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Abstract— We study the equivalence between non-perfect
secret sharing (NSS) and symmetric private information
retrieval (SPIR) with arbitrary response and collusion patterns.
NSS and SPIR are defined with an access structure, which
corresponds to the authorized/forbidden sets for NSS and the
response/collusion patterns for SPIR. We prove the equivalence
between NSS and SPIR in the following two senses. 1) Given
any SPIR protocol with an access structure, an NSS protocol is
constructed with the same access structure and the same rate. 2)
Given any linear NSS protocol with an access structure, a linear
SPIR protocol is constructed with the same access structure and
the same rate. We prove the first relation even if the SPIR
protocol has imperfect correctness and secrecy. From the first
relation, we derive an upper bound of the SPIR capacity for
arbitrary response and collusion patterns. For the special case
of n-server SPIR with r responsive and t colluding servers, this
upper bound proves that the SPIR capacity is (r − t)/n. From
the second relation, we prove that a SPIR protocol exists for any
response and collusion patterns.

Index Terms— Non-perfect secret sharing (NSS), symmetric
private information retrieval (SPIR), multi-target monotone span
program (MMSP), capacity.

I. INTRODUCTION

A. Nonperfect Secret Sharing and Symmetric Private
Information Retrieval

SECRET sharing (SS) and private information
retrieval (PIR) are two extensively studied cryptographic

protocols. SS [2], [3] considers the problem in which a
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dealer encodes a secret into n shares so that some subsets
of shares can reconstruct the secret but the other subsets
have no information of the secret. PIR [4] considers the
problem in which a user retrieves one of the multiple files
from server(s) without revealing which file is retrieved. Since
PIR with one server has no efficient solution [4], it has been
extensively studied with multiple non-communicating servers,
and thus, in the following, we simply denote multi-server
PIR by PIR. SS and PIR have a similar structure because
the secrecy of both protocols is obtained by partitioning the
confidential information. On the other hand, the two protocols
have a different structure because in SS, the secret is both the
confidential and targeted information but in PIR, the targeted
file is not confidential. From the similarity, there have been
several studies to construct PIR from secret sharing [5]–[9].
However, the relation between these two protocols has not
been clearly discussed.

In this paper, we study the relation between an extended
class of SS, called non-perfect SS (NSS), and that of PIR,
called symmetric PIR (SPIR). NSS is first discussed by [10],
[11] with thresholds and is extended for general access struc-
tures [12]–[16]. NSS with general access structures is defined
with two collections A, B ⊂ 2[n] := 2{1,...,n} which represent
the authorized sets and the forbidden sets, respectively. The
shares indexed by any element of A can reconstruct the secret
but those indexed by any element of B have no information
of the secret. We denote NSS with A and B by (A, B, n)-
NSS. The (perfect) SS corresponds to the (A, B, n)-NSS with
A ∪ B = 2[n].

SPIR [5] is a variant of PIR in which the user only obtains
the targeted file but no information of the other files. The
paper [5] proved that shared randomness of servers is neces-
sary to achieve SPIR. This paper considers SPIR with arbitrary
response and collusion patterns A, B ⊂ 2[n]. We define a
(A, B, n, f)-SPIR protocol by an n-server f-file protocol with
the following conditions: i) the user correctly recovers the
targeted file even if only the servers indexed by A ∈ A answer
to the user; ii) the identity of the retrieved file is not leaked
even if the servers indexed by B ∈ B collude; and iii) the
user obtains no other information than the targeted file. If
A = {[n]} and B = {{i} ∈ i ∈ [n]}, (A, B, n, f)-SPIR is
the SPIR in which no servers collude and all servers respond,
which has been discussed in [5] and [17].

The efficiency of a PIR protocol is evaluated by the PIR
rate

RPIR =
(Size of the targeted file)

(Total size of the answers)
, (1)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4854-6200
https://orcid.org/0000-0003-3104-1000


1000 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 3, MARCH 2022

Fig. 1. NSS protocol and SPIR protocol with access structure (A, B). Let
n = 3, A = {{2, 3}, {1, 2, 3}}, and B = {∅, {1}, {2}, {3}, {1, 2}}. Since
{2, 3} ∆ A, MK (L) can be reconstructed from the answers D2, D3 (shares
S2, S3). Since {1, 2} ∆ B, no information of K (L) can be extracted from
the answers D1, D2 (shares S1, S2).

TABLE I

COMPARISON OF SPIR AND NSS

and the optimal efficiency is derived as the supremum of
the PIR rate, which is called the PIR capacity [18], and has
been studied in many papers. The paper [19] derived the
capacity of PIR with disjoint collusion patterns, which is a
special case of the arbitrary collusion patterns. This model
is extended to the arbitrary collusion patterns by [20]–[22],
where PIR protocols are constructed on coded data storage.
On the replicated data storage, the capacity of PIR with
arbitrary collusion patterns [23] and the capacity of SPIR
with arbitrary collusion and eavesdropping patterns [24] are
characterized by the solution of a linear programming problem.
For the PIR/SPIR with thresholds, i.e., A (B) consists of all
subsets with cardinality at least r (at most t), the papers [25]–
[27] derived the capacity of PIR with t colluding and b
byzantine servers, the capacity of SPIR with t colluding and
e eavesdropping servers with an assumption on the shared
randomness of the servers, and the PIR/SPIR capacity with
t colluding, e eavesdropping, r responsive, and b byzantine

servers, under various assumptions on the protocols and the
shared randomness, respectively. The paper [28] constructed
PIR/SPIR protocols with t colluding, r responsive, and b
byzantine servers. However, no existing study discussed SPIR
with arbitrary response and collusion patterns.

B. Main Results

As the first result, this paper shows that (A, B, n, f)-SPIR
implies (A, B, n)-NSS. To state this result, we formally define
(A, B, n, f)-SPIR and (A, B, n)-NSS protocols with incom-
plete security by the measures of correctness and secrecy. With
abuse of notation, we prove that given an (A, B, n, f)-SPIR
protocol with nearly complete security, we propose a method
to construct an (A, B, n)-NSS protocol with nearly complete
security. The proof idea is simply described as follows. To con-
struct an (A, B, n)-NSS protocol from a given (A, B, n, f)-
SPIR protocol, the dealer simulates the (A, B, n, f)-SPIR
protocol while setting the secret of NSS as one of the files, and
encodes the n answers as n shares. Then, the shares indexed
by A reconstruct the secret by the SPIR’s correctness. For the
secrecy part, we prove that the shares indexed by B have
no information of the secret from the SPIR’s two secrecy
conditions.

When the SPIR and NSS protocols have complete correct-
ness and secrecy, these protocols are called completely secure
and denoted by CSSPIR and CSNSS protocols, respectively.
One interesting corollary of our first result is an upper bound
on the CSSPIR capacity with arbitrary response and collusion
patterns. Similar to the PIR rate defined in (1), the SS rate1

RSS is defined as

RSS =
(Size of the secret)

(Total size of the shares)
. (2)

In our conversion from SPIR to NSS, any SPIR protocol
with PIR rate RPIR is converted into an NSS protocol with
SS rate RSS = RPIR. Furthermore, any (A, B, n)-CSNSS
protocols satisfy nRSS ≤ δ(A, B) := min{|A − B| | A ∈
A, B ∈ B} [12]–[14]. Thus, we obtain nRPIR ≤ δ(A, B) for
any (A, B, n, f)-CSSPIR protocols. This is the first result to
characterize the CSSPIR capacity of arbitrary collusion and
response patterns.

As a special case, when A (B) consists of all subsets
of [n] with cardinality at least r (at most t), we obtain
δ(A, B) = r − t, i.e., the rate of (A, B, n, f)-CSSPIR is
upper bounded by (r − t)/n. This special case generalizes
the result of Holzbaur et al. [27], which proved the same
upper bound for a restricted class of CSSPIR, i.e., linear
CSSPIR with additive randomness. Since the protocol by
Tajeddine et al. [28] achieves this upper bound2, our upper
bound proves that the capacity of CSSPIR with r responses
and t colluding servers is (r − t)/n.

1The efficiency of SS is often considered with information rate and
information ratio [32]. The information rate is defined by replacing the
denominator of (2) by the maximum size of a share, and the information
ratio is the inverse of the information rate. However, we define the SS rate
for the correspondence with the PIR rate.

