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Abstract— In this work, we propose globally optimal power
allocation strategies to maximize the users sum-rate (SR), and
system energy efficiency (EE) in the downlink of single-cell
multicarrier non-orthogonal multiple access (MC-NOMA) sys-
tems. Each NOMA cluster includes a set of users in which the
well-known superposition coding (SC) combined with succes-
sive interference cancellation (SIC) technique is applied among
them. By obtaining the closed-form expression of intra-cluster
power allocation, we show that MC-NOMA can be equivalently
transformed to a virtual orthogonal multiple access (OMA)
system, where the effective channel gain of these virtual OMA
users is obtained in closed-form. Then, the SR and EE max-
imization problems are solved by using very fast water-filling
and Dinkelbach algorithms, respectively. The equivalent trans-
formation of MC-NOMA to the virtual OMA system brings
new theoretical insights, which are discussed throughout the
paper. The extensions of our analyses to other scenarios, such
as considering users rate fairness, admission control, long-term
performance, and a number of future next-generation multiple
access (NGMA) schemes enabling recent advanced technologies,
e.g., reconfigurable intelligent surfaces are discussed. Extensive
numerical results are provided to demonstrate the performance
gaps among single-carrier NOMA (SC-NOMA), OMA-NOMA,
and OMA.

Index Terms— Broadcast channel, NGMA, superposition cod-
ing, successive interference cancellation, multicarrier, NOMA,
power allocation, water-filling, energy efficiency.

I. INTRODUCTION

A. Evolution of NOMA: From Fully SC-SIC
to Hybrid-NOMA

THE rapidly growing demands for high data rate ser-
vices along with energy constrained networks necessi-
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tate the characterization and analysis of the next-generation
multiple access (NGMA) techniques in wireless communi-
cation systems. It is proved that the capacity region of
degraded single-input single-output (SISO) Gaussian broad-
cast channels (BCs) can be achieved by performing linear
superposition coding (SC) at the transmitter side combined
with coherent multiuser detection algorithms, like successive
interference cancellation (SIC) at the receivers side [1]–[5].
The SC can be performed in code or power domain [6].
The SC-SIC technique is also called non-orthogonal multiple
access (NOMA) [6]. Based on the adopted SC technique,
NOMA can be divided into two main categories, namely code-
domain NOMA, and power-domain NOMA [6]–[8]. In our
work, we consider power-domain NOMA, and subsequently,
the term NOMA is referred to as power-domain NOMA.
In addition to the superior spectral efficiency of NOMA
compared to orthogonal multiple access (OMA), i.e., fre-
quency division multiple access (FDMA), and time division
multiple access (TDMA) [4], [5], academic and industrial
research has demonstrated that NOMA can support massive
connectivity, which is important for ensuring that the fifth
generation (5G) wireless networks can effectively support
Internet of Things (IoT) functionalities [9], [10]. The concept
of NOMA has been considered in the 3rd generation partner-
ship project (3GPP) long-term evolution advanced (LTE-A)
standard, where NOMA is referred to as multiuser superposi-
tion transmission (MUST) [11]. NOMA is also introduced on
many existing as well as future wireless systems, because of its
high compatibility with other communication technologies [9].
For example, a significant number of works addressed the
integration of NOMA to simultaneous wireless information
and power transfer [9], [12], cognitive radio networks [9], [12],
cooperative communications [12]–[14], millimeter wave com-
munications [12], [14], mobile edge computing networks [10],
[12], [15], and reconfigurable intelligent surfaces (RISs)
[16]–[18]. In [18], it is shown that the capacity region of
the multiuser downlink SISO RIS system can be achieved by
NOMA with time sharing. To this end, NOMA is a promising
candidate solution for the beyond-5G (B5G)/sixth generation
(6G) wireless networks [19].

The SIC complexity is cubic in the number of multiplexed
users [20]. Another issue is error propagation, which increases
with the number of multiplexed users [20]. Hence, single-
carrier NOMA (SC-NOMA), where the signal of all the
users is multiplexed, is still impractical for a large number
of users. In this line, NOMA is introduced on multicarrier
systems, called multicarrier NOMA (MC-NOMA), where the
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users are grouped into multiple clusters each operating in an
isolated resource block, and SC-SIC is applied among users
within each cluster [7]. Note that the space division multiple
access (SDMA) can also be introduced on NOMA, where
the clusters are isolated by zero-forcing beamforming [20].
MC-NOMA with disjoint clusters is based on SC-SIC and
FDMA/TDMA, where each user occupies only one resource
block, thus receives a single symbol. In FDMA-NOMA,
no user benefits from the well-known multiplexing gain in the
fading channels. To this end, NOMA is introduced on orthog-
onal frequency division multiple access (OFDMA), called
OFDMA-NOMA or Hybrid-NOMA [6], [19]–[22]. Hybrid-
NOMA is the general case of MC-NOMA, where each user
can occupy more than one subchannel, and SC-SIC is applied
to each isolated subchannel. Therefore, all the users can benefit
from the multiplexing gain.

B. Related Works and Open Problems

It is well-known that the dynamic resource allocation is
necessary in downlink SC/MC-NOMA to achieve a preferable
performance, as well as guaranteed quality of services (QoSs)
for mission-critical applications [19]. Maximizing users sum-
rate (SR) is one of the important objectives of resource
allocation optimization, which is widely addressed not only
for SC/MC-NOMA, but also for the other multiple access
techniques. In downlink SC-NOMA, maximizing users SR
leads to the full base station’s (BS’s) power consumption [23].
The energy consumption is becoming a social and econom-
ical issue due to the rapid increase of the data traffic and
number of mobile devices [24]. Hence, minimizing the BSs
power consumption while guaranteeing users minimum rate
demands is another important objective of resource alloca-
tion optimization. To strike a balance between users SR
and BS’s power consumption, maximizing the well-known
fractional system energy efficiency (EE) function, defined
as Receivers Sum-Rate

Transmitter’s Total Power Consumption , has attracted lots of atten-

tion [24], [25]. The EE is measured in bit/Joule, thus measur-
ing the amount of data transmitted per Joule of the consumed
transmitter’s energy [24]. In the following, we review the
related works which addressed resource allocation optimiza-
tion for maximizing SR/EE in the downlink of single-cell
SC/MC-NOMA systems.

1) SC-NOMA: In our previous work [23], we derived
the closed-form expression of optimal powers to maxi-
mize the SR of M -user SC-NOMA system with mini-
mum rate demands under the optimal channel-to-noise ratio
(CNR)-based decoding order. The work in [26] addresses
the problem of simultaneously maximizing users SR and
minimizing total power consumption defined as a utility
function for SC-NOMA. However, the analysis in [26]
is affected by a detection constraint for successful SIC
which is not necessary, since SISO Gaussian BCs are
degraded. Hence, the closed-form expression of optimal
powers to maximize system EE in SC-NOMA is still an
open problem.

2) MC-NOMA: The joint power and subchannel allocation
in MC-NOMA is proved to be strongly NP-hard [27]–[29].
In this way, these two problems are decoupled in most of the

prior works. For any given set of clusters, the optimal power
allocation for SR/EE maximization in MC-NOMA is more
challenging compared to SC-NOMA. In MC-NOMA, there
exists a competition among multiple clusters to get the cellular
power. Actually, the optimal power allocation in MC-NOMA
includes two components: 1) Inter-cluster power allocation:
optimal power allocation among clusters to get the cellu-
lar power budget; 2) Intra-cluster power allocation: optimal
power allocation among multiplexed users to get the clusters
power budget. From the optimization perspective, the analysis
in [23] is also valid for MC-NOMA with any predefined power
budget for each cluster, e.g., the considered models in [30]
and [31]. In this case, the intra-cluster power allocation can be
equivalently decoupled into multiple SC-NOMA subproblems.
There has been some efforts in finding the optimal joint intra-
and inter-cluster power allocation, thus globally optimal power
allocation, for MC-NOMA to maximize SR/EE [32]. In [32],
FDMA-NOMA with 2 users per cluster is considered. The
authors first obtain the closed-form expression of optimal
intra-cluster power allocation for each 2-order cluster. Then,
by substituting these closed-forms to the original problems, the
optimal inter-cluster power allocation is obtained in efficient
manners for various objectives. In [32], all the analysis is
based on allocating more power to each weaker user to
guarantee successful SIC, which is not necessary, due to the
degradation of SISO Gaussian BCs [3], [22]. Another concern
is the generalization of the special FDMA-NOMA scheme with
2-order clusters to Hybrid-NOMA with arbitrary number of
multiplexed users.

The works on Hybrid-NOMA mainly focus on achieving
the maximum multiplexing gain, where each user receives
different symbols on the assigned subchannels. It is straightfor-
ward to show that Hybrid-NOMA with per-symbol/subchannel
minimum rate constraints can be equivalently transformed
to FDMA-NOMA, since a user on different assigned sub-
channels can be viewed as independent users with individual
per-subchannel minimum rate demands. The fractional EE
maximization problem for downlink FDMA/Hybrid-NOMA
with per-symbol minimum rate demands is addressed by
[33]–[37]. In this line, the EE maximization problem is
solved by using the suboptimal difference-of-convex (DC)
approximation method [33], Dinkelbach algorithm with Fmin-
con optimization software [34], and Dinkelbach algorithm
with subgradient method [35]–[37]. Despite the potentials,
there are some fundamental questions that are not yet
solved in the literature for the SR/EE maximization problems
of downlink Hybrid-NOMA with minimum rate constraints
as follows:

1) What are the closed-form of optimal powers for the
SR/EE maximization problems?

2) Is the equal power allocation strategy a good solution
for the SR/EE maximization problems?

3) Is there any users rate fairness guarantee in the SR/EE
maximization problems?

4) When the full cellular power consumption is energy
efficient?

5) How can we equivalently transform Hybrid-NOMA to a
FDMA system?
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The answer of the first question brings new theoretical
insights on the impact of minimum rate demands and channel
gains on the optimal power coefficients among multiplexed
users. Also, by analyzing the heterogeneity of optimal power
allocation among multiplexed users/clusters, we can analyt-
ically observe which of the equal intra/inter-cluster power
allocation strategies are mostly infeasible/near-optimal. The
optimality conditions analysis for the SR/EE maximization
problem shows us which users get additional rate rather than
their individual minimum rate demands, which is important
for guaranteeing users rate fairness. If we guarantee that
the full power consumption leads to the maximum EE, the
EE maximization problem can be reduced to the SR max-
imization problem, which subsequently decreases the com-
plexity of the solution methods used in [35]–[37]. Finally,
transforming a Hybrid-NOMA system with N subchannels
each having K users to a FDMA system with N subchan-
nels will reduce the dimension of the SR/EE maximization
problems of Hybrid-NOMA. This decreases the complexity
of the solution algorithms, e.g., the pure convex solvers
used in [35]–[37]. Moreover, Hybrid-NOMA-to-FDMA trans-
formation facilitates the implementation of Hybrid-NOMA,
since the optimization algorithms which are already devel-
oped for FDMA can be easily adopted to be used for
Hybrid-NOMA.

In general, finding the optimal power allocation for SR/EE
maximization problem in downlink Hybrid-NOMA with per-
user minimum rate demands1 is more challenging, due to
the nonconvexity of minimum rate constraints. The works
in [27]–[29], [38]–[43] address the problem of weighted
SR/SR maximization for Hybrid-NOMA without guaranteeing
users minimum rate demands. In Hybrid-NOMA with per-user
minimum rate constraints, [44] proposes a suboptimal power
allocation strategy for the EE maximization problem based
on the combination of the DC approximation method and
Dinkelbach algorithm. Also, a suboptimal penalty function
method is proposed in [45]. We show that most of our analyses
for Hybrid-NOMA with per-symbol minimum rate demands
also hold for Hybrid-NOMA with per-user minimum rate
demands by using the fundamental relations between these
two schemes.

C. Our Contributions

In this work, we address the problem of finding optimal
power allocation for maximizing SR/EE of the downlink
single-cell Hybrid-NOMA system including multiple clus-
ters each having an arbitrary number of multiplexed users.
We assume that each user has a predefined minimum rate
demand on each assigned subchannel [32]–[37]. Our main
contributions are listed as follows:

• We prove that for the three main objective functions
as total power minimization, SR maximization and EE
maximization, in each cluster, only the cluster-head2 user

1Minimum rate constraint for each user over all the assigned subchannels.
2The user with the highest decoding order which cancels the signal of all

the other multiplexed users.

deserves additional power while all the other users get
power to only maintain their minimal rate demands.3

• We obtain the closed-form expression of intra-cluster
power allocation within each cluster. We prove that the
intra-cluster power allocation is mainly affected by the
minimum rate demand of users with lower decoding
order leading to high heterogeneity of intra-cluster power
allocation. As a result, the equal intra-cluster power allo-
cation will be infeasible in most of the cases. The users
exact CNRs merely impact on the intra-cluster power
allocation, specifically for high signal-to-interference-
plus-noise ratio (SINR) regions.

• The feasible power allocation region of Hybrid-NOMA
with per-symbol minimum rate demands is defined as the
intersection of closed boxes along with affine maximum
cellular power constraint. Then, the optimal value for the
power minimization problem is obtained in closed form.

• For the SR/EE maximization problem, we show that
Hybrid-NOMA can be transformed to an equivalent vir-
tual FDMA system. Each cluster acts as a virtual OMA
user whose effective CNR is obtained in closed form.
Moreover, each virtual OMA user requires a minimum
power to satisfy its multiplexed users minimum rate
demands, which is obtained in closed form.

• A very fast water-filling algorithm is proposed to solve
the SR maximization problem in Hybrid-NOMA. The EE
maximization problem is solved by using the Dinkelbach
algorithm with inner Lagrange dual with subgradient
method or barrier algorithm with inner Newton’s method.
Different from [33]–[37], the closed-form of optimal
powers among multiplexed users is applied to further
reduce the dimension of the problems, thus reducing the
complexity of the iterative algorithms, as well as increase
the accuracy of the solutions, which is a win-win strategy.

• We propose a necessary and sufficient condition for
the equal inter-cluster power allocation strategy to be
optimal. We show that in the high SINR regions, the
effective CNR of the virtual OMA users merely impacts
on the inter-cluster power allocation showing the low
heterogeneity of inter-cluster power allocation.

• We propose a sufficient condition to verify whether the
full cellular power consumption is energy efficient or not.
When this condition is fulfilled, we guarantee that at the
optimal point of the EE maximization problem, the cellu-
lar power constraint is active, thus the EE maximization
problem can be solved by using our proposed water-filling
algorithm.

