is low, medium, or high if 1 <
Np ≤ 10, 10 < Np ≤ 20, or Np > 20, respectively.

block diagram appearing in Fig. 9 is adopted to process
the measurements acquired through an mm-wave Doppler
radar. In that article, it is shown that the HR estimated
based on an ECG is highly correlated with that estimated
based on the measurements acquired through the devised
radar system.

Some potential benefits originating from the use of ML
methods are illustrated in [110], where the problem of
recognizing and classifying breathing disorders of vari-
ous patients during their sleep is investigated. Five ML
techniques, namely, SVM, LDA, K-NN, DT, and ensemble
learning techniques, trained on a manually selected set
of features, are tested; the obtained results evidence that
all the considered techniques are able to achieve a high
accuracy in the classification of breathing disorders.

2) FMCW Radars: In [117], the BR and HR of a sin-
gle person have been measured through an FMCW radar
and an ECG; moreover, a video camera has also been
used to inspect the chest dynamics of the patient under
test. A dataset composed by the measurements acquired
from six different people has been used for validating
the adopted signal processing methods. Two different
methods have been tested: one based on the FFT (sim-
ilar to the one described by the block diagram shown
in Fig. 9) and the other one based on the computation
of the autocorrelation of the phase vector ψ̂ (48). The
obtained results have evidenced that: 1) both BR and
HR can be accurately extracted from radar measurements
and 2) the estimation of HR in the presence of the res-
piration harmonics can be challenging. Methods similar
to the ones employed in [117] have been successfully
exploited in [108] and [118], for identifying the vital
parameters of ten subjects that experience different sleep
scenarios and for simultaneously estimating the vital signs
of multiple people, respectively. In [116], a system for
measuring blood pressure is described; results on human
subjects reveal that radar-based arterial pulse detection is
very promising for future applications in blood pressure
detection and monitoring.

3) SFCW Radars: An FFT-based estimation method, sim-
ilar to the one described in Section V-A, has been employed
in [119] and [120] to estimate the BR and HR of multiple
subjects in a room; these subjects have been sitting on a
chair or lying down in a bed and have been characterized
by different orientations. In [120], radar-based estimates
have been compared with the HR and BR estimates pro-
vided by a contact reference sensor. The employed radar
system has been shown to achieve the best performance
when the chest of the subject under test is in front of it;
however, even if this condition is not met, radar-based
estimates are still sufficiently accurate. In [119], the per-
formance of radar-based monitoring in scenarios in which
obstacles, characterized by different shapes and materials
(like walls), are placed between the radar and the subject
under test is evaluated. Finally, an SFCW radar system
has been employed in [121] and [122] to simultaneously
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Table 6 Classification of the References Cited in Sections VII-A and VII-B Based on: 1) the Size of the Acquired Dataset (L, M, and H Correspond to

1 < Np ≤ 10, 10 < Np ≤ 20, and Np > 20, Respectively, Where Np Denotes the Overall Number of Acquisitions); 2) the Position of the Subject/Subjects

Under Test; 3) the Employed Radar Technology; and 4) the Category of the Adopted Signal Processing Method

estimate the vital signs of multiple people. It is also worth
mentioning that the estimation method devised in [122]
consists in applying a CWT to the phase vector ψ̂ ( 48) in
order to separate the breath contribution from the one due
to heart.

4) IR-UWB Radars: An estimator based on autocorrela-
tion of the phase vector ψ̂ (48) and an FFT-based estimator
(similar to the one described by the block diagram of
Fig. 9) have been employed in [124] and [125], respec-
tively, where the raw data acquired through an IR-UWB
radar system have been processed to extract the vital signs
of different subjects. The accuracy achieved by an IR-UWB
radar system in vital sign estimation has been compared
with that of an FMCW radar system in [38]; the latter
system is shown to outperform the former one due to its
ability to perform clutter suppression. Note that, as shown
in [123], noise and clutter affecting the measurement

acquired through an IR-UWB radar can be mitigated by
means of Kalman filtering.

