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Abstract— The thriving of artificial intelligence (AI) appli-
cations is driving the further evolution of wireless networks.
It has been envisioned that 6G will be transformative and
will revolutionize the evolution of wireless from “connected
things” to “connected intelligence”. However, state-of-the-art
deep learning and big data analytics based AI systems require
tremendous computation and communication resources, causing
significant latency, energy consumption, network congestion, and
privacy leakage in both of the training and inference processes.
By embedding model training and inference capabilities into the
network edge, edge AI stands out as a disruptive technology for
6G to seamlessly integrate sensing, communication, computation,
and intelligence, thereby improving the efficiency, effectiveness,
privacy, and security of 6G networks. In this paper, we shall
provide our vision for scalable and trustworthy edge AI systems
with integrated design of wireless communication strategies and
decentralized machine learning models. New design principles of
wireless networks, service-driven resource allocation optimization
methods, as well as a holistic end-to-end system architecture to
support edge AI will be described. Standardization, software and
hardware platforms, and application scenarios are also discussed
to facilitate the industrialization and commercialization of edge
AI systems.

Index Terms— 6G, edge AI, edge training, edge infer-
ence, federated learning, over-the-air computation, task-oriented
communication, service-driven resource allocation, large-scale
optimization, end-to-end architecture.

I. INTRODUCTION

A. Roadmap to 6G: Vision and Technologies

W ITH the standardization and worldwide deployment
of 5G networks, researchers, companies, and gov-

ernments have initiated the vision, usage scenarios, and
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disruptive technologies for future 6G. In particular, the
United States [1], European Union [2], and China [3] have
recently funded 6G projects with a common goal of enabling
connected intelligence. Besides, the International Telecommu-
nication Union (ITU) has published the system requirements
and driving characteristics for Network 2030 [4]. To improve
a real-time immersive experience and interaction, as well
as accelerate intelligence upgrades for industrial internet-
of-things (IoT) and digital twins, multiple companies are
now considering new usage scenarios. For example, based
on typical use cases in 5G [5], [6] (i.e., enhanced mobile
broadband (eMBB), ultra-reliable and low-latency communi-
cations (URLLC), and massive machine type communications
(mMTC)), Huawei has recently proposed three additional
application scenarios in the vision of 5.5G. These include
uplink centric broadband communication (UCBC), real-time
broadband communication (RTBC), and harmonized commu-
nication and sensing (HCS) [7]. It is expected that 6G will
go beyond the mobile internet to support ubiquitous artificial
intelligence (AI) services and Internet of Everything (IoE)
applications [1]–[4], [8], including sustainable cities, con-
nected autonomous systems, brain-computer interfaces, digital
twins, tactile and haptic internet, high-fidelity holographic
society, extended reality (XR) and metaverse [9], e-health,
etc. Researchers in industry and academia have published
many visionary 6G proposals [10]–[12] to provide a better
understanding, sensing, controlling, and interacting for a phys-
ical world. In particular, three new application services were
envisioned for 6G, including computation oriented commu-
nications (COC), contextually agile eMBB communications
(CAeC), and event defined uRLLC (EDuRLLC) [12]. Based
on these quoted usage scenarios, we present the evolution of
visionary use cases for 6G in Fig. 1 by integrating intelligence,
coordination, sensing, and computing for a connected cyber-
physical world.

To shape the future of 6G use cases in 2030, multi-
disciplinary research and various disruptive technologies are
required, including spectrum exploration technologies, devices
and circuit technologies, as well as networking, computing,
sensing, and learning functionalities. In particular, AI, espe-
cially deep learning (DL), provides a revolutionary approach
to design and optimize 6G wireless networks across the
physical, medium-access, and application layers [12], [13].
Specifically, DL provides a novel way to design 6G air
interface by optimizing the radio environment [14], com-
munication algorithms [15], hardware, and applications in a
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Fig. 1. Towards 6G: the evolution of use cases from 5G to 6G.

unified way [16], [17]. This has inspired the recent success
applications for joint source-channel coding (JSCC) [18],
task-oriented communication [19], [20], semantic communi-
cation [21]. Besides, machine learning (ML) also provides a
paradigm shift for automatically learning high performance
and fast optimization algorithms to solve the resource allo-
cation problems in wireless networks [22]–[25]. The domain
knowledge (e.g., optimization models and theoretical tools)
was further incorporated into the DL framework for optimizing
ultra-reliable and low-latency communication networks [26].
An ML approach was also developed for addressing the
communication, networking, and security challenges for vehic-
ular applications [27]. With the development of wireless data
collection, learning models and algorithms, as well as software
and hardware platforms, we envision that AI will become
a native tool to design disruptive wireless technologies for
accelerating the design, standardization, and commercializa-
tion of 6G. On the other hand, the evolution of 6G wireless
communication technologies and communication theory will
also inspire the progress and development of AI techniques
in terms of novel learning theory, new deep neural net-
work (DNN) architectures, customized software and hardware
platforms.

Given the requirements of emerging 6G, connected intel-
ligence is expected to be the central focus and an indis-
pensable component in 6G [28]. This shall revolutionize the
evolution of wireless from “connected things” to “connected
intelligence”, thereby enabling the interconnections between
humans, things, and intelligence within a hyper-connected
cyber-physical world [12]. Edge AI provides a promising
solution for connected intelligence by enabling data collection,
processing, transmission, and consumption at the network
edge [29], [30]. Specifically, by embedding the training
capabilities across the network nodes, edge training is able to
preserve privacy and confidentiality, achieve high security and

fault-tolerance, as well as reduce network traffic congestion
and energy consumption. For instance, over-the-air federated
learning (FL) provides a collaborative ML framework to train a
global statistical model over wireless networks without access-
ing edge devices’ private raw data [31]. By directly executing
the AI models at the network edge, edge inference can pro-
vide low-latency and high-reliability AI services by requiring
less computation, communication, storage, and engineering
resources. For example, edge device-server co-inference is able
to remove the communication and computation bottlenecks
by splitting a large DNN model between edge devices and
edge servers [32]. However, edge AI will cause task-oriented
data traffic flows over wireless networks, for which disruptive
wireless techniques, efficient resource allocation methods and
holistic system architectures need to be developed. To embrace
the era of edge AI, wireless communication systems and
edge AI algorithms need to be co-designed for seamlessly
integrating communication, computation, and learning.

B. Edge AI: Challenges and Solutions

Creating a trustworthy and scalable edge AI system will
be of utmost importance for imbuing connected intelligence
in 6G. The challenges of trustworthiness and scalability
are multidisciplinary spanning ML, wireless networking, and
operation research. Specifically, trustworthiness in terms of
privacy and security is one of the key requirements for 6G
intelligent services and applications, for which the general
data protection regulation (GDPR) needs to be satisfied, and
directly transmitting or collecting data from users are forbid-
den. To tame privacy leakages and adversarial attacks, various
edge learning models and architectures have been proposed,
including FL (i.e., server-client network architecture with data
partition among edge devices) [33], [34], swarm learning
(i.e., decentralized device-to-device (D2D) communication
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architecture without central authority) [35], and split learning
(i.e., model parameters partitioned among edge devices and
edge servers) [36], [37]. Distributed reinforcement learning
(RL) [38], [39] and trustworthy learning techniques [40], [41]
were further proposed to address the dynamic and adversarial
learning environments, respectively. In particular, differen-
tial privacy [42], lagrange coded computing [43], security
multi-party computation, quantum computing, blockchain, and
distributed ledger technologies can be further leveraged to
build trustworthy edge AI architectures. However, with limited
storage, computation, and communication resources in the
wireless edge networks, deploying an edge AI system causes
a significant scalability issue in terms of latency, energy and
accuracy. To address this challenge, a paradigm shift for
wireless system design is required from data-oriented com-
munication (i.e., maximizing communication rate or reliability
based on Shannon theory) to task-oriented communication
(i.e., achieving fast and accurate intelligence distillation at the
network edge).

In this paper, we shall provide a comprehensive picture
for the design of scalable and trustworthy edge AI sys-
tems by matching the principles and architectures of wire-
less networks with the task structures of edge AI models
and algorithms. The system performance metrics for edge
AI are further characterized to facilitate efficient resource
allocations based on operation research and ML. Specifi-
cally, to design a communication-efficient edge AI train-
ing system, we will provide novel multiple access schemes
(e.g., over-the-air computation (AirComp) for model aggre-
gation [31], [44], [45]) to support massive access for edge
devices, new multiple antenna techniques (e.g., cell-free mas-
sive MIMO [46], [47] and reconfigurable intelligent surface
(RIS) [48], [49]) to support fast exchange for high-dimensional
model updates, and next-generation network architectures
(e.g., space-air-ground integrated network (SAGIN) [50],
[51]) to support diverse edge learning models and topolo-
gies. To design a communication-efficient edge inference
system with low-latency and reliability guarantees, interfer-
ence management, cooperative transmission, and task-oriented
communication will be introduced to support edge device
distributed inference [52], edge server cooperative infer-
ence [53], [54], and edge device-server co-inference [32],
respectively. We then provide a holistic view for mathemat-
ically modeling the resource allocation problems in edge
training and inference systems, which are categorized as
mixed combinatorial optimization, nonconvex optimization
and stochastic optimization models. A “learning to optimize”
framework is further introduced to facilitate scalable, real-
time, robust, parallel, distributed, and automatic optimization
algorithms design for service-driven resource allocation in
edge AI systems [22], [23], [25], [55]. We also provide a holis-
tic end-to-end architecture for edge AI systems. Moreover,
standardizations, resource allocation optimization solvers, soft-
ware and hardware platforms, and application scenarios are
discussed. The roadmap to edge AI ecosystem is demonstrated
in Fig. 2 to encourage multidisciplinary collaborations among
information science, computer science, operation research, and
integrated circuits.

C. Edge AI Empowered 6G Networks

The developed edge AI technology will serve as a distrib-
uted neural network to accelerate the evolution of sensing
capabilities, communication strategies, network optimizations,
and application scenarios in 6G networks. Specifically, edge
AI paves the way for network sensing and cooperative per-
ception to understand the network environments and services
for an agile and intelligent decision making. For example,
edge simultaneous localization and mapping (SLAM) [56],
[57] has recently been developed to deploy DL based visual
SLAM algorithms on vehicles by edge inference. Edge AI
can also help design AI-native communication strategies for
the physical layer (e.g., task-oriented semantic communica-
tion [58]) and medium access control layer (e.g., random
access protocol [59]). For instance, edge DL approach has
been developed in [58] to deliver low-latency semantic tasks
(e.g., text messages) by learning the communication strategies
in an end-to-end fashion based on JSCC. Furthermore, edge AI
provides a new paradigm for optimization algorithms design to
enable service-driven resource allocation in 6G networks [60].
For instances, distributed RL [55], decentralized graph neural
networks [23], and distributed DNN [61], are able to auto-
matically learn the distributed resource allocation optimization
algorithms. By seamlessly integrating sensing, communica-
tion, computation, and intelligence, edge AI shall empower
6G networks to support diversified intelligent applications,
including autonomous driving, industrial IoT, smart healthcare,
etc.

To further imbue native intelligence, native trustworthiness,
and native sensing in 6G, mimicking nature for innovat-
ing edge AI empowered future networks can be envisioned.
Inspired by the dynamic spiking neurons in the human
brain, the energy consumption and latency of edge AI can
be significantly reduced by processing the learning tasks
in an event-driven manner [62], [63]. The brain-inspired
stigmergy-based federated collective intelligence mechanism
was proposed in [64] to accomplish multi-agent tasks (e.g.,
autonomous driving) through simple indirect communications.
By leveraging the prior knowledge of the immune system and
brain neurotransmission, a brand-new network security archi-
tecture and fully-decoupled radio access network have recently
been proposed in [65] and [66], respectively. These results
on nature-inspired edge AI models and network architectures
provide a strong evidence that one can establish an integrated
data-driven and knowledge-guided framework to design and
optimize 6G networks. Further details and description of the
edge AI empowered 6G network are provided in Fig. 3,
which highlight the integration of sensing, communication,
computation and intelligence in a closed-loop ecosystem.

D. Key Contributions

We provide extensive discussions, visions, and summaries
of wireless techniques, resource allocations, standardizations,
platforms, and application scenarios to embrace the era of edge
AI for 6G. The major contributions are summarized as follows:
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Fig. 2. Roadmap to edge AI.