Our optimality conditions analysis shows that although usually
more power will be allocated to the weaker user when all the
multiplexed users have the same minimum rate demands, there
still exists a critical users rate fairness issue in the SR/EE max-
imization problem. To this end, we propose a new rate fairness
scheme for the downlink of Hybrid-NOMA systems which
is a mixture of the well-known proportional fairness among
cluster-head users, and weighted minimum rate fairness among

3For the total power minimization problem, the cluster-head users also get
power to only maintain their minimal rate demands.
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non-cluster-head users. The extensions of our analyses for the
pure Hybrid-NOMA system to other more general/complicated
scenarios as well as the integration of Hybrid-NOMA to recent
advanced technologies, e.g., reconfigurable intelligent surfaces
are discussed in the paper. Extensive numerical results are
provided to evaluate the performance of SC-NOMA, FDMA-
NOMA with different maximum number of multiplexed users,
and FDMA in terms of outage probability, minimum BS’s
power consumption, maximum SR and EE. The performance
comparison between FDMA-NOMA and SC-NOMA brings
new insights on the suboptimality-level of FDMA-NOMA due
to user grouping based on FDMA. In this work, we answer
the question “How much performance gain can be achieved
if we increase the order of NOMA clusters, and subsequently,
decrease the number of user groups?” for a wide range of
the number of users and their minimum rate demands. The
latter knowledge is highly necessary since multiplexing a large
number of users would cause high complexity cost at the
users’ hardware. The complete source code of the simulations
including a user guide is available in [46].

D. Paper Organization

The rest of this paper is organized as follows: The system
model is presented in Section II. The globally optimal power
allocation strategies are presented in Section III. The possible
extensions of our analyses and future research directions
are presented in Section IV. The numerical results are pre-
sented in Section V. Our concluding remarks are presented in
Section VI. The abbreviations used in the paper are summa-
rized in Table I.

II. HYBRID-NOMA: OFDMA-BASED SC-SIC

A. Network Model and Achievable Rates

Consider the downlink channel of a multiuser system, where
a BS serves K users with limited processing capabilities in
a unit time slot of a quasi-static channel. The set of users
is denoted by K = {1, . . . , K}. In this system, the total
bandwidth W (Hz) is equally divided into N isolated sub-
channels with the set N = {1, . . . , N}, where the bandwidth
of each subchannel is Ws = W/N . NOMA is applied to
each subchannel with maximum number of multiplexed users
Umax. Note that SC-NOMA is infeasible when Umax < K .
The set of multiplexed users on subchannel n is denoted by
Kn = {k ∈ K|ρn

k = 1}, in which ρn
k is the binary channel

allocation indicator, where if user k occupies subchannel n,
we set ρn

k = 1, and otherwise, ρn
k = 0. The set of subchannels

occupied by user k ∈ K, is indicated by Nk = {n ∈ N|ρn
k =

1}. In FDMA-NOMA, each user belongs to only one clus-
ter [30]–[32], thus we have Kn∩Km = ∅, ∀n, m ∈ N , n �= m,
or equivalently, |Nk| = 1, ∀k ∈ K, where |.| indicates the
cardinality of a finite set. In the following, we consider the
more general case Hybrid-NOMA with |Nk| ≥ 1, ∀k ∈ K.
The maximum number of multiplexed users Umax implies
that |Kn| ≤ Umax, ∀n ∈ N . The exemplary models of SC-
NOMA, FDMA-NOMA, FDMA, Hybrid-NOMA with multi-
plexing all users in all the subchannels (Hybrid-NOMA with
K multiplexed users per cluster), Hybrid-NOMA with Umax

TABLE I

ABBREVIATIONS

multiplexed users per subchannel, and OFDMA are illustrated
in Fig. 1.

Each subchannel can be modeled as a SISO Gaussian
BC. The transmitted signal by the BS on subchannel n is
formulated by xn =

�
k∈Kn

�
pn

ksn
k , where sn

k ∼ CN (0, 1) and

pn
k ≥ 0 are the modulated symbol from Gaussian codebooks,

and transmit power of user k ∈ K on subchannel n ∈ N ,
respectively. Obviously, pn

k = 0, ∀n ∈ N , k /∈ Kn. The
received signal at user k on subchannel n is

yn
k =

�
pn

kgn
k sn

k� �� �
intended signal

+
�

i∈Kn\{k}

�
pn

i gn
k sn

i

� �� �
co-channel interference

+zn
k , (1)

where gn
k is the (generally complex) channel gain from the BS

to user k on subchannel n, and zn
k ∼ CN (0, σn

k ) is the additive
white Gaussian noise (AWGN). We assume that the perfect
channel state information (CSI) is available at the BS as well
as users.

In Hybrid-NOMA, SC-SIC is applied to each multiuser
subchannel according to the optimal CNR-based decoding
order [1]–[5]. Let hn

k = |gn
k |2/σn

k , ∀n ∈ N , k ∈ Kn. Then,
the CNR-based decoding order is indicated by hn

i > hn
j ⇒

i → j, ∀i, j ∈ Kn, where i → j represents that user i fully
decodes (and then cancels) the signal of user j before decoding
its desired signal on subchannel n. Moreover, the signal of
user i is fully treated as noise at user j on subchannel n.
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Fig. 1. 1(a)-1(c): Exemplary models of SC-NOMA, FDMA-NOMA, and FDMA, respectively, where a single symbol is transmitted to each user. 1(d)-1(f):
Exemplary models of Hybrid-NOMA with K multiplexed users, Hybrid-NOMA with 2 multiplexed users, and OFDMA, respectively, where an independent
symbol is transmitted to each user on each assigned subchannel. In these examples, we set Umax = 2.

In summary, the SIC protocol in each isolated subchannel
is the same as the SIC protocol of SC-NOMA. We call the
stronger user i as the user with higher decoding order in
the user pair i, j ∈ Kn. In each subchannel n, the index of
the cluster-head user is denoted by Φn = argmax

k∈Kn

hn
k . When

|Kn| = 1, the single user can be defined as the cluster-head
user on subchannel n since it does not experience any interfer-
ence. The SINR of each user i ∈ Kn for decoding the desired

signal of user k on subchannel n is γn
k,i = pn

k hn
i�

j∈Kn,
hn

j
>hn

k

pn
j hn

i +1 [3].

User i ∈ Kn is able to fully decode the signal of user k if and
only if γn

k,i ≥ γn
k,k , where γn

k,k ≡ γn
k = pn

k hn
k�

j∈Kn,
hn

j
>hn

k

pn
j hn

k +1 is the

SINR of user k for decoding its own signal sn
k . According to

the Shannon’s capacity formula, the achievable rate (in bps)
of user k ∈ Kn on subchannel n ∈ N after successful SIC is

given by [2], [3], [23]

Rn
k (pn) = min

i∈Kn
hn

i
≥hn

k

	
Ws log2



1 + γn

k,i(p
n)
��

,

where pn = [pn
k ]1×K , is the vector of allocated powers to all

the users on subchannel n. The matrix of power allocation
among all the users and subchannels is denoted by p =
[pn

k ]N×K . Therefore, pn is the n-th row of matrix p. For the
user pair i, j ∈ Kn with hn

i > hn
k , the condition γn

k,i(p
n) ≥

γn
k (pn) or equivalently pn

khn
i ≥ pn

khn
k holds independent of

pn. Accordingly, for any pn, the achievable rate of each user
k ∈ Kn on subchannel n is equal to its channel capacity
formulated by [3]

Rn
k (pn) = Ws log2 (1 + γn

k (pn)). (2)

The overall achievable rate of user k ∈ K can thus be obtained
by Rk(p) =

�
n∈Nk

Rn
k (pn).
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TABLE II

MAIN NOTATIONS

B. Optimization Problem Formulations

Assume that the set of clusters, i.e., Kn, ∀n ∈ N , is prede-
fined. The general power allocation problem for maximizing
users SR in Hybrid-NOMA is formulated by

max
p≥0

�
n∈N

�
k∈Kn

Rn
k (pn) (3a)

s.t. Rn
k (pn) ≥ Rmin

k,n , ∀k ∈ K, n ∈ Nk, (3b)�
n∈N

�
k∈Kn

pn
k ≤ Pmax, (3c)

�
k∈Kn

pn
k ≤ Pmask

n , ∀n ∈ N , (3d)

where (3b) is the per-subchannel minimum rate constraint,
in which Rmin

k,n is the individual minimum rate demand of
user k on subchannel n [32]–[37]. (3c) is the cellular power
constraint, where Pmax denotes the maximum available power
of the BS. (3d) is the maximum per-subchannel power con-
straint, where Pmask

n denotes the maximum allowable power
on subchannel4 n.

The overall system EE is formulated by E(p) =�
n∈N

�
k∈Kn

Rn
k (pn)�

n∈N

�
k∈Kn

pn
k +PC

, where constant PC is the circuit power

consumption [24], [25]. The power allocation problem for
maximizing system EE under the individual minimum rate
demand of users in Hybrid-NOMA is formulated by

max
p≥0

E(p) s.t. (3b)-(3d). (4)

The main notations of the paper are summarized in Table II.

4We do not impose any specific condition on Pmask
n . We only take into

account Pmask
n in our analysis to keep the generality, such that Pmask

n ≥
Pmax, ∀n ∈ N , as special case.

III. SOLUTION ALGORITHMS

In this section, we propose globally optimal power alloca-
tion algorithms for the SR and EE maximization problems.
The closed-form of optimal powers for the total power min-
imization problem is also derived to characterize the feasible
set of our target problems.

A. Sum-Rate Maximization Problem

Here, we propose a water-filling algorithm to find the
globally optimal solution of (3). The SR of users in each
cluster, i.e.,

�
k∈Kn

Rn
k (pn) is strictly concave in pn, since its

Hessian is negative definite [47]. For more details, please see
Appendix A in [48]. The overall SR in (3a) is thus strictly
concave in p, since it is the positive summation of strictly
concave functions. Besides, the power constraints in (3c) and
(3d) are affine, so are convex. The minimum rate constraint in
(3b) can be equivalently transformed to the following affine

form as 2(Rmin
k,n /Ws)

 �
j∈Kn,
hn

j
>hn

k

pn
j hn

k + 1
�
≤ �

j∈Kn,
hn

j
>hn

k

pn
j hn

k + 1 +

pn
khn

k , ∀k ∈ K, n ∈ Nk. Accordingly, the feasible set of (3)
is convex. Summing up, problem (3) is convex in p. Let us
define qn =

�
k∈Kn

pn
k as the power consumption of cluster n.

Problem (3) can be equivalently transformed to the following
joint intra- and inter-cluster power allocation problem as

max
p≥0,q≥0

�
n∈N

�
k∈Kn

Rn
k (pn) (5a)

s.t. Rn
k (pn) ≥ Rmin

k,n , ∀k ∈ K, n ∈ Nk, (5b)�
n∈N

qn ≤ Pmax, (5c)

�
k∈Kn

pn
k = qn, ∀n ∈ N , (5d)

0 ≤ qn ≤ Pmask
n , ∀n ∈ N , (5e)

where q = [qn], ∀n ∈ N . In the following, we first convert
the feasible set of (5) to the intersection of closed-boxes along
with the affine cellular power constraint.

Proposition 1: The feasible set of (5) is the intersection of
qn ∈ �Qmin

n , Pmask
n

�
, ∀n ∈ N , and cellular power constraint�

n∈N
qn ≤ Pmax, where the lower-bound constant Qmin

n is

Qmin
n =

�
k∈Kn

βn
k

� �
j∈Kn

hn
j

>hn
k



1 + βn

j

�
+

1
hn

k

+
�

j∈Kn
hn

j
>hn

k

βn
j

�
l∈Kn

hn
k

<hn
l

<hn
j

(1 + βn
l )

hn
j

�
, (6)

in which βn
k = 2(Rmin

k,n /Ws) − 1, ∀n ∈ N , k ∈ Kn.
Proof: Please see Appendix A. �

The feasibility of problems (3) and (4) can be immediately
determined as follows:
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Corollary 1: Problems (3) and (4) are feasible if and only
if Qmin

n ≤ Pmask
n , ∀n ∈ N , and

�
n∈N

Qmin
n ≤ Pmax.

In the following, we find the closed-form of optimal intra-
cluster power allocation as a linear function of any given
feasible q, thus satisfying Proposition 1.

Proposition 2: For any given feasible q, the optimal
intra-cluster powers for each cluster n ∈ N can be obtained
by

pn
k
∗ =

⎛
⎜⎜⎝βn

k

�
j∈Kn

hn
j

<hn
k



1 − βn

j

�
⎞
⎟⎟⎠ qn + cn

k , ∀k ∈ Kn \ {Φn},

(7)

and

pn
Φn

∗ =

⎛
⎜⎜⎝1 −

�
i∈Kn

hn
i

<hn
Φn

βn
i

�
j∈Kn

hn
j

<hn
i



1 − βn

j

�
⎞
⎟⎟⎠ qn −

�
i∈Kn

hn
i

<hn
Φn

cn
i ,

(8)

where βn
k = 2

(Rmin
k,n /Ws)−1

2
(Rmin

k,n
/Ws)

, ∀n ∈ N , k ∈ Kn, and cn
k =

βn
k

⎛
⎜⎝ 1

hn
k
− �

j∈Kn
hn

j
<hn

k

�
l∈Kn

hn
j

<hn
l

<hn
k

(1−βn
l )βn

j

hn
j

⎞
⎟⎠ , ∀n ∈ N , k ∈ Kn.

Proof: Please see Appendix B. �
Since the closed-form expressions of optimal intra-cluster

power allocation in Proposition 2 are valid for any given
feasible q, we can substitute (7) and (8) directly to problem
(5). For convenience, we first rewrite (8) as

pn
Φn

∗ = αnqn − cn, ∀n ∈ N , (9)

where αn =

⎛
⎜⎝1 − �

i∈Kn
hn

i
<hn

Φn

βn
i

�
j∈Kn

hn
j

<hn
i



1 − βn

j

�⎞⎟⎠ , ∀n ∈ N ,

and cn =
�

i∈Kn
hn

i
<hn

Φn

cn
i , ∀n ∈ N , are nonnegative constants.