B. Radar Setups in Real-World Scenarios

Radar systems can be potentially exploited for remote
monitoring of vital signs as conveniently and as easily
as wearable devices in heterogeneous scenarios. Readers
should not forget, however, that essential requirements for
their adoption in real-world applications are represented
by their ease of use and accuracy. Various results about
the accuracy of radar systems for vital sign monitoring
in real-world (and often challenging) scenarios can be
found in [6], [27], [29], [67], [108], [115], and [126];
note that works [6], [29], [67], and [108] concern FMCW
radar systems, whereas works [27], [115], and [126]
concern CW Doppler and IR-UWB radars. More specifically,
pioneering experiments regarding tracking of human vital
signs in real scenarios using FMCW radar systems have
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been described in [6], while the use of radar systems
in a hospital for measuring the vital signs of patients
has been investigated in [29], [67], and [27], whereas
more challenging scenarios have been considered in [115],
[126], and [108]. The use of an IR-UWB radar for through-
the-wall BR and HR estimation has been proposed for a
single subject and multiple subjects in [127] and [128],
respectively. A brief description of the experimental setup
adopted in the measurement campaigns conducted by the
authors of the articles cited above and of the main results
extracted from their experimental data is provided below.

1) The use of an MIMO FMCW radar in an hospital
bedroom has been investigated in [67]. The radar
device has been positioned on the ceiling of a room,
in front of the bed on which a static subject was lying
down; moreover, the monitored subject was facing up
the radar during the data acquisition process, which
lasted 40 min. A good correlation between the BR
and HR acquired through a reference sensor and
their estimates provided by the radar system has been
found. Note that the scenario considered in this case
is that of a typical hospital room in which vital signs
monitoring concerns patients at rest; for this reason,
this task is accomplished in the absence of random
movements of their chests.

2) An FMCW radar endowed with a custom array of
antennas has been employed to estimate the vital
signs of a person sitting on a chair in [29]. The
analyzed measurements have been acquired on five
subjects (three males and two females), not suffering
from any cardiac or respiratory pathology, whose age
ranged from 25 to 63 years. These subjects have
been positioned in front of the radar with different
orientations (their chest, their left, their back, and
right side facing the radar antenna). The employed
system has been able to accurately detect BR and HR,
regardless of chests patient orientation toward the
radar antenna.

3) A custom-designed CW radar system placed under
a bed mattress has been employed in [27] to con-
tinuously measure the vital parameters of various
patients without restricting their movements. The
developed system has been able to detect the activity
of each patient (i.e., entering the bed, getting out of
it, or moving inside it) and to continuously measure
his/her vital signs in different positions.

4) An FMCW radar has been employed for the estimation
of the vital signs of a person experiencing different
sleep conditions in [108]. In this case, the radar
device has been positioned on the ceiling of a room
in front of the bed on which a static patient was lying
down in different positions or was performing sim-
ple activities; this allowed to emulate real-life sleep
conditions. The measurements have been acquired on
11 patients (whose age ranged from 25 to 55 years);
a good correlation has been found between the

radar-based estimates of vital signs and those pro-
vided by a reference device. These results, together
with those illustrated in [27], have evidenced that
radar-based systems can be very useful in various
healthcare applications (e.g., in the study of sleep
apnea, in the monitoring of bedridden patients, and,
more in general, in the monitoring of hospitalized
patients).

5) The use of a dual-frequency31 CW microwave radar
for vital sign estimation inside an ambulance has
been studied in [115]. The measurements have been
acquired on eight healthy male subjects whose age
ranged from 21 to 24 years. Each of the subjects was
lying down on a stretcher contained inside an isolator;
therefore, his respiratory and cardiac activities were
monitored from outside the isolator. The employed
radar system has been able to measure the HR and BR
of the monitored subject with good accuracy, in both
static and dynamic conditions of the ambulance. Note
that the innovative method proposed for vital sign
detection could be very useful in other scenarios (e.g.,
in the monitoring of infectious patients).

6) Various results about the use of an IR-UWB radar
system for monitoring the BR of six neonates32 in
a neonatal intensive care unit have been illustrated
in [126]. In all the experiments, the employed radar
system has been covered with a white plastic cap and
has been hung at the end of a specially designed arm
placed on the top of a tripod; moreover, it has been
placed at a distance of 35 cm from the chest of each
subject. Each of the neonates has been placed in a
supine position inside an open-air crib, and his/her
torso has been covered with a blanket. A high accu-
racy has been achieved, despite the small movements
of the babies under test.