• The vision (i.e., connected intelligence for 6G), chal-
lenges (i.e., trustworthiness and scalability) and solutions
(i.e., wireless techniques, resource allocations and system
architectures) for edge AI, as well as edge AI empow-
ered 6G network, are introduced and summarized in
Section I.

• The communication-efficient edge training system is pre-
sented in Section II, including the edge learning models
and algorithms, followed by the promising wireless tech-
niques and architectures to support their deployment.

• The communication-efficient edge inference system is
introduced in Section III. Here, we introduce hori-
zontal edge inference and vertical edge inference by

cooperative transmission and task-oriented communica-
tion, respectively.

• A unified framework for resource allocation in edge AI
systems is provided in Section IV. Here, we present oper-
ation research based theory-driven and machine learn-
ing based data-driven approaches for designing efficient
resource allocation optimization algorithms.

• A holistic end-to-end architecture for edge AI systems
is proposed in Section V, including network infrastruc-
ture, data governance, edge network function, edge AI
management and orchestration.

• The standardizations, software and hardware platforms,
and application scenarios are discussed in Section VI.
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Fig. 3. Edge AI empowered 6G networks: integrated sensing, communication, computation, and intelligence.

This will help facilitate the booming market of edge AI
in the 6G era.

We summarize the main topics and relevant technologies as
well as highlight the representative results in Table I.

II. COMMUNICATION-EFFICIENT EDGE TRAINING

In this section, we shall present various communication-
efficient distributed optimization algorithms for edge training,
followed by promising enabling wireless techniques to support
the deployment of edge learning models and algorithms.

A. Edge Learning Models and Algorithms

The training process of edge AI models typically involves
minimizing a loss or empirical risk function to fit a global
model from decentralized data generated by a massive number
of intelligent devices. The goal of the distributed optimization
for edge training is to minimize the global loss function L,
namely,

minimize
θ∈Rd

L(θ) :=
∑

k∈S
wkLk(θ;Dk), (1)

where θ ∈ R
d are the model parameters, Lk is the local loss

function of device k over local dataset Dk, S denotes the
set of participating edge nodes, and wk ≥ 0 with

∑
wk =

1 denotes the weight for each local loss function. Considering
the network topology for edge training, the heterogeneous
local dataset Dk, varying device participation S, dynamic
communication and computation environments, as well as
privacy concerns and adversarial attacks, highly-efficient and
trustworthy distribution optimization algorithms need to be

developed. As shown in Fig. 4, based on the data partition and
model partition principles [29], we will first introduce various
edge training architectures, including FL, decentralized learn-
ing, and model split learning. We then present distributed RL
and trustworthy learning techniques to accommodate dynamic
and adversarial environments, respectively, as shown in Fig. 5.

1) Federated Learning: FL is a collaborative ML frame-
work to train a global statistical model without accessing
edge devices’ private raw data, wherein a dedicated edge
server is responsible for aggregating local learning model
updates and disseminating global learning model updates [34],
as shown in Fig. 4 (a). FL is being adopted by many industrial
practitioners, including Google’s Gboard mobile keyboard for
next word prediction and emoji suggestion, Apple’s QuickType
keyboard for vocal classifier, NVIDIA for COVID-19 patients
oxygen needs prediction, and WeBank for money laundering
detection [68]. Compared with the cloud data center based
distributed learning, cross-device FL raises unique challenges
for solving the distributed training optimization problems,
including high communication costs with a large model fre-
quently exchanged over wireless networks, statistical hetero-
geneity with non-identical local data distributions and sizes,
system heterogeneity with varied storage, computation and
communication capabilities, as well as dynamic devices partic-
ipation [122]. A growing body of recent works have developed
effective methods to address these unique challenges in FL.

To address the challenge of expensive communication over-
heads for intermediate local updates with a central server,
federated averaging [67] turns out to be effective to reduce
the number of communication rounds by performing multi-
ple local updates, e.g., running multiple stochastic gradient
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TABLE I

AN OVERVIEW OF THE MAIN TOPICS AND REPRESENTATIVE RESULTS

descent (SGD) iterations on each edge device. The local updat-
ing approach is able to learn a global model within much fewer

communication rounds compared with the vanilla distributed
SGD method, i.e., only running one mini-batch with SGD
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Fig. 4. Edge learning models and architectures.

Fig. 5. Edge learning modes in dynamic and adversarial environments.

at each edge device. Model compression, such as quanti-
zation and sparsification, is another notable way to address
the communication bottleneck by reducing the size of the
exchanged messages during each model update round. Scalar
quantization is a typical way to implement lossy compression
for the high-dimensional gradient vectors by quantizing each
of their entries to a finite-bit low precision value [123]–[125],
which was further improved by the recent proposal of vector
quantization [126], [127]. Sparsification, on the other hand,

proposes to only communicate the informative elements of the
gradient or model vectors among nodes [128], [129]. A set of
algorithms combining the local updates method and model
compression have shown the capability of achieving high
communication efficiency [130], [131]. In particular, a lazily
aggregated quantized gradient method was further proposed
in [132] to reduce both the amount of exchanged data and
communication rounds by reusing the outdated gradients for
the less informative quantized gradients.

Although the above periodical compressed update methods
have shown empirical or theoretical success for tackling the
communication challenge, the heterogeneity in systems and
local datasets may slow down or even diverge the conver-
gence [133], [134], for which various algorithms and models
have been proposed to address the statistical and system
heterogeneity challenges. To learn the AI models from sta-
tistically heterogeneous local datasets, various effective and
personalized models have been proposed to rectify the original
model (1), including regularizing local loss functions at each
device [134]–[136], distributionally robust modeling [137],
[138], multi-task learning [139], as well as the meta-learning
approaches [140]. Running a local update at the devices with
heterogeneous computation capabilities may yield objective
inconsistency or client drift, i.e., the learned model can be
far from the desired true model. To address this problem,
an operator splitting method was proposed to avoid the local
models drifting apart from the global model [141]. A nor-
malized model aggregation method was also developed to
ensure that the global model converges to the desired true
model [142]. A novel federated aggregation scheme was
further developed in [143] to address the system hetero-
geneity issue concerning the dynamic, sporadic and partial
device participation. To leverage the computation capabilities
across the device-edge-cloud heterogenous network, a hier-
archical model aggregation approach was proposed in [130]
to reduce the latency by controlling the two aggregation
intervals.

2) Decentralized Learning: Decentralized ML learns a
global model from inherently decentralized data structures via
peer-to-peer communications over the underlying communi-
cation network topology without a central authority [144],
as shown in Fig. 4 (b). It has great potentials for applications
in the autonomous industrial systems, including cooperative
automated driving, cooperative simultaneous localization and
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mapping, and collaborative robotics in advanced manufac-
turing environments [145]. The decentralized learning archi-
tecture harnesses the benefits of communication efficiency,
computation scalability and data locality. In particular, swarm
learning [35] provides a completely decentralized AI solution
based on decentralized ML by keeping local datasets at each
edge device. This can achieve high privacy, security, resilience
and scalability. Compared with the sever-client learning archi-
tecture in FL, decentralized learning can accommodate the
decentralized D2D communication network architectures and
protocols with arbitrary connectivity graphs (e.g., cooperative
driving and robotics networks). It can also overcome the strag-
gler dilemma with heterogeneous hardware, as well as improve
the robustness to data poisoning attacks and master node
fails [35], [145]. The convergence behavior of decentralized
learning highly depends on the decentralized averaging mecha-
nism and the network topology for data exchange [71]. Typical
decentralized aggregation approaches include the consensus-
based methods [69] and diffusion strategies [70].

To improve the communication efficiency for exchanging
the locally updated models at edge devices within their neigh-
bors, one may reduce either the number of communication
rounds (i.e., improve convergence rate) or the volume of
exchanged data per round. Specifically, the variance reduction
with the gradient tracking method was investigated in [146]
to achieve a fast convergence rate. Periodic-averaging via
running multiple local updates before decentralized averaging
is an effective way to reduce the number of communication
rounds among devices [147], [148]. Besides, quantizing or
sparsifying the locally updated models can reduce the volume
of the exchanged messages to address the communication
bottleneck [149]. A consensus distance controlling framework
was further developed in [150] to achieve the trade-off between
the learning performance and the exactness of decentralized
averaging for decentralized DL. Moreover, a communication
network topology design is also critical to improve the com-
munication efficiency [151], for which a group alternating
direction method of multipliers [152] was proposed to form
a connectivity chain by dividing the workers into head and
tail workers. To address the heterogeneity issue of local
datasets, the momentum-based method [153] has recently been
developed to achieve good generalization performance.

3) Model Split Learning: Model split learning enables a
collaborative learning process across the edge devices and
edge servers by partitioning the model parameters across the
edge nodes, as shown in Fig. 4 (c). That is, each edge node k,
including edge devices and edge servers, is only responsible
for updating θk with θ = [θ1,θ2, . . . ,θS ] in (1). This model
splitting architecture can achieve higher privacy levels and
better trade-offs between communication and computation.
It is thus particularly applicable for DL with a large model
parameters size, whereas the data partition based training
method, e.g., FL, normally requires the local update of a
whole copied global model at each involved edge device.
The model parameter partitioned edge learning approach [72]
proposed to train only a block of model parameters based
on the coordinate decent method for the decomposable ML
models [154] or the alternating minimization approach for the

general DL models [155]. However, this approach is prone to
data privacy leakage as the datasets need to be shared across
edge devices. Vertical FL, on the other hand, can directly learn
the global model from the partitioned data features among
different edge devices without sharing them [156]. Therefore,
the data features and the associated model parametric blocks
are split among edge devices, for which the asynchronous
SGD method can be applied for vertical FL [157]. Consensus
algorithms were also developed in [158] to jointly learn a
model under the decentralized network while keeping the
distributed data features locally.

Split DL further provides a flexible way to train a DNN by
dividing it into lower and upper segments located at the edge
device-side and edge server-side, respectively [36]. It can be
typically applied to the medical diagnosis and millimeter wave
channel prediction [37]. Split DL is able to preserve privacy
without sharing raw data and enjoys computation scalability by
allowing that only edge devices perform simple computation
for the lower segments. Compared with FL, split DL can
significantly improve computation efficiency, reduce commu-
nication costs, as well as achieve higher learning accuracy,
data security and system scalability. Specifically, edge devices
and edge server collaboratively train the whole neural network,
which involves routing the activations of the edge device-side
subnetwork to the edge sever via forward propagation, and
downloading the gradients of the edge server-side subnetwork
to update the lower segment via back propagation. However,
exchanging the instantaneous intermediate values between
edge devices and edge server becomes the communication
bottleneck, especially in the case with multiple edge devices.
Therefore, a joint communication strategy and neural net-
work architecture design is required [37] for split training
of various DNNs with heterogeneous edge devices. Consid-
ering the large-scale privacy-sensitive and delay-sensitive IoT
applications, Lyu et al. [159] proposed a hybrid fog-based
privacy-preserving DL framework, where a fog-level DNN
is partitioned between the edge device and the fog server
side.

4) Distributed Reinforcement Learning: RL provides a flex-
ible framework for sequential decision making in dynamic
settings by interacting with a dynamic environment, as shown
in Fig. 5 (a). This can be frequently modeled as deci-
sion making and learning in a Markov decision process
(MDP) [160]. Typical RL algorithms include the model based
algorithm, policy-based algorithm (e.g., natural policy gradi-
ent), value based algorithm (e.g., Q-learning), and actor-critic
method. In particular, an asynchronous method, by lever-
aging parallel computing, was developed in [161] to solve
the large-scale nonconvex RL problem. However, in modern
intelligent applications, e.g., autonomous driving and robotics,
it is critical to consider multi-agent reinforcement learning
(MARL), in which multiple agents collaboratively interact
with a common environment to complete a common goal
and maximize a shared team award with different local action
spaces [73]. Due to the enormous state-action space, delayed
rewards and feedback, as well as the non-stationary and
unknown environments with heterogeneous agents’ behaviors,
efficient communication strategy among multiple agents shall
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play a key role to achieve good and stable performance for
MARL.