According to the proof of Proposition 2 and (9), the SR
function of each cluster n ∈ N at the optimal point can be
formulated as a function of qn given by

Rn
opt(qn) =

�
k∈Kn

Rn
k (p∗n) =

�
k∈Kn
k �=Φn

(Rmin
k,n ) + Rn

Φn
(qn)

=
�

k∈Kn
k �=Φn

(Rmin
k,n ) + Ws log2



1 + (αnqn − cn)hn

Φn

�
,

∀n ∈ N . (10)

By utilizing Proposition 1 and (10), the joint intra- and
inter-cluster power allocation problem (5) can be equivalently
transformed to the following inter-cluster power allocation
problem

max
q

�
n∈N

Ws log2



1 + (αnqn − cn)hn

Φn

�
(11a)

s.t.
�
n∈N

qn = Pmax, (11b)

Algorithm 1 The Bisection Method for Finding ν∗ in (13)
1: Initialize tolerance �, lower-bound νl, upper-bound νh, and

maximum iteration L.
2: for l = 1 : L do
3: Set νm = νl+νh

2 .

4: if
�

n∈N
max

�
Q̃min

n , min
��

Ws/(ln 2)
νm

− 1
Hn

�
, P̃mask

n

��
<

P̃max then
5: Set νh = νm.
6: else

Set νl = νm.
7: end if

8: if
P̃max− �

n∈N
max{Q̃min

n ,min{(Ws/(ln 2)
νm

− 1
Hn

),P̃mask
n }}

P̃max ≤
� then

9: break.
10: end if
11: end for

qn ∈ [Qmin
n , Pmask

n ], ∀n ∈ N . (11c)

Let us define q̃ = [q̃n], ∀n ∈ N , where q̃n = qn − cn

αn
, ∀n ∈

N . Hence, (11) can be transformed to the following equivalent
FDMA problem as

max
q̃

�
n∈N

Ws log2 (1 + q̃nHn) (12a)

s.t.
�
n∈N

q̃n = P̃max, (12b)

q̃n ∈ [Q̃min
n , P̃mask

n ], ∀n ∈ N , (12c)

where Hn = αnhn
Φn

, ∀n ∈ N , P̃max = Pmax − �
n∈N

cn

αn
,

Q̃min
n = Qmin

n − cn

αn
, ∀n ∈ N , and P̃mask

n = Pmask
n −

cn

αn
, ∀n ∈ N . Constraint (12b) is the affine cellular power

constraint, and (12c) is derived based on Proposition 1. The
objective function (12a) is strictly concave in q̃, and the
feasible set of (12) is affine, so is convex. Accordingly,
problem (12) is convex. The equivalent FDMA problem (12)
can be optimally solved by using the well-known water-filling
algorithm [49]–[53]. After some mathematical manipulations,
the optimal q̃∗n can be obtained as

q̃∗n =

⎧⎪⎪⎨
⎪⎪⎩

Ws/(ln 2)
ν∗ − 1

Hn
,


Ws/(ln 2)

ν∗ − 1
Hn

�
∈ [Q̃min

n , P̃mask
n ],

0, otherwise,

(13)

such that q̃∗ = [q̃∗n], ∀n ∈ N , satisfies (12b). Moreover,
ν∗ is the dual optimal corresponding to constraint (12b). For
more details, please see Appendix C. The pseudo-code of
the bisection method for finding ν∗ is presented in Alg. 1.
After finding q̃∗, we obtain q∗ by using q∗n = (q̃∗n + cn

αn
),

∀n ∈ N . Then, we find the optimal intra-cluster power allo-
cation according to Proposition 2. Since problems (3) and (12)
are equivalent, the obtained globally optimal solution for (12)
is also globally optimal for (3).
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B. Energy Efficiency Maximization Problem

In this subsection, we find a globally optimal solution for
problem (4). The feasible region of problem (4) is identical to
the feasible region of problem (3). Hence, Proposition 1 can
be used to characterize the feasible region of problem (4).
Let us define PEE =

�
n∈N

qn as the cellular power con-

sumption in the EE maximization problem (4). For any given
PEE, problem (4) can be equivalently transformed to the SR
maximization problem (3) in which Pmax = PEE. As a
result, the globally optimal solution of (4) can be obtained

by exploring different values of PEE ∈
# �

n∈N
Qmin

n , Pmax

$
,

and applying the water-filling Alg. 1, in which Pmax = PEE.

Exploring PEE ∈
# �

n∈N
Qmin

n , Pmax

$
may be computationally

prohibitive, specifically when the stepsize of exhaustive search
is small and/or

�
n∈N

Qmin
n → 0, e.g., when the users have small

minimum rate demands.
The SR function in the numerator of the EE function in (4)

is strictly concave in p. The denominator of the EE function
is an affine function, so is convex. Therefore, problem (4) is
a concave-convex fractional program with a pseudoconcave
objective function [24], [25]. The pseudoconcavity of the
objective function in (4) implies that any stationary point is
indeed globally optimal and the Karush–Kuhn–Tucker (KKT)
optimality conditions are sufficient if a constraint qualification
is fulfilled [24], [25]. For more details, please see Appendix D.
Hence, the globally optimal solution of (4) can be obtained by
using the well-known Dinkelbach algorithm [24], [25]. In this
algorithm, we iteratively solve the following problem

max
p≥0

F (λ, p) =

��
n∈N

�
k∈Kn

Rn
k (pn)

�

− λ

��
n∈N

�
k∈Kn

pn
k + PC

�
s.t. (3b)-(3d), (14)

where λ ≥ 0 is the fractional parameter, and F (λ, p) is strictly
concave in p. This algorithm is described as follows: We first
initialize parameter λ(0) such that F



λ(0), p

∗� ≥ 0. At each
iteration (t), we set λ(t) = E(p∗

(t−1)), where p∗
(t−1) is the

optimal solution obtained from the prior iteration (t−1). After
that, we find p∗

(t) by solving (14) in which λ = λ(t). We repeat
the iterations until |F 
λ(t), p

∗
t

� | ≤ Υ, where Υ is a tolerance
tuning the optimality gap. The pseudo-code of the Dinkelbach
algorithm for solving (4) is presented in Alg. 2. Similar to the
transformation of (3) to (5), we define qn =

�
k∈Kn

pn
k as the

power consumption of cluster n. The main problem (14) can
be equivalently transformed to the following joint intra- and
inter-cluster power allocation problem as

max
p≥0,q≥0

��
n∈N

�
k∈Kn

Rn
k (pn)

�
− λ

��
n∈N

qn + PC

�
s.t. (5b)-(5e). (15)

Algorithm 2 The Dinkelbach Method for Solving the Energy
Efficiency Maximization Problem

1: Initialize parameter λ(0) satisfying F (λ(0), p
∗) ≥ 0, toler-

ance Υ (sufficiently small), and t = 0.
2: while F (λ, p∗) > Υ do
3: Set λ = E(p∗). Then, solve (14) and find p∗.
4: if |F (λ, p∗) | ≤ Υ then
5: break.
6: end if
7: end while

The feasible set of problems (5) and (15) is identical, thus the
feasibility of (15) can be characterized by Proposition 1.

Proposition 3: For any given feasible q, the optimal
intra-cluster power allocation in problem (15) can be obtained
by using (7) and (8).

Proof: When q is fixed, the second term

λ

 �
n∈N

qn + PC

�
in (15) is a constant. Hence, the objective

function of (15) can be equivalently rewritten as maximizing

users SR given by max
p≥0

� �
n∈N

�
k∈Kn

Rn
k (pn)

�
, which is

independent of λ. Hence, for any given feasible q, problems
(15) and (5) are identical. Accordingly, Proposition 2 also
holds for any given feasible q, and λ in (15). �

Similar to the SR maximization problem (5), we substitute
(7) and (8) to problem (15). By utilizing Proposition 1
and (10), the joint intra- and inter-cluster power allocation
problem (15) can be equivalently transformed to the following
inter-cluster power allocation problem

max
q

F̂ (q) =

��
n∈N

Ws log2



1 + (αnqn − cn)hn

Φn

��

− λ

��
n∈N

qn

�
(16a)

s.t.
�
n∈N

qn ≤ Pmax, qn ∈ [Qmin
n , Pmask

n ], ∀n ∈ N ,

(16b)

where αn and cn are defined in (9). Note that since λ and
PC are constants, the term −λPC can be removed from (15),
so is removed in (16a) during the equivalent transformation.
The differences between problems (11) and (16) are the

additional term −λ

 �
n∈N

qn

�
in F̂ (q), and also inequality

constraint (16b).
Proposition 4: At the optimal point of the EE maximization

problem (14), if

Ws/(ln 2)
λ

− 1 − cnhn
Φn

αnhn
Φn

> Pmask
n , ∀n ∈ N , (17)

the cellular power constraint (3c) is active, meaning that�
n∈N

q∗n = Pmax.

Proof: The optimal solution of (16) is unique if and
only if the objective function (16a) is strictly concave. For
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the case that the concave function in (16a) is increasing in q,
we can guarantee that at the optimal point, the cellular power
constraint (16b) is active. In other words, for the case that
∂F̂ (q)
∂qn

> 0, ∀n ∈ N , for any qn ∈ [Qmin
n , Pmask

n ], ∀n ∈ N ,
the optimal q∗ satisfies

�
n∈N

q∗n = Pmax. In this case, the

cellular power constraint (16b) can be replaced with
�

n∈N
qn =

Pmax, thus the optimization problem (16) can be equivalently
transformed to the SR maximization problem (11) whose
globally optimal solution can be obtained via Alg. 1. In the
following, we find a sufficient condition, where it is guaranteed
that ∂F̂ (q)

∂qn
> 0, ∀n ∈ N , for any qn ∈ [Qmin

n , Pmask
n ], ∀n ∈

N . The condition ∂F̂ (q)
∂qn

> 0, ∀n ∈ N , can be rewritten as
Wsαhn

Φn
/(ln 2)

1+(αnqn−cn)hn
Φn

−λ > 0, ∀n ∈ N . After some mathematical

manipulations, the latter inequality is rewritten as

qn <
Ws/(ln 2)

λ
− 1 − cnhn

Φn

αnhn
Φn

, ∀n ∈ N . (18)

The right-hand side of (18) is a constant providing an
upper-bound for the region of q such that ∂F̂ (q)

∂qn
> 0, ∀n ∈ N .

The inequality in (18) holds for any qn ∈ [Qmin
n , Pmask

n ], ∀n ∈
N , if and only if Ws/(ln 2)

λ − 1−cnhn
Φn

αnhn
Φn

> Pmask
n , ∀n ∈ N ,

and the proof is completed. �
If (17) holds for the given λ, we guarantee that

�
n∈N

q∗n =

Pmax, meaning that the EE problem (16) can be equivalently
transformed to the SR maximization problem (11) whose
globally optimal solution is obtained by using Alg. 1.

For the case that (17) does not hold, Alg. 1 may be
suboptimal for (16). In this case, similar to the transformation
of (11) to (12), we define q̃ = [q̃n], ∀n ∈ N , where
q̃n = qn − cn

αn
, ∀n ∈ N . Problem (16) can thus be rewritten

as

max
q̃

�
n∈N

Ws log2 (1 + q̃nHn) − λ

��
n∈N

q̃n

�
(19a)

s.t.
�
n∈N

q̃n ≤ P̃max, qn ∈ [Q̃min
n , P̃mask

n ], ∀n ∈ N ,

(19b)

where Hn = αnhn
Φn

, ∀n ∈ N , P̃max = Pmax − �
n∈N

cn

αn
,

Q̃min
n = Qmin

n − cn

αn
, ∀n ∈ N , and P̃mask

n = Pmask
n −

cn

αn
, ∀n ∈ N . The equivalent FDMA convex problem (19) can

be solved by using the Lagrange dual method with subgradient
algorithm or interior point methods (IPMs) [47], [54], [55].
The derivations of the subgradient algorithm for solving (19)
is provided in Appendix E. Moreover, the derivations of the
barrier algorithm with inner Newton’s method for solving (19)
is provided in Appendix F. According to the above, depending
on the value of λ at each Dinkelbach iteration, (14) can be
solved by using Alg. 1 or subgradient/barrier method. The
pseudo-codes of our proposed algorithms for solving (14) in
Step 3 of Alg. 2 based on the subgradient and barrier methods
are presented in Algs. 3 and 4, respectively. After finding q∗

via Algs. 3 or 4, we find p∗ by using (7) and (8).

Algorithm 3 The Mixed Water-Filling/Subgradient Method
for Solving Problem (14)

1: Calculate Φn =
�

Ws/(ln 2)
λ − 1−cnhn

Φn

αnhn
Φn

�
− Pmask

n , ∀n ∈
N .

2: if min
n∈N

{Φn} > 0 then

3: Find q∗ by using the water-filling Alg. 1.
4: else
5: Initialize Lagrange multiplier ν(0), step size �s, and

iteration index t = 0.
6: repeat
7: Set t := t + 1.
8: Find q̃(t) by using q̃

(t)
n =%

Ws/(ln 2)

λ+ν(t−1) − 1
Hn

&P̃mask
n

Q̃min
n

, ∀n.

9: Update ν(t) =
#
ν(t−1) − �s


P̃max − �

n∈N
q̃
(t)
n

�$+
.

10: until convergence of q̃(t).
11: Find q∗ by using qn = q̃∗n + cn

αn
, ∀n ∈ N .

12: end if

Algorithm 4 The Mixed Water-Filling/Barrier Method for
Solving Problem (14)

1: Calculate Φn =
�

Ws/(ln 2)
λ − 1−cnhn

Φn

αnhn
Φn

�
− Pmask

n , ∀n ∈
N .

2: if min
n∈N

{Φn} > 0 then

3: Find q∗ by using the water-filling Alg. 1.
4: else
5: Initialize q̃, 0 < α < 0.5, 0 < β < 1, μ > 1, t  1,

0 < �N � 1, and 0 < �B � 1.
6: repeat
7: Set Δq̃ = −∇U(q̃) (∇2U(q̃))−1.
7: Set λB = −Δq̃.∇U(q̃)T.
8: if λB/2 ≤ �N then
9: break

10: end if
11: Initialize l = 1.
12: while (q̃n + lΔq̃n) /∈ [Q̃min

n , P̃mask
n ], ∀n ∈ N , or�

n∈N
(q̃n + lΔq̃n) > P̃max do

13: l := βl
14: end while
15: while U(q̃ + lΔq̃) > U(q̃) + αlΔq̃.∇U(q̃)T do
16: l := βl
17: end while
18: Set q̃ = q̃ + lΔq̃.
19: if 1/t ≤ �B then
20: break
21: end if
22: Set t := μt.
23: end if

C. Important Theoretical Insights of the Optimal Power
Allocation for Maximizing SR/EE

Here, we present the theoretical insights of optimal power
allocation for the SR and EE maximization problems.
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Fig. 2. The equivalent virtual FDMA models of Fig. 1 including virtual OMA users (see Remark 1).