2In [28], the notation r is for the number of unresponsive servers, which is
n − r in our paper. Moreover, [28] defined the denominator of the PIR rate
(1) as “bit size of all responsive servers.”
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Our second main result is the equivalence of linear
(A, B, n, f)-CSSPIR and linear (A, B, n)-CSNSS. Linear
(A, B, n, f)-SPIR (linear (A, B, n)-NSS) is a well-known class
of SPIR (NSS) in which the answers (shares) are gener-
ated by linear encoders. To prove this result, we define
multi-target monotone span programs (MMSP) with general
access structures (A, B), which we call (A, B, n)-MMSP.
An MMSP is a pair of a matrix and a map with two linear-
algebraic conditions. To prove the equivalence result, we
separately prove that a (A, B, n)-CSNSS protocol, a (A, B, n)-
MMSP, and a (A, B, n)-CSSPIR protocol, are constructed
from a (A, B, n)-CSSPIR protocol, a (A, B, n)-CSNSS pro-
tocol, and a (A, B, n)-MMSP, respectively, which implies the
equivalence of the three protocols. Our equivalence result
of (A, B, n)-CSNSS and (A, B, n)-MMSP generalizes the
equivalence of completely secure SS and monotone span
program [29]–[31]. Since there exists a linear CSNSS protocol
for any access structure (A, B) [16], the same existence holds
for CSSPIR by our second result.

C. Basic Idea in Equivalence

The key intuition for the equivalence is the similarity in the
structure of the protocols (see Figure 1 and Table I). From
this similarity, the server secrecy of SPIR is closely related
to the secrecy of NSS, while the user secrecy of SPIR is
not covered in NSS. Thus, we can roughly state that SPIR
is more complicated protocol than NSS protocol. With this
idea, conversion from the complicated SPIR protocol to the
simpler NSS protocol is obtained by utilizing only a part of
the SPIR protocol as the NSS protocol. That is, we only
need the operational properties of SPIR, rather than some
algebraic structure, for converting it into NSS. As a result,
the conversion from SPIR to NSS can be completed without
any linearity assumption.

On the other hand, to construct conversion from NSS to
SPIR, we need to add the user secrecy to the NSS protocol.
This addition of user secrecy is hard to be implemented only
with the operational definition of NSS protocols. Thus, instead,
we convert linear NSS into linear SPIR. With the linearity
algebraic structure in linear NSS, we add the user secrecy
to NSS so that it operates the SPIR’s tasks. As a result, the
conversion from NSS to SPIR is limited to linear protocols in
this paper.

One interesting observation of the conversion from NSS to
SPIR is that the one message protocol, NSS, is evolved into the
multiple message protocol, SPIR. This task is completed in our
conversion from linear NSS to linear SPIR by the following
idea. When k-th file Mk is the desired file of the user, the
user forces the servers to choose Mk as a secret of the NSS
without leaking k and answer the generated shares of the
NSS. This forcing step by the user is accomplished with a
well-established query structure. Finally, the user reconstructs
Mk by collecting an authorized set of shares (answers).

D. Organization

The remainder of the paper is organized as follows.
Section II gives the definitions of NSS, SPIR, and related

TABLE II

DEFINITION OF SYMBOLS

concepts. Section III presents the main results of the paper.
Section IV proves the conversions from SPIR to NSS and
from linear SPIR to linear NSS. Sections V and VI prove the
conversions from linear CSNSS to MMSP and from MMSP
to linear CSSPIR, respectively. Section VII give two examples
of the constructions: a construction with general non-threshold
access structure, and optimal constructions of linear CSNSS
and linear CSSPIR when the access structure with thresholds.
Section VIII is the conclusion of the paper.

Notations: We denote random variables by uppercase letters
(e.g., A, B), and values of the random variables by lowercase
letters (e.g., a, b), sets by calligraphy letters (e.g., A,B),
parameters in protocols by sans serif lowercase letters (e.g.,
a, b), and matrices by sans serif upper letters (e.g., A, B).
We also denote [n, m] = {n, n + 1, . . . , m} and [n] = [1 : n].
For any set or sequence A = {A1, . . . , An} and any X ⊂ [n],
we denote AX := {Ai | i ∈ X}. For any n × m matrix A
and any X ⊂ [n], we denote AX is the restricted matrix by
the rows indexed by X . The finite field of order q is denoted
by Fq . For a set A, idA denotes the identity map on A. For
a random variable X , PrX [f(X)] is the probability that X
satisfies the condition f(X).

II. FORMAL DEFINITION OF NSS AND SPIR

In this section, we formally define SPIR, NSS, and MMSP.
For these definitions, we first define access structures.

Definition 1 (Access Structure): Let n be a positive integer.
We call A ⊂ 2[n] an monotone increasing collection if A ∈ A
implies C ∈ A for any A ⊂ C ⊂ [n]. In contrast, we call
B ⊂ 2[n] a monotone decreasing collection if B ∈ B implies
C ∈ B for any C ⊂ B. An access structure on [n] is defined
as a pair of monotone increasing and decreasing collections
A and B ⊂ 2[n] such that A ∩ B = ∅.

Example 1: When n = 3, A = {{2, 3}, {1, 2, 3}}, and B =
{∅, {1}, {2}, {3}, {1, 2}}, the pair (A, B) forms an access
structure. The monotone increasing collection A consists of
all subsets containing {2, 3}, and the monotone decreasing
collection B consists of all subsets contained in {1, 2} or {3}.
In this example, the subsets of size 2 are contained in different
collections: {2, 3} ∈ A, {1, 2} ∈ B, and {1, 3} �∈ A ∪ B.

A. Formal Definition of Symmetric Private Information
Retrieval (SPIR)

We formally define a SPIR protocol with one user and n
servers as follows.

Definition 2 ((A, B, n, f)-SPIR): Files are given as a uni-
form random variable M = (M1, . . . , Mf) ∈ Mf and
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m := |M|. Each of n servers contains the files M . Let
USPIR ∈ USPIR be uniform random variable, called the ran-
dom seed for servers, and the random seed USPIR is encoded
as h(USPIR) = T = (T1, . . . , Tn) ∈ T ⊂ T1 × · · · × Tn

by the shared randomness encoder h. The randomness T is
distributed so that j-th server contains Tj . Let K be a uniform
random variable in [f], which represents the user’s input. When
K = k, the targeted file is Mk.

A protocol Φm
SPIR is defined by the deterministic mappings

f, g1, . . . , gn in the following steps.

• Query: Depending on the user’s private uniform random-
ness R ∈ R, the user prepares n queries by

Q = (Q1, . . . , Qn) = f(K, R) ∈ Q1 × · · · × Qn

(3)

and sends the j-th query Qj to the j-th server.
• Answer: The j-th server returns

Dj = gj(Qj , M, Tj) ∈ Dj (4)

to the user.

For an access structure (A, B) on [n]. the protocol Φm
SPIR

is called an (A, B, n, f)-SPIR protocol with security (α, β, γ)
if the following conditions are satisfied.

• Correctness: We define the user’s maximum likelihood
decoder

m̂ML
dA,r,k := argmax

mk∈M
Pr[DA = dA|(MK , R, K)

= (mk, r, k)].

Then,

α ≥ α(Φm
SPIR) := max

r∈R,
k∈[f],
A∈A

PrMk,DA [Mk �= m̂ML
DA,r,k].

(5)

• Server secrecy:

β ≥ β(Φm
SPIR) := max

r∈R,
k∈[f]

I(D; M[f]\{k}|R = r, K = k).

(6)

• User secrecy:

γ ≥ γ(Φm
SPIR) := max

B∈B
I(K; QB). (7)

The PIR rate of the protocol Φm
SPIR is defined as

RPIR(Φm
SPIR) :=

log m�n
j=1 log |Dj |

. (8)

The shared randomness rate is defined as

RUSPIR =
log |USPIR|

log m
. (9)

Remark 1: From the definition of the protocol, it seems
natural to define the server secrecy condition as β�(Φm

SPIR) :=
maxA∈A,r∈R,k∈[f] I(DA; M[f]\{k}|R = r, K = k), which is
the maximization of the β�(Φm

SPIR) defined in (6). Indeed,
we have β�(Φm

SPIR) = β(Φm
SPIR) since the collection A

contains the set [n] by the monotone increasing property.

In the above security conditions, α(Φm
SPIR) is the worst-case

error probability with the maximum likelihood decoder,
β(Φm

SPIR) is the worst-case leakage of the non-targeted files
to the user, and γ(Φm

SPIR) is the worst-case leakage of the
index K to the colluding servers. If (α, β, γ) = (0, 0, 0), the
(A, B, n, f)-SPIR protocol has complete security.

Definition 3 (CSSPIR): A (A, B, n, f)-SPIR protocol with
security (α, β, γ) = (0, 0, 0) is called a completely secure
(A, B, n, f)-SPIR ((A, B, n, f)-CSSPIR) protocol.