For the server-client architecture based MARL, the edge
server coordinates the learning process for all the edge agents.
Lowe et al. [162] proposed a multi-agent actor-critic method
involving decentralized actors at each agent and a centralized
critic for parameter sharing among the agents. To improve the
communication efficiency of the distributed policy gradient
for MARL, a lazily aggregated policy gradient was devel-
oped in [38] to reduce the communication rounds by only
communicating informative gradients of partial agents while
reusing the outdated gradients for the remaining agents. For
applications without central coordinators, e.g., autonomous
driving, decentralized MARL is essential wherein the agents
only allow the exchange of messages with their neighbors over
a communication connectivity graph [163]. Zhang et al. [39]
proposed decentralized actor-critic algorithms with function
approximation, where each agent makes individual decisions
based on both the information observed locally and the
messages shared through a consensus step over the network.
A decentralized entropy-regularized policy gradient method by
only sharing information with neighbor agents was developed
in [164] to learn a single policy for multi-task RL with multiple
agents operating different environments.

5) Trustworthy Learning: To learn and deploy AI mod-
els for high-stake applications (e.g., autonomous driving) at
the network edge, it is critical to ensure privacy, security,
interpretability, responsibility, robustness, and fairness for the
edge learning processes, as shown in Fig. 5 (b). However, the
heterogeneity of massive scale edge systems and decentralized
datasets raises unique challenges to design trustworthy edge
AI techniques. Although FL addresses the local confidentiality
issue by keeping datasets locally, the shared model updates
still cause extreme privacy leakage (e.g., model inversion
attack), the learned global model can be colluded by mali-
cious attackers [40], [165], and the edge devices may be
adversarial attackers (e.g., data or model poisoning). This
calls for rigorous privacy-preserving mechanisms and secure
aggregation rules [43]. Differential privacy provides a promis-
ing lightweight privacy-preserving mechanism to guarantee a
level of privacy disclosure for local datasets by adding random
perturbations [42]. The additive noise and signal superposition
properties in the wireless channel can be naturally harnessed as
the privacy-preserving mechanism [41]. The resulting inherent
noisy model aggregation scheme can limit the privacy disclo-
sure of local datasets at the edge server for free while keeping
the learning performance unchanged [41], [166]. To improve
the communication efficiency for private distributed learning,
Chen et al. [167] developed efficient encoding and decoding
mechanisms to simultaneously achieve optimal communica-
tion efficiency and differential privacy under typical statistical
learning settings.

Apart from preserving privacy for individual users, edge AI
also needs to be robust to errors and adversarial attackers,
as the decentralized nature makes it easy to be unreliable in
the learning process or even completely controlled by external
attackers [74]. To address Byzantine attacks (i.e., the faulty
edge device can behave arbitrarily badly by modifying its

local updates) in FL with a server-client architecture, various
robust and secure model aggregation schemes (e.g., geometric
median [168], trimmed mean [169], and Krum [170]) were
proposed to tolerate the Byzantine corrupted edge devices.
To simultaneously preserve privacy for individual users while
tolerating Byzantine adversaries, a Byzantine-resilient secure
aggregation framework was developed in [171] to detect adver-
sarial models without the knowledge of individual local mod-
els, as they are masked for privacy guarantees. To further avoid
malicious edge servers, blockchain technology was utilized to
provide a decentralized consensus environment to guarantee
the validity of global models in every learning iteration. This
is achieved by packing the local models and global model into
blocks, which are confirmed under a consensus mechanism,
followed by linking them into the blockchain [172]. To protect
decentralized learning from attacks, a blockchain based peer-
to-peer network was developed in [35] to support swarm
learning without a central server. This high security level in
decentralized learning is achieved by securely enrolling new
nodes via blockchain smart contract to perform local model
training.

To summarize, the presented edge learning models and
algorithms provide a strong evidence that to deploy the edge
training process in wireless networks, we need to develop new
wireless communication techniques and strategies to support
massive and flexible edge devices participation, as well as
support efficient function computation for model aggrega-
tion (e.g., weighted sum global model aggregation in FL,
consensus model aggregation in decentralized learning, and
robust model aggregation in secure learning). Various edge
training architectures (e.g., server-client, decentralized, and
hierarchical network topologies), as well as high-dimensional
model updates exchange motivate us to develop new wire-
less network principles and architectures to support edge AI
training systems, which will be discussed in the following
subsection.

B. Wireless Techniques for Edge Training

As the communication target for edge AI becomes the
learning performance instead of the conventional data rates,
we shall exploit the task structures of edge AI models
and algorithms to match the principles and architectures of
wireless networks. This helps demystify the efficiency of
edge training in wireless networks, which yields a learning-
communication co-design principle for future 6G wireless
networks to enable AI functionalities sitting natively within
6G. As shown in Fig. 6, we will introduce next generation
multiple access schemes (e.g., AirComp and massive random
access) to accommodate a massive number of edge devices
dynamically involved in the training process, new multiple
antenna techniques (e.g., RIS and cell-free massive MIMO) to
support high-dimensional model updates exchange, as well as
new network architectures (e.g., SAGIN and unmanned aerial
vehicle (UAV) network) to support diversified edge training
models and topologies.

1) Over-the-Air Computation: Edge training tasks typically
involve computing aggregation functions of multiple local
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Fig. 6. Enabling wireless techniques for edge training.

model updates to update a global model. To accomplish
weighted averaging aggregation in FL, consensus aggregation
in decentralized learning, and robust aggregation (e.g., geomet-
ric median) in trustworthy learning, the local updates need to
be transmitted from the edge devices, followed by computing
the relevant aggregation function at the edge sever. However,
the limited bandwidth and resource in wireless networks
becomes one of the key bottlenecks to enable a massive
number of edge devices that upload the local model updates for
global aggregation. AirComp provides a new multiple access
scheme for low-latency model aggregation. By concurrently
transmitting the locally updated models, AirComp can harness
interference to reduce communication bandwidth consump-
tions. The key idea is that the waveform superposition of a
wireless multiple access can be exploited for computing the
nomographic functions (e.g., the model aggregation function
weighted average) over the same channel [118], as shown
in Fig. 6 (a). Specifically, the transmitted signals at edge
devices are first multiplied by the fading channels and then
superposed over-the-air with additive channel noise, result-
ing in a noisy weighted sum of transmitted signals [31].
This perfectly matches the structure of model aggregation
computation. Note that the robust aggregation function (i.e.,
geometric median) does not hold the additive structure. But
we can still approximate it by computing a few number of
weighted averaging functions via AirComp [93]. The com-
munication latency and bandwidth requirement of AirComp
will not increase with the number of edge devices, thus
relieving the communication bottleneck in the edge training
process.

Channel fading and noise perturbation in the model aggre-
gation raise unique challenges for the edge training algorithm

design and analysis. To tackle the channel fading pertur-
bation, a channel inversion method was proposed in [44],
[45], [173] by multiplying the inverse of channel gain for
the transmit signal, which may however not satisfy the
power constraint at edge devices. To address these issues,
a transceiver design was provided in [31] to minimize the
distortion for the perturbed model aggregation, whereas the
perturbed model updates are directly incorporated in the FL
algorithm design [166]. Although the analog transmission
in AirComp is prone to channel noise, the additive noise
in the model aggregation turns out to be controllable or
even beneficial in the edge training process. Specifically, the
channel noise in the model aggregation yields a new class of
noisy FL algorithms. The convergence behavior demonstrates
that the noisy iterates typically introduce non-negligible opti-
mality gap in various FL algorithms, e.g., vanilla gradient
method [174], quantized gradient method [175], sparsified
gradient method [173], and operator splitting method [87].
The optimality gap can be further controlled by transmit power
allocation [41], [173], [176], model aggregation receiver beam-
forming design [31], [177], [178], and device scheduling [31],
[178], [179]. Besides, channel perturbation in algorithm iter-
ates can also serve as the mechanism to design saddle points
escaping algorithms [94], thereby establishing global opti-
mality for training the non-convex over-parameterized neural
networks in high-dimensional statistical settings [180]. The
additive channel noise in model aggregation can also serve
as an inherent privacy-preserving mechanism to guarantee
differential-privacy levels for each edge device without sac-
rificing learning performance [41].

2) Massive Access Techniques: Deploying cross-devices FL
in IoT networks raises practical challenges, i.e., the IoT



LETAIEF et al.: EDGE AI FOR 6G: VISION, ENABLING TECHNOLOGIES, AND APPLICATIONS 15

devices have sporadic access to the wireless network [181].
It is thus critical to design practical FL systems to accom-
modate flexible device participation with sporadic access to
the wireless network [143], as shown in Fig. 6 (b). The
grant-free random access protocol provides a low-latency and
low signaling overhead way to detect the active devices, fol-
lowed by decoding their corresponding information data [75],
[182], [183]. In this protocol, active devices can transmit
the data signals directly without waiting for any permis-
sion. Sparse signal processing provides a promising modeling
framework to simultaneously detect the active devices and
estimate their channels [75], [76], which is supported by var-
ious efficient algorithms, including the approximate message
passing algorithm [184], [185] and DNN algorithm unrolling
approach [97], [186]. To further reduce the latency for data
decoding in random access, a sparse blind demixing frame-
work was developed in [187] by simultaneously performing
active device detection, channel estimation and their data
decoding. The key observation is that blind demixing is able
to perform low-latency data decoding for multiple users from
the sum of bilinear measurements without channel estimation
at both the transmitters and receivers [188], [189]. To enhance
the performance, the common sparsity pattern in pilot and user
data has been exploited via joint activity detection and data
decoding [190], [191].

Random access protocols are promising to support flexible
and massive device participation in the edge training process
by identifying active devices with sporadic traffic. It is still
critical to develop massive access techniques to improve
the learning performance by enrolling more active devices
to perform local model update and exchange under digital
transmission. Nonorthogonal multiple access (NOMA) [77],
[78] is a key enabling candidate technology to simultaneously
serve massive devices for model aggregation in the same
radio resource block via superposition coding. Typical NOMA
schemes include the power-domain NOMA with different
transmit powers as weight factors and the code-domain NOMA
(e.g., sparse code multiple access [192] and pattern divi-
sion multiple access [78]) with different codes assigned to
users. Therefore, the user’s data can be decoded from the
simultaneously transmitted signals via successive interference
cancellation. In particular, DL provides a powerful method
to design and optimize NOMA systems [193]–[195]. Under
analog uncoded transmission, interference can be harnessed
via the new massive access techniques AirComp, for which
Dong et al. further proposed a blind AirComp for low-latency
model aggregation without channel state information (CSI)
access [79]. It is thus particularly interesting to integrate
a massive random access protocol (e.g., grant-free random
access) and massive access technique (e.g., AirComp based
access technique) with analog uncoded transmission to simul-
taneously perform active device detection, channel estima-
tion and model aggregation, thereby supporting flexible and
low-latency edge devices enrolling for collaboratively training
the models.

3) Ultra-Massive MIMO: Leveraging massive antenna
arrays is a key enabling wireless technology to achieve high
spectral and energy efficiency, which is envisioned to be

further scaled up by an order-of-magnitude in 6G [8]. The
recent advances in digital beamforming, analog beamforming,
as well as hybrid beamforming have helped the roll-out of mas-
sive MIMO into practice by operating over a wider frequency
band. It has been demonstrated that massive MIMO is able to
bring enormous benefits for edge training systems, including
high-accuracy and high-rate for model aggregation, as well as
high-reliability for massive device connectivity. Specifically,
massive MIMO can achieve a high computation accuracy
for model aggregation via exploiting spatial diversity [196],
and enable ultra-fast model aggregation with simultaneous
multi-functions computation by spatial multiplexing [197].
Furthermore, for FL with edge devices sporadically enrolling,
the device activity detection error goes to zero as the number of
antenna elements in the BS goes to infinity, thereby achieving
high-reliable devices participation for model updates.

To scale edge training to huge physical areas with mas-
sive geographically distributed edge devices, ultra-dense wire-
less network is a promising way to achieve low-latency,
high-reliability and high-performance. This is achieved by
simultaneously uploading massive local model updates with
multiple distributed edge servers with abundant communica-
tion, computation, and storage resources, thereby mitigating
the stragglers issues (i.e., devices with low communication
and computation capabilities may prolong the training time)
and unfavorable channel dynamics. Besides, compared with
the single edge server architecture, distributed edge servers
are robust to server failure issues for reliable edge training.
In particular, cloud radio access network (Cloud-RAN) [198],
[199] provides a cost-effective way to implement distributed
antenna aided edge training systems, for which reliable model
aggregation via AirComp can be achieved by centralized
signal processing and shortening the communication distances
between edge devices and edge servers [200]. The recent pro-
posal of cell-free massive MIMO [201] serves a promising way
to realize the wireless distributed FL systems by exploiting the
channel hardening characterization (i.e., the effective channel
gain is approximated by its expectation value) and avoiding
sharing instantaneous CSI among edge servers [46], as shown
in Fig. 6 (c).