1) Sum-Rate Maximization: In Hybrid-NOMA, it is guar-
anteed that at the optimal point, the cellular power constraint
is active, meaning that all the available BS’s power will
be distributed among clusters. According to the proof of
Proposition 2, it is guaranteed that at the optimal point, only
the cluster-head users get additional power, and all the other
users get power to only maintain their minimal rate demands
on each subchannel. Hence, the remaining cellular power will
be distributed among the cluster-head users. According to the
analysis of KKT optimality conditions in Appendix C, it is
shown that there is a competition among cluster-head users to
get the rest of the cellular power.

Remark 1: In the transformation of (3) to (12), the
Hybrid-NOMA system is equivalently transformed to a virtual
FDMA system including a single virtual BS with maximum
power P̃max = Pmax − �

n∈N
cn

αn
, and N virtual OMA users

operating in N subchannels with maximum allowable power
P̃mask

n = Pmask
n − cn

αn
, ∀n ∈ N . Each cluster n ∈ N , is

indeed a virtual OMA user whose CNR is Hn = αnhn
Φn

,
which depends on αn that is a function of the minimum rate
demand of users with lower decoding order in cluster n, and
the CNR of the cluster-head user, whose index is Φn. The
allocated power to the virtual OMA user n is formulated by

q̃n = qn − cn

αn
. Each virtual OMA user n has also a minimum

power demand Q̃min
n = Qmin

n − cn

αn
, in order to guarantee

the individual minimum rate demand of its multiplexed users
in Kn on subchannel n. For any given virtual clusters power
budget q̃ = [q̃n], ∀n ∈ N , the achievable rate of each virtual
OMA user is the SR of its multiplexed users, which is the
sum-capacity of subchannel n.

Based on the definition of virtual OMA users for the
SR maximization problem in Hybrid-NOMA and the KKT
optimality conditions analysis, the exemplary models in
Fig. 1 can be equivalently transformed to their correspond-
ing virtual FDMA systems shown in Fig. 2. Note that
FDMA/OFDMA is a special case of FDMA-NOMA/Hybrid-
NOMA, where each subchannel is assigned to a single
user. Hence, each OMA user acts as a cluster-head user,
and subsequently, the virtual users are identical to the real
OMA users, i.e., αn = 1, Hn = hn

Φn
, and cn = 0, for

each n ∈ N . As a result, each user in FDMA/OFDMA
deserves additional power. In summary, the analysis for find-
ing the optimal power allocation to maximize SR/EE of
Hybrid-NOMA with per-symbol minimum rate constraints
and FDMA is quite similar, and the only differences are
αn and cn.
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Remark 2: Remark 1 shows that when cn → 0, the differ-
ence term cn

αn
→ 0 in q̃n, Q̃min

n , and P̃mask
n . Subsequently,

when cn → 0, ∀n ∈ N , we have
�

n∈N
cn

αn
→ 0 in P̃max.

Accordingly, when cn → 0, ∀n ∈ N , we guarantee that
q̃n = qn, ∀n ∈ N , Q̃min

n = Qmin
n , ∀n ∈ N , P̃mask

n =
Pmask

n , ∀n ∈ N , and P̃max = Pmax. In other words, when
cn → 0, ∀n ∈ N , the network parameters of Hybrid-NOMA
will be exactly the same as its virtual FDMA system.

In each cluster n, the term cn
k tends to zero when hn

k →
∞, k ∈ Kn. The numerical results verify that in most
of the channel realizations, specifically high CNR regions,
cn
k ≈ 0, ∀n ∈ N , k ∈ Kn [23]. With assuming cn

k ≈
0, ∀n ∈ N , k ∈ Kn, we have cn ≈ 0, ∀n ∈ N in (9).
Hence, the results in Remark 2 are valid for the high CNR
regions.

When cn
k ≈ 0, ∀n ∈ N , k ∈ Kn, the optimal intra-cluster

powers in (7) and (8) can be approximated, respectively, as

pn
k
∗ ≈

⎛
⎜⎜⎝βn

k

�
j∈Kn

hn
j

<hn
k



1 − βn

j

�
⎞
⎟⎟⎠ qn, ∀n ∈ N ,

k ∈ Kn \ {Φn}, (20)

and

pn
Φn

∗ ≈

⎛
⎜⎜⎝1 −

�
i∈Kn

hn
i

<hn
Φn

βn
i

�
j∈Kn

hn
j

<hn
i



1 − βn

j

�
⎞
⎟⎟⎠ qn, ∀n ∈ N .

(21)

For the case that the users in Kn have the same minimum rate
demands Rmin

k,n /Ws = R in bps/Hz, it is straightforward to
show that (20) and (21) can be reformulated, respectively, by

pn
k
∗ ≈ 2R − 1

(2R)Θk
qn, ∀n ∈ N , k ∈ Kn \ {Φn}, (22)

and

pn
Φn

∗ ≈ 1

(2R)|Kn|−1
qn, ∀n ∈ N , (23)

where Θk = |{i ∈ Kn|hn
i ≤ hn

k}|.
Corollary 2: The approximated closed-form expressions

(22) and (23) verify the high heterogeneity of optimal power
coefficients among multiplexed users, thus the importance of
finding optimal intra-cluster power allocation. For instance,
the equal intra-cluster power allocation is infeasible in most
of the cases, due to violating the minimum rate constraints
in (5b).

For the special case |Kn| = 2, and R = 1 bps/Hz, we have
pn
1
∗ ≈ pn

2
∗ ≈ 1

2qn, meaning that the equal intra-cluster power
allocation is nearly optimal.

The inter-cluster power allocation is necessary when�
n∈N

Pmask
n > Pmax, i.e., there is at least one cluster which

is not allowed to operate at its maximum power Pmask
n .

In this case, the distributed inter-cluster power allocation
leads to violating the cellular power constraint (3c), since

in the distributed power allocation among clusters, constraint
(3d) will be active. Alternatively, when

�
n∈N

Pmask
n ≤ Pmax,

we guarantee that q∗n = Pmask
n , ∀n ∈ N . There are a

number of works, e.g., [30] and [31], assuming Pmask
n =

Pmax/N, ∀n ∈ N , i.e., equal inter-cluster power allocation
while maintaining the cellular power constraint (3c). In this
case, qn = Pmax/N, ∀n ∈ N , and the optimal intra-cluster
power allocation can be obtained by using Proposition 2. In the
following, we investigate the optimality condition for the equal
inter-cluster power allocation.

Proposition 5: When cn
k ≈ 0, ∀n ∈ N , k ∈ Kn, the equal

inter-cluster power allocation, i.e., qn = Pmax/N, ∀n ∈ N ,
is optimal if and only if 1) Pmax/N ∈ �Qmin

n , Pmask
n

�
, ∀n ∈

N ; 2)
hi
Φi

hj
Φj

= αj

αi
, ∀i, j ∈ N .

Proof: The equal inter-cluster power allocation should be
feasible to problem (12). According to Proposition 1, qn =
Pmax/N, ∀n ∈ N , is feasible if and only if Pmax/N ∈
[Qmin

n , Pmask
n ], ∀n ∈ N .

According to (13), two clusters/virtual OMA users i, j ∈
N get the same virtual powers, i.e., q̃∗i = q̃∗j , if and only if
Hi = Hj . According to (9), for each cluster n ∈ N , when
cn
k ≈ 0, ∀k ∈ Kn, we have cn ≈ 0. According to Remark 2,

when cn ≈ 0, ∀n ∈ N , we guarantee that q̃n = qn, ∀n ∈ N .
As a result, for two clusters i, j ∈ N , we have q∗i = q∗j ,
if and only if Hi = Hj . By using Hn = αnhn

Φn
, ∀n ∈ N ,

defined in (12), q∗i = q∗j , if and only if
hi
Φi

hj
Φj

= αj

αi
. Hence,

q̃∗i = q̃∗j , ∀i, j ∈ N , with
�

n∈N
q∗n = Pmax, or equivalently

q∗n = Pmax/N, ∀n ∈ N , if and only if
hi
Φi

hj
Φj

= αj

αi
, ∀i, j ∈ N ,

and the proof is completed. �
According to Proposition 5, in Hybrid-NOMA, when cn ≈

0, the equal inter-cluster power allocation is optimal if and
only if all the virtual OMA users have exactly the same CNRs.
These results also hold for FDMA, where αn = 1, ∀n ∈ N ,
Hn = hn

Φn
, ∀n ∈ N , and cn = 0, ∀n ∈ N . According

to Remark 1 and Proposition 5, the unique condition
hi
Φi

hj
Φj

=
αj

αi
, ∀i, j ∈ N , for the optimality of the equal inter-cluster

power allocation states that when the cluster-head users have
exactly the same CNRs, i.e., hi

Φi
= hj

Φj
, ∀i, j ∈ N , the equal

inter-cluster power allocation strategy is optimal if and only
if αi = αj , ∀i, j ∈ N . According to the definition of αn

in (9), one simple case that αi �= αj for some i, j ∈ N ,
is considering different minimum rate demands for the users
with lower decoding order.

Corollary 3: In contrast to FDMA, the optimality con-
dition of the equal inter-cluster power allocation strategy
depends on the individual minimum rate demand of users
with lower decoding order. This power allocation strategy
can be suboptimal for Hybrid-NOMA even if the clusters
have the same order and all the users in different clus-
ters have the same CNRs. Moreover, the CNR of users
with lower decoding order does not significantly affect the
performance of the equal inter-cluster power allocation
strategy.



REZVANI et al.: OPTIMAL POWER ALLOCATION IN DOWNLINK MULTICARRIER NOMA SYSTEMS 1173

For the case that Proposition 5 holds, i.e., Hi = Hj , ∀i, j ∈
N , thus q∗n = Pmax/N, ∀n ∈ N , the optimal ν∗ in (13) can
be obtained based on the quality Pmax/N = Ws/(ln 2)

ν∗ − 1
Hn

.

Hence, we have ν∗ =
Pmax

N + 1
Hn

Ws/(ln 2) . In general, for the case

that Hn, ∀n ∈ N , is significantly large, i.e., high CNR
regions of virtual OMA users, the second term 1

Hn
in (13)

tends to zero. In this case, we observe a low heterogeneity
of inter-cluster power allocation among clusters, resulting in
near-optimal performance for the equal inter-cluster power
allocation strategy.

2) EE Maximization: Based on Proposition 3, we observe
that the closed-form expressions of optimal intra-cluster power
allocation are also valid for the EE maximization problem 4.
Hence, Remark 1 and Fig. 2 are also valid for the EE
maximization problem. Besides, Proposition 4 provides a
sufficient condition during each Dinkelbach iteration in which
the full cellular power consumption not only leads to the
maximum SR, but also maximum EE. In other words, if (17)
holds, the full cellular power consumption is energy efficient.
The term Ws/(ln 2)

λ − 1−cnhn
Φn

αnhn
Φn

in (17) is increasing in λ =�
n∈N

�
k∈Kn

Rn
k (pn)�

n∈N

�
k∈Kn

pn
k +PC

. The fractional parameter λ is a decreasing

function of PC. As a result, increasing PC increases the term
Ws/(ln 2)

λ − 1−cnhn
Φn

αnhn
Φn

in (17). In other words, (17) holds when
the circuit power consumption of the BS is significantly large.

Corollary 4: In both the SR and EE maximization problems
of Hybrid-NOMA with per-symbol minimum rate constraints,
in each cluster, only the cluster-head user deserves additional
power, and all the other users get power to only maintain
their minimal rate demands. Our analysis proves that in the
SR maximization problem, the BS operates at its maximum
power budget. However, for the EE maximization problem, the
BS may operate at lower power depending on the condition
in Proposition 4.

D. Computational Complexity Analysis

In this subsection, we discuss about the computational
complexity order of our proposed Algs. 1-4. To simplify the
complexity analysis, we assume that |Kn| = K, ∀n ∈ N ,
in this subsection.

Alg. 1 belongs to the family of water-filling solutions which
is comprehensively discussed in the literature [49]–[53]. The
water-filling algorithms are mainly divided into two categories:
1) iterative algorithms, like bisection method, which stops
until the error is below some tolerance threshold; 2) Exact
algorithms based on hypothesis testing [49]. It is difficult
to obtain the exact complexity of the bisection method to
achieve an �-suboptimal performance, however we numeri-
cally observed that the error will be less than 10−6 mostly
within 20 iterations. The exact algorithms have an exponential
worst-case complexity on the order of 2N , however it is
possible to obtain a linear worst-case complexity of N [49],
[51]. This linear complexity can be achieved by properly
sorting the so-called sequences which is comprehensively
discussed in [49] and [51]. Generally speaking, the number

of water-filling iterations increases linearly with the number
of subchannels N [49], [51]. In each iteration, we obtain
q̃∗n, ∀n ∈ N , by using (13), which needs N operations.
Therefore, the complexity of Alg. 1 is on the order of N2. Note
that the complexity of Alg. 1 is approximately independent of
the number of multiplexed users |Kn|, ∀n ∈ N . This is due to
the equivalent transformation of the Hybrid-NOMA problem
(3) to its corresponding virtual FDMA problem (12). Increas-
ing the number of multiplexed users |Kn| only increases the
complexity of calculating (Qmin

n , αn) in the initialization step
of Alg. 1 which is negligible.

Alg. 2 which is based on the Dinkelbach method converts
the original problem (4) into a sequence of auxiliary problems,
indexed by λ. The overall complexity of Alg. 2 mainly
depends on both the convergence rate of the subproblems,
as well as the computational complexity of each subproblem.
By defining E(p) = f1(p)

f2(p) , where f1(p) =
�

n∈N

�
k∈Kn

Rn
k (pn),

and f2(p) =
�

n∈N

�
k∈Kn

pn
k + PC, the convergence rate of

Alg. 2 can be observed by formulating the update rule of

the fractional parameter λ as λ(t+1) =
f1(p∗

(t))
f2

�
p∗

(t)

� = λ(t) −
f1(p∗

(t))−λ(t)f2(p∗
(t))

−f2

�
p∗
(t)

� = λ(t) − F (λ(t))

F �(λ(t))
, where t is the iteration

index of Alg. 2, and F (λ(t)) = f1

�
p∗

(t)

�
−λ(t)f2

�
p∗

(t)

�
[24].

