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Quantum Fingerprinting Over AWGN Channels
With Power-Limited Optical Signals
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Abstract— Quantum fingerprinting reduces communication
complexity of determination whether two n-bit long inputs are
equal or different in the simultaneous message passing model.
Here we quantify the advantage of quantum fingerprinting over
classical protocols when communication is carried out using
optical signals with limited power and unrestricted bandwidth
propagating over additive white Gaussian noise (AWGN) chan-
nels with power spectral density (PSD) much less than one
photon per unit time and unit bandwidth. We identify a noise
parameter whose order of magnitude separates near-noiseless
quantum fingerprinting, with signal duration effectively inde-
pendent of n, from a regime where the impact of AWGN is
significant. In the latter case the signal duration is found to
scale as O(

√
n), analogously to classical fingerprinting. However,

the dependence of the signal duration on the AWGN PSD is
starkly distinct, leading to quantum advantage in the form of a
reduced multiplicative factor in O(

√
n) scaling.

Index Terms— Communication channels, complexity theory,
optical signal detection, coherence.

I. INTRODUCTION

EXPLOITING the quantum nature of physical signals
used for information transmission enables new func-

tionalities, such as quantum key distribution [1]–[3]. It can
also reduce communication complexity of certain distrib-
uted information-processing tasks. An example of the latter
can be demonstrated in the simultaneous message passing
model introduced by Yao [4]. Suppose that two parties, Alice
and Bob, receive inputs in the form of n-bit long strings
x, y ∈ {0, 1}n. While they cannot communicate with each
other, they are supposed to use as little communication as pos-
sible with a third party, the referee, to facilitate computation
of a certain Boolean function f(x, y). In the specific scenario
of the equality problem, the function reads

f(x, y) =

{
1, if x = y,

0, if x �= y,
(1)
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which corresponds to a test whether the input strings are equal
or different. In order to reduce the amount of information
transmitted to the referee, Alice and Bob can send only
fingerprints of their inputs at the expense of tolerating a
non-zero probability of error. Classically, the fingerprints have
the form of bit strings shorter than inputs. If Alice and Bob do
not have access to shared randomness, the fingerprints must
be at least O(

√
n) bits long for an arbitrarily low probability

of error [5]–[7]. On the other hand, when quantum states are
used to carry fingerprints, it is sufficient that Alice and Bob
communicate to the referee O(log2n) qubits [8]–[12]. Because
according to Holevo’s theorem [13], [14] a qubit can carry at
most one bit of classical information, this presents a scaling
advantage over classical fingerprinting. A key ingredient to
attain this advantage is joint detection of quantum signals
received from Alice and Bob by the referee.

Interestingly, quantum fingerprints can be efficiently gen-
erated as trains of coherent states of light with joint detec-
tion implemented using optical interference and photon
counting [15], [16]. Coherent states are routinely used in
conventional optical communication, which facilitated recent
experimental proof-of-principle demonstrations of quantum
fingerprinting [17], [18]. This naturally leads to a question
about the advantage of quantum fingerprinting over its clas-
sical counterpart in terms of physical resources required to
transmit optical signals carrying fingerprints rather than by
the number of bits or qubits that need to be communicated.

This paper presents an analysis of quantum fingerprinting
when optical signals sent from Alice and Bob to the referee
are power-limited, but no restrictions on their bandwidth are
in place. Our model includes contribution from background
radiation described by additive white gaussian noise (AWGN).
Motivated by recent studies of photon-starved communica-
tion [19]–[21], we consider regime when the noise power
spectral density (PSD) ν expressed in photons per unit time
per unit bandwidth is much less than one. The principal
objective is to minimize the signal duration, which defines the
transmission time required to execute the protocol. We show
that because the impact of AWGN becomes more severe with
increasing signal bandwidth, there exists an optimal operating
point that is determined by a combination of the input length
n, the noise PSD ν and the desired probability of error ε which
is not to be exceeded when executing the protocol.