4) Reconfigurable Intelligent Surfaces: To obtain the
desired average function of local model updates for model
aggregation via AirComp, magnitude alignment by scaling the
transmit signals (e.g., channel inversion) is normally required
to reduce the channel perturbation [202]. However, due to
the resource-limited edge devices and the non-uniform fad-
ing channels, the unfavorable signal propagation environment
inevitably leads to magnitude reduction and misalignment
with perturbed model aggregation, which in turn degrades the
learning performance of the edge training process. Besides, the
massive edge devices with sporadic access to the edge servers
can be located at a service dead zone, which makes device
activity detection challenging for weak channel links [185].
To enroll multiple edge devices via simultaneously trans-
mission with NOMA, sufficient diversified channel gains are
normally required for successive interference cancellation,
which however may not always hold in practical scenarios
[203]. Heterogeneity in terms of computation, communication,
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and storage across edge devices is one of major challenges to
deploy edge AI systems. Waiting for the straggler edge devices
with slow computation and communication speeds for model
aggregation causes significant delays, which can be tackled by
computation offloading and task scheduling by mobile edge
computing (MEC) technique [204]. However, fully unleashing
the benefits of MEC for straggler mitigation is limited by the
hostile wireless links [205].

To address the above challenges in terms of propagation
impairments, RIS has been shown to be a cost-effective
technology to support fast yet reliable model aggregation with
massive edge devices participation by programming the prop-
agation environment of electromagnetic waves [118], [206],
as shown in Fig. 6 (d). Specifically, RIS is typically realized
by planar or conformal artificial metamaterials or metasurfaces
equipped with a large number of low-cost passive reflecting
elements, which are capable of adjusting the phase shifts
and amplitudes of the incident signals for directional signal
enhancement or nulling, and thus altering the propagation
of the reflected signals [49], [207], [208]. To design an
RIS-empowered edge training system, RIS can be leveraged
to align the magnitudes of the transmit signals by establishing
favorable propagation links in waveform superposition for
AirComp, resulting in boosted received signal power and
accurate aggregated function at the edge server [209]. The
boosted model aggregation via RIS can support efficient
edge devices scheduling in over-the-air FL, thereby adapt-
ing to the time-varying local model updates and channel
dynamics [48], [178]. The reliable sporadic access in edge
training can be developed by establishing abundant propaga-
tion scatters using RIS for accurate activity detection [185].
The latency for local model updates of the active devices can
be further reduced by establishing favorable propagation links
via RIS, thereby mitigating stragglers [205].

5) Space-Air-Ground Integrated Networks: The typical
SAGIN [51], [210] provides an integrated space informa-
tion platform across the satellite networks (e.g., miniaturized
satellites [211]), aerial networks (e.g., UAV communica-
tions [212]), and terrestrial communications (e.g., vehicular
communications [213]) to provide ubiquitous connectivity for
various edge training architectures, as shown in Fig. 6 (e).
Edge learning over a vehicle-to-everything network is critical
to enable autonomous driving with delay-sensitive applica-
tions [145]. In this scenario, the local model updates need to
be fast and reliably aggregated within neighbors via vehicle-
to-vehicle communications [181], or to the roadside units via
vehicle-to-infrastructure communication. In particular, radar
sensing provides a promising way to predict the vehicular
links [214] and holds the potential to provide real-time model
aggregation via predictive beamforming in the model aggre-
gation procedure. In the scenario with sparsely deployed edge
servers and moving edge devices (e.g., ground vehicles), UAV,
serving as the flying edge servers, can provide a promising
solution to aggregate local model updates in the whole proce-
dure of edge training by joint UAV trajectory and transceivers
design over dynamic wireless edge networks [81].

To build a scalable edge training system with mas-
sive devices participation for training extremely deep

AI models [215], it is critical to access abundant computation
resources across the continuum of nodes from edge devices,
edge servers, to cloud servers [50]. It was shown in [130]
that the client-server-cloud multi-layer architecture is able to
significantly reduce the training time and energy consumption.
In the scenario without abundant edge and cloud computing
infrastructures, SAGIN provides an ubiquitous computing plat-
form for the multi-layer hierarchical edge learning system,
where the flying UAVs serve as the proximal edge computing,
and the low earth orbit satellites serve as the relays to the
cloud computing [216]. To realize SAGIN empowered edge
training system, tier-adaptive aggregation interval manage-
ment becomes critical to control the local and global model
aggregation intervals [130] to achieve high communication
efficiency. Besides, the client-edge-satellite association with
dynamic scheduling and offloading is fundamental to tackle
the heterogeneity challenges in terms of system resources and
network topologies.

In summary, this section presented multiple access technolo-
gies (e.g., AirComp, grant-free random access, NOMA), mul-
tiple antenna techniques (e.g., Cloud-RAN, cell-free massive
MIMO, RIS), and multiple layer networks (e.g., UAV, SAGIN)
that are needed to support low-latency model aggregation and
diversified learning architectures and environments. We hope
this can inspire more advanced 6G wireless and information
techniques (e.g., millimeter-wave and terahertz (THz) commu-
nications [217], [218], age of information [219]) to support
edge AI systems for establishing integrated communication,
computation and learning ecosystems.

III. COMMUNICATION-EFFICIENT EDGE INFERENCE

In this section, we present communication-efficient tech-
niques for edge inference tasks with latency and reliability
guarantees. Based on the dataset distribution characteristics,
Yang et al. [33] proposed to categorize FL as horizontal FL
(i.e., datasets share the same feature space but different sample
space) and vertical FL (i.e., datasets share the same sample
space but differ in the feature space). Hosseinalipour et al. [50]
further proposed a fog learning framework by allowing
both vertical communications (i.e., model updates are only
exchanged across different network layers) and horizontal
communications (model updates can be exchanged between
devices in the same network layer). In a similar way, based on
different computing collaboration schemes, we shall propose
to categorize edge inference as horizontal edge inference (i.e.,
computation resources can only be harvested among edge
devices, or only be pooled among edge servers), and vertical
edge inference (i.e., computation resources can be harnessed
between edge devices and edge servers), which are discussed
in the following two subsections, respectively.

A. Horizontal Edge Inference

We consider two different types of horizontal edge infer-
ence, as shown in Fig. 7 (a) and Fig. 7 (b).

1) Edge Device Distributed Inference: Enormous efforts
on TinyML with DL model compression and neural network
architecture search have been conducted to enable low-latency
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Fig. 7. Communication-efficient edge inference systems.

and energy-efficient model inference on a single device with
limited storage and computation resources [220]. However,
due to limited storage capability at edge devices, it becomes
extremely difficult to accomplish inference computation tasks
at a single device, for applications such as mobile navigation
with a huge map information dataset [221]. Edge device
distributed inference based on wireless MapReduce enjoys the
advantages of providing low-latency, high-accurate, scalable,
and resilient services for edge devices without accessing the
cloud data center [12], [29]. Specifically, edge device dis-
tributed inference involves computing the intermediate values
based on the local input datasets using the map function,
followed by sharing the intermediate values via horizontal
communication among edge devices, thereby constructing the
desired computation or inference results using the reduce
function [52], [222].

To tackle the communication bottleneck for shuffling inter-
mediate values in the edge device distributed inference
process, a coded distributed computing approach [223] was
adopted in [221] to improve the scalability of wireless
MapReduce by inducing the coded multicasting transmission
opportunities. This, however, sacrifices computation efficiency
as computation replication of the local dataset is needed.
To further improve the spectral efficiency, instead of reducing
the volume of communication bits [221], a joint uplink and

downlink design approach based on the interference alignment
principle was developed in [52] to improve the communication
data rates for local intermediate values shuffling. In particular,
to compute the nomographic function [224] for edge device
distributed inference based on the MapReduce decomposition,
a multi-layer hierarchical AirComp approach was proposed
in [225] to improve the spectral efficiency over the multi-hop
D2D communication network, as shown in Fig. 7 (a).

2) Edge Server Cooperative Inference: DL with high-
dimensional model parameters is able to provide high accurate
intelligent services. However, it is challenging to directly
deploy such large AI models on IoT devices due to very
limited onboard computation, storage and energy resources.
Deploying and executing DL models on edge servers turns
out to be a promising solution. However, the limited wireless
bandwidth between edge devices and edge servers becomes
the key bottleneck [53], [54] for edge server cooperative
inference. Compressing and encoding the input source data at
edge devices are essential to reduce the uplink communication
overheads, for which various data dimensionality reduction
approaches have been proposed by exploiting the specific com-
putation tasks and communication environments [29]. Besides,
for the applications with high-dimension output inference
results (e.g., the output of the NVIDIA’s AI system GauGAN
is a large-sized photorealistic landscape image), it is equally
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important to design highly efficient downlink communication
solutions for delivering the output inference results for the
edge devices [53], [54].

Computation replication has been shown to be effective for
reducing the communication latency in computation offload-
ing when the output size is large [226]. This is achieved
by executing each inference task at multiple edge servers,
followed by delivering the inference results for multiple
edge devices via downlink cooperative transmission [227].
Although edge server cooperative inference via downlink
transmission cooperation is able to significantly improve com-
munication efficiency by mitigating interference and alleviat-
ing channel uncertainties, it causes extra energy consumption
to execute the same inference tasks at multiple edge servers.
To design a green edge server cooperative inference system,
joint inference task selection and downlink coordinated beam-
forming framework was proposed in [53] to minimize the
overall computation and communication energy consumption,
as shown in Fig. 7 (b). RIS was further leveraged in [54]
to design green edge server cooperative inference systems
by considering both uplink and downlink transmit power
consumption. The rate splitting method is also anticipated
to be able to further improve the energy-efficiency for edge
server cooperative inference by partially decoding the infer-
ence result and partially treating it as noise in a flexible
way [228].

B. Vertical Edge Inference

We consider two different cases of vertical edge infer-
ence, as shown in Fig. 7 (c) and Fig. 7 (d), with a sin-
gle edge device and multiple edge devices, respectively.
In the following, we shall first present effective techniques
for communication-efficient vertical edge inference for these
two cases, and then present a new general design principle
for resource-constrained vertical edge inference, named task-
oriented communication.

1) Edge Device-Server Co-Inference: Edge device distrib-
uted inference enjoys low-latency whereas it has limited
accuracy due to limited processing capabilities and limited
bandwidth. Although edge server cooperative inference is able
to achieve high accuracy with DL models, it may raise data
leakage issue and excessive communication delay. It thus
becomes inapplicable for privacy-sensitive and delay-sensitive
applications. To provide ubiquitous AI services across diver-
sified application scenarios, edge device-server co-inference,
as a complementary solution to horizontal edge inference,
is promising to alleviate the communication overheads while
achieving high accuracy and privacy for inferring the DNN
models. This is achieved by dividing the DNN model into
a computational friendly segment at the edge device, and
the remaining computational heavily segment at the edge
server [32], as shown in Fig. 7 (c). By adaptively partitioning
the computation burdens between the edge devices and edge
server, model split selection for the neural network is essential
to achieve optimal computation-communication trade-off in
the vertical edge inference system via edge device-server syn-
ergy and collaboration [82]. To further reduce the communi-
cation overheads, a communication-aware model compression

approach was proposed in [32] to limit the number of the
activated neurons at the last layer of neural network deployed
at the edge device. However, the short message transmission
[37] and data amplification effect [229] of the output features
extracted by the on-device split model raise unique challenges
to realize real-time vertical edge inference.

2) Ultra-Reliable and Low-Latency Communication: The
packet length of the extracted output features transmitted from
the edge devices can be very short [83], [145], for which the
achievable data rate in such a finite block length regime is
penalized by a non-vanishing decoding error probability [83].
Besides, the output inference results from the edge server
should be delivered to the edge devices with latency and
reliability guarantees for mission-critical applications. Consid-
ering the system dynamics, including task arrival dynamics in
the network layer and the wireless channel dynamics in the
physical layer, cross-layer optimization is needed to minimize
the end-to-end delay for edge device-server co-inference [84],
[85]. In particular, MDP supported by linear programming
was adopted in [85] to jointly schedule the transmission at
edge devices and computation at the edge server for achieving
the optimal power-latency tradeoff for edge device-server co-
inference via MEC. The random delay characteristics were
also investigated in [230] by modeling the coupled transmis-
sion and computation process as a discrete-time two-stage
tandem queueing system. To support multiple edge devices
for uploading intermediate features using short packet trans-
mission, massive MIMO can be adopted to combat channel
fast fading and provide a nearly deterministic communication
environment due to channel hardening [231]. The received
multiple intermediate features can be further aggregated via
the mixup augmentation technique [232] to enable scalable
and cooperative inference at the edge server, as shown in
Fig. 7 (d).