It can be observed that Alg. 2 follows the Newton’s method,
meaning that the Newton’s method is applied to the concave
function F (λ). Thus, Alg. 2 exhibits a super-linear conver-
gence rate [24]. A detailed complexity analysis of the pure
Newton’s method can be found in Subsection 9.5.3 in [47].
For a general concave function F (x), x ∈ R

n, if F increases
by at least ΔF at each Newton’s iteration, ∇2F (x) ≤ −m,
and

''∇2F (x) −∇2F (y)
''

2
≤ L �x − y�2 , ∀x, y ∈ R

n,
the number of Newton’s iterations to achieve an �-suboptimal
solution is bounded above by CF = F (x∗)−F (x(0))

ΔF
+

log2 log2(�0/�), where �0 = 2m3/L2 [47]. For the accuracy
around � ≈ 5.10−20�0, we have log2 log2(�0/�) ≈ 6 [47], thus
in this case, the number of Newton’s iterations is bounded
above by CF ≈ F (x∗)−F (x(0))

ΔF
+ 6.

In each iteration of Alg. 2, if Proposition 4 holds, we solve
(14) for the given λ by using the water-filling Alg. 1, whose
overall complexity is N2. For the case that Proposition 4
does not hold in each Dinkelbach iteration, we solve (14)
for the given λ by using the subgradient or barrier methods
presented in Algs. 3 and 4, respectively. The duality gap of
the barrier method in Alg. 4 after L iterations is 1/(μLt0),
where t0 is the initial t, and μ is the stepsize for updating

t in the barrier method. Therefore, after exactly � ln
�

1
�B .μ

�
ln(μ) �

barrier iterations, Alg. 4 achieves �B-suboptimal solution [47].
In each barrier iteration, we apply the Newton’s method.
In general, it is difficult to obtain the exact complexity order
of the pure Newton’s method [47]. According to Subsection
11.5.3 in [47], when the self-concordance assumption holds,
the total number of Newton’s iterations over all the barrier
iterations to achieve an �B-suboptimal solution is bounded

above by � ln
�

1
�B .μ

�
ln(μ) �

�
μ−1−ln μ

ΔF
+ log2 log2(1/�N)

�
, where
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TABLE III

COMPUTATIONAL COMPLEXITY OF SOLVING THE SUM-RATE MAXIMIZATION PROBLEM (3)

TABLE IV

COMPUTATIONAL COMPLEXITY OF SOLVING THE ENERGY EFFICIENCY MAXIMIZATION PROBLEM (4)

�N is the tolerance of the Newton’s method in each barrier
iteration. The complexity of other operations in the centering
step of each barrier iteration is negligible. As a result, when
Proposition 4 does not hold, the overall worst-case complexity
of Alg. 2 with inner Alg. 4 is approximately on the order of

CF


� ln
�

1
�B .μ

�
ln(μ) �

�
μ−1−ln μ

ΔF
+ log2 log2(1/�N)

��
, where CF

denotes the number of Dinkelbach iterations in Alg. 2.
The standard subgradient method produces a global opti-

mum, however its exact computational complexity is still
unknown in general [54], [55]. It is shown that the subgradient
method converges with polynomial complexity in the number
of optimization variables and constraints [54], [55]. In each
subgradient iteration of Alg. 3, we need to calculate q̃(t) in
Step 8 which requires N operations. Then, we update the
Lagrange multiplier ν whose complexity order is 1. Thus, the
overall complexity of Alg. 2 with inner Alg. 3 is CF CS(N +
1), where CS indicates the number of subgradient iterations.

The computational complexity order of our proposed as well
as other existing globally optimal power allocation algorithms
for solving the SR and EE maximization problems is sum-
marized in Tables III and IV, respectively. In these tables,
the term “pure” is referred to the case that we do not apply
Propositions 1 and 2 (thus the equivalent transformation of
Hybrid-NOMA to a FDMA system, denoted by “NOMA-to-
OMA Transformation”) in the convex solvers. The parameters
CF and CS denote the number of Dinkelbach and subgradient
iterations, respectively. Moreover, CN denotes the number of
Newton’s iteration in each barrier iteration. The parameter δ
in Table IV indicates the stepsize of exhaustive search for
finding PEE. In Table III, the pure water-filling algorithm
needs to update pn

k , ∀n ∈ N , k ∈ Kn, which requires NK
operations5 [56]. Hence, the overall complexity of the pure
water-filling algorithm is on the order of N2K . Therefore,
Alg. 1 reduces the complexity of the pure water-filling algo-
rithm by K times, where K is the number of multiplexed users
in each subchannel. It is also possible to solve problem (3) or
its equivalent FDMA problem (12) by using the subgradient

5The pure water-filling algorithm in [56] is for uplink MC-NOMA without
considering users minimum rate constraints.

or barrier (with inner Newton’s algorithm) methods. As can
be seen, the equivalent NOMA-to-OMA transformation also
reduces the complexity of these solvers. Besides, Alg. 1 has
the lowest computational complexity compared to the other
existing methods. The latter conclusions also hold for the EE
maximization problem shown in Table IV. When Proposition 4
holds, we can use Alg. 1 with the lowest computational
complexity compared to the other existing convex solvers.
The superiority of the Dinkelbach algorithm can be observed
by comparing it with a greedy search over all the possible
power consumption of the BS, denoted by PEE. Although
Proposition 1 can reduce the search area, such that we can
obtain the lower-bound of PEE as

�
n∈N

Qmin
n (see (6)), as well

as reduce the complexity of the pure water-filling algorithm
by using Proposition 2, the overall complexity of exploring
PEE is still large, when the stepsize δ is significantly small.

The numerical experiments show that Alg. 2 converges in
less than 6 iterations, meaning that CF ≈ 6. In each Dinkel-
bach iteration, the subgradient method in Alg. 3 converges
within CS ≈ 15 iterations. Besides, Alg. 4 converges within
10 barrier iterations. For significantly large number of users
around 100 to 200, the simulation codes in [46] verify that
the convergence time of our proposed algorithms is on the
order of milliseconds. Based on our numerical experiments,
we observed that the convergence time of the subgradient
method in Alg. 3 is less than that of the barrier method in
Alg. 4.

E. Subchannel Allocation in MC-NOMA

The optimal subchannel allocation problem, i.e., finding
optimal ρ = [ρn

k ] or equivalently cluster sets Kn, in MC-
NOMA is classified as integer nonlinear programming prob-
lem. The subchannel allocation is determined on the top
of power allocation. Therefore, the exact closed form of
inter-cluster power allocation is required for solving the sub-
channel allocation problem. Although Alg. 1 approaches the
globally optimal solution with a fast convergence speed, the
exact value of ν∗ and subsequently, closed-form of q∗ is still
unknown in general. A similar issue exists for the water-filling
algorithms for the FDMA problems [49]–[53]. The Dinkelbach
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and subgradient methods also have similar issues, in which the
exact value of optimal λ and ν are unknown in general, respec-
tively. The joint optimal user clustering and power allocation
is known to be strongly NP-hard [27]–[29]. Although the latter
problem is strongly NP-hard, the optimal number of clusters
or subchannels in FDMA-NOMA can be obtained as follows:

Proposition 6: In a K-user FDMA-NOMA system with
limited number of multiplexed users Umax, the optimal number
of clusters is N∗ = �K/Umax�.

Proof: Due to the degradation of SISO Gaussian BCs, it is
proved that SC-NOMA is capacity achieving, meaning that the
rate region of FDMA/TDMA is a subset of the rate region of
SC-NOMA [1]–[5]. Hence, for the case that K < Umax, the
optimal user clustering is considering all the users in the same
cluster, and apply SC-SIC among all the users, i.e., FDMA-
NOMA turns into SC-NOMA. Now, consider K = Umax+C,
where 1 ≤ C ≤ Umax. In this case, SC-NOMA is infeasible,
however, FDMA-NOMA divides K users into two isolated
clusters K1 and K2 satisfying |Kn| ≤ Umax, n = 1, 2,
due to the existing limitation on the number of multiplexed
users. Each cluster set Kn, n = 1, 2 is a SISO Gaussian
BC whose capacity region can be achieved by using SC-SIC.
Hence, further dividing each user group Kn, n = 1, 2, based
on FDMA/TDMA would result lower achievable rate. The
latter result holds for any possible 2 groups with 1 ≤ C ≤
Umax. Now, consider a general case MUmax + 1 ≤ K ≤
(M + 1)Umax with nonnegative integer M . In this case, the
lowest possible number of isolated clusters is M + 1. Further
imposing FDMA/TDMA to any existing group would result in
a suboptimal performance. Accordingly, the optimal number
of clusters is exactly �K/Umax�. �

Proposition 6 shows that the achievable rate of FDMA with
the highest isolation among users is a subset of the achievable
rate of FDMA-NOMA with any given user clustering. Since
our globally optimal power allocation algorithms are valid
for any given user clustering, the existing suboptimal user
clustering algorithms, such as heuristic methods in [30], [31],
[34]–[36], and matching-based algorithms in [32] and [33] can
be applied. Another approach is the framework in [57] which
is the joint optimization of power and subchannel allocation
with the relaxed-and-rounding method. However, the output
is still suboptimal without any mathematical performance
improvement guarantee. Roughly speaking, there is still no
mathematical understanding analysis for performance compar-
ison among the existing suboptimal user clustering algorithms.
The optimal user clustering is still unknown, and is considered
as a future work.

IV. EXTENSIONS AND FUTURE RESEARCH DIRECTIONS

Here, we discuss about the possible extensions of our
analyses to more general scenarios. For each case, the potential
challenges are discussed in details.

A. Users Maximum Rate Constraint

According to Propositions 2 and 3, we conclude that at the
optimal point of the SR/EE maximization problems, only the
cluster-head users get additional power. In practical systems,

the achievable rate of users is also limited by a maximum
value due to the discrete modulation and coding schemes [2],
[3]. In the SR/EE maximization of Hybrid-NOMA with signif-
icantly large number of subchannels and/or multiplexed users,
it merely happens that a cluster-head user’s rate within a
subchannel exceeds the truncated Shannon’s bound. This is
due to the fact that 1) The clusters power budget will be
typically low, on the order of few Watts, or even mWatts;
2) Mostly, a large portion of the clusters power budget will
be allocated to the non-cluster-head users. For the sake of
completeness, we discuss about the impact of considering
per-subchannel maximum rate constraints in the SR/EE max-
imization problems. To keep the generality, let us define
Rmax

k,n as the individual maximum allowable rate of user k
on subchannel n. The maximum rate constraint can thus be
formulated as

Rn
k (pn) ≤ Rmax

k,n , ∀n ∈ N , k ∈ Kn. (24)

By adding (24) to the original SR maximization problem (3),
constraints (3b) and (24) can be combined as

Rmin
k,n ≤ Rn

k (pn) ≤ Rmax
k,n , ∀n ∈ N , k ∈ Kn. (25)

Obviously, the minimum rate demands should be chosen such
that Rmin

k,n ≤ Rmax
k,n , ∀n ∈ N , k ∈ Kn, otherwise the feasible

set of (25) will be empty. According to Proposition 1, we can
guarantee that at the optimal point of the total power minimiza-
tion problem, Rn

k (p∗n) = Rmin
k,n ≤ Rmax

k,n , ∀n ∈ N , k ∈ Kn,
meaning that the maximum rate constraint (24) has no impact
on the lower-bound of q. Thus, the lower-bound of qn can
be obtained by (6). On the other hand, the upper-bound of
qn can be achieved by solving the per-cluster total power
maximization problem (when the cellular power constraint is
eliminated). Let us denote Qmax

n as the power consumption
of cluster n, where Rn

k (pn) = Rmax
k,n , ∀k ∈ Kn. Similar to

Appendix A, it can be easily shown that Qmax
n can be obtained

by (6) in which βn
k = 2(Rmax

k,n /Ws) − 1, ∀n ∈ N , k ∈ Kn.
In this way, the feasible set of problem (5) with maximum
rate constraints in (24) can be characterized as the intersection
of qn ∈ �Qmin

n , min
	
Qmax

n , Pmask
n

��
, ∀n ∈ N , and cellular

power constraint
�

n∈N
qn ≤ Pmax. It is straightforward to

show that when
�

n∈N
min

	
Qmax

n , Pmask
n

� ≤ Pmax, the cellular

power constraint (3c) will be always fulfilled, thus it can
be removed from problems (3) and (4). In this case, the
SR maximization problem (3) can be equivalently divided
into N SC-NOMA subproblems, since there is no longer the
competition among clusters to get the cellular power budget.
Subsequently, at the optimal point of the SR maximization
problem, we guarantee that each cluster n achieves its max-
imum allowable power, i.e., q∗n = min

	
Qmax

n , Pmask
n

�
, n ∈

N . Hence, the inter-cluster power allocation is required if and
only if

�
n∈N

min
	
Qmax

n , Pmask
n

�
> Pmax.

Consider a simple 2-user SC-NOMA system with h1 < h2,
thus the optimal decoding order is 2 → 1. The SR maximiza-
tion problem (3) with per-user maximum rate constraint can
be formulated as follows:

max
p≥0

R1(p) + R2(p) (26a)
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s.t. Rk(p) ≥ Rmin
k , ∀k = 1, 2, (26b)

Rk(p) ≤ Rmax
k , ∀k = 1, 2, (26c)

p1 + p2 ≤ min{Pmax, Qmax}, (26d)

where Qmax is the maximum power consumption of the BS,
due to constraint (26c). The problem (26) is convex with
an affine feasible set. Assume that Rmin

k < Rmax
k , k =

1, 2. At the optimal point, Condition C1 : p∗1 + p∗2 =
min{Pmax, Qmax} always holds. According to the proof of
Proposition 2, when (26c) for user 2 is removed from (26),
at the optimal point, the following properties hold

C2 : p∗1 + p∗2 = Pmax, C3 : R1(p∗) = Rmin
1 .