7) Some results about the use of IR-UWB radar systems
in vital sign monitoring have been illustrated in [127]
and [128]. In particular, in [127], an IR-UWB monos-
tatic radar system operating at 4.3 GHz and having a
bandwidth (resolution) of 2.3 GHz (6.5 cm) has been
employed for vital signs estimation of a single sub-
ject located behind: a gypsum wall, a wooden door,
a brick wall; and a load bearing concrete wall. Three
different methods have been proposed for extracting
vital signs from radar measurements, namely, a DFT-
based method for BR estimation, a clutter reduction
technique based on the singular value decomposi-
tion (SVD), and an STFT for analyzing the temporal
evolution of the spectral components of the received
signal. The numerical results provided in this arti-
cle cited above confirm that the proposed methods
are achieved similar performance in the considered
scenario. In [128], instead, an MIMO IR-UWB radar,

31The considered radar system operated at both 10 and 24 GHz.
32In this case, the subjects under test were two males and four

females with a median gestational age of 38 weeks and a median birth
weight of 3100 g.
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equipped with an array of 10 × 10 physical ele-
ments and operating at a center frequency of 2 GHz,
is employed to detect the vital signs of three male
adults (having different heights and weights), sitting
in front of the radar system at a distance that does
not exceed 2.5 m; both line-of-sight conditions and
the presence of a wall hiding them are considered.
A simple FFT processing has been considered. The
obtained numerical results evidence that an MIMO
IR-UWB radar can achieve through-the-wall detection
of multiple subjects and estimate their BR and HR,
provided that their body movements are quite small.

C. Heart Sounds Monitoring

Currently, the standard reference tool for continu-
ous cardiac monitoring is electrocardiography; it requires
touch-based wiring of patient skin. In clinical practice,
a series of pathological processes would certainly benefit
from contactless monitoring; these conditions may include
patients with an infection or a sepsis (e.g., infected by
SARS CoV-2) or patients with mental disorders that do
not allow conventional monitoring according to cardiology
settings. In cardiac intensive units or in intermediate care
units, continuous monitoring of heartbeat is a common
practice because detection and prevention of critical states
of health can lead to timely therapeutic interventions, with
the result of a better outcome. In fact, several cardiac
conditions could be immediately harmful and potentially
fatal (e.g., cardiac arrhythmias, heart attacks, acute heart
failure, and stroke), thus requiring prompt detection of
cardiac or respiratory anomalies. Recently, in the field of
radar-based systems for vital signs monitoring, an effort
has been made to take a step forward and, in particular,
to detect heart sounds [101], [102], [129]. The classi-
fication of normal or abnormal heart sounds has been
investigated in [129]. In that article, it has been shown
that the heart signal recorded by a custom-designed CW
radar system is highly correlated with the signal regis-
tered by a phonocardiograph, used as a reference. Based
on this correlation, each period of the recorded radar
signal can be divided into the different temporal phases
of the cardiac activity, namely, into systole and diastole
(see Section III-A); this procedure is called heart sound
segmentation. After recognizing systole and diastole in
the received radar signal, a reliable detection of normal
or abnormal heart sounds can be accomplished using an
LSTM network for heart sound segmentation; this has
been shown in [101], where an heterogeneous dataset of
recorded heart sounds and vital signs acquired through a
CW Doppler radar has been used [102]. The measurements
of this dataset originate from multiple subjects in different
positions of their bodies and in various conditions, such
as during breath-holding, during speaking, and after pos-
texercise. The obtained results have evidenced that more
than 90% of the recordings were of high quality and
that the correlation between radar and ECG signals was

almost perfect. As far as the impact of body position is
concerned, it has been found that, in general, heart sounds
can be detected in almost all the considered positions;
however, the measurability at a certain position changes
from subject to subject. This is partly due to the fact body
anatomy, and in particular, heart position inside chest may
exhibit some variations from person to person.

Further analysis should be performed to achieve solid
results, as these represent only preliminary data about
the innovative radar-based detection of heart sounds. This
technology could lead to a new way of noninvasive cardiac
monitoring and could be revolutionary in the cardiology
settings. Currently, during medical visits, cardiologists use
a stethoscope for heart evaluation; this tool allows them to
check for sounds, which may indicate pathological changes
in the heart or the heart valves. However, the validity
of the assessment strongly depends on the experience
of the physician. An objective, operator-independent and
automated analysis of heart sounds accomplished through
radar technology would be very useful; note also that, in
this case, the availability of large datasets for big data
analysis would be very useful.

VIII. C U R R E N T T R E N D S
In this section, the most relevant trends in the ongoing
research activities on radar systems for vital signs moni-
toring are described. In particular, we focus on research
activities related to: 1) the techniques for the compensa-
tion of RBMs; 2) the impact of body orientation on the
detection of vital signs and the quality of their estimates;
3) the detection of HRV; and 4) the exploitation of radar-
based monitoring for user identity authentication.