3) Task-Oriented Communication: As revealed in [32],
there exists an intrinsic communication-computation trade-off
in resource-constrained vertical edge inference. This is mainly
caused by the data amplification issue in DL based inference,
namely the dimension of the intermediate feature may be
larger than the input data size. Thus, if only a few layers of the
neural network were deployed on the edge device, the output
feature would have a size larger than the input data, yielding
too much communication overhead. To reduce the intermediate
feature size, more layers have to be deployed on the edge
device, which however will lead to high local computation
burden. To resolve this tension between local computation
and communication overhead, it is of critical importance to
effectively compress and transmit the intermediate feature.
Such a communication task is fundamentally different from
data-oriented communication in current wireless networks,
i.e., to transmit a binary sequence at the highest data rate
for reliable reconstruction at the receiver. In vertical edge
inference, the feature transmission is for the inference task,
not for reconstructing the feature vector with high fidelity.
Thus, as advocated in [32], we should rather design the com-
munication scheme for feature transmission in a task-oriented
manner, i.e., only transmitting the informative messages for
the downstream inference task at the edge server. Instead
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of decoding the intermediate features, the received signal
corrupted by channel fading and noise is directly processed
at the edge server to obtain the inference results.

This task-oriented communication principle constitutes a
paradigm shift for the communication system design from
data recovery to task accomplishment. It was first tested
in vertical edge inference via end-to-end training with joint
source-channel coding in [233], which helps to reduce both
the communication overhead and on-device computation cost.
Such design principle has also been applied in other tasks.
For example, the DL based end-to-end semantic commu-
nication system was developed in [21] via joint semantic
source and wireless channel coding for recovering the meaning
of sentences instead of the original transmitted data sam-
ples. The analog JSCC approach was presented in [234] to
compress and then code the feature vectors, followed by
leveraging the received perturbed signal directly for wireless
image retrieval at the edge server via a fully-connected neural
network. Recently, a novel and generic design framework for
task-oriented communication was developed in [20], which is
based on the information bottleneck formulation [235]. This
framework provides a principled way to extract informative
and concise representation from the intermediate feature,
which is made mathematically tractable via variational approx-
imation. Furthermore, it has been extended to the cooperative
inference scenario with multiple edge devices in [86] based on
distributed information bottleneck [236] and distributed source
coding theory.

In summary, this section presented interference coordina-
tion techniques and task-oriented low-latency communication
principles for horizontal edge inference and vertical edge infer-
ence, respectively. We hope this can motivate the co-design of
wireless communication networks and deep learning models
to deliver low-latency, energy-efficient and trustworthy edge
AI inference services.

IV. RESOURCE ALLOCATION FOR EDGE AI SYSTEMS

In this section, we shall characterize the engineering require-
ments for designing communication-efficient edge AI sys-
tems, including accuracy, latency, energy, privacy and security.
Effective service-driven resource allocation methods based
on mathematical programming and ML are then provided to
achieve scalability and trustworthiness for edge AI systems.

A. Engineering Requirements and Methodologies

We identify the engineering requirements for designing
scalable and trustworthy edge AI systems. Resource alloca-
tion strategies must cater to the needs of edge AI systems
for achieving accurate intelligence distillation into the edge
network at an ultra-low power and low-latency cost.

1) Accuracy: The edge training process involves designing
the global iterates θ[t] with t as the iteration index to minimize
the empirical loss function while achieving fast convergence
rates with negligible optimality gap for problem (1). To design
efficient resource allocation schemes in edge training systems,
it is particularly important to characterize the convergence
behaviors for the global iterates θ[t], which typically depend

on the scheduled devices, local updates, aggregation behav-
iors, network topologies, propagation environments, function
landscapes, and underlying algorithms. Specifically, for edge
training systems via AirComp, the global model aggregation
errors due to the wireless channel fading and noise will cause
learning performance degradation [45], [87]. The optimality
gap (i.e., the distance between the current iterate and the
desired solution), characterized by the convergence behavior
of the global iterate, can be further controlled by various
resource allocation schemes, including edge devices transmit
power control [41], [237], edge server receive beamform-
ing [31], [179], passive beamforming at RIS [48], [178],
as well as device scheduling policy [31], [48]. For digital
design of the edge training system, the optimality basically
depends on the edge devices selection, packet errors in the
uplink transmission, and model parameter partition, for which
user scheduling [238], power control [88], batchsize selec-
tion [239], aggregation frequency control [240], and bandwidth
allocation [241] were provided to improve the accuracy in the
edge training process.

For edge inference, the accuracy indicates the quality of
the inference results for a given task. It is typically measured
by the number of correct predictions from inference, e.g.,
the classification tasks. For computer vision applications in
autonomous driving, ultra-high accuracy for the DNN model
inference is demanded. For applications in radio resource
allocation via distributed ML, the accuracy of inferring a
DNN model can be moderate. The accuracy of edge inference
depends on the difficulty of the tasks and datasets, the quality
of the trained model, the dynamics of wireless communication
and edge computation environments, as well as the methods
for processing the models, datasets and features. In particular,
for horizontal edge inference via AirComp aided wireless
MapReduce, the accuracy for computing a nomographic func-
tion is fundamentally limited by the channel fading and noise,
for which various transceivers were designed to minimize the
mean square error for inference computation tasks [225]. The
accuracy of vertical edge inference depends on the informa-
tiveness and reliability of the intermediate features transmitted
from edge devices, as well as the dynamic wireless environ-
ments, for which an ultra-reliable communication and adaptive
JSCC approach need to be developed to improve the inference
performance. In particular, information bottleneck was adopted
in [20] to characterize the relationship between the accuracy
of the vertical edge inference and the communication overhead
of the intermediate features.

2) Latency: For edge training, the latency consists of com-
putation latency and communication latency. The computation
latency highly depends on the computation capability of the
edge devices and servers, as well as the size of the models
and datasets. The communication latency is the sum of the
transmission latency of one round with respective to the
total learning rounds until convergence for training the global
model. In one typical training round, the communication delay
in the uplink and downlink transmissions for model updates,
is mainly affected by the wireless communication techniques,
bandwidth and power budgets, wireless channel conditions,
as well as the scheduled edge devices. Li et al. characterized
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the delay distribution for FL over arbitrary fading channels via
the saddle point approximation method and large deviation
theory [89]. The trade-off between the convergence speed
and the per-round latency was revealed in [242] based on
the key observation that more scheduled devices yield faster
convergence rate while prolonging the time of uploading the
local updates at each iteration due to limited radio resources.
A probabilistic device scheduling policy was further proposed
in [90], [243] to minimize the overall training time in wireless
FL. Besides, the trade-off between the local computation
rounds for local model updates and the global communication
rounds for global model updates is characterized to guide
the resource allocation for minimizing the total learning time
and energy consumption [244]. The convergence speeds of
FL algorithms were characterized in [245] by considering
non-identical dataset distributions, partial edge devices par-
ticipation, and quantized model updates in both uplink and
downlink communications.

In the case of edge inference, the latency measures the time
between the data arrival to the generation of the inference
results through the edge AI system. It consists of the data
pre-processing, data transmission, model inference, and result
post-processing, which highly depend on the computation
hardware, communication schemes, DL models and tasks. For
the real-time mobile computer vision application of AR/VR,
stringent latency requirements are required, e.g., 100ms. For
scalable radio resource allocation application via DL, the
inference latency must be within the channel coherence time
(e.g., 10ms) to yield a meaningful resource allocation deci-
sion [23]. A low-rank matrix optimization based transceiver
design approach was proposed in [52] for fast shuffling
intermediate values in wireless distributed computing, thereby
reducing the latency for horizontal edge inference via edge
devices collaboration. For vertical edge inference, the dynamic
computation partition and early existing scheme was proposed
in [82] to accelerate the inference speed via edge device-
server synergy. The cross-layer design approach was adopted
in [85] to reduce the communication and computation latency
for the time-sensitive edge inference computing applications.
In particular, the DL enabled task-oriented communica-
tion framework was developed to achieve low-latency edge
device-server co-inference by merging feature compression,
source coding and channel coding for the specific inference
tasks [20], [234].

3) Energy: For edge training, the energy consumption con-
sists of the computation and communication process. For
AlphaGo, it may cost 280 GPUs and a $3000 electric bill per
game [246]. It is therefore critical to design energy-efficient
edge training systems to minimize carbon dioxide footprint
for contributing the carbon neutrality target. Such a design
is mainly dictated by the size of training models, model
training algorithms, and wireless transmission strategies and
hardware (e.g., the scaled SiGe bipolar technology [247]), and
edge computing architectures and hardware. Both computation
energy consumption for local model updates and communi-
cation energy consumption for uploading local updates are
simultaneously minimized in [92] by considering the learning
latency and accuracy constraints for wireless FL. The wireless

power transfer approach was further adopted in [248] to
power the edge devices for local model computation and
communication, for which the active devices with enough
harvested energy will contribute to accelerate the learning
procedure. To deploy AirComp-assisted FL across massive
IoT devices with a limited battery capability, microwave based
wireless power transfer supported by RIS was adopted in [91]
to recharge the IoT devices via energy beamforming at edge
server and passive beamforming at RIS.

In the case of edge inference, it becomes particularly
important to achieve high energy efficiency for processing
the DNN models at the network edge with battery-limited
devices. The energy consumption of executing a DNN model
is highly dictated by the computation architecture and methods
(e.g., ultra-low power compute-in-memory AI accelerator) at
the edge computation nodes [249], the architecture of DNN
models [250], and the wireless transmission for data exchange
during the model inference procedure. For horizontal edge
inference via wireless cooperative transmission at multiple
edge servers, the sum of the computation and transmission
power consumption for generating and delivering the inference
results were minimized via downlink coordinated beamform-
ing [53]. Energy consumption at the edge devices can be
minimized in the cross-layer design for delay-sensitive edge
device-server co-inference by computation offloading [85].
Besides, energy harvesting becomes a promising technology
for the edge computing based vertical edge inference by
providing renewable energy resources for edge devices [251].

4) Trustworthiness: Trustworthiness is one of the main
drivers for developing the next generation AI technologies.
Specifically, the developed AI models and algorithms must be
privacy-preserving, adversarial-resilient, robust, fair, optimal
and interpretable [95]. For edge training, privacy mainly
depends on the offloading or coding of the raw data and
intermediate features. Keeping datasets at devices is a direct
and effective way to preserve user’s privacy in FL. Besides,
the wireless channel noise yields a noisy model aggregation
procedure via AirComp, which provides an inherent privacy-
preserving mechanism to enhance differential-privacy for each
edge device. An adaptive power control method was further
developed in [41] to control the differential-privacy levels
in this over-the-air FL system, while avoiding the learning
performance degradation. To address the adversarial attacks,
the blockchain based decentralized learning was proposed
in [252] to enable secure global model aggregation by using
a consensus mechanism of blockchain. The block generation
rate was optimized by considering the communication, compu-
tation and consensus delays in the blockchain enabled secure
edge learning systems [252], [253]. For edge inference, privacy
and security are mainly dictated by the way of processing the
input data, of transmitting the inference results, as well as the
computation methods for model inference (e.g., secure multi-
party computation).

Establishing optimality for ML algorithms is important
to deliver reliable and responsible AI services. However,
empirical risk minimization for training the models is usu-
ally nonconvex, which poses significant challenges to guar-
antee global optimality for the learning algorithms and
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models [180]. Fortunately, under the high-dimensional sta-
tistical setting, the local strong convexity and smoothness
of the nonconvex loss functions can be exploited to tame
the nonconvexity for various learning models, e.g., blind
demixing [189], phase retrieval [254], and shallow neural
networks [255]. Besides, with high-dimensional datasets, the
nonconvex loss functions of certain statistical learning mod-
els, including over-parameterized neural networks [180] and
dictionary learning [256], can enjoy benign global geometric
landscape such that all the local minima are global minima,
and all the saddle points can be escaped efficiently using
the algorithms including trust region method and perturbed
gradient descent method [257]. In particular, for edge training,
the channel noise yields a perturbed stochastic gradient descent
method to escape saddle points for distributed principal com-
ponent analysis via AirComp [94]. Therefore, channel noise
can provide a mechanism for both preserving differential
privacy [41] and achieving global optimality [94]. These
evidences indicate that we should embrace channel fading and
noise for achieving trustworthy edge AI.