In a (A, B, n, f)-CSSPIR protocol, the user can recover
the targeted file MK without error from the answers indexed
by any A ∈ A, but the servers indexed by B ∈ B obtain
no information of K . The achievable rate and capacity of
(A, B, n, f)-CSSPIR are defined as follows.

Definition 4 (Achievability of (A, B, n, f)-CSSPIR): A PIR
rate R is achievable if there is a sequence of (A, B, n, f)-
CSSPIR protocols {Φm

SPIR}m∈N such that RPIR(Φm
SPIR) → R

as m → ∞.
Definition 5 (Capacity of (A, B, n, f)-CSSPIR): Capacity

of (A, B, n, f)-CSSPIR, C
(A,B,n,f)
SPIR , is the supremum of

achievable rates of (A, B, n, f)-CSSPIR.
As special cases, SPIR with thresholds and linear SPIR are

defined as follows.
Definition 6 ((r, t, n, f)-SPIR): When A = {A ⊂ [n] |

|A| ≥ r} and B = {B ⊂ [n] | |B| ≤ t}, (A, B, n, f)-SPIR
protocols are called (r, t, n, f)-SPIR protocols.

Definition 7 (Linear SPIR): A protocol Φm
SPIR is called a

linear SPIR protocol if the following conditions are satisfied
with a map τ : [z] → [n], called the position map.

Vector representation of files The files Mi are written as
a vector in F

x
q . The entire file is written by the

concatenated vector M = (M1, . . . , Mf) ∈ F
fx
q .

Linearity of shared randomness The random seed USPIR

is written by a uniform random vector in F
y
q. The

randomness encoder is written as a matrix H ∈
F

z×y
q and the shared randomness is written as T =

HUSPIR ∈ F
z
q. The randomness of the j-th server is

written as Tj = Hτ−1(j)T
� ∈ F

|τ−1(j)|
q .

Linearity of servers The answer of the j-th server Dj is
written as the sum of the shared randomness Tj

and the encoded output of the files M by the linear
function Qτ−1(j), which depends on the query, i.e.,

Dj = Qτ−1(j)M + Tj ∈ F
|τ−1(j)|
q . (10)

Therefore, we can consider that the query to the j-
th server is given as the linear function, a matrix,
Qτ−1(j) ∈ F

z×fx
q .

A linear SPIR is described by the triplet (H, Q, τ) of
randomness encoder H ∈ F

z×y
q , random matrix of query

Q ∈ F
z×fx
q , and position map τ : [z] → [n]. Due to the above

conditions, the PIR rate and the shared randomness rate of a
linear SPIR protocol are x/z and y/x, respectively.

Remark 2: Our definition of linear SPIR generalizes the
definition of Holzbaur et al. [27]. The linear SPIR defined
in [27] corresponds to our definition with |τ−1(j)| = c for
a fixed c.
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In the definition of linear PIR, linearity is required for the
generation of the shared randomness and the servers’ answers.
We define a new subclass of linear PIR with a specific linear
condition on the user’s encoding as follows.

Definition 8 (Projected Linear SPIR): A linear SPIR pro-
tocol Φm

SPIR is called a projected linear SPIR protocol if
the query Q = (Qτ−1(1), . . . , Qτ−1(n)) satisfies the following
condition;

Linearity of user The uniform randomness R of the
user is written as a matrix in F

y×fx
q . The query is

written as

Q = JEk + HR ∈ F
z×fx
q , (11)

where J is a matrix in F
z×x
q , Ek ∈ F

x×fx
q = F

x×x
q ×

· · · × F
x×x
q is the matrix whose k-th block is the

x × x identity matrix and the other blocks are zero,
and H ∈ F

z×y
q is the same matrix as the shared

randomness encoder. The query to the j-th server
is written as Qτ−1(j) ∈ F

|τ−1(j)|×fx
q .

A projected linear SPIR is described by the triplet (H, J, τ)
of randomness encoder H ∈ F

z×y
q , user’s query encoder J ∈

F
z×x
q , and position map τ : [z] → [n].
Whereas the size of the query Q ∈ F

z×fx
q in linear SPIR is

increasing with the number of files f, that of projected linear
SPIR J ∈ F

z×x
q is smaller and independent of the size of the

files.
We define a projection p̂ from linear SPIR protocols into

projected linear SPIR protocols as follows.
Definition 9 (Projection): For a linear SPIR protocol

Φm
SPIR, let Q = (Q�, Q��) ∈ F

z×x
q × F

z×(f−1)x
q be the matrix

of query when K = 1 and R = 0. Further, let H ∈ F
z×y
q be

the randomness encoder and τ be the position map of Φm
SPIR.

Then, we define a map p̂ that maps Φm
SPIR to the projected

linear SPIR protocol described by the triplet (H, Q�, τ) of the
randomness encoder, user’s query encoder, and position map.
The map p̂ is a projection to projected linear SPIR because
any projected linear SPIR protocol is mapped to itself.

B. Formal Definition of Non-Perfect Secret Sharing (NSS)

We formally define an NSS protocol with one dealer and n
players as follows.

Definition 10 ((A, B, n)-NSS): A secret is given as a uni-
form random variable L ∈ M and m := |M|. A protocol
Φm

NSS is defined by the following deterministic map (the encod-
ing map) f to generate n shares in the share generation step;

• Share generation: Depending on the dealer’s private
uniform randomness UNSS ∈ UNSS, the dealer prepares
n shares by

S = (S1, . . . , Sn) = f(L, UNSS) ∈ S1 × · · · × Sn,(12)

and sends the j-th share Sj to the j-th player.

For an access structure (A, B) on [n], the protocol Φm
NSS

is called an (A, B, n)-NSS protocol with security (α, β) if
the following conditions are satisfied.

• Correctness: We define the maximum likelihood decoder

�̂ML
sA := argmax�∈M Pr[SA = sA|L = �].

Then,

α ≥ α(Φm
NSS) := max

A∈A
PrL,SA[L �= �̂ML

SA ]. (13)

• Secrecy:

β ≥ β(Φm
NSS) := max

B∈B
I(L; SB). (14)

The SS rate of the protocol Φm
NSS is defined as

RSS(Φm
NSS) :=

log m�n
j=1 log |Sj |

. (15)

The randomness rate is defined as

RUNSS =
log |UNSS|

log m
. (16)

In the above security conditions, α(Φm
SPIR) is the worst-case

error probability with the maximum likelihood decoder and
β(Φm

SPIR) is the worst-case leakage of the secret to the
forbidden set of shares. If (α, β) = (0, 0), the (A, B, n)-
CSNSS protocol has complete security.

Definition 11 (CSNSS): A (A, B, n)-NSS protocol with
security (α, β) = (0, 0) is called a completely secure
(A, B, n)-NSS ((A, B, n)-CSNSS) protocol.

In a (A, B, n)-CSNSS protocol, the players indexed by any
A ∈ A can recover L without error, but the players indexed
by any B ∈ B obtain no information of L. The achievable
rate and capacity of (A, B, n)-CSNSS are defined as follows.

Definition 12 (Achievability of (A, B, n)-CSNSS): A SS
rate R is achievable if there is a sequence of (A, B, n)-CSNSS
protocols {Φm

NSS}m∈N such that RSS(Φm
NSS) → R as m → ∞.

Definition 13 (Capacity of (A, B, n)-CSNSS): Capacity of
(A, B, n)-CSNSS, C

(A,B,n)
NSS , is the supremum of achievable

rates of (A, B, n)-CSNSS.
Remark 3: When A∪B = 2[n], the protocol in Definition 10

is called a (perfect) secret sharing protocol. Since all results
in this paper are obtained for any general access structure, all
results also apply to perfect SS.

As special cases, NSS with thresholds and linear NSS are
defined as follows.

Definition 14 ((r, t, n)-NSS): When A = {A ⊂ [n] | |A| ≥
r} and B = {B ⊂ [n] | |B| ≤ t}, (A, B, n)-NSS protocols are
called (r, t, n)-NSS protocols.

Definition 15 (Linear NSS): A protocol Φm
NSS is called a

linear NSS protocol if the encoding map f satisfies the
following conditions with a position map τ : [z] → [n].

Vector representation of secret The secret L is written as
a vector in F

x
q.

Vector representation of randomness The dealer’s private
randomness UNSS is written as a uniform random vector in
F

y
q.
Linearity of share generation The encoder f is written

as a linear map from F
x+y
q to F

z
q that maps (Z1, . . . , Zz) =

f(L, UNSS). The j-th secret is written as Sj = (Zi | i ∈
τ−1(j)) ∈ F

|τ−1(j)|
q .

Thus, a linear NSS Φm
NSS is described by the pair (f, τ) of

a linear map f : F
x+y
q → F

z
q and a position map τ : [z] → [n].