A. Compensation of RBMs and Impact of Body
Orientation

The RBMs of any person affect the estimate of his/her
vital signs provided by radar devices. These movements,
in fact, modulate the radar waveform both in its amplitude
and frequency, thus distorting the received echoes. This
may significantly affect the quality of the estimates of vital
signs generated by radar systems. Consequently, RBMs may
represent an important obstacle to the adoption of radar
technology in certain scenarios. It is also worth mentioning
that, if an mm-wave radar device is employed, the eye
blinking of the monitored subject may be detected as a
large RBM, resulting in a significant degradation in the
quality of the received signal phase; the impact of this
disturbance can be substantially mitigated through the use
of MIMO radars since these are able to steer their beam
toward his/her chest [22].

Recently, two approaches to motion compensation have
been proposed. The first approach is a hardware RBM
compensation acting at the RF front-end level and, conse-
quently, limiting the risks of saturating radar transceivers
in the presence of strong echoes [21]. The second one,
instead, consists in accomplishing a digital compensation
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after demodulation; this can be implemented more easily
and lends itself to a more precise control. For this reason,
in the remaining part of this subsection, we focus on the
last approach only.

One of the easiest strategies to extract the (weak)
vital sign components from the radar measurements and
remove the distortion due to RBMs is represented by digital
filtering. However, this solution is optimal only when the
statistical characteristics of the filter input match prior
information on which the design of the filter is based;
unluckily, such characteristics are normally unknown. For
this reason, a more robust solution has been proposed
in [130], where an ANC recursive algorithm is employed,
in combination with polynomial fitting, in a CW Doppler
radar system. It is important to point out that: 1) polyno-
mial fitting is used to reconstruct the signal components
due to RBMs and that must be subtracted from the overall
signal provided by the radar receiver and 2) this strategy
allows to achieve RBM compensation when a single radar
system is used and does not require additional sensors.
The use of a multiradar system for canceling RBMs has
been proposed in [73]. In this case, two CW Doppler radar
systems have been put on opposite sides with respect to
the body of the monitored subject; when his/her body
was leaning toward one of the radars, it moved away
from the other one [73] so that the distance between
each radar and the body changed in an opposite manner.
Based on this consideration, it has been shown that RBMs
can be canceled by combining the measurements provided
by the two radars. The main drawbacks of a multiradar
approach consist in an increase of system complexity, cost,
and power consumption and in the need of a larger room
for the experimental setup. A different approach to RBM
compensation relies on the use of a hybrid system, includ-
ing radar and camera [131]. In this case, the information
provided by the camera has been used to compensate for
the phase distortion due to body movements. Unluckily,
this approach has been shown to work well when body
movements are regular and deterministic.

As its can be easily inferred from our previous analy-
sis, RBM compensation should be considered as an open
research problem since a few solutions are available in the
technical literature.

Another open research problem mainly concerns the
impact of body orientation on the detectability of HR and
BR, and on the quality of their estimates. The breathing
movement and the heart dynamics can be detected not
only if the radar is positioned in front of the chest of
the monitored subject but also when his/her body has
a different orientation with respect to the other radar
itself, even if some degradation is experienced in the
estimation of vital signs [29]. Some interesting methods
for correctly estimating BR and HR in the presence of
different body orientations have been proposed in [28]
and [132]. In particular, the use of an ANN for fusing
measurements coming from three different radar sensors,
distributed as endpoints of an equilateral triangle, and for

compensating the effect of body orientation is investigated
in [28]. The obtained results show that the network is
able to achieve a 95% score in the classification of six
different body orientations and to compensate for them;
moreover, an accurate estimate of HR is obtained for every
body orientation. The method developed in [132] is also
based on the exploitation of a neural network for the
compensation of body orientation in the estimation of BR
and HR; however, the employed mm-wave radar, mounted
on a robot system, allows to acquire four different sitting
poses and 180 min of data.

B. HR Variability

The HR estimated by means of a radar system represents
a measure of the overall number of heartbeats observed
over a given time interval (e.g., over 1 min). However,
we should not forget that, within a certain observation
interval, the temporal distance between two adjacent
heartbeats may not remain constant. This phenomenon,
known as HRV, is related to heart–brain interactions and is
regulated by the autonomic nervous system [133], [134].
More specifically, HRV reflects beat-to-beat changes in peak
RR intervals,33 which depend on the interrelation between
sympathetic and vagal tones. In fact, the sinus node, the
principal heart’s pacemaker, has its own intrinsic activity;
however, several external and internal stimuli altering the
autonomic balance influence the final HR [135].