5) Service-Driven Resource Orchestration: Edge AI
systems need to incorporate various wireless network
architectures and communication strategies by integrating
communication and computation. This will result in a
highly complex and dynamic network, which requires
innovative technologies and solutions. Various use cases (e.g.,
autonomous driving, industrial IoT, and smart healthcare) and
heterogeneous requirements in terms of accuracy, latency,
energy and trustworthiness, would further aggravate the
complexity for resource allocation in edge AI systems.
Besides, the complex edge servers and base stations will be
quite energy-consuming, which brings formidable challenges
for achieving high energy efficiency. To enable efficient
resource allocation, it is thus critical to precisely model the
heterogeneous demands for edge AI services, and reversely
matching them with proper network resource orchestration.
This, however, relies on the quantitative relationship between
network resources and user requirements for edge AI tasks.
To pave the way for this paradigm shift for service-driven
resource allocation in edge AI systems, in the next subsection,
we shall provide various intelligent optimization models and
algorithms to adapt to diversified network environments and
services.

B. Optimization Models and Algorithms

The service-driven network resource management problems
for edge AI systems can be classified as a parametric family
of mathematical optimization problems:

minimize
z

f0(z; α)

subject to gi(z; α) ≤ 0, i = 1, . . . ,m,
hi(z; α) = 0, i = 1, . . . , p, (2)

where z ∈ R
n is the optimization variable vector consisting

of both discrete and continuous variables, α ∈ A is the
problem parameter vector with A denoted as the parameter
space (e.g., CSI). For each fixed α ∈ A, f0 : R

n → R is

Fig. 8. Resource allocation optimization methods for edge AI systems.

the objective function (e.g., optimality gap in edge training),
gi : R

n → R, i = 1, . . . ,m are the inequality constraint func-
tions (e.g., latency requirements in edge inference), and hi :
R

n → R, i = 1, . . . , p are the equality constraint functions.
The resource allocation optimization problems are typically
categorized as mixed-combinatorial optimization, nonconvex
continuous optimization, stochastic optimization, and end-
to-end optimization. To provide scalable, real-time, paral-
lel, distributed and automatic resource allocation schemes,
we shall propose to exploit the landscape of the underling
optimization problems (2) by the theory-driven method based
on mathematical programming, followed by developing the
novel data-driven approach based on machine learning to
achieve real-time and distributed implementations, as well as
improved and robust performance, as shown in Fig. 8. Here,
ψ(α) is a mapping function to map the problem parameter α
to the optimal solution of problem (2).

1) Mixed-Combinatorial Optimization: The resource allo-
cation problems in edge AI systems involve optimizing
across learning, computation and communication. Specifi-
cally, for edge training systems, we need to jointly optimize
the subcarrier and bandwidth allocation [88], [90], [241],
transmit power and receive beamforming [31], [48], [178],
passive beamforming at RIS [48], [178], device selection [31],
[242] and activity detection [76], local updates computa-
tion [92], and global aggregation frequency control [130],
thereby reducing the optimality gap and energy consumption
in the distributed learning procedure. For edge inference
via collaboration among edge servers, task selection, coor-
dinated downlink beamforming among edge servers, as well
as passive beamforming at RISs were jointly optimized to
achieve green edge inference [53], [54]. All of these resource
allocation schemes can be formulated as a mixed combina-
torial optimization problem, which needs to jointly optimize
continuous-valued variables (e.g., beamforming and power
control) and discrete-valued variables (e.g., device selection
and subcarrier allocation). In particular, sparse optimization
provides a powerful modeling approach to solve the mixed
combinatorial resource allocation problems by exploiting the
sparsity structures in the optimal solutions [96]. For instance,
the group sparsity can represent the combinatorial variables
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for edge devices selection in FL [31], edge devices activ-
ity detection [76], and inference tasks selection [53]. The
algorithmic advantages of the sparse optimization modeling
approach are supported by various convex relaxation algo-
rithms [198], [258], e.g., mixed �1/�2-norm minimization [80].
A typical sparse and low-rank optimization modeling and
algorithmic framework was developed in [31] to support the
joint device selection and transceiver design for improving
learning performance in over-the-air FL systems.

Although operation research provides a theory-driven
approach for solving the mixed combinatorial optimization
problem or its equivalent sparse optimization problem, the
existing algorithms are either heuristic with noticeable per-
formance loss or optimal with intolerably high computation
complexity. To address these challenges, “learning to opti-
mize” provides a data-driven design paradigm to improve the
computation efficiency and system performance for resource
allocation [114], [259]. This is achieved by developing compu-
tationally efficient optimization methods by learning from the
sampled problem instances using training models and methods.
The learned algorithms can be furthered executed online
and distributed for real-time resource allocations in edge AI
systems. To solve the large-scale mixed combinatorial opti-
mization problem efficiently, imitation learning was adopted
in [22] to learn an aggressive pruning policy in the globally
optimal-achieving branch-and-bound algorithm. This learning
based brand-and-bound method can significantly save the time
for pruning the nodes in the search tree, achieve near-optimal
performance with few training samples, as well as guarantee
feasibility of constraints without performance degradation.
To further speed up the sparse optimization method for the
mixed combinatorial optimization problem in edge device
activity detection, the DNN based algorithm unrolling frame-
work was developed in [97] to achieve theoretical guarantees,
performance improvements, interpretability and robustness for
the learned sparse optimization algorithms [186]. This is
achieved by mapping the theory-driven iterate operations, i.e.,
iterative shrinkage thresholding algorithm, into an unrolled
recurrent neural network, followed by training the model para-
meters based on supervised learning. Besides, a multi-agent
RL approach was developed in [260] to solve the distributed
mixed combinatorial optimization problem for task offloading
and resource allocation in multi-layer edge inference systems.

2) Nonconvex Optimization: Most of the resource allocation
problems in edge AI need to solve a series of nonconvex
optimization problems, e.g., nonconvex sparse optimization
for device selection in wireless FL, nonconvex quadratic pro-
gramming for transceiver design in over-the-air FL [31], low-
rank matrix optimization for interference management in edge
device distributed inference [52], and unit modulus constrained
phase shifts optimization [261] in RIS-empowered edge AI
systems [48], [54]. Convex approximation provides a natural
way to design polynomial time complexity algorithms for
nonconvex programs based on the principle of majorization-
minimization [262] or successive convex approximation [263].
A two-stage framework was provided in [98] for solving
general large-scale convex programs with infeasibility detec-
tion and scalable computation. This is achieved by matrix

stuffing technique for fast conic program modeling in the first
stage, and operator splitting method for scalable conic program
solving in the second stage [98]. Although the semidefinite
relaxation approach [264] is able to convexify the general
quadratic programs by matrix lifting and dropping the resulting
rank constraints, it fails to return high quality solutions in
the high-dimensional settings. This issue was addressed by
a difference-of-convex-functions (DC) programme [31], [52],
[99] by representing the rank function via an equivalent DC
function. This DC optimization modeling and algorithmic
framework was typically applied to solve the nonconvex
passive beamforming problem in the RIS-empowered FL
systems [48] and edge inference systems [54]. To solve the
large-scale rank constrained matrix optimization problems,
Riemannian manifold optimization was proposed to optimize
such nonconvex programs directly by exploiting the manifold
geometric structures of fixed-rank matrices [100], [101].

To further enable real-time, automatic and distributed design
of nonconvex optimization algorithms for resource allocation
in edge AI systems, DL was shown to have great potentials
for achieving this goal. A multi-layer perceptron was adopted
in [265] to directly learn the mapping from the problem
instance to the output solution generated by the weighted
minimum mean square error (WMMSE) algorithm for non-
convex precoding design [266]. Instead of running the iterates,
the learned algorithm via deep learning can be executed in
real-time, as neural networks only involve computationally
cheap operations, e.g., matrix-vector multiplication. To reduce
the model and sample complexity, as well as improve the
performance and interpretability, unfolded neural networks
were developed in [267]–[269] to parameterize the iterative
policy via unfolding one iteration of the existing structured
algorithm into one layer of a neural network. Graph neural
network (GNN) has recently been shown to be able to harness
the benefits of generalizability, interpretability, robustness,
scalability, superior performance, real-time and distributed
implementation for learning to optimize nonconvex problems,
including power control [270], beamforming [23], and phase
shift design [25]. This is achieved by modeling wireless
network as a graph, followed by using a GNN to parameterize
the mapping function ψ(α) for the optimal solution.

3) Stochastic Optimization: In large-scale edge AI systems,
the estimated CSI will be inevitably imperfect or partially
available [177], [271]. It is thus critical to design prac-
tical resource allocation schemes by considering the CSI
uncertainty, for which robust optimization and stochastic
optimization are two typical approaches. Specifically, robust
optimization approach aims at guaranteeing the worst-case
but conservative performance over the uncertainty set. The
robust optimization method can usually yield computationally
tractable optimization models [102]. The stochastic optimiza-
tion approach, e.g., chance constrained programming, only
relies on the probabilistic description of the uncertainty of
the problem parameter α in problem (2) and is able to
provide a trade-off between conservativeness and probabilistic
guarantees for the achievable performance [272]. In particular,
a statistical learning approach was presented in [53] to learn a
tractable uncertainty set to approximate the chance constrained
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programming for achieving high computation efficiency and
system performance in the energy-efficient edge inference
systems. However, due to the limited historical samples, it is
difficult to characterize the true probability distribution for
the CSI uncertainty. Distributionally robust optimization [273]
provides a promising way to achieve worst-case probabilistic
performance by incorporating all sample-generating distrib-
utions into an ambiguity set. However, finding the globally
optimal solution for this method is often computationally
intractable.

DL provides an alternative way to address the uncertainty
and dynamics of environment parameters to achieve modeling
flexibility and computational efficiency for resource allocation
in the complicated edge AI systems. Specifically, DL can
provide acceptable performance for resource allocation based
only on geographic locations information of the transmitters
and receivers [274]. By considering CSI variations [55], [275],
[276] and stochastic task arrivals [84], [85], the dynamic
communication and computation resource allocation problem
can be formulated as a MDP, for which deep RL, a model-
free approach, can provide efficient and robust solutions [73].
Besides, the learned algorithms can be distributively exe-
cuted in the multi-agent edge AI systems. However, due
to the distribution shift for system parameters in episodi-
cally dynamic environment, the trained model may suffer
from performance deterioration when the dataset follows a
different distribution in the inference stage [22]. Transfer
learning [103] and continual learning [277] have recently been
adopted to address such task mismatch issue in the “learning
to optimize” framework considering the system distribution
dynamics.

4) End-to-End Optimization: Channel estimation plays
a pivotal role to support effective resource allocation in
large-scale edge AI systems [198], [206]. In particular,
exploiting the low-dimensional structures of wireless channels
becomes a promising way to address the curse of dimen-
sionality for CSI acquisition in various networks. Specifi-
cally, in ultra-dense Cloud-RAN, a high-dimensional struc-
tured channel estimation framework was proposed in [278]
by inducing the spatial sparsity and temporal correlation prior
information using a convex regularizer. Sparsity structures of
a massive MIMO channel was exploited in [279] to reduce
the training overheads for CSI acquisition. The signal super-
position property of a wireless multiple access channel was
exploited to directly obtain the weighted sum of channels
for receive beamformer design, thereby avoiding global CSI
estimation [280]. The sparsity in the activity pattern was
leveraged to develop the sparse signal processing framework
for joint activity detection and channel estimation in grant-free
massive access [75]. Due to the passive nature of RIS,
it becomes infeasible to directly perform signal processing
for channel estimation at RIS and the cascaded channel
can only be estimated either at the edge servers or edge
devices [206]. To address this unique challenge, the common
reflective channels among all edge devices [281], quasi-static
property between RIS and edge server channel links [282],
[283], spatial features of noisy channels and additive nature
of noises [284], as well as channel sparsity [285] and device

activity sparsity [185], were exploited to reduce the training
overhead.