Due to the above conditions, the SS rate and randomness rate
of the linear NSS are x/z and y/x, respectively.
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C. Formal Definition of Multi-Target Monotone Span
Program (MMSP)

We define a multi-target monotone program (MMSP) with
an access structure as follows.

Definition 16 (Multi-Target Monotone Span Program
(MMSP)): Given positive integers n, x, y, z, a pair P = (G, τ)
of a matrix G = (G�, G��) ∈ F

z×(x+y)
q = F

z×x
q × F

z×y
q and a

position map τ : [z] → [n] is called a multi-target monotone
span program (MMSP).

Let ei ∈ F
x+y
q be the row vector with 1 in the i-th coordinate

and 0 in the others. Let E := {e1, . . . , ex} and we say the
following;

• P accepts A if E is included in the row space of Gτ−1(A)

for any A ∈ A, and
• P rejects B if spanE ∩ rowspanGτ−1(B) = {0} for any

B ∈ B.
An MMSP P is called (A, B, n)-MMSP if P accepts A and
rejects B. The MMSP rate RMMSP is defined as the ratio x/z.

Remark 4: Our definition of MMSP generalizes the defini-
tion in [32]–[34]. The MMSP defined in [32]–[34] corresponds
to our definition with A∪B = 2[n] and A∩B = ∅, i.e., every
subset of [n] is either authorized or forbidden. Our definition
of MMSP also generalizes the monotone span programs [30],
which corresponds to the case x = 1 and A∪B = 2[n] for our
MMSP definition.

The papers [29]–[31] proved the equivalence of linear
perfect SS protocols with complete security and monotone
span programs. This paper generalizes this relation to the
equivalence of linear CSNSS protocols and MMSPs.

As special cases, we define (A, B, n)-MMSPs with thresh-
olds as follows.

Definition 17 ((r, t, n)-MMSP): When A = {A ⊂ [n] |
|A| ≥ r} and B = {B ⊂ [n] | |B| ≤ t}, (A, B, n)-MMSPs are
called (r, t, n)-MMSPs.

(r, t, n)-MMSPs are related with maximum distance sepa-
rable (MDS) codes. The column space of a matrix A ∈ F

n×k
q

is called an (n, k)-MDS code if any k rows of A are linearly
independent. We give the relation between (r, t, n)-MMSPs
and MDS codes by the following theorem.

Theorem 1: Let G = (G�, G��) ∈ F
n×(r−t)
q × F

n×t
q . The

following conditions are equivalent.
(a) With τ := id[n] and (x, y, z) := (r − t, t, n), P = (G, τ)

is an (r, t, n)-MMSP.
(b) G (G��) is the generator matrix of an (n, r)-MDS code

((n, t)-MDS code).

Theorem 1 will be proved in Appendix A.
The matrices G and G�� with condition (b) of Theorem 1

have been applied for private information retrieval [28], [40]–
[42], [56], secret sharing [2], [11], [35]–[39], wiretap channel
II [43], [44], secure network coding [45]–[51], distributed
storage system [52] and cryptography [53], [54]. Especially,
Ozarow and Wyner’s optimal wiretap channel code corre-
sponds to the case r = n and Shamir’s secret sharing protocol
corresponds to the case where r = t+1. Thus, from Theorem 1,
(r, t, n)-MMSP with condition (a) characterizes the structure
of those protocols and (A, B, n)-MMSP is a generalization of
those protocols with general access structures.

III. MAIN RESULTS

In this section, we present our main theorems in three sub-
sections. The subsections present, respectively, the conversions
from SPIR to NSS, from linear CSNSS to MMSP, and from
MMSP to projected linear CSSPIR.

A. Conversion From SPIR to NSS

The following protocol converts a SPIR protocol to an NSS
protocol.

Protocol 1: Given a SPIR protocol Φm
SPIR, an NSS protocol

Φ̂m
NSS[Φ

m
SPIR] is constructed by generating n shares as follows.

Recall that from the definition of the SPIR protocol Φm
SPIR, the

symbols M, USPIR, and R denote the space of files, random
seeds for shared randomness, and private randomnesses of the
user, respectively.

We define r∗ ∈ R and m∗
[2:f] ∈ Mf−1 as

r∗ ∈ argmin
r∈R

�
max
B∈B

I(M1; DB|R = r, K = 1)
�

, (17)

m∗
[2:f] ∈ argmin

m[2:f]∈Mf−1
I(M1; DB|M[2:f] = m[2:f], R = r∗,

K = 1). (18)

The values r∗ and m∗
[2:f] are publicly known.

The dealer chooses the secret L ∈ M and the uniform
randomness UNSS ∈ USPIR. The dealer simulates Φm

SPIR with
K := 1, M1 := L, and USPIR := UNSS while fixing the user’s
private randomness as R := r∗ and the 2nd, …, f-th file
as M[2:f] := m∗

[2:f]. From this simulation of Φm
SPIR, the dealer

generates the answers D1, . . . , Dn of the SPIR protocol Φm
SPIR

and sets the j-th share for NSS as Sj := Dj .
Our first result is as follows.
Theorem 2: Let Φm

SPIR be an (A, B, n, f)-SPIR protocol
with rate RPIR, shared randomness rate RUSPIR , security
(α, β, γ). Then, the NSS protocol Φ̂m

NSS[Φm
SPIR] defined in

Protocol 1 is an (A, B, n)-NSS protocol Φm
NSS with SS rate

RSS = RPIR, randomness rate RUNSS = RUSPIR , and security
(α, ξ(α, β, γ)), where

ξ(α, β, γ) = 2β + (1 − α + 4
�

2γf) log m (19)

+ 2h2(
�

2γf) + h2(1 − α) + log α (20)

and h2 is the binary entropy function h2(p) = −p log p −
(1 − p) log(1 − p). Here, ξ(α, β, γ) goes to 0 as (α, β, γ) →
(0, 0, 0).

We give the proof of Theorem 2 in Section IV.
For the case of complete security, i.e., (α, β, γ) = (0, 0, 0),

Theorem 2 implies that Protocol 1 from CSSPIR is CSNSS.
Furthermore, Protocol 1 converts a linear CSSPIR protocol
into a linear CSNSS protocol as follows.

Corollary 1: Let Φm
SPIR be a linear (A, B, n, f)-CSSPIR

protocol with rate RPIR, shared randomness rate RUSPIR , and
position map τ . Then, the NSS protocol Φ̂m

NSS[Φm
SPIR] defined

in Protocol 1 with r∗ = 0, m∗
[2:f] = 0 is a linear (A, B, n)-

CSNSS protocol with SS rate RSS = RPIR, randomness rate
RUNSS = RUSPIR , and position map τ .

We give the proof of Corollary 1 in Section IV.
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In Corollary 1, the values of r∗ and m∗
[2:f] is chosen as

zero instead of (17) and (18). This choice is justified by the
following lemma.

Lemma 1: For any (A, B, n, f)-CSSPIR, any k ∈ [f], any
r ∈ R, and any B ∈ B, we have

I(M[n]; DB|K = k, R = r) = 0.

Proof: From the chain rule of the mutual information,
we have

I(M[n]; DB|K = k, R = r)
= I(Mk; DB|K = k, R = r)

+ I(M[n]\{k}; DB|Mk, K = k, R = r) (21)

The second term of (21) is zero from

I(M[n]\{k}; DB|Mk, K = k, R = r) (22)

= I(M[n]\{k}; DB|K = k, R = r) = 0, (23)

where the first equality follows from the correctness condition
and the second equality is from the server secrecy of the
CSSPIR protocol. The first term of (21) is zero as follows.
From the user secrecy of the CSSPIR protocol, the answers
DB are generated independently of K , which implies that

I(Mk; DB|K = k, R = r) = I(Mk; DB|K = k�, R = r) = 0,

where the last equality follows from the server secrecy. Thus,
we obtain the desired statement. �

Next, we give the proof idea of Theorem 2 with Lemma 1.
If we only consider the case of complete security, Theorem 2
for CSSPIR is simply proved as follows. First, we prove the
complete correctness of the induced NSS protocol. For A ∈ A,
the first file M1 is recovered from DA since the answers
DA are generated from the SPIR protocol Φm

SPIR for the
case K = 1, and the randomness R = r∗ is publicly known.
Thus, the secret L = M1 of the NSS protocol Φ̂m

NSS[Φ
m
SPIR]

is recovered from the shares SA = DA. Next, we prove
the complete secrecy against forbidden sets B ∈ B. From
Lemma 1, we have I(M1; DB|M[2:f] = m∗

[2:f], K = 1, R =
r∗) = 0, which implies that the shares SB = DB have no
information of the secret L = M1. Thus, Theorem 2 for
CSSPIR is proved.