HR changes may originate from a variety of conditions
such as mental or physical stress, cardiac or noncardiac
diseases, or pharmacological or invasive treatments; the
respiration-related fluctuation of HR, known as respiratory
sinus arrhythmia, is probably the most commonly investi-
gated component of HRV.

The autonomic nervous system imbalance with
increased sympathetic and decreased the vagal tone has
been proven to be associated with higher risk of cardiac
mortality. Therefore, HRV has become an important
and recognized tool in identifying patients at risk of
cardiovascular death [136] and can be considered
as an indicator for both physiological conditions and
pathological processes, such as depression, diabetic
neuropathy, and heart failure. Moreover, it can be
exploited to monitor postsurgery and postinfarction
patients in order to assess the risk of ventricular
tachyarrhythmias leading to sudden cardiac death.

Nowadays, different methods can be employed to mea-
sure HRV; these include a series of simple bedside reflex
tests and more advanced computer-based algorithms for
detecting spontaneous peak RR interval changes. The
accomplished analysis is usually based on long-term (usu-
ally 24 h) Holter ECG recordings or short-term (usually
few minutes) ECG recordings and aims at avoiding any
influence from external stimuli that could affect autonomic

33The RR interval represents the time elapsed between two succes-
sive R-waves of the QRS signal on the ECG. It is a function of intrinsic
properties of the sinus node as well as autonomic influences.

Vol. 111, No. 3, March 2023 | PROCEEDINGS OF THE IEEE 311



Paterniani et al.: Radar-Based Monitoring of Vital Signs: A Tutorial Overview

nervous tone [137]. In general, an accurate analysis of
HRV may require a long observation interval in a clinical
environment or in home-care scenarios. The assessment
of this phenomenon is based on the evaluation of various
time- and frequency-domain features (see [108, Table 2,
Paragraph 2.6]). Time-domain features aim at quantifying
the variability in interbeat intervals (also called NN peak
intervals)34 and include the SDNN peak intervals

SDNN ≜

√∑N̄
i=1 (∆t(i) −∆t̄)

2

N̄
(95)

and the RMSSD

RMSSD ≜

√∑N̄
i=2 (∆t(i) −∆t(i−1))

2

N̄ − 1
(96)

where N̄ is the total number of beats detected in the heart
signal, ∆t(i) is the duration of the time interval between
the (i+ 1)th detected beat and the previous beat, and

∆t̄ ≜

∑N̄
i=1 ∆t(i)

N̄
(97)

is the average duration of the interval between two con-
secutive beats. If an estimate of the probability density
function [in the form of a probability mass function (pmf)]
of the NN peak intervals is available, a further meaningful
feature is represented by the TRI, which is defined as

TRI =
N̄

PNN,max
(98)

where PNN,max is the maximum of the abovementioned
pmf [133].

Frequency-domain features are usually evaluated
through FFT processing, and refer to the low-frequency
band or the high-frequency band. The former band
accounts for modulations whose period ranges from 7 to
25 s, whereas the latter one refers to shorter periods. The
presence of a significant component in the HF band is
typically a symptom of stress or anxiety.

Radar-based estimation of HRV may represent an
appealing and challenging alternative to ECG for monitor-
ing the physical and mental status of patients. However,
as far as we know, this topic is addressed by a few articles
in the technical literature [3], [15], [108], [118], [138],
[139]. More specifically, various results about the use of
CW Doppler radars for analyzing HRV and drowsiness can
be found in [138], [15], and [3] and. The other articles,
instead, involve FMCW radars. In particular, an FMCW

34In the case of a CW radar system, an NN interval can be defined
as the temporal distance between two consecutive maxima of the phase
vector ψ̂ available at the output of the bandpass filter appearing in the
block diagram of Fig. 9.

radar operating in theK-band has been employed in [108]
to monitor HRV in 11 patients of different ages during
their sleep. The obtained results evidence that the time and
frequency features extracted from the radar signal are cor-
related with those evaluated based on the measurements
acquired from a reference sensor. The effect of the cou-
pling between breathing and heartbeat signals on HRV has
been investigated in [118]; in this case, an FMCW radar
operating at 122 GHz has been used. Finally, a completely
novel approach based on DL (and, in particular, on LSTM
neural networks) has been proposed in [139] to accurately
estimate HRV, by analyzing the data collected by a custom-
designed, six-port, CW Doppler radar operating at 24 GHz.