In this case, based on Proposition 2, the optimal powers can
be obtained as

p∗1 = β1


Pmax +

1
h1

�
, p∗2 = (1 − β1) Pmax − β1

h1
, (27)

where β1 = 2(Rmin
1 /Ws)−1

2(Rmin
1 /Ws)

. Constraint (26c) for user 2 can be
rewritten as

p2 ≤
�
2(Rmax

2 /Ws) − 1
�

/h2. (28)

Hence, the maximum rate constraint of user 2 is indeed a
maximum power consumption constraint for this user. Let us
define

M2 =
�
2(Rmax

2 /Ws) − 1
�

/h2.

According to Condition C1, (27) and (28), the optimal powers
with imposing (26c) for both the users can be obtained as

p∗1 = min {Pmax, Qmax} − min
(

(1−β1)Pmax − β1

h1
, M2

)
,

p∗2 = min
(

(1 − β1)Pmax − β1

h1
, M2

)
. (29)

Hence, if (1 − β1)Pmax − β1
h1

≤ M2, we guarantee that
R1(p∗) = Rmin

1 , Rmin
2 ≤ R2(p∗) ≤ Rmax

2 , and p∗1 +
p∗2 ≤ Pmax < Qmax. If (1 − β1) Pmax − β1

h1
> M2, and

Pmax ≤ Qmax, we guarantee that Rmin
1 ≤ R1(p∗) ≤ Rmax

1 ,
R2(p∗) = Rmax

2 , and p∗1 + p∗2 = Pmax ≤ Qmax. Finally,
if (1 − β1)Pmax− β1

h1
> M2, and Pmax > Qmax, we guarantee

that R1(p∗) = Rmax
1 , R2(p∗) = Rmax

2 , and p∗1+p∗2 = Qmax <
Pmax. According to the above, Proposition 2 holds if and
only if (1 − β1)Pmax − β1

h1
≤ M2. When user 2 exceeds

its maximum rate Rmax
2 , we allocate power to user 2 until

R2(p∗) = Rmax
2 , and the rest of the cellular power will

be allocated to user 1 until it achieves its maximum rate.
The latter analysis can be generalized to the K-user SC-
NOMA system. For more details, please see Appendix G. The
analysis in Appendix G shows that there exists a closed-form
of optimal power allocation for the general K-user SC-NOMA
with per-user minimum and maximum rate constraints. During
the power allocation, there exists a special user i, where all
of the stronger users than user i achieve their maximum rates,
and all of the weaker users than user i achieve their minimum
rates. Due to the space limitations, obtaining the closed-form
of optimal powers, and how to define the index of user i for a

given power budget is considered as a future work.6 After
obtaining the closed-form of optimal powers as a function
of the clusters power budget q in Hybrid-NOMA with per-
subchannel maximum and minimum rate constraints, it might
be possible to transform the Hybrid-NOMA problem to a
FDMA problem, which can be considered as a future work.

B. Hybrid-NOMA With Per-User Minimum Rate Constraints

In our work, we considered a Hybrid-NOMA system, where
the minimum rate demand of each user on each assigned
subchannel is predefined, similar to [33]–[37]. This scheme
is the generalized model of FDMA-NOMA considered in
[30]–[32]. From the optimization perspective, the SR/EE
maximization problem for Hybrid-NOMA with predefined
minimum rate demand of each user on each assigned sub-
channel, and FDMA-NOMA has similar structures, and both
of them are convex. A more general/complicated case is
when we consider a per-user minimum rate constraint over
all the assigned subchannels. The SR maximization problem
for Hybrid NOMA with per-user minimum rate constraint can
be formulated as

max
p≥0

�
n∈N

�
k∈Kn

Rn
k (pn) (30a)

s.t. (3c), (3d),

Rk(p) ≥ Rmin
k , ∀k ∈ K, (30b)

where Rk(p) =
�

n∈Nk

Rn
k (pn) denotes the achievable rate

of user k over all the assigned subchannels in Nk. The
term Rn

k (pn) for each user k ∈ Kn \ {Φn} is nonconcave
in pn, due to the co-channel interference term

�
j∈Kn,
hn

j
>hn

k

pn
j hn

k .

Since each two terms Ri
k(pi) and Rj

k(pj) for subchannels
i, j ∈ Nk includes disjoint set of powers, we can conclude
that Rk(p) =

�
n∈Nk

Rn
k (pn) is nonconcave when |Nk| >

1 and ∃n ∈ Nk, k �= Φn, which makes (30b) nonconcave.
It is still unknown how to equivalently transform (30b) to a
convex form. To this end, the globally optimal solution of
(30) with polynomial time complexity is not yet obtained
in the literature. One suboptimal solution for (30) is to
approximate each nonconcave rate function Rn

k (pn) to its first
order Taylor series, and then apply the sequential programming
method [15], [44], [58]. A suboptimal penalty function method
is also used in [45]. Let us define an auxiliary variable
rn
k indicating the minimum rate demand of user k ∈ Kn

on subchannel n in bps. In this way, problem (30) can be
equivalently transformed to the following joint power and
minimum rate allocation problem as

max
p≥0, r≥0

�
n∈N

�
k∈Kn

Rn
k (pn) (31a)

s.t. (3c), (3d),

Rn
k (pn) ≥ rn

k , ∀n ∈ N , k ∈ Kn, (31b)

6In problem (3) without maximum rate constraints, the cluster-head user,
whose index is Φn, is the special user i, thus none of the other multiplexed
users deserve additional power. This is the main reason that we define the spe-
cial notation Φn for the cluster-head user of subchannel n in Subsection II-A.
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�
n∈Nk

rn
k = Rmin

k , ∀k ∈ K, (31c)

where r = [rn
k ], ∀n ∈ N , k ∈ Kn. For any given feasible

r satisfying constraints in (31c), problem (31) can be equiv-
alently transformed to the convex problem (3) with minimum
rate demands rn

k , ∀n ∈ N , k ∈ Kn. Hence, our analyses
and important theoretical insights hold for any given r in the
SR/EE maximization problem of Hybrid-NOMA with per-user
minimum rate constraints. According to the above, the only
challenge which is not yet solved is how to find r∗ in (31) or
equivalently distribute Rmin

k over the subchannels in Nk.
Corollary 5: In Hybrid-NOMA with per-user minimum rate

demands over all the assigned subchannels, if user k ∈ K is
a non-cluster-head user in all the assigned subchannels, e.g.,
a cell-edge user, at the optimal point of SR/EE maximization,
it gets power to only maintain its minimum rate demand Rmin

k ,
meaning that Rk(p∗) =

�
n∈Nk

Rn
k (p∗n) = Rmin

k .

Accordingly, each user k ∈ K deserves additional power
if and only if it is a cluster-head user in at least one of the
assigned subchannels. As a result, when the minimum rate
demand of users is zero, in both the SR and EE maximization
problems, only the cluster-head users get positive power,
thus Hybrid-NOMA will be identical to OFDMA (also see
Lemma 8 in [27]). These results show that in both the SR and
EE maximization problems of Hybrid-NOMA, there exists a
critical fairness issue among users’ achievable rate which is
discussed in the following subsection.

C. Users’ Rate Fairness

According to (22) and (23), we observe that in the SR/EE
maximization problems, a large portion of the clusters power
budget will be allocated to the users with lower decoding
order when all the multiplexed users have the same minimum
rate demands within a cluster. It states that in contrast to
FDMA, NOMA usually allocates more power to the weaker
users when all the multiplexed users have the same minimum
rate demands. This result shows that NOMA provides users
fairness in terms of power allocation. However, according
to Corollaries 4 and 5, we observe that this users’ power
fairness does not necessarily lead to the users’ rate fair-
ness, since only one user in each cluster gets additional
rate. Accordingly, substantial works are required to guarantee
users’ rate fairness. There exist many fairness schemes which
are recently considered for SC/MC-NOMA, as proportional
fairness [27], [29], [32], [38], [39], [42], [58], max-min
fairness [32], and etc. In the following, we first discuss about
the advantages/challenges of the proportional fairness scheme,
where our objective is to tune the users achievable rate at
the optimal point by maximizing the weighted SR of users.
Then, we propose a new fairness scheme which is a mixture
of proportional fairness and users weighted minimum rate
demands.

1) Proportional Fairness: In proportional fairness, we aim
at maximizing the weighted SR of users formulated by�
n∈N

�
k∈Kn

ωkRn
k (pn), where ωk is the weight of user k ∈ K,

that is a constant, and is determined on the top of resource

allocation. The weighted SR maximization problem can thus
be formulated by

max
p≥0

�
n∈N

�
k∈Kn

ωkRn
k (pn), s.t. (3b)-(3d). (32)

The feasible region of problem (32) can be characterized by
using Proposition 1. For each cluster n, it can be shown
that if ωi ≥ ωj , ∀i, j ∈ Kn, hn

i ≥ hn
j , the weighted SR

function
�

k∈Kn

ωkRn
k (pn) is negative definite. In this case, the

globally optimal powers can be obtained by using Proposi-
tion 2, meaning that the weights ωk, ∀k ∈ Kn do on affect
the optimal intra-cluster power allocation policy, thus users
achievable rate. Moreover, Alg. 1 finds the globally optimal
solution of problem (32), such that based on (13), the optimal
q̃∗n can be obtained as

q̃∗n =

⎧⎪⎪⎨
⎪⎪⎩

ωΦnWs

ln(2)ν∗ − 1
Hn

,


ωΦnWs

ln(2)ν∗ − 1
Hn

�
∈ [Q̃min

n , P̃mask
n ],

0, otherwise.

(33)

The closed-form expression (33) states that when ωi ≥
ωj, ∀n ∈ N , i, j ∈ Kn, hn

i ≥ hn
j , we can only tune the

fairness among cluster-head users. It corresponds to tuning
the fairness among clusters/virtual OMA users defined in
Remark 1. To tune fairness among the multiplexed users within
each cluster in the proportional fairness scheme, we need to
assign more weights to the weaker users. For the case that
∃n ∈ N , i �= j ∈ Kn, ωi < ωj, hn

i ≥ hn
j , the weighted

SR function
�

n∈N

�
k∈Kn

ωkRn
k (pn) could be nonconcave, which

makes problem (32) nonconvex [27]. In this regard, the strong
duality in (32) does not hold, thus there exists a certain duality
gap in the Lagrange dual method [27]. Although there are
some interesting approximation analyses for the weighted SR
function [29], the globally optimal solution of problem (32) for
the case that ∃n ∈ N , i �= j ∈ Kn, ωi < ωj , hn

i ≥ hn
j , is still

an open problem. In this case, one suboptimal solution is to
apply the well-known sequential programming method [58].

2) Mixed Weighted Sum-Rate/Weighted Minimum Rate Fair-
ness: In contrast to FDMA, proportional fairness in SC/MC-
NOMA leads to a nonconvex problem in general, which
greatly increases the complexity of finding the globally opti-
mal power allocation. Another issue in proportional fairness
is properly determining users weights prior to resource allo-
cation. It is still unknown how to properly choose the users
weight in order to achieve the desired users data rates after
the optimal power allocation optimization which is important
to guarantee users rate fairness. According to (13), we can
conclude that in FDMA (with αn = 1, Hn = hn

Φn
, and cn = 0,

for each n ∈ N ), the users minimum rate demand merely
impacts on the optimal power allocation policy, thus users
achievable rate. It means that tuning the minimum rate demand
of users in FDMA merely impacts on the users data rate at
the optimal point. In contrast to FDMA, we observe that the
non-cluster-head users minimum rate demands highly affect
the optimal intra-cluster power allocation of SC/MC-NOMA
formulated in Proposition 2. In particular, we observe that all
the non-cluster-head users achieve their predefined minimum



1178 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 4, APRIL 2022

rate demands on each assigned subchannel at the optimal point
of the SR/EE maximization problems. Hence, by properly
increasing the target minimum rate demands of the non-
cluster-head users, we not only guarantee the multiplexed users
rate fairness, but also the exact achievable rate of the non-
cluster-head users on each subchannel before power allocation
optimization.

Let us define Λk,n as the weight of the minimum rate
demand of user k on subchannel n. In our proposed fairness
scheme, we define the minimum rate demand of each non-
cluster-head user k ∈ Kn \ {Φn} as Smin

k,n = Λk,nRmin
k,n with

Λk,n ≥ 1. Based on Remark 1, the minimum rate demand
of the cluster-head user Φn, ∀n ∈ N , merely impacts on the
optimal power allocation formulated in Proposition 2, thus the
cluster-head users achievable rate. To this end, we set ΛΦn,n =
1, ∀n ∈ N . By using the fact that each cluster-head user acts
as an OMA user (see the paragraph after Remark 1), we apply
the proportional fairness scheme among the cluster-head users
in which we define ωΦn as the weight of the cluster-head
user Φn. Finally, the power allocation problem for the mixed
weighted SR/weighted minimum rate fairness can be formu-
lated as

max
p≥0

�
n∈N

�
k∈Kn\{Φn}

Rn
k (pn) + ωΦnRn

Φn
(pn) (34a)

s.t. (3c), (3d),

Rn
k (pn) ≥ Smin

k,n , ∀n ∈ N , k ∈ Kn. (34b)

According to the discussions in Subsection IV-C.1, it is
straightforward to show that the objective function (34a) is
strictly concave if we set ωΦn ≥ 1, ∀n ∈ N . For any
given ωΦn ≥ 1, ∀n ∈ N , the intra-cluster optimal powers of
problem (34) can be obtained by using Proposition 2, in which
we substitute Rmin

k,n with Smin
k,n . In this fairness scheme,

ωΦn , ∀n ∈ N , are chosen to only tune the fairness among
cluster-head users. Thus, we can set ωΦn ≥ 1, ∀n ∈ N ,
such that the fairness of non-cluster-head users is guaranteed
by parameter Λk,n in Smin

k,n = Λk,nRmin
k,n in constraint (34b).

In summary, the fairness parameters in problem (34) satisfy
Λk,n ≥ 1, ∀n ∈ N , k ∈ Kn\{Φn}, Λk,Φn = 1, ∀n ∈ N , and
ωΦn ≥ 1, ∀n ∈ N . Note that in the objective function (34a),
the weight of each non-cluster-head user within each cluster is
one. The feasible region of problem (34) can be characterized
by using Proposition 1, in which we substitute Rmin

k,n with
Smin

k,n . Finally, the water-filling Alg. 1 can be applied to find
the globally optimal solution of (34) in which the optimal q̃∗n
is given by (33).