Now, we discuss the achievable rate and capacity of
CSSPIR. From Theorem 2 for (α, β, γ) = (0, 0, 0), we obtain
the following corollary.

Corollary 2: If there is an (A, B, n, f)-CSSPIR protocol
with PIR rate RPIR and shared randomness rate RUSPIR , the
SS rate RPIR is achievable for (A, B, n)-NSS with randomness
rate RUNSS = RUSPIR .

An upper bound of SS rate for (A, B, n)-CSNSS is proved
in [12]–[14] as follows.

Proposition 1 [12]–[14]: For any A, B ⊂ 2[n], let
δ(A, B) := min{|A − B| | A ∈ A, B ∈ B}. Any (A, B, n)-
CSNSS protocol Φm

NSS satisfies

RSS(Φm
NSS) ≤ 1

n
δ(A, B). (24)

In particular, for (r, t, n)-CSNSS, RSS ≤ r − t.

As a corollary of Theorem 2 and Proposition 1, we obtain
an upper bound of the CSSPIR capacity.

Corollary 3: For any A, B ⊂ 2[n] and δ(A, B) defined in
Proposition 1, we have

C
(A,B,n,f)
SPIR ≤ C

(A,B,n)
NSS ≤ 1

n
δ(A, B).

Corollary 3 is applicable for any access structure and is
simply characterized by the access structure. For example,
when a CSSPIR protocol has the access structure n = 3,
A = {{2, 3}, {1, 2, 3}}, and B = {∅, {1}, {2}, {3}, {1, 2}}
given in Example 1, Corollary 3 implies that the SPIR rate
is upper bounded by 1/3 because n = 3 and δ(A, B) =
|{2, 3} − {2}| = 1.

Furthermore, the upper bound in Corollary 3 is tight for the
threshold case as follows.

Corollary 4: The capacity of n-server CSSPIR with r
responsive servers and t colluding servers is (r − t)/n.

The converse part is proved by Corollary 3. The achievabil-
ity part of Corollary 4 follows from the linear CSSPIR protocol
of Tajeddine et al. [28]. Tajeddine et al. [28] constructed a
protocol of symmetric/non-symmetric CSSPIR from coded
storage with colluding, byzantine, and unresponsive servers,
with PIR rate

r − k − 2b − t + 1
n

, (25)

where r is the number of responding servers, k is the code rate
of the coded storage, b is the number of byzantine servers.
When (k, b) = (1, 0), their protocol is an (r, t, n, f)-CSSPIR
protocol and achieves the PIR rate (r − t)/n.

Holzbaur et al. [27, Theorem 4] proved that the rate (25)
is optimal for linear CSSPIR with additive randomness. Thus,
when (k, b) = (1, 0), the capacity for linear CSSPIR with
additive randomness is the same as Corollary 4. Our result
generalizes this result because Corollary 4 holds without the
assumptions of the linearity of protocols and the additivity of
the randomness.

Remark 5: The same implication from SPIR to NSS of The-
orem 2 is applicable for multi-round SPIR by the same proof.
Especially, since the multi-round SPIR capacity is greater than
the one-round SPIR capacity, our result also implies that the
multi-round capacity of (r, t, n)-CSSPIR is (r − t)/n which
is the same as the one-round capacity. Moreover, Theorem 2
is also applicable even for multi-round SPIR with coded
database. However, for simplicity, this paper only discusses
one-round protocols when all files replicated in each server.

B. Conversion From Linear CSNSS to MMSP

In this subsection, we give the conversion from linear
CSNSS to MMSP.

Protocol 2: Let Φm
NSS be a linear CSNSS protocol defined

from a linear encoder f : F
x+y
q → F

z
q and a map τ : [z] → [n].

Let Gf be the matrix representation of the linear map f . Then,
an MMSP P̂ [Φm

NSS] := (Gf , τ) is defined.
Theorem 3: Given a linear (A, B, n)-CSNSS protocol Φm

NSS

with SS rate RSS, the MMSP P̂[Φm
NSS] defined in Protocol 2

is an (A, B, n)-MMSP with MMSP rate RMMSP = RSS.
We give the proof of Theorem 3 in Section V.
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C. Conversion From MMSP to Projected Linear CSSPIR

In this subsection, we give the conversion from MMSP to
projected linear CSSPIR. First, we define a projected linear
SPIR protocol from MMSP.

Protocol 3: Let P = (G, τ) be an MMSP. We denote G =
(G�, G��) ∈ F

z×x
q ×F

z×y
q . Let f be an arbitrary positive integer

at least 2. Then, a projected linear CSSPIR protocol Φ̂m
SPIR[P ]

is defined by the triplet (G��, G�, τ) of randomness encoder
G�� ∈ F

z×y
q , user’s query encoder G� ∈ F

z×x
q , and position

map τ : [z] → [n].
The SPIR protocol defined in Protocol 3 is completely

secure by the following theorem.
Theorem 4: Let P be an (A, B, n)-MMSP with a matrix

G ∈ F
z×(x+y)
q , a position map τ : [z] → [x], and the rate

RMMSP = x/z. Then, the SPIR protocol Φ̂m
SPIR[P ] defined

in Protocol 3 is an (A, B, n, f)-CSSPIR protocol Φm
SPIR for

any f ≥ 2 with PIR rate RPIR = RMMSP = x/z and shared
randomness rate y/x.

We give the proof of Theorem 4 in Section VI.

D. Equivalence of Linear CSSPIR, Linear CSNSS, and
MMSP

Combining Corollary 1, Theorem 3, and Theorem 4, we
obtain the equivalence of linear CSSPIR, linear CSNSS, and
MMSP.

Corollary 5: Let n be a positive integer at least 2, (A, B)
be an access structure on [n], and τ be a map from [z] to [n].

The following conditions are equivalent.
(a) For some f ≥ 2, there exists a linear (A, B, n, f)-

CSSPIR protocol with the position map τ , the rate
RPIR = x/z, and the shared randomness rate RUSPIR =
y/x.

(b) There exists a linear (A, B, n)-CSNSS protocol with the
position map τ , the rate RSS = x/z, and the randomness
rate RUNSS = y/x.

(c) There exists a (A, B, n)-MMSP with the matrix G ∈
F

z×(x+y)
q the position map τ , and rate RMMSP = x/z.

(d) For any f ≥ 2, there exists a projected linear
(A, B, n, f)-CSSPIR protocol with the position map τ ,
the rate RPIR = x/z, and the shared randomness rate
RUSPIR = y/x.

Corollary 5 is proved as follows. The relations (a) ⇒ (b),
(b) ⇒ (c), and (c) ⇒ (d) follow from Corollary 1, Theorem 3,
and Theorem 4, respectively, and (d) ⇒ (a) is trivial.

For any linear CSNSS protocol Φm
NSS, we have

Φ̂m
NSS

�
Φ̂m

SPIR

�
P̂ [Φm

NSS]
��

= Φm
NSS. (26)

That is, the composite map Φ̂m
NSS ◦ Φ̂m

SPIR ◦ P̂ is the identity
map on linear NSS. Similarly, the composite map Φ̂m

SPIR ◦P̂ ◦
Φ̂m

NSS is the projection p̂ into projected linear SPIR, defined in
Definition 9, i.e., for any a projected linear CSSPIR protocol
Φm

SPIR, we have

Φ̂m
SPIR

�
P̂

�
Φ̂m

NSS [Φm
SPIR]

��
= p̂(Φm

SPIR) = Φm
SPIR. (27)

A linear CSSPIR protocol Φm
SPIR and its projected protocol

p̂(Φm
SPIR) are compared as follows. In the two protocols, the

sizes of queries, answers, and random seed are the same.
However, from definitions of linear SPIR and projected linear
SPIR, the projected protocol is more concisely described.
That is, whereas the random query matrices Q ∈ F

z×fx
q are

necessary to be characterized in the original CSSPIR protocol
Φm

SPIR, all queries of the projected protocol p̂(Φm
SPIR) can be

described only with a small matrix J ∈ F
z×x
q . On the other

hand, since the size of user’s private randomness R ∈ F
y×fx
q

in the projected protocol is increasing with the number of
the files f, one possible advantage of linear CSSPIR protocols
would be the smaller size of this randomness.