C. Vital Sign-Based Authentication

The capability of radars to accurately estimate the vital
signs of a person is attractive not only for monitoring the
health status of a patient and detect possible diseases but
also for user identity authentication. Nowadays, many peo-
ple are used to log-in in their own smartphones by simply
looking at their camera or due to their fingerprint. These
approaches can be classified as what you are methods
since they make use of personal traits (biometrics) that are
hard to reproduce or mimic. Within this category, facial
recognition represents a less robust user authentication
method with respect to other physiological biometrics,
such as fingerprints or iris scans [140], [141]. Authentica-
tion methods exploiting radar-based identification of vital
signs, instead, are gaining attention because, unlike other
physiological biometric-based approaches (e.g., ECG), they
do not require direct contact between the human body and
the sensor. Moreover, an identity authentication system
based on the recognition of breath or heart traits may
be sufficiently robust and reliable, since, as evidenced by
various studies, the respiratory personality is unique and is
preserved over long periods in adult humans at rest [142],
[143]. This can be related to the fact that the physiological
structure (e.g., the strength of the diaphragm and inter-
costal muscles and volume of the thoracic cavity) and the
respiratory motions associated with chest movements have
specific characteristics for each person.

The use of a CW Doppler radar device for heart- and
breathing-based user authentication has been investigated
in [140] and [144] and in [145], [146], and [147], respec-
tively. All the proposed methods make use of ML classifica-
tion algorithms fed by a set of features extracted from the
phase vector ψ̂ (48). More specifically, in [145], three dif-
ferent sets of features that have been used. The most rele-
vant features of the first set are the BR b̂r (see Section V-A),
the breathing depth, the average speed of exhale, and the
average speed of inhale. The other two sets of features,
instead, aim at monitoring the ratio of inhale and exhale
breathing areas, and the breathing mechanism right after
and before the apex (full lung volume). Moreover, it has
been shown that a K-NN algorithm, trained over a dataset
consisting of measurements lasting 60 s and acquired over
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six different subjects, is able to recognize the breathing
pattern of different people with a good classification score.
Better classification results can be obtained by means of an
SVM classifier, as shown in [146] and [147].

Despite these positive results, respiratory-based iden-
tity authentication is far from being mature and requires
extensive analysis and investigation. In fact, people need to
be authenticated under various mental or physical states.
Therefore, potential variations occurring in the normal
breathing pattern of a person must be considered; ignoring
them could reduce the identification accuracy, as observed
in [147]. For this reason, a heart-based authentication
approach has been proposed in [140]. In this case, the
heart signal extracted from the phase vector ψ̂ (48) has
been segmented in different periods, each encompassing a
small number of cardiac cycles; within each period, a set
of eight features has been manually extracted. The results
obtained through an SVM classifier trained on the data
acquired over 78 different subjects have confirmed that an
authentication method based on radar-based recognition
of cardiac motion is really feasible.

IX. C O N C L U S I O N
Nowadays, a significant body of literature is available
in the field of radar-based monitoring of vital signs.
This article has offered a broad introduction to this field
with the aim of explaining some fundamental concepts,
technologies, methods, and results to a wide audience.
We really hope that our overview of the available radar

technologies, the employed signal processing methods,
and the specific applications being considered in medicine
will stimulate the interest in radar-based monitoring of
vital signs. We believe that radar technology is now mature
enough for being considered in the medical field. However,
there is still ample room for the development of accurate
and computationally efficient estimation techniques and
for their implementation on commercial hardware plat-
forms. Readers should also keep in mind that most of the
results available in the technical literature refer to a very
limited human population and, usually, to healthy subjects.
In fact, studies about the monitoring of real patients in
realistic medical scenarios are still scarce. Despite this,
it has become clear that radar systems can represent a
viable alternative to wearable sensors or the only possi-
ble option in some critical scenarios, where contactless
monitoring is absolutely required. Furthermore, the tech-
nological improvements and the advances in processing
techniques achieved in recent years have made it possible
to overcome various limitations. Therefore, due to their
capability of continuous and contactless detection, radars
may revolutionize patient monitoring in hospitals and in
other healthcare facilities in the near future. ■
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