It can be shown that similar to proportional fairness,
by properly choosing the fairness parameters Λk,n ≥ 1, ∀n ∈
N , k ∈ Kn \ {Φn}, and ωΦn ≥ 1, ∀n ∈ N , our proposed
fairness scheme can also achieve any feasible desired rates
for all the users in Hybrid-NOMA, which is important to
guarantee any users rate fairness level. Similar to the propor-
tional fairness, it is still difficult to properly assign the weight
of the cluster-head users in our proposed fairness scheme
denoted by ωΦn ≥ 1, ∀n ∈ N . Another challenge is properly
setting Λk,n of each non-cluster-head user k ∈ Kn \ {Φn}
prior to resource allocation optimization. This is because, the

parameter Smin
k,n , ∀k ∈ Kn\{Φn}, significantly increases Qmin

n

in (6). Hence, significantly large Λk,n for user k may lead to
empty feasible region for each subchannel n ∈ Nk, k �= Φn

(user k is not cluster-head). It is worth noting that for any given
Λk,n, Corollary 1 is useful to immediately verify whether
the feasible region is empty or not. One interesting topic is
how to achieve a preferable/absolute users rate fairness by
properly choosing the fairness parameters Λk,n ≥ 1, ∀n ∈
N , k ∈ Kn \ {Φn}, and ωΦn ≥ 1, ∀n ∈ N , in our proposed
fairness scheme, which brings new theoretical insights on the
fundamental relations between our proposed and the well-
known proportional/max-min rate fairness schemes.

D. Imperfect Channel State Information

Unfortunately, it is difficult to acquire the perfect CSI of
users, due to the existence of channel estimation errors, feed-
back delay, and quantization error. In NOMA with imperfect
CSI, the imperfect CSI may lead to incorrect user ordering
for SIC within a cluster resulting in outage [59], namely SIC
outage. By employing the stochastic method, the CNR of user
k ∈ K on subchannel n ∈ N can be modeled as hn

k =
ĥn

k + en
k , where en

k ∼ CN 
0, σ2
e

�
and ĥn

k ∼ CN 
0, 1 − σ2
e

�
denote the estimation error normalized by noise and estimated
CNR, respectively. Assume that the estimated CNR ĥn

k and
normalized estimation error en

k are uncorrelated [35], [37],
[59]. In each cluster n, by performing user ordering based

on ĥn
k , ∀k ∈ Kn, the SIC outage occurs if and only if there

exists at least on user pair i, j ∈ Kn, ĥn
i > ĥn

j , while
hn

i < hn
j . Assume that en

k ∈ [Ln
k , Un

k ], ∀n ∈ N , k ∈ Kn.
The SIC outage is thus zero if and only if min

en
i ∈[Ln

i ,Un
i ]

hn
i ≥

max
en

j ∈[Ln
j ,Un

j ]
hn

j , ∀n ∈ N , k ∈ Kn, ĥn
i > ĥn

j . In the latter

condition, min
en

i ∈[Ln
i ,Un

i ]
hn

i = ĥn
i + Ln

i , and max
en

j ∈[Ln
j ,Un

j ]
hn

j =

ĥn
j + Un

j . Therefore, the SIC outage is zero if and only if

ĥn
i + Ln

i ≥ ĥn
j + Un

j , ∀n ∈ N , k ∈ Kn, ĥn
i > ĥn

j . (35)

The condition (35) states that with imperfect CSI, there exists
an additional outage, called SIC outage in SC/MC-NOMA,
if for a multiplexed user pair, the best case of the CNR of
the weaker user is greater than the worst case of the CNR
of the stronger user. The SIC outage depends on the region
of normalized estimation errors and estimated CNRs. Thus,
the SIC outage cannot be tuned by means of power allocation
optimization. The latter result is due to the fact that the SIC
decoding order of users in SISO Gaussian BCs is independent
of power allocation. The SIC outage probability of the 2-user
SC-NOMA system is analyzed in [59]. Although when the
condition in (35) is not fulfilled, we cannot achieve the
zero-SIC outage by means of power allocation, the zero-SIC
outage can be achieved by the user clustering of MC-NOMA,
or in general, subchannel allocation. For example, when the
lower-bound Ln

i and upper-bound Un
j in (35) are available,

we are able to impose the condition in (35) as a necessary
constraint in user clustering problem to achieve the zero-SIC
outage which increases the robustness of MC-NOMA. The
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impact of imposing the condition in (35) in user clustering
can be considered as a future work.

The work in [35] provided new analyses for the EE maxi-
mization problem of Hybrid-NOMA with imperfect CSI, when
the large-scale fading factors are slowly varying, thus they can
be estimated perfectly at the BS. According to Subsection III
in [35], it is straightforward to show that our analysis is also
valid for Hybrid-NOMA with imperfect CSI, and considering
per-symbol maximum outage probability and minimum rate
constraints. It is worth noting that the imperfect CSI merely
impacts on the intra-cluster power allocation, due to the high
insensitivity of optimal intra-cluster power allocation to the
users exact CNRs for the SR/EE maximization problems
discussed in Subsection III-C.1. One important future direction
of our work is to evaluate the optimality and robustness of the
approximated closed-form of optimal powers in (20) and (21)
for the imperfect CSI scenarios.

E. Admission Control

One important application of NOMA is to support massive
connectivity in the 5G networks, e.g., IoT use-cases [10].
When the number of users and/or their minimum rate demands
increases, the parameter Qmin

n increases leading to tightening
the feasible region of the formulated optimization problems
characterized by Proposition 1. As a result, for significantly
large number of users and/or their minimum rate demands,
the feasible region will be empty, and subsequently, the prob-
lems will be infeasible. As such, the network cannot support
all of the users simultaneously, thus an admission control
policy is necessary to support the maximum possible num-
ber of users/transmitted symbols on subchannels. There are
few works addressing the admission control for the SC/MC-
NOMA systems [60]–[63]. The globally optimal admission
control policy for the general SC/MC-NOMA systems with
individual minimum rate demands is still an open problem.
To admit more desired symbols in Hybrid-NOMA while
reducing the cellular power consumption, one suboptimal solu-
tion is to first calculate the power consumption of each user on
each subchannel given by (37). Then, eliminate the subchannel
(thus transmitted symbol) for the user which consumes the
highest power. After that, recalculate (37) for the updated Kn.
The latter steps will be continued until Corollary 1 is fulfilled.
One future work can be how to incorporate the closed-form
of optimal powers in Propositions 1 and 2 in the admission
control policy to admit more users while minimizing the
cellular power consumption, or maximizing the admitted users
sum-rate, respectively.

F. Reconfigurable Intelligent Surfaces-Aided NOMA

The NOMA technology has been recently integrated with
RISs [16], [17]. In RIS-assisted NOMA, the joint power
and phase shift allocation is shown to be necessary to
achieve the optimal solution of the SR maximization problem
[16], [17]. Unfortunately, the optimal joint power and phase
shift optimization is intractable, thus many recent works
applied the alternate optimization, where we find the optimal
powers/phase shifts when the other is given. In general, for

any given phase shifts, the RIS-NOMA system, such as the
considered model in [18], can be equivalently transformed to
a NOMA system with users equivalent channel gains. In this
way, it is straightforward to show that all the analyses of
power allocation for the SR/EE maximization problems of the
pure SC/MC-NOMA system are also valid for an RIS-NOMA
system with the given phase shifts, thus the users correspond-
ing equivalent channel gains. For example, the closed-form of
optimal powers for the RIS-assisted NOMA system in [18] can
be obtained by using Proposition 2 with N = 1. From (20)
and (21), it can be concluded that in the high-SINR regions
of an RIS-NOMA system, the optimal powers are insensitive
to the equivalent channel gains, thus phase shifts. There-
fore, we expect that the alternate optimization approaches a
near-optimal solution with a fast convergence speed in the
high-SINR regions of an RIS-NOMA system. The extension
of our analysis to an RIS-assisted MC-NOMA system can be
considered as a future work.

G. Long-Term Resource Allocation

Similar to most of the related works, we assume a dynamic
resource allocation framework, where the allocated powers to
the users will be readopted every time slot based on the arrival
set of active users, and instantaneous CSI. It is shown that
the short-term designs may lead to inferior system perfor-
mance in a long-term perspective [64]. There are a number
of works that addressed the long-term resource allocation
optimization in NOMA, e.g., [64]–[66]. In [64], the authors
developed the well-known Lyapunov optimization framework
to convert the long-term sum-rate maximization problem
of SC-NOMA with long-term average and short-term peak
power constraints, and per-user maximum rate constraints into
a series of online “weighted-sum-rate minus weighted-total
power consumption” maximization problem in each time slot.
The latter problem can be classified as the power allocation
problem for SC-NOMA with proportional fairness. Although
there has been some efforts in [64] to further reduce the
searching space of optimal power allocation, the closed-form
expression of optimal power allocation for the long-term
optimization framework in [64] is still an open problem.
The analysis will be more complicated if we consider the
Hybrid-NOMA scheme with per-user/symbol minimum rate
constraints, and optimal inter-cluster power allocation, which
is still an open problem, and can be considered as a future
work.

In [65], the long-term optimization is addressed by properly
choosing the users weights in the proportional fairness scheme.
In particular, the proportional fairness scheduler keeps track
of the average rate of each user in the past time slots with
limited length, and reflect these average rates to the users
weights. A similar framework can also be applied to our
proposed mixed weighted SR/weighted minimum rate fairness
scheme in Subsection IV-C.2, where the fairness parameters
Λk,n ≥ 1, ∀n ∈ N , k ∈ Kn \ {Φn}, and ωΦn ≥ 1, ∀n ∈
N , are chosen in (34) based on the average users rate in
the past time slots, which can be considered as a future
work.
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TABLE V

SYSTEM PARAMETERS

V. SIMULATION RESULTS

In this section, we evaluate the performance of SC-NOMA,
FDMA-NOMA (FD-NOMA) with different Umax, and FDMA
for different performance metrics as outage probability, BSs
minimum power consumption to satisfy users minimum rate
demands, maximum users SR, and maximum system EE.
To reflect the randomness impact, we apply the Monte-Carlo
simulations [27]–[37] by averaging over 50,000 channel real-
izations. The outage probability is calculated by dividing the
number of infeasible solutions determined according to Corol-
lary 1, by total number of channel realizations. According to
Proposition 1, the minimum BS’s power consumption can be
obtained by Pmin =

�
n∈N

Qmin
n . All the algorithms in Table III

can globally solve the SR maximization problem, however
with different computational complexities. For our simula-
tions, we select Alg. 1 with the lowest complexity compared to
the others. Moreover, all the mentioned algorithms in Table IV
can optimally solve the EE maximization problem with differ-
ent computational complexities. For our simulations, we select
Alg. 2 with inner Alg. 3 which has the lowest complexity
compared to the others. Since SC-NOMA and FDMA are
special cases of FDMA-NOMA, our selected algorithms are
modified to optimally solve these problems. The simulation
settings are shown in Table V. Without loss of generality,
we set Pmask

n = Pmax, ∀n ∈ N . In our simulations, we apply
a fast suboptimal user clustering method for the flat fading
channels of FD-NOMA presented in Alg. 5. In this method,
we first obtain N = �K/Umax� according to Proposition 6.
The ranking vector R = [Rk], ∀k ∈ K, is the vector of the
ranking of users CNR, in which Rk ∈ {1, . . . , K}, ∀k ∈ K,
such that Rk > Rk� if hn

k > hn
k� . In Alg. 5, the first N users

with the highest CNRs are assigned to different clusters. The
rest of the users with lower decoding orders are distributed
over the subchannels based on their CNRs. The subchannel
allocation of FDMA in flat fading channels is straightforward,
since any subchannel-to-user allocation is optimal. The source
code of the simulations including a user guide is available
in [46]. In the following, the term ‘X-NOMA’ is referred to
as FD-NOMA with Umax = X .

A. System Outage Probability Performance

The impact of minimum rate demands and number of
users on the system outage probability of different multiple
access techniques is shown in Fig. 3. According to (6),

Algorithm 5 Suboptimal User Clustering for FD-NOMA

1: Compute the number of clusters as N = �K/Umax�.
2: Initialize ρn

k = 0, ∀n ∈ N , k ∈ Kn, n = 0, and ranking
vector R = [Rk], ∀k ∈ K.

3: while �R� > 0 do
4: Find k∗ = arg max

k∈K
R.

5: Set n := n + 1.
6: if n > N then
7: Set n = 1.
8: end if
9: Set ρn

k∗ = 1, and Rk∗ = 0.
10: end while

Qmin
n is increasing in Rmin

k . For quite small Rmin
k and/or

K , the performance gap between different multiple access
techniques is low. For larger Rmin

k and/or K , we observe a
significant performance gap between FDMA and X-NOMA
(X ≥ 2), and also between 2-NOMA and 4-NOMA.
Moreover, it can be observed that the performance gap
between 4-NOMA and 6-NOMA is low. Finally, for quite
large Rmin

k and/or K , the outage probability of all these
techniques tends to 1. In summary, the outage probabil-
ity follows: outage(SC-NOMA) < outage(6-NOMA) ≈
outage(4-NOMA) < outage(2-NOMA) � outage(FDMA).

B. Average Minimum BS’s Power Consumption Performance

The impact of minimum rate demands and number of users
on average total power consumption of different multiple
access techniques is shown in Fig. 4. As can be seen, there
exists a significant performance gap between FDMA and
FD-NOMA for larger Rmin

k and/or K . However, the perfor-
mance gap between X-NOMA and (X +1)-NOMA is highly
decreasing for X ≥ 4. The latter performance gaps are highly
increasing in Rmin

k and K .

C. Average Users Sum-Rate Performance

The impact of minimum rate demands and number of
users on the average SR of different multiple access tech-
niques is shown in Fig. 5. For the case that outage occurs,
the SR is set to zero. The results in Figs. 5(a)-5(c) show
that the SR of users is highly insensitive to the mini-
mum rate demands when Rmin

k and K are significantly
low, specifically for SC-NOMA and FD-NOMA. For signifi-
cantly high Rmin

k and/or K , we observe that the average SR
decreases, due to increasing the outage probability shown in
Fig. 3(a)-3(c). Besides, Figs. 5(d)-5(f) show that SC-NOMA
well exploits the multiuser diversity, specifically for lower
Rmin

k . In summary, the SR follows: SR(SC-NOMA) >
SR(6-NOMA) ≈ SR(4-NOMA) > SR(2-NOMA) 
SR(FDMA).

D. Average System Energy Efficiency Performance

The impact of minimum rate demands and number of
users on the average system EE of different multiple access
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Fig. 3. Impact of the minimum rate demand and number of users on the outage probability of SC-NOMA, FD-NOMA, and FDMA.