Next, we discuss the relation between projected linear
CSSPIR and linear CSNSS as follows. In both protocols, the
minimum information to describe encoders is two matrices in
F

z×x
q and F

z×y
q . The matrix in F

z×x
q is used for encoding mes-

sages (targeted file for CSSPIR and the secret for CSNSS) and
the matrix in F

z×y
q for encoding randomness (and non-targeted

files for CSSPIR). From this similarity, the server secrecy
of CSSPIR and the secrecy of CSNSS are guaranteed in the
same context. On the other hand, the uniform randomness for
CSNSS is the dealer’s randomness UNSS ∈ F

y
q , while that for

CSSPIR is the random seed USPIR ∈ F
y
q and the user’s private

randomness R ∈ F
y×fx
q . In CSSPIR, the additional randomness

R is required for guaranteeing the user secrecy.
Farràs et al. proved the existence of a linear CSNSS protocol

for any access structure [16].
Proposition 2 [16]: For any access structure (A, B), there

exists a linear (A, B, n)-CSNSS protocol.
Combining Proposition 2 and Corollary 5, we obtain the

following corollary.
Corollary 6: For any access structure (A, B) on [n] and

any f ≥ 2, there exists an (A, B, n, f)-CSSPIR protocol.

IV. PROOF OF CONVERSION FROM SPIR TO NSS

In this section, we prove Theorem 2 and Corollary 2.

A. Proof of Theorem 2

For the proof, we prepare the following lemma, which
extends Lemma 1 to the incomplete secrecy case.

Lemma 2: For any (A, B, n)-SPIR protocol Φm
SPIR, any

B ∈ B, and r∗ defined in (17), we have

I(M1; DB|M[2:f], R = r∗, K = 1) (28)

≤ 2β + (1 − α + 4
�

2γf) log m (29)

+ 2h2(
�

2γf) + h2(1 − α) + log α. (30)

The proof of Lemma 2 is given in Appendix B. Now,
we prove Theorem 2.

Proof of Theorem 2: The correctness of the NSS protocol
Φ̂m

NSS[Φ
m
SPIR] is upper bounded by α because we have

α(Φ̂m
NSS[Φm

SPIR])
(a)
= max

A∈A
PrM1,DA [M1 �= m̂ML

DA,r∗,k=1]

(31)
(b)

≤ α(Φm
SPIR), (32)

where (a) follows from the definition of Protocol 1 and (b)
follows the correctness condition of the SPIR protocol Φm

SPIR.
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The secrecy β(Φ̂m
NSS[Φm

SPIR]) is upper bounded as

I(M1; DB|M[2:f] = m∗
[2:f], R = r∗, K = 1) (33)

(a)

≤ I(M1; DB|M[2:f], R = r∗, K = 1) (34)
(b)

≤ 2β + (1 − α + 4
�

2γf) log m (35)

+ 2h2(
�

2γf) + h2(1 − α) + log α (36)

= ξ(α, β, γ), (37)

where (a) follows from the choice of m∗
[2:f] in (18) and (b)

follows from Lemma 2. Thus, the protocol Φ̂m
NSS[Φ

m
SPIR] is an

(A, B, n, f)-NSS protocol with the desired security parameters
(α, ξ(α, β, γ)). The SS rate of Protocol 1 is

RSS =
n log m�

j∈[n] log |Sj |
=

n log m�
j∈[n] log |Dj |

= RPIR, (38)

which proves Theorem 2. �

B. Proof of Theorem 2

The proof of Corollary 1 is as follows. The conditions for
the access structure, security, and rate follow from Theorem 2.
Thus, it is enough to prove that the NSS protocol Φ̂m

NSS[Φ
m
SPIR]

is linear. To prove the linearity, we first analyze the simulation
of the linear SPIR protocol Φm

SPIR in Protocol 1, and then, we
prove that the NSS protocol Φ̂m

NSS[Φ
m
SPIR] is linear.

First, we analyze Protocol 1 with parameters defined in
Corollary 1. In Corollary 1, the linear CSSPIR protocol Φm

SPIR

is simulated with K = 1, R = 0, and M[2:f] = 0. Since
the query is determined by K and R, the simulated query is
fixed as a matrix Q ∈ F

z×fx
q . We denote Q = (Q�, Q��) ∈

F
z×x
q × F

z×(f−1)x
q . With the uniform randomness USPIR ∈ F

y
q

and the randomness encoder H ∈ F
z×y
q defined in Definition 7,

the answers of Φm
SPIR are written as⎛

⎜⎝
D1

...
Dn

⎞
⎟⎠ = QM + T

(a)
= Q�M1 + HUSPIR (39)

= (Q�, H)
�

M1

USPIR

�
∈ F

z
q, (40)

Dj = (Q�, H)τ−1(j)

�
M1

USPIR

�
∈ F

|τ−1(j)|
q , (41)

where (a) follows from the condition M2 = · · · = Mf = 0 of
Corollary 1.

Next, we prove that the NSS protocol Φ̂m
NSS[Φ

m
SPIR] is linear.

The shares of Φ̂m
NSS[Φm

SPIR] are generated as Sj = Dj in (41)
while the secret L of NSS is embedded as M1 = L ∈ F

x
q.

Thus, Φ̂m
NSS[Φm

SPIR] corresponds to the linear NSS protocol
with the dealer’s private randomness UNSS = USPIR ∈ F

y
q,

linear encoder (Q�, H) ∈ F
z×(x+y)
q , and the same position map

τ as Φm
SPIR.

V. PROOF OF CONVERSION FROM LINEAR CSNSS TO

MMSP

In this section, we prove Theorem 3, i.e., the MMSP
P̂ [Φm

NSS] defined in Protocol 2 from a linear (A, B, n)-CSNSS

protocol is an (A, B, n)-MMSP. Before the proof, we prepare
the following proposition and lemma.

Proposition 3: For any random variable X ∈ F
n
q and A ∈

F
m×n
q , we have

H(AX) ≤ rankA log q. (42)

When the distribution of X is uniform, the equivalence of (42)
holds.

Lemma 3: The rejection condition of an MMSP P is equiv-
alent to

rankG��
τ−1(B) = rankGτ−1(B) ∀B ∈ B. (43)

Proof: First, from definition, the rejection condition of the
MMSP P is equivalent to

x + rankGτ−1(B) = rank
�

Ix Ox×y

Gτ−1(B)

�
∀B ∈ B. (44)

Thus, we prove the equivalence between (43) and (44).
The direction from (43) to (44) is proved as

x + rankGτ−1(B) = x + rankG��
τ−1(B) (45)

= rank
�

Ix Ox×y

Oz×x G��
τ−1(B)

�

= rank
�

Ix Ox×y

Gτ−1(B)

�
(46)

which implies (44). The direction from (44) to (43) is proved
as

x + rankGτ−1(B)
(a)
= rank

�
Ix Ox×y

Gτ−1(B)

�
(47)

= rank
�

Ix Ox×y

Oz×x G��
τ−1(B)

�

= x + rankG��
τ−1(B), (48)

where (a) follows from the rejection condition. Thus,
we obtain the desired statement. �

Now, we prove Theorem 3.
Proof of Theorem 3: The rates of P̂[Φm

NSS] and Φm
NSS

are trivially x/z. In the following, we separately prove that
P̂[Φm

NSS] accepts A and rejects B.
First, we prove that the MMSP P̂ [Φm

NSS] accepts A. Let
A ∈ A. Then, the completely secure correctness condition of
the linear CSNSS guarantees that there exists a function h
such that h(SA) = L, i.e.,

h(SA) = h

�
Gτ−1(A)

�
L
R

��
= L. (49)

Since (49) holds for any L ∈ F
x
q and R ∈ F

y
q , h is written as a

linear map from Im Gτ−1(A) to F
x
q and the associated matrix

Kh ∈ F
x×|τ−1(A)|
q of the function h satisfies

KhGτ−1(A) = (Ix, Ox×y), (50)

where Ix is the x × x identity matrix and Ox×y is the x × y
zero matrix. Thus, the row space of Gτ−1(A) includes the row
space of (Ix, Ox×y), which implies that the MMSP P̂[Φm

NSS]
accepts A.
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Next, we prove that the MMSP P̂ [Φm
NSS] rejects B.

We denote Gf = (G�
f , G��

f ) ∈ F
z×x
q × F

z×y
q . From Lemma 3,

the fact that P̂[Φm
NSS] rejects B is equivalent to

rankG��
f,τ−1(B) = rankGf,τ−1(B) ∀B ∈ B. (51)

Thus, we prove (51) as follows: For any B ∈ B, the MMSP
P̂ [Φm

NSS] satisfies

rankGf,τ−1(B) log q

(a)
= H(SB)

(b)
= H(SB|L = �) (52)

= H(G�
f,τ−1(B)L + G��

τ−1(B)R|L = �) (53)

= H(G��
f,τ−1(B)R)

(c)
= rankG��

f,τ−1(B) log q (54)

where (a) and (c) follow from Proposition 3 and the uniform
randomness of L and R, and (b) follows from the secrecy
condition I(L; SB) = 0 of the CSNSS protocol. Therefore,
the MMSP P̂ [Φm

NSS] rejects B. �

VI. PROOF OF CONVERSION FROM MMSP TO PROJECTED

LINEAR CSSPIR

In this section, the SPIR protocol Φ̂m
SPIR[P ] defined in

Protocol 3 from an (A, B, n)-MMSP P is an (A, B, n, f)-
CSSPIR protocol.