However, all of the above works follow the “estimate-
then-optimize” framework by first performing pilots-based
channel estimation, followed by allocating resources based on
the estimated CSI. However, this two-stage approach fails to
achieve a low signaling overhead and superior system per-
formance. Although the low-dimensional structures have been
exploited for designing efficient channel estimation methods,
the additional information (e.g., user location and mobility),
are difficult to be modelled and incorporated into a unified
mathematical model for CSI acquisition overhead reduction,
which may exceed latency. Besides, the artificially defined
criterion (e.g., mean square error) for channel estimation may
not be aligned with the ultimate goal for resource allocation in
edge AI systems. To address this challenge, a DL approach has
recently been proposed to merge the two stages into an “end-
to-end optimization” framework for resource allocation [104].
This is achieved by directly mapping the received pilots (i.e.,
the problem parameters α in (2) can be the received pilots) into
the resource allocation policy without explicit channel estima-
tion. This mapping function is further parameterized by a DNN
to capture the inherent structures of the resource allocation
problems. For instance, the GNN was adopted to model the
permutation invariant and equivalent properties of the mapping
function for resource allocation in the RIS empowered TDD
wireless networks [25]. The neural calibration approach [286]
was developed in FDD massive MIMO systems to map the
received pilots at edge devices into feedback bits, followed
by directly mapping the feedback bits into the downlink
beamformers [104].

In summary, this section presented the operation research
based theory-driven and ML based data-driven methods for
designing effective, real-time, distributed and robust resource
allocation strategies in edge AI systems. We hope these results
can stimulate more service-driven resource allocation methods
(e.g., network slicing [287]) and optimization approaches (e.g.,
multi-objective optimization [288]). The presented “learning to
optimize” framework is also promising for resource allocation
in various future wireless networks.

V. ARCHITECTURE FOR EDGE AI SYSTEMS

In this section, we present a new mobile network architec-
ture for edge AI systems, supported by the wireless network
infrastructures in Section II and Section III, as well as the
service-driven resource allocations in Section IV. We will
provide an end-to-end (E2E) architecture design across the
network infrastructure, data governance, network function,
network management, as well as operations and applications.

A. End-to-End Architecture for Edge AI Systems

For each new generation of mobile networks, new services
and capabilities have been introduced at the architecture level
in order to meet more and typically more stringent demands.
The mobile network was originally designed to deliver voice
services. Since then, both the architecture and deployment of
mobile networks have followed a centralized and hierarchical
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Fig. 9. E2E architecture for edge AI systems with radio computing nodes (RCN) to allow seamless integration of communication and computing capabilities.
New independent computing planes (CmP) in RCN will also be used to host AI tasks and collaborate with communication functions in the control & user
planes (CP and UP).

paradigm that reflects the nature of voice traffic and packet
traffic of the mobile internet. To realize the vision of “con-
nected intelligence”, 6G will break and shift these traditional
paradigms towards a novel architecture and design that meet
new requirements for the deep integration of communication,
AI, computing, and sensing at the network edge with new
integrated capabilities empowered by evolutionary, as well as,
revolutionary enabling technologies.

Under this new design philosophy, we introduce a holistic
E2E architecture for scalable and trustworthy 6G edge AI
systems, as illustrated in Fig. 9. By providing new wireless
network infrastructures, enabling efficient data governance,
integrating communication and computation at the network
edge, as well as performing automated and scalable edge AI
management and orchestration, the proposed E2E architec-
ture will provide a scalable and flexible platform to support
diversified edge AI applications with heterogeneous service
requirements.

B. Data Governance

Due to the expected huge energy consumption, as well
as, security and privacy concerns, we envisioned that data in
future 6G networks need to be collected, processed, stored and
consumed at the network edge. Since data and AI applications
in 6G are expected to be much more diverse than ever before,
it is incentive that there will be a provision for a unified and

efficient data governance framework at the architecture level.
Data governance goes far beyond conventional data collection
and storage, which will also consider the data availability
and quality, data sovereignty, knowledge management and
legal implication. Data governance also must consider the
mechanism to comply with the regional or national data
protection policies and regulations of the data source in terms
of usage rights and obligations such as GDPR.

1) Independent Data Plane: 5G has introduced a new
network data analytics function (NWDAF) in the core network
to implement AI-based network automation, optimize the
related network functions (e.g., AI-based mobility manage-
ment [105]), and improve user service experience, etc. One
of its main goals is to collect and analyze data from other
5G network elements to train AI models and implement AI
inference for automated and scalable network optimization.
Meanwhile, similar mechanisms such as collecting and ana-
lyzing data based on the existing SON/MDT (self-organizing
networks and minimization of drive tests), was adopted for
5G radio access networks (RAN). In 6G, such a separated
data collection and analytics mechanism needs to evolve to
a unified and more efficient paradigm. An independent data
plane in 6G could contribute to organizing and managing data
efficiently while also considering privacy protection [28]. This
paves the way for natively embedding edge AI into the 6G
networks by leveraging multi-domain data.
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2) Multi-Player Roles: The data governance ecosystem
includes different roles: data customer, data provider, data
owner and data steward, etc. These could be taken by the
same or different business entities, including individual users.
Hence, data governance is a typical scenario that involves
multiple players. It thus becomes essential to establish a
multi-party data trading platform to negotiate data rights
and prices among different business entities while achieving
trustworthiness, fairness and efficiency. This can be achieved
using decentralized technologies such as blockchain with
smart contracts design [28], [106]. This will improve data
efficiency and business ecosystem for the deployment of
edge AI.

C. Deeply Converged Communication and Computing at the
Edge

In 5G, the superior performance has been achieved by
leveraging the AI capability into RAN [289], [290]. For
instance, we can optimize radio resource scheduling and
mitigate interference using machine learning methods [23].
Such utilization of AI in 5G can be referred to as AI for
networks. The targets of edge AI are not only AI for networks,
but also networks for AI [12], as presented in Section II and
Section III. This will depend on the new functional capabilities
of future networks, including how to make computing as a
foundational capability of future 6G networks. A new type
of radio equipment may emerge, which we refer to as a radio
computing node (RCN), which allows the computing resources
to be seamlessly converged with the communication capability.
This will require the introduction of a new independent com-
puting plane (CmP) in RCN to host AI tasks and collaborate
with the communication functions in the control plane (CP)
and user plane (UP) [28]. This will also enable the flexible
integration of computation, communication and intelligence
for edge AI.

D. Edge AI Management and Orchestration

Edge AI involves a diverse set of learning models and
algorithms, network infrastructures, as well as complicated
collaboration for communication, computation and intelli-
gence. Developing a framework for edge AI management and
orchestration thus becomes an essential aspect for the design of
the native AI support at the architecture level. This framework
needs to be designed so as to facilitate the seamless integration
and deployment of AI services, especially from third-parties.
This can be achieved by planning, deploying, maintaining,
and optimizing the decentralized machine learning models
and algorithms, as well as the edge network infrastructures
and functions. The edge AI management and orchestration
shall also include AI workflow, distributed and streaming
data, along with heterogeneous network resources, etc. Scale
and cross-domain issues will be huge challenges for such a
framework and this may involve complicated standardization
efforts. Hence, building such new framework which will fully
rely on standardization may not be feasible. We may instead
leverage the open-source approach [28] to commercialize some
of the components in this framework.

In summary, this section presented the edge AI system
architecture from an E2E perspective detailing its network
infrastructure, data governance, edge network function, as well
as edge AI management and orchestration. The standardization
efforts, hardware and software platform, and application sce-
narios will be further discussed in the next section. We hope
this novel E2E architecture can stimulate more innovative
and out-of-the-box ideas for the evolution of edge AI system
architectures.

VI. STANDARDIZATIONS, PLATFORMS,
AND APPLICATIONS

In this section, we will first discuss the standardiza-
tion for edge learning models and algorithms, as well as
integrated computing functionalities at the network edge.
The research-oriented and production-oriented platforms are
then provided, including distributed optimization based FL
software, large-scale optimization based resource allocation
solvers, as well as edge AI computing and communicat-
ing hardware. To accelerate commercialization for edge AI,
the application scenarios are also investigated, including
autonomous driving, industrial IoT, and smart healthcare.

A. Standardizations

The standardization of 6G will not be limited to the com-
munications part, but also to the deep integration of commu-
nications, intelligence, and computing. The 3rd Generation
Partnership Project (3GPP) may start an overall study into
6G systems around the end of 2025 (3GPP Release 20), while
starting research into technical specifications around the end of
2027 [28]. In this subsection, we will introduce the standard-
izations on trustworthy edge learning models and algorithms,
as well as wireless computing functionalities implemented in
digital or analog communication systems.

1) Learning: The first technical standard for FL was
approved on March 2021 as IEEE 3652.1-2020 [107], IEEE
Guide for Architectural Framework and Application of Fed-
erated Machine Learning. This IEEE standard for FL is
developed by the Learning Technology Standards Committee
of the IEEE Computer Society with participants from the
shared machine learning working group, including 4Paradigm,
AI Singapore, Alipay, Huawei, JD iCity, Tencent, WeBank,
and Xiaomi, etc. Specifically, the IEEE 3652.1-2020 standard
provides the guidelines for architectures and categories of
FL from the perspectives of data, user and system, followed
by identifying the associated application scenarios, perfor-
mance evaluations, and regulatory requirements. Standardiza-
tion plays a vital role in creating a private and secure FL
ecosystems at large-scale to provide consumer products and
services in the market. Besides, various standards for data
privacy and security have been developed by the information
security, cybersecurity and privacy protection technical com-
mittee from the International Organization for Standardiza-
tion (IOS) and the International Electrotechnical Commission
(IEC). For example, ISO/IEC TS 27570 [291], Privacy Protec-
tion - Privacy Guidelines for Smart Cities, provides guidelines
and recommendations for the management of privacy and the
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usage of standards. ISO/IEC DIS 27400 [292], Guidelines for
Security and Privacy in Internet of Things (IoT), provides
guidance for principles and controls to provide private and
secure IoT systems, services and solutions. The technical com-
mittee on cybersecurity of the European Telecommunications
Standards Institute (ETSI) has recently unveiled ETSI EN 303
645 [293], Cyber Security for Consumer Internet of Things:
Baseline Requirements, to provide cybersecurity standard and
baseline for IoT consumer products and certification schemes.
All these standards are applicable for developing private and
secure edge AI models and algorithms to provide trustworthy
products and services.

2) Computing: The computing functionality can be imple-
mented in wireless networks by either digital modulation or
analog modulation. Specifically, MEC provides a promising
solution for deploying edge AI systems in current wireless
systems with digital modulation [115]. The standardization
activities on MEC thus pave a way to integrate edge AI into
mobile networks at a maturity level. Specifically, the ETSI
ISG MEC (Industry Specification Group for Multi-access
Edge Computing) has established a standardized and open
ecosystem for both edge-aware and edge-unaware applications
at the network edge. It has published a set of white papers
and specifications covering across user equipment applica-
tion, service application, as well as management, mobil-
ity, and orchestration related application programming inter-
faces (APIs). Besides, 3GPP 5G specifications define the
key enablers and architectures for edge computing to allow
traffic routing, policy control, and network management for
collaboration in a MEC system and a 5G system [294].
The collaboration between two independent systems of MEC
and 5G can be further optimized in 6G, where communi-
cation and computing can be converged into one system
by adding a computing plane [28]. In particular, ETSI ISG
MEC has recently developed a synergized mobile edge cloud
architecture by leveraging and harmonizing the existing and
ongoing standards (including 3GPP, ETSI ISG MEC, GSMA,
and 5GAA) [108]. Although 5G is rolled out globally, the
modern mobile systems are widely deployed based on digital
modulation instead of analog modulation [295]. To support
analog communication based AirComp for edge training in
current wireless networks [6], one may either directly lever-
age the existing digital modulator with quantized analog
signals or introduce an additional analog modulator with a
matched filter for decoding the received signals [37]. It is
obvious that more efforts are needed to incorporate AirComp
functionalities into the future 6G standards to mature edge
AI systems.

B. Platforms

We present the software and hardware platforms for deploy-
ing edge AI models and algorithms, as well as the optimization
solvers for resource allocation in edge AI systems.