Fig. 4. Impact of the minimum rate demand and number of users on the average total power consumption of SC-NOMA, FD-NOMA, and FDMA.

techniques is shown in Fig. 6. From Figs. 6(a)-6(c), we observe
that the system EE is affected by Rmin

k although the
users SR are approximately insensitive to Rmin

k shown in
Figs. 5(a)-5(c). The main reason that EE is more affected by
Rmin

k compared to SR is the high sensitivity level of total

power consumption to Rmin
k shown in Figs. 4(a)-4(c). The

impact of total power consumption on EE is highly affected
by the circuit power consumption. It can be shown that when
PC increases, the system EE will be more insensitive to Rmin

k .
From Figs. 6(d)-6(f), we observe that the system EE under
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Fig. 5. Impact of the minimum rate demand and number of users on the average sum-rate of SC-NOMA, FD-NOMA, and FDMA.

Fig. 6. Impact of the minimum rate demand and number of users on the average system EE of SC-NOMA, FD-NOMA, and FDMA.

minimum rate demands is increasing with K , when K is small
enough. In this situation, the system exploits the multiuser
diversity, specifically for SC-NOMA. For significantly large
K , the EE is decreasing with K due to the existing minimum

rate demands which highly affects the total power consump-
tion. Following the results of Figs. 4 and 5, the average
system EE follows: EE(SC-NOMA) > EE(6-NOMA) ≈
EE(4-NOMA) > EE(2-NOMA)  EE(FDMA).
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VI. CONCLUDING REMARKS

In this work, we addressed the problem of finding globally
optimal power allocation algorithms to minimize the BSs
power consumption, and maximize SR/EE of the general
multiuser downlink single-cell Hybrid-NOMA system. For
these objectives, we showed that Hybrid-NOMA with N clus-
ters can be equivalently transformed to N -user virtual FDMA
system, where the effective CNR of each virtual OMA user is
obtained in closed form. In this transformation, we exploited
the closed-form of optimal powers among multiplexed users
within each cluster to further reduce the dimension of our
problems as well as increase the accuracy of the iterative
convex solvers. In particular, we showed that the feasible
region of power allocation in NOMA can be defined as
the intersection of closed boxes along with cellular power
constraint. Then, we proposed a fast water-filling algorithm
for the SR maximization problem, as well as fast iterative
algorithms for the EE maximization problem based on the
Dinkelbach algorithm with inner Lagrange dual with subgra-
dient method/barrier algorithm with inner Newton’s method.
The complexity of our proposed algorithms is also analyzed.
The possible extensions of our analyses to more general cases
with their corresponding new challenges are discussed in the
paper. Numerical assessments show that there exist consid-
erable performance gaps in terms of outage probability, BSs
power consumption, users SR, and system EE between FDMA
and 2-NOMA as well as between 2-NOMA and 4-NOMA.
Moreover, we observed that the performance gaps between
X-NOMA and (X + 1)-NOMA highly decrease for X ≥ 4,
meaning that when X ≥ 4, multiplexing more users merely
improves the system performance.

APPENDIX A
PROOF OF PROPOSITION 1

The feasibility of (5) can be determined by solving the
power minimization problem as

min
p≥0,q≥0

�
n∈N

qn s.t. (5b)-(5e). (36)

The problem (36) is also convex with affine objective func-
tion and constraints. Accordingly, the weak Slater’s condition
implies strong duality, thus (36) can be optimally solved by
using the Lagrange dual method. For SC-NOMA, in Appendix
C of [23], we proved that the maximum power budget does
not have any effect on the optimal powers obtained in the
power minimization problem when the feasible region is
nonempty. Accordingly, problem (36) can be decoupled into
N SC-NOMA power minimization subproblems when the
feasible region of problem (36) is nonempty. The total power
minimization of M -user downlink SC-NOMA is solved in
Appendix C of [23]. For convenience, consider cluster n with
|Kn| = K users whose CNRs are sorted as hn

1 < hn
2 < · · · <

hn
K with optimal decoding order K → K−1 → · · · → 1. As is

proved in [23], at the optimal point p∗n, all the multiplexed
users in Kn get power to only maintain their individual

minimal rate demands, meaning that
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The optimal power of each user k ∈ Kn (in Watts) can thus
be obtained by
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, ∀k = 1, . . . , K . Let us rewrite the
latter equation as
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where βn
k = 2(Rmin
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As a result, we have
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The latter equation can be rewritten as
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Therefore, the minimum power consumption of cluster n is
given by
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The parameter Qmin
n is indeed the minimum power consump-

tion of cluster n to satisfy the minimum rate demand of users
in Kn. As a result, the feasible region of qn is lower-bounded
by Qmin

n for each n ∈ N . Accordingly, constraints (5b)
and (5e) can be combined as qn ∈ �Qmin

n , Pmask
n

�
, ∀n ∈

N , which is the intersection of affine closed boxes, so is
convex. According to (5c), we guarantee that any qn ∈�
Qmin

n , Pmask
n

�
, ∀n ∈ N , satisfying (5c) is feasible, and the

proof is completed.

APPENDIX B
PROOF OF PROPOSITION 2

For any given feasible q, (5c) and (5e) can be removed from
(5). Then, problem (5) can be equivalently divided into N
SC-NOMA subproblems. For each subproblem n, we find the
intra-cluster power allocation among multiplexed users in Kn

in closed-form. According to the KKT optimality conditions
analysis in Appendix B of [23], it is proved that at the optimal
point of SC-NOMA with CNR-based decoding order, only the
cluster-head user gets additional power, and all the other users
get power to only maintain their minimal rate demands.

For convenience, consider cluster n ∈ N with |Kn| = K
users whose CNRs are sorted as hn

1 < hn
2 < · · · < hn

K with

optimal decoding order K → K − 1 → · · · → 1. According
to Appendix B of [23], the optimal powers in p∗n satisfy
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and
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Let us rewrite (39) as
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closed-form expression for p∗n, we rewire the latter equation
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According to the above, we have
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The optimal powers in (41) can be reformulated as
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APPENDIX C
WATER-FILLING ALGORITHM FOR SOLVING (12)

The Lagrange function of (12) is given by

L(q̃, ν) =
�
n∈N

Ws log2 (1 + q̃nHn) + ν

�
P̃max −

�
n∈N

q̃n

�
,

(42)

where ν is the Lagrange multiplier for the cellular power
constraint (12b), and qn ∈ [Q̃min

n , P̃mask
n ], ∀n ∈ N . The

Lagrange dual function is

g(ν) = sup
q̃∈P

L(q̃, ν)
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, (43)

where P is the feasible set of problem (12). The Lagrange
dual problem is formulated by

min
ν

g(ν), s.t. ν ∈ R. (44)

Assume that ν∗ is the dual optimal. Moreover, q̃∗ = [q̃∗n], ∀n ∈
N , is primal. The KKT conditions are listed below

C1 : qn ∈ [Q̃min
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n ], ∀n ∈ N ,

C2 : P̃max −
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n∈N

q̃∗n = 0,

C3 : ∇q̃∗L(q̃∗, ν∗) = 0.

Condition C3 can be rewritten as WsHn/ ln 2
1+q̃∗

nHn
− ν∗ = 0, ∀n ∈

N . Summing-up, for each n ∈ N , we have
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To ease of convenience, we reformulate (45) as q̃∗n =
max
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n , min
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The left-hand side is a piecewise-linear increasing function of
Ws/(ln 2)

ν∗ with breakpoints at 1
Hn

, ∀n ∈ N , so the equation
has a unique solution which is readily determined. To find
optimal ν∗, we first initialize tolerance �, lower-bound νl

and upper-bound νh. The lower-bound νl should satisfy�
n∈N

max
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P̃max, and the upper-bound νh should satisfy�
n∈N

max
�
Q̃min

n , min
��

Ws/(ln 2)
νh

− 1
Hn

�
, P̃mask

n

��
<

P̃max. After the initialization step, we apply the bisection
method to find ν∗ presented in Alg. 1.

APPENDIX D
PROOF OF THE OPTIMALITY OF ALG. 2

Let us define the EE function as E(p) = f1(p)
f2(p) , ∀p ∈ P ,

where f1(p) =
�

n∈N

�
k∈Kn

Rn
k (pn), f2(p) =

�
n∈N

�
k∈Kn

pn
k +

PC, and P denotes the feasible set of problem (4). In this
formulation, f1(p) is concave, and f2(p) is affine, so is
convex. Moreover, both f1 and f2 are differentiable. The
feasible set P can be characterized by using Proposition 1
which is shown to be affine, so is convex. For any non-
empty P (which can be determined by Corollary 1), the
objective function E(p) = f1(p)

f2(p) is pseudoconcave, implying
that any stationary point is indeed global maximum and the
KKT conditions are sufficient if a constraint qualification is
fulfilled [24], [25]. Therefore, the globally optimal solution
of problem (4) can be obtained by using convex optimization
algorithms [24], [25]. In particular, (4) can be equivalently
transformed to the following problem as

max
p∈P,λ∈R

λ s.t.
f1(p)
f2(p)

− λ ≥ 0,

which can be rewritten as

max
p∈P,λ∈R

λ s.t. f1(p) − λf2(p) ≥ 0.

It can be proved that solving the latter problem is equivalent
to finding the root of the following nonlinear function [25]

F (λ) = max
p∈P

f1(p) − λf2(p),

so the condition for the global optimality is

F (λ∗) = max
p∈P

f1(p) − λ∗f2(p) = 0.

Various methods can find the root of F (λ), such as the
Dinkelbach algorithm [67] which is based on the Newton’s
method. For more details, please see Proposition 3.2 in [24].
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APPENDIX E
LAGRANGE DUAL WITH SUBGRADIENT METHOD

FOR SOLVING (19)

The Lagrange function of (19) is formulated by

L(q̃, ν) =
�
n∈N

Ws log2 (1 + q̃nHn) − λ

��
n∈N

q̃n

�

+ ν

�
P̃max −

�
n∈N

q̃n

�
, (47)

where ν is the Lagrange multiplier for the cellular power
constraint (19b), and qn ∈ [Q̃min

n , P̃mask
n ], ∀n ∈ N . The dual

function is given by

g(ν) = sup
q̃∈P

L(q̃, ν) = sup
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where P is the feasible domain of problem (12). The Lagrange
dual problem is formulated by

min
ν

g(ν), s.t. ν ∈ R. (49)

The optimal q̃∗ can be obtained by ∇q̃L(q̃, ν) = 0. Then,
we have

q̃∗n =
#
Ws/(ln 2)
λ + ν∗ − 1

Hn

$P̃mask
n

Q̃min
n

, n ∈ N , (50)

where ν∗ is the dual optimal, which can be obtained by using
the subgradient method [47]. In this algorithm, we iteratively
update ν such that at iteration (t + 1)

ν(t+1) =

,
ν(t) − �s

�
P̃max −

�
n∈N

q̃(t)
n

�-+

, (51)

where ν(t) is the Lagrange multiplier ν at iteration t, and
q̃
(t)
n is the optimal solution obtained by (50) at iteration

t. Moreover, �s > 0 is the step size tuning the accuracy
of the algorithm [68]. The iterations are repeated until the
convergence is achieved. It is verified that the subgradient
method will converge to the globally optimal solution after
few iterations [68].

APPENDIX F
BARRIER ALGORITHM WITH INNER NEWTON’S

METHOD FOR SOLVING (19)

Let us reformulate (19) as the following standard convex
problem

min
q̃

f0(q̃) = −
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n∈N
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(52a)
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Then, we approximate (52) to an unconstrained minimization
problem as

min
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U(q̃) = tf0(q̃) + φ(q̃), (53)

in which

φ(q̃) = − log (−f1(q̃)) ,

such that the domain of φ is

dom φ = {qn ∈ [Q̃min
n , P̃mask

n ], ∀n ∈ N|f1(q̃) < 0},
and t  1 is a positive real constant. The problem (53) is
convex since tf0(q̃) and φ(q̃) are convex. In each barrier
iteration, we solve (53) by using the Newton’s method. The
gradient of U(q̃) is formulated by
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The Hessian of U(q̃) is formulated by
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which is positive definite, since each element ∂2f0
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the main diagonal of ∇2
q̃f0(q̃) is positive and the oth-

ers are zero. The Hessian of φ(q̃) can be obtained by
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that ∇2
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The latter result proves that U(q̃) is strictly convex and its

Hessian is nonsingular. Accordingly,
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q̃U(q̃)
�−1

is positive
and finite. Hence, the barrier method with inner Newton’s
method achieves an �-suboptimal solution [47].
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APPENDIX G
OPTIMAL POWER ALLOCATION FOR MAXIMIZING

SUM-RATE OF K -USER SC-NOMA WITH PER-USER

MINIMUM AND MAXIMUM RATE CONSTRAINTS

Consider a K-user SC-NOMA system, whose users CNRs
are sorted as h1 < h2 < · · · < hK with optimal
decoding order K → K − 1 → · · · → 1. Let Mk =

2(Rmax

k /Ws) − 1
�� K�

j=k+1

pjhk + 1

�
/hk, ∀k = 1, . . . , K .

It can be shown that the optimal powers can be obtained by
first calculating the optimal powers in Proposition 2. Then,
we obtain MK of the strongest user. If p∗K ≤ MK , the
obtained powers are the optimal solution. If p∗K > MK , we set
p∗K = MK . Then, we calculate MK−1 and pK−1 = Pmax −⎛
⎝ K�

j=1
j �=K−1

pj

⎞
⎠ with the updated p∗K = MK . If p∗K−1 ≤ MK−1,

the obtained powers are the optimal solution. If p∗K−1 >
MK−1, we set p∗K−1 = MK−1. Then, we calculate MK−2 and

pK−2 = Pmax −
⎛
⎝ K�

j=1
j �=K−2

pj

⎞
⎠ with the updated p∗K = MK ,

and p∗K−1 = MK−1. If p∗K−2 ≤ MK−2, the obtained powers
are the optimal solution. Otherwise, we continue these series
until a user denoted by i satisfies p∗i ≤ Mi. Accordingly, the
achievable rate of users K, . . . , 1 can be obtained, respectively,
as

Rmax
K , Rmax

K−1, . . . , R
max
i+1� �� �

Maximum Rates

,
�
Rmin

i , Rmax
i

�� �� �
Between

, Rmin
i−1, . . . , R

min
1� �� �

Minimum Rates

.
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