For the proof, we prepare the following lemma.
Lemma 4: Let P = (G, τ) be an (A, B, n)-MMSP, X ∈ F

x
q

be a random vector, and Y ∈ F
y
q be a uniform random vector.

For X ∈ [n], we define

Zτ−1(X ) = Gτ−1(X )

�
X
Y

�
. (55)

Then, the relation

H(Zτ−1(B)) = H(Zτ−1(B)|X = x) (56)

holds for any B ∈ B and x ∈ F
x
q , i.e., I(Zτ−1(B); X) = 0.

Proof: From Lemma 3, the fact that P rejects B is
equivalent to

rankG��
τ−1(B) = rankGτ−1(B) ∀B ∈ B. (57)

From this relation, we obtain

H(Zτ−1(B)|X = x)
= H(G�

τ−1(B)x + G��
τ−1(B)Y ) (58)

= H(G��
τ−1(B)Y )

(a)
= rankG��

τ−1(B) log q (59)
(b)
= rankGτ−1(B) log q

(c)
= H(Zτ−1(B)), (60)

where (a) and (c) follow from Proposition 3 and (b) follows
from (57). �

Now, we prove Theorem 4.
Proof of Theorem 4: From the definition of Protocol 3,

it is clear that the SPIR protocol Φ̂m
SPIR[P ] is projected

linear and the PIR rate is RPIR = x/z = RMMSP. Thus,
in the following, we separately prove that the SPIR protocol
Φ̂m

SPIR[P ] has completely secure user secrecy, server secrecy,
and correctness.

First, the user secrecy of Φ̂m
SPIR[P ] is proved as follows.

The queries indexed by B ∈ B are written as

Qτ−1(B) = Gτ−1(B)

�
Ek

R

�
. (61)

From Lemma 4 and the uniform randomness of R, the
distribution of Qτ−1(B) does not depend on the value of k,
which implies the completely secure user secrecy.

Server secrecy of Φ̂m
SPIR[P ] is proved as follows. The

answers indexed by X ⊂ [n] are written as

DX = Qτ−1(X )M + G��
τ−1(X )USPIR (62)

= G�
τ−1(X )EkM + G��

τ−1(X )(RM + USPIR) (63)

= G�
τ−1(X )Mk + G��

τ−1(X )U
�
SPIR (64)

= Gτ−1(X )

�
Mk

U �
SPIR

�
∈ F

|X |
q , (65)

where U �
SPIR := RM + USPIR ∈ F

y
q. Since USPIR is uniform

randomness, U �
SPIR in (65) is also uniformly random. Thus,

for any X ∈ [n], the user’s received information (65) does
not depend on the files except for Mk, which implies the
completely secure server secrecy.

Next, we prove the correctness of the SPIR protocol
Φ̂m

SPIR[P ]. Since P accepts A, i.e., the row space of Gτ−1(A)

contains e1, . . . , ex ∈ F
x+y
q for any A ∈ A, there exists a

matrix K[A] such that

K[A]Gτ−1(A) = (Ix, Ox×y), (66)

where Ix is the x × x identity matrix and Ox×y is the x × y
zero matrix. Since (65) implies

DA = Gτ−1(A)

�
Mk

U �
SPIR

�
, (67)

by applying K[A] to the answers DA, the user obtains
K[A]DA = Mk correctly. �

VII. EXAMPLES OF CONSTRUCTIONS

A. A Construction With Access Structure in Example 1

In this subsection, we give a simple example of a MMSP
with the general access structure in Example 1.

The access structure in Example 1 is defined as n = 3,
A = {{2, 3}, {1, 2, 3}}, and B = {∅, {1}, {2}, {3}, {1, 2}}.
We fix x = 1, y = 2, and z = 4, and define an (A, B, n)-
MMSP by

G =

⎛
⎜⎜⎝

0 1 2
1 1 1
0 1 1
1 1 0

⎞
⎟⎟⎠ ∈ F

4×3
3 , (68)

τ = {1 �→ 1, 2 �→ 2, 3 �→ 3, 4 �→ 3}. (69)

Then, we can confirm that this MMSP P = (G, τ) accepts A
and rejects B as follows. To confirm that P accepts A, it is
enough to confirm if

E = {(1, 0, 0)} ⊂ rowspanGA (70)
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for A = {2, 3}. Since

Gτ−1({2,3}) = G{2,3,4} =

⎛
⎝1 1 1

0 1 1
1 1 0

⎞
⎠ (71)

satisfies the above inclusion, P accepts A. To confirm that P
accepts B, we need to confirm

spanE ∩ rowspanGτ−1(B) = {0}
for B = {1, 2} and B = {3}. Since both

Gτ−1({1,2}) = G{1,2} =
�

0 1 2
1 1 1

�
, (72)

Gτ−1({3}) = G{3,4} =
�

0 1 1
1 1 0

�
(73)

satisfy the above property, P rejects B. Therefore, P is an
(A, B, n)-MMSP. The rate of P is RMMSP = x/z = 1/4.

From this MMSP P and Protocols 1, 2, and 3, we can also
obtain (A, B, n, f)-SPIR and (A, B, n)-NSS protocols for the
access structure in Example 1 and any f ≥ 2. The induced
SPIR and NSS protocols has the same rate x/z = 1/4 and
randomness rate y/x = 2.

B. Optimal Construction of (r, t, n)-CSNSS and
(r, t, n, f)-CSSPIR

In this subsection, we construct (r, t, n)-CSNSS and
(r, t, n, f)-CSSPIR protocols with optimal rates from a (r, t, n)-
MMSP. The proposed protocols are already proposed by
Yamamoto [11] and by Tajeddine et al. [28] (as a special
case), but we construct these protocols from MMSPs.

In the following, we assume that the size of the finite field
Fq is at least n. We define an MMSP P = (G, τ) by the
Vandermonde matrix, which is also the generator matrix of
a Reed-Solomon code [59]. Let (x, y, z) = (r − t, t, n) and
τ = id[n]. Define

G =

⎛
⎜⎜⎜⎝

1 α1 · · · αx+y−1

1 α2
1 · · · α2

x+y−1
...

...
. . .

...
1 αz

1 · · · αz
x+y−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 α1 · · · αr−1

1 α2
1 · · · α2

r−1
...

...
. . .

...
1 αn

1 · · · αn
r−1

⎞
⎟⎟⎟⎠.

Then, we can easily confirm that the MMSP P accepts A =
{A ⊂ [n] | |A| ≥ r} and rejects B = {B ⊂ [n] | |B| ≤ t}
as follows. For any permutation π of [n], fix A := {π(i)|i ∈
[r]} ∈ A and B := {π(i)|i ∈ [t]} ∈ B. The matrices

S = Gτ−1(A) = GA =

⎛
⎜⎜⎝

1 α
π(1)
1 · · · α

π(1)
r−1

...
...

. . .
...

1 α
π(r)
1 · · · α

π(r)
r−1

⎞
⎟⎟⎠ ∈ F

r×r
q ,

T =
�

Ir−t 0
Gτ−1(B)

�
=

�
Ir−t 0

GB

�
=

⎛
⎜⎜⎜⎜⎝

Ir−t 0
1 α

π(1)
1 · · · α

π(1)
r−1

...
...

. . .
...

1 α
π(t)
1 · · · α

π(t)
r−1

⎞
⎟⎟⎟⎟⎠

∈ F
r×r
q

are invertible matrices. We obtain the acceptance of P because
the invertibility of S implies that the row span of S is F

r
q and

thus includes E = {e1, . . . , er−t}. We obtain the rejection of
P because the row vectors of T are linearly independent and
thus, the span of the last t row vectors does not include the
span of E .

Thus, the CSSPIR protocol Φ̂m
SPIR[P ] defined in Protocol 3

is an (r, t, n)-SPIR protocol with the PIR rate RPIR = (r −
t)/n. A linear (r, t, n)-CSNSS protocol with the SS rate RSS =
r−t can also be constructed by the equivalence in Corollary 5.
Given t, r, n, these protocols are optimal from Proposition 1
and Corollary 4.