1) Software: There is a rapidly growing body of soft-
ware platforms for simulations and productization of edge
AI algorithms and models. FL library, TensorFlow Feder-
ated, Leaf, and PySyft have provided excellent open software
frameworks for FL simulations and evaluations. To further

accelerate research progress and facilitate algorithmic inno-
vation and performance comparison in realistic FL environ-
ments, FedML [109], a research-oriented open FL library,
has recently been established to support diverse FL comput-
ing environments and topological architectures with standard-
ized FL algorithm implementations and benchmarks. As a
production-oriented software project, FATE [110] has been
developed in the Webank’s AI Department for financial indus-
try by supporting various secure computing protocols and
FL architectures. Besides, existing edge computing frame-
works (e.g., Baidu “Baetyl” and Huawei “KubeEdge”) provide
promising solutions to deliver edge AI services. For edge AI
empowered IoT applications, Microsoft “Azure IoT Edge”,
Google “Cloud IoT”, Amazon “Web Services (AWS) IoT”
and NVIDIA “EGX” provide edge AI platform to bring
real-time AI services across a wide range of applications,
including smart retail, home, manufacturing, and healthcare.
Huawei has recently released a next-generation operating
system, HarmonyOS [111], to enable seamless collaboration
and interconnection among smart edge devices across diverse
platforms. This empowers connected intelligence by deploying
edge AI in the operating systems.

2) Solver: Resource allocations for edge AI systems and
wireless networks are booming through the development
of various large-scale optimization models and algorithms.
General-purpose large-scale optimization software solvers are
important to enable rapid prototyping and deploying resource
allocation optimization algorithms for edge AI systems.
Specifically, CVX [112] provides a two-stage software frame-
work for modeling and solving general large-scale convex opti-
mization problems. This is achieved by automatically trans-
forming the original problem instances into standard conic
programming forms, followed by calling the advanced off-the-
shelf conic solvers, e.g., MOSEK [296] and SCS [113]. To fur-
ther speed up the modeling phase and avoid repeatedly parsing
and re-generating conic forms, a matrix stuffing technique was
presented in [98] to generate the mapping function between the
original problem and the conic form in a symbolic way instead
of the time-consuming numerical way using CVX. It is thus
particularly interesting to develop a solver to automatically
generate the mapping functions for conic transformation in a
symbolic forms. Besides, Gurobi [297] and MOSEK [296] are
among the fastest solvers for solving the general mixed-integer
second-order conic programs. Chen et al. recently released the
software package “Open-L2O” [114] to implement the “learn-
ing to optimize” framework for benchmarking performance
fairly and designing algorithm automatically.

3) Hardware: The achievable performance and benefits of
edge AI systems are conditioned upon the availability of
edge AI computing hardware and radio frequency (RF) hard-
ware technologies. Specifically, edge AI computing hardware
can be categorized as graphic processing unit (GPU)-based
hardware (e.g., NVIDIA’s GPUs), field programmable gate
array (FPGA)-based hardware (e.g., Xilinx’s SDSoC), and
application specific integrated circuit (ASIC)-based hardware
(e.g., Google’s TPU). The detailed comparisons for various
edge AI computing hardware can be found in [115]. In partic-
ular, the chip design procedure for edge AI hardware can be
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significantly accelerated by the recent proposal of deep RL
assisted fast chip floorplanning [298]. Besides, the massive
broadband connectivity requirements for edge AI systems
motivate the innovations in RF hardware technologies. The
benefits of RIS-empowered FL systems highly depend on
the capabilities of manipulating electromagnetic waves at
the metasurfaces [49], whose reconfigurability is typically
enabled by switches, tunable material, topological metasur-
faces, and hybrid metasurfaces [299]. THz communication
with frequency band 0.1-10 THz, is envisioned as a promising
enabler for achieving sensing, communication, and learning
in an integrated edge AI system. To approach this THz
region, RF hardware technologies and solutions were thor-
oughly investigated in [116], including semiconductor circuits,
antenna forms, packaging and testing of transceivers.

C. Applications

We discuss edge AI enabled application scenarios by inspir-
ing new communication algorithms, resource allocation opti-
mization algorithms, as well as data processing methods.

1) Autonomous Driving: Autonomous driving basically
refers to self-driving vehicles that move without the interven-
tion of human drivers. Self-driving vehicle integrates various
innovative technologies, including advanced sensor technolo-
gies, new energy automobiles, next generation AI technolo-
gies, as well as future vehicular networks. Autonomous driving
can significantly improve the safety, passenger comfort, travel
and logistics efficiency, collision avoidance, and energy effi-
ciency. Edge AI shall provide a pivotal role for achieving
ultra-low latency communication, intelligent networking, real-
time data analytics, as well as high security for intelligent
vehicles [27], [117]. A general DL framework was proposed
in [26] to enable ultra-reliable and low-latency vehicular com-
munication, by incorporating the domain knowledge includ-
ing information theoretical tools and cross-layer optimization
design. To minimize the vehicles’ queuing latency, a FL
approach was developed in [300] to learn the tail distribution
of the queue lengths. To cope with the high mobility and
heterogeneous structures in vehicular networks, DL becomes
powerful for dynamic resource allocation [24] and network
traffic control [27]. In particular, edge AI techniques, including
distributed RL [55], [301], decentralized GNN [23], as well
as distributed DNN with binarized output layer [61], are able
to learn and execute the distributed resource allocation polices
in an automatic and real-time manner.

The data processing tasks for autonomous driving mainly
include perception, high-definition (HD) mapping, as well
as SLAM [117], [302]. Specifically, to understand the envi-
ronments for intelligent decision making, various sensory
data from onboard sensors (e.g., light detection and ranging
(LiDAR), cameras, radar and sonar) need to be processed for
the perception tasks, including localization, object detection
and tracking. The perception capability can be enhanced by
edge AI systems, e.g., edge device-server co-inference of DNN
models for vision based perception tasks [303]. HD mapping
aims at constructing a representation of the vehicles operat-
ing environments, e.g., obstacles, landmarks position, curva-
ture and slope. This is imperative to achieve high accurate

localization for autonomous driving. The edge server cooper-
ative inference method in Section III-A.2 can be adopted to
reduce the storage and communication overheads for updating
the HD map by collecting fresh data from the vehicles in
the dynamic environments [117]. SLAM comprises simultane-
ously estimating the state of a vehicle and constructing a map
of the environment [304], which paves the way for achieving
full autonomy in autonomous driving [305]. Edge SLAM
[56], [57] has recently been developed to execute DL based
visual SLAM algorithms on edge vehicles. This is achieved by
deploying the tracking computation parts on the edge vehicles
while offloading the remaining parts (e.g., local mapping and
loop closure) to the roadside edge server via vertical edge
inference in Section III-B.

2) Internet of Things: Artificial Intelligence of Things
(AIoT) leverages AI technologies and IoT infrastructures
to improve the human-machine interactions and enable
multi-agent communications and collaborations. AIoT goes
beyond the conventional communication paradigm for audio,
video and data delivery. It will enable semantic communica-
tion [58] to exchange semantic information among agents.
Shannon and Weaver categorize communication into three
levels, including transmission level (i.e., transmit symbols
accurately), semantic level (i.e., convey the desired meanings
precisely), and effectiveness level (i.e., produce the desired
actions effectively) [306]. Sematic communication is able to
significantly improve the communication efficiency by only
transmitting the extracted relevant information for sematic
information delivery tasks with the semation error as the
performance metric. A distributed edge DL approach has been
recently developed in [58] to enable low-latency semantic
communication over IoT networks. This is achieved by jointly
optimizing the compressed DNN based transmitters at the edge
IoT devices and the quantized DNN based receivers at the edge
server over the wireless fading channels.

Industrial IoT (IIoT) is a production-oriented industrial
network for connecting industrial devices and equipments,
processing and exchanging generated data, as well as opti-
mizing the production system [307]. Besides, digital twin
is becoming a key technology for smart manufacturing in
industrial 4.0 by connecting physical machines and digital
representations in a cyber-physical system [308], [309]. This is
achieved by providing a virtual representation of the industrial
entities and products’ life-cycle to predict and optimize the
behaviors of the manufacturing process. Edge AI provides a
promising way to model and deploy digital twins for IIoT net-
works to process the high volume of industrial streaming data
with low-latency and high-security guarantees. Specifically,
edge computing provides a general platform for inferring DNN
models via computation offloading to reduce network latency
and operation cost in IIoT [119]. FL becomes a key enabling
technology to support intelligent IIoT applications (e.g., smart
grid and smart manufacturing) and provide IIoT services (e.g.,
data offloading and mobile crowdsensing) [120]. In particular,
blockchain empowered FL was proposed in [310] to pro-
vide secure communication and private data sharing schemes
for constructing digital twin IIoT networks, followed by
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reducing communication overheads via asynchronous model
aggregation.

3) Smart Healthcare: Smart healthcare aims to realize a
common platform for efficient and personalized healthcare,
intelligent health monitoring, and precision medicine devel-
opment via collaboration among multiple participants (e.g.,
doctors, patients, hospitals, and research institutions). This
is achieved by emerging advanced technologies, including
DL [311], [312], Tactile Internet, IoT, edge AI, and wireless
communications. In particular, edge AI with distributed and
secure DL has been demonstrated to be able to signifi-
cantly improve the reliability, accuracy, scalability, privacy
and security for precision medicine and Internet of Med-
ical Things [313], including medical imaging, drug develop-
ment, and chronic disease management [314]. Specifically,
Kaissis et al. [315] presented a FL approach for medical
imaging to preserve privacy and avoid potential attacks against
the datasets or learning algorithms. Besides, swarm learning
has recently been developed in [35] to provide a decentral-
ized and confidential clinical disease detection solution for
diseases (e.g., COVID-19, tuberculosis, and leukaemia). This
is achieved by leveraging the blockchain and edge comput-
ing techniques to develop a secure and private decentralized
learning architecture while keeping the medical data locally.
MIT Media Lab established a split learning project to allow
health entities collaboration for training patient diagnostic
models without sharing sensitive raw data [316]. An RL
approach for decisions making in patient treatment was intro-
duced in [317] to realize safe and risk-conscious healthcare
practice.

Haptic communication [121] aims at delivering the skill set
(e.g., the manipulation skills representation learned from the
multisensory tactile and visual data [318], and the signatures of
the human grasp learned using a tactile glove [319]) over the
Tactile Internet in an ultra-reliable and low-latency manner.
It has potentials in healthcare applications including tele-
diagnosis, tele-rehabilitation, and tele-surgery, which turns out
to be essential during the ongoing COVID-19 pandemic. Edge
AI becomes a key enabling technique for the Tactile Internet
with human-in-the loop to facilitate ultra-responsive and truly
immersive tactile actuation in the tele-operation systems [320].
This is achieved by enabling the network edge with intelli-
gent prediction capability for haptic information (e.g., tactile
feedback and control traffics) [321], as well as the intelligent
resource allocations across the whole network layers [322].
Specifically, a distributed optimization framework was devel-
oped in [323] to design an edge computing assisted Tactile
Internet for achieving both the ultra-low latency and high
energy efficiency. Such a distributed optimization algorithm
can be further learned via the distributed DL techniques [61].
Besides, a variational optimization framework was proposed
in [324] to enjoy low-latency and high-reliability for mas-
sive access in the Tactile Internet. The variational decision
function can be further parameterized via DNNs with the
capability of distributed training and inference for practical
deployments [23], [324].

In summary, this section presented standardizations, plat-
forms, and applications for practical deployment of edge AI

systems. Combining the presentations of edge training in
Section II, edge inference in Section III, resource allocation in
Section IV, and system architecture in Section V, we complete
the roadmap for edge AI ecosystem, as shown in Fig. 2.
We hope these results can encourage more communities and
stakeholders to engage in industrializing and commercializing
edge AI in the era of 6G.

VII. CONCLUSION

Embedding low-power, low-latency, reliable, and trustwor-
thy intelligence into the network edge is an inevitable trend
and disruptive shift in both academia and industry. Edge AI
serves as a distributed neural network to imbue connected
intelligence in 6G, thereby enabling intelligent and seamless
interactions among the human world, physical world, and
digital world. The challenges for building edge AI ecosys-
tems are multidisciplinary spanning wireless communications,
machine learning, operation research, domain applications,
regulations and ethics. In this paper, we have investigated
the key wireless communication techniques, effective resource
management approaches and holistic network architectures
to design scalable and trustworthy edge AI systems. The
standardizations, platforms, and applications were also dis-
cussed for productization and commercialization of edge AI.
We hope that this article will serve as a valuable reference
and guideline for further considering edge AI opportunities
across theoretical, algorithmic, systematic, and entrepreneurial
considerations to embrace the exciting era of edge AI.
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