The obtained results are compared with a scenario when
classical fingerprints are transmitted from Alice and Bob to
the referee over optical channels with matching signal power
and AWGN strength. This allows us to express quantum
advantage in terms of reduction of the signal duration. We find
that the performance of the quantum fingerprinting protocol
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changes qualitatively with increasing input size n. When
n � 2ν−1 log[1/(2ε)], the effects of channel AWGN are
insignificant and one remains close to the noiseless regime
analyzed in [15]. On the other hand, for sufficiently long
inputs, when n � 2ν−1 log[1/(2ε)], the transmission time for
quantum fingerprints scales as O(

√
n), which is the same as

in the classical scenario. However, the proportionality constant
has a starkly distinct dependence on the noise PSD ν. While
in the classical scenario the noise PSD enters through a
multiplicative factor [log2(1+ν−1)]−1, which follows directly
from the Holevo capacity of an AWGN channel [22], [23],
in the case of quantum fingerprinting the dependence is of
the form

√
ν. This difference becomes substantial for ν many

orders below one photon per unit time and unit bandwidth,
as is the case e.g. in space optical communication links [24].

This paper is organized as follows. Sec. II describes the
optical layer of quantum fingerprinting based on coherent
states of light. The complete quantum fingerprinting protocol
is described in Sec. III for the noiseless case, and in Sec. IV for
a general AWGN scenario using the framework of hypothesis
testing. Optimization of the operating point is discussed in
Sec. V. Sec. VI compares the performance of optimized quan-
tum fingerprinting with classical protocols. Finally, Sec. VII
concludes the paper.

II. OPTICAL LAYER

Let us start with the description of the optical layer of
the quantum fingerprinting protocol using coherent states
proposed by Arrazola and Lütkenhaus [15]. Alice and Bob
use phase shift keying (PSK) to generate optical signals sent
to the referee. As shown in Fig. 1, each of the two signals
is a train of L optical pulses occupying consecutive temporal
slots. A single pulse will be represented by a normalized mode
function u(s) parameterized with dimensionless time s. It is
assumed that the mode function is orthogonal to its replica
displaced by any integer number l of temporal slots:∫ ∞

−∞
ds u∗(s − l)u(s) = δ0l, l = . . . ,−1, 0, 1, . . . (2)

For a modulation bandwidth B, the duration of a single slot
is equal to 1/B and the physical time is t = s/B. Hence the
overall duration of each of the signals is L/B. Note that in
general the signal spectral support can exceed B [25].

We will assume that the optical receiver used by the referee
accepts only temporal modes matching those in the generated
signals. Such selectivity can be achieved without any signal
loss using the technique of quantum pulse gating [26]–[29].
In this case, the optical fields Ex(t) and Ey(t) received by the
referee respectively from Alice and Bob can be described by

Ez(t) =
√

B

L∑
l=1

αz
l u(Bt − l), z = x, y. (3)

Individual pulses are phase modulated by Alice and Bob
according to L-tuples θz = (θz

1 , . . . , θz
L), z = x, y, that depend

on the input strings x and y. The map z �→ θz will be specified
in Sec. III. The complex amplitudes αx

l and αy
l in (3) read

αx
l =

√
S

B
eiθx

l + ξl, αy
l =

√
S

B
eiθy

l + ζl, (4)

Fig. 1. Optical layer of the quantum fingerprinting protocol. Alice and
Bob use optical transmitters OTx which imprint phase L-tuples θz =
(θz

1 , . . . , θz
L) depending on inputs z = x, y onto trains of L light pulses

using phase modulators PM. In the course of propagation, individual pulse
amplitudes acquire random AWGN components ξl and ζl. The optical
receiver ORx used by the referee combines the received signals, described
by time-dependent fields Ex(t) and Ey(t), on a balanced 50/50 beam splitter
which produces superpositions E±(t) = [Ex(t) ± Ey(t)]/

√
2. The output

ports of the beam splitter are monitored by photon counting detectors which
yield the total photocount numbers k+ and k− registered over the signal
duration.

where S is the optical power, in photons per unit time, of the
signal received from either Alice or Bob. Linear attenuation
of the signal amplitude in the course of propagation can be
taken into account in a straightforward manner by rescaling S.
The complex variables ξl and ζl describe contributions from
AWGN acquired by the signals and will be assumed to have
equal variance

Var[ξl] = Var[ζl] = ν (5)

that specifies noise PSD expressed in photons per unit time
per unit bandwidth. Because broadband noise is assumed, its
contribution to field amplitudes αz

l in (4) is independent of
the modulation bandwidth B.

The referee brings the received optical signals to interfere
on a balanced 50/50 beam splitter. The fields E+(t) and E−(t)
at the two ± output ports of the beam splitter, described by
superpositions

E±(t) =
1√
2
[Ex(t) ± Ey(t)], (6)

are subsequently measured by a pair of photon counting
detectors that return the total numbers of photocounts k+ and
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k− registered over the entire signal duration. According to the
semiclassical theory of photodetection [23], [30], the proba-
bility distribution for the pair (k+, k−) reads

p(k+, k−) = E

[
e−I+

I
k+
+

k+!
e−I− I

k−
−

k−!