VIII. CONCLUSION

We have studied the equivalence relation between
non-perfect secret sharing and symmetric private information
retrieval. We have defined the two protocols with access
structures, which represent the authorized and forbidden sets
for non-perfect secret sharing and the response and collusion
patterns for symmetric private information retrieval. We first
showed that any SPIR protocols can be converted into NSS
protocols. From this relation, we proved an upper bound of
CSSPIR capacity with arbitrary response and collusion pat-
terns. Next, we proved the equivalence of linear CSNSS, linear
CSSPIR, and MMSP. From this implication, we obtained the
existence of CSSPIR for any access structure.

APPENDIX A
PROOF OF THEOREM 1

We separately prove (a) =⇒ (b) and (b) =⇒ (a) of
Theorem 1.

Step 1 (a) =⇒ (b): It follows from the rejection condition
of the MMSP that any t rows of G�� are linearly independent.
Thus, G�� is the generator matrix of an (n, t)-MDS code. Also,
we can show that any r rows of G are linearly independent
from the acceptance condition of the MMSP and the MDS
property of G��. To be precise, without losing generality, we
prove that G[r] ∈ F

r×r
q is invertible as follows.

The acceptance condition implies spanE ⊂ rowspanG[r].
Thus, spanE ⊕ rowspanG[t] ⊂ rowspanG[r]. On the
other hand, the rejection condition implies rowspanG[t] ∩
rowspanE = {0}. Thus, we have r = dim(span E ⊕
rowspanG[t]) ≤ dim G[r] ≤ r, which implies G[r] is invertible.

Step 2 (b) =⇒ (a): We prove in the following that G
and G�� with condition (b) satisfy the acceptance and rejection
conditions of the MMSP P . Since any r rows of G ∈ F

n×r
q are

linearly independent, the space spanned by those rows is F
r
q,

which implies the acceptance condition of the MMSP P .
Next, we prove the rejection condition of P from the MDS

property of G�� ∈ F
n×t
q by contradiction. Suppose that the

rejection condition does not hold, i.e., there exists a row vector
x ∈ F

n
q and a set B with |B| = t satisfying 0 �= x ∈ span E ∩

rowspanGB . Since x ∈ spanE , the last t coordinates of x
are 0. On the other hand, since G��

B ∈ F
t×t
q is invertible, the

last t coordinates of x are 0 if and only if x = 0, which is a
contradiction. Thus, the rejection condition holds.
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APPENDIX B
PROOF OF LEMMA 2

In this section, we prove of Lemma 2. In the following
subsections, we separately prove the following inequalities.

I(M[2:f]; M1D|R = r∗, K = 1)
≤ β + h2(1 − α) + (1 − α) log m + log α, (74)

I(M1; DB|R = r∗, K = 1)

≤ β + 4
�

2γf log m + 2h2(
�

2γf). (75)

Then, with these two inequalities, we obtain the lemma as

I(M1; DB|M[2:f], R = r∗, K = 1)
≤ I(M ; DB|R = r∗, K = 1)
= I(M1; DB|R=r∗, K =1)+I(M[2:f]; D|M1, R=r∗, K =1)
= I(M1; DB|R=r∗, K =1)+I(M[2:f]; M1D|R=r∗, K =1)
≤ ξ(α, β, γ),

where the last inequality follows from (74) and (75).

A. Proof of (74)

For the proof of (74), we prove the following lemma.
Lemma 5: Suppose

• A, B are independent,
• B is recovered from C with probability α, and
• I(A; C) ≤ β.

Then, we have

I(A; BC) ≤ β + h2(1 − α) + (1 − α) log |B|+ log α,

(76)

where B is the space of B.
By applying the above lemma for the case of (A, B, C) =

(M[2:f], M1, D) while conditioning R = r∗, K = 1, Eq. (74)
is obtained as

I(M[2:f]; M1DB|R = r∗, K = 1) (77)

≤ I(M[2:f]; M1D|R = r∗, K = 1) (78)

≤ β + h2(1 − α) + (1 − α) log m + log α. (79)

Proof of Lemma 5: From Fano’s inequality, we have

H(B|C) ≤ β + h2(1 − α) + (1 − α) log |B|. (80)

On the other hand, from the lower bound of the guessing
probability [57], [58], we have

H(B|AC) ≥ − log α. (81)

Thus, combining the above two inequalities, we obtain the
desired inequality as

I(A; BC) = I(A; C) + I(A; B|C) (82)

= I(A; C) + H(B|C) − H(B|AC) (83)

≤ 2β + h2(1 − α) + (1 − α) log |B| + log α.

(84)

�

B. Proof of (75)

For the proof, we define the variational distance

d(p, q) :=
�

x

|p(x) − q(x)|. (85)

Throughout this section, we denote the distribution of a
random variable X by PX and the probability PX(x) by Px,
i.e., subscript with the lowercase letter of X .

First, we prepare the following proposition.
Proposition 4 (Classical Alicki-Fannes Inequality [60]):

Let X, Y be random variable on X ,Y and p, q be prob-
ability distributions on X × Y such that 
 := d(p, q) =�

x,y |p(x, y) − q(x, y)|. Then,

|H(pX|Y ) − H(qX|Y )| ≤ 4
 log |X | + 2h2(
). (86)

Remark 6: In [60], Proposition 4 is originally proved for
quantum systems and states. By restricting the quantum sys-
tems and states as classical systems and random variables, we
directly obtain Proposition 4.

Now, we prove (75).
Proof of (75): We prove the lemma by two steps.

Step 1: First, we prove

d(PM1DBQB|K=1, PM1DBQB|K=2) ≤
�

2γf (87)

for any B ∈ B. This inequality for the threshold case is proved
in [61, Lemma 5]. With the similar idea, we give the proof of
(87). We have

γ ≥ I(K; QB) (88)

= D(PKQB�PK × PQB ) (89)
(a)
=

1
f

�
k

D(PQB|K=k�PQB) (90)

(b)

≥ 2
f

�
k

d2(PQB|K=k, PQB ) (91)

≥ 2
f
d2(PQB|K=k� , PQB ) (92)

(c)
=

2
f
d2(PM1DBQB|K=k� , PM1DBQB ) (93)

for any k� ∈ [f]. The equality (a) follows from the uniform ran-
domness of K , and the inequality (b) follows from Pinsker’s
inequality. The equality (c) follows from

d(PM1DBQB|K=k, PM1DBQB) (94)

=
1
2

�
m1,aB,qB,k

|Pm1aBqB|k − Pm1aBqB | (95)

=
1
2

�
m1,aB,qB,k

|Pm1aB|kqBPqB|k − Pm1aB|qBPqB | (96)

(d)
=

1
2

�
m1,aB,qB,k

|Pm1aB|qBPqB|k − Pm1aB|qBPqB | (97)

=
1
2

�
qB,k

|PqB|k − PqB | (98)

= d(PQB|K=k, PQB) (99)

where the inequality (d) holds since K − QB − M1DB is
a Markov chain. Then, from Eq. (93) and the triangular
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inequality, we obtain (87) as�
2γf ≥ d(PM1DBQB|K=1, PM1DBQB ) (100)

+ d(PM1DBQB|K=2, PM1DBQB) (101)

≥ d(PM1DBQB|K=1, PM1DBQB|K=2). (102)

Step 2: Next, we prove the desired inequality

I(M1; DB|R = r∗, K = 1) ≤ β + g(γ, m), (103)

where

g(γ, m) := 4
√

2γfm + 2h2(
√

2γf). (104)

We have

|I(M1; DB|R, K = 1) − I(M1; DB|R, K = 2)| (105)
(a)
= |I(M1; DB|QB, K = 1) − I(M1; DB|QB, K = 2)|

(106)

= |H(M1|DBQB, K = 1) − H(M1|DBQB, K = 2)|
(107)

(b)

≤ 4
�

2γf log |M| + 2h2(
�

2γf) (108)

= g(γ, m), (109)

where (a) holds because R−QB −MiDB is a Markov chain
and (b) is obtained by combining Proposition 4 and (87).
Rearranging the inequality (109), we have

I(M1; DB|R, K = 1) ≤ I(M1; DB|R, K = 2) + g(γ, m)
≤ I(M[f]\2; D|R, K = 2) + g(γ, m)
(c)

≤ β + g(γ, m), (110)

where (c) follows from the server secrecy of Φm
SPIR. Since r∗

is defined in (17) to satisfy the inequality

I(M1; DB|R = r∗, K = 1) (111)

≤
�
r∈R

PR(r)I(M1; DB|R = r, K = 1) (112)

= I(M1; DB|R, K = 1), (113)

the inequality (110) derives the desired inequality

I(M1; DB|R = r∗, K = 1) ≤ β + g(γ, m). (114)

�
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