]
, (7)

where

I± =
∫ ∞

−∞
dt |E±(t)|2 (8)

is the total optical energy incident on an individual detector
over the signal duration and the expectation value E[. . .] is
calculated over all AWGN variables ξl and ζl, l = 1, . . . , L.
The characteristic function for the probability distribution
p(k+, k−) reads

Z(λ+, λ−) =
∞∑

k+,k−=0

eiλ+k++iλ−k−p(k+, k−)

= E
[
exp

(
(eiλ+ − 1)I+ + (eiλ− − 1)I−

)]
. (9)

The analysis will be carried out for ν � 1. Further, terms of
the order O(νLS/B) and higher will be neglected. As shown
in Appendix A, under these assumptions the characteristic
function after averaging over the noise variables can be
recast as

Z(λ+, λ−) = exp[(eiλ+ − 1)μ(1 + V )]
× exp[(eiλ− − 1)μ(1 − V )], (10)

where

μ = L(S/B + ν) (11)

is the total number of photocounts generated on both the
detectors by the noisy signal coming from one sender, and

V =
1

L(1 + Bν/S)

L∑
l=1

cos(θx
l − θy

l ). (12)

has the physical interpretation of interference visibility. The
characteristic function derived in (10) indicates Poissonian
distributions for the photocount numbers k± with respective
means μ(1 ± V ):

p(k+, k−|V ) = e−μ(1+V ) [μ(1 + V )]k+

k+!

× e−μ(1−V ) [μ(1 − V )]k−

k−!
. (13)

We have written explicitly the conditional dependence of the
photocount statistics on the visibility V , as this parameter
contains information about the relation between the inputs x
and y. The pair of photocount numbers (k+, k−) produced
by the detectors serves as the basis for testing by the referee
whether the input strings x and y are different or equal.

Fig. 2. Complete implementation of the quantum fingerprinting protocol
based on coherent states of light. Inputs x and y are mapped onto codewords
E(x) and E(y) using an error correcting code ECC. The codewords define
via a PSK map phase L-tuples θx and θy that feed into optical transmitters
OTx. The optical receiver ORx produces a pair of integers k+, k− that serves
as the basis for the equality test. In the noiseless case the test has the form
of a check whether k− = 0 or not, whereas in the presence of noise a more
complex test described in Sec. IV is required.

III. NOISELESS SCENARIO

The optical layer described in the preceding section is used
to implement the quantum fingerprinting protocol as shown
in Fig. 2. The inputs x and y are mapped onto phase L-tuples
θx and θy that define modulation of signals generated by Alice
and Bob using optical transmitters OTx. Joint detection of
these signals with an optical receiver ORx returns a pair of
integers (k+, k−) that is used by the referee to infer the value
of the equality function defined in (1).

We will begin with a discussion of a simplified scenario
when there is no background noise, ν = 0. In order to gain
intuition about the workings of the fingerprinting protocol,
suppose for a moment that the binary input strings x and y of
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length n are used directly to generate optical signals composed
of L = n pulses using a binary PSK map. In this setting,
the two bit values zl = 0, 1 are mapped onto phases θz

l = πzl,
where z stands for x or y and l = 1, . . . , n. For equal inputs,
x = y, the two signals are identical, completely destruc-
tive interference occurs at the ‘−’ output port of the beam
splitter, and E−(t) = 0 over the entire signal duration given
absence of background noise. As a result, no photocounts can
be registered by the detector monitoring the ‘−’ port and
k− = 0. Conversely, registering k− ≥ 1 photocounts heralds
unambiguously that the inputs were different, x �= y, as in
this case E−(t) is not identically equal to zero. However,
because photon counting is a Poissonian process, it may
happen that different strings will not produce any counts on
the detector monitoring the ‘−’ port. According to (13) the
probability of such an event is p(k− = 0) = exp[−μ(1−V )].
In the worst-case scenario, when the input strings differ at just
one location, the visibility calculated according to (12) reads
V = 1 − 2/n and p(k− = 0) = exp(−2S/B). In order to
keep this probability below a desired level, one would need
to maintain sufficiently high ratio S/B which specifies the
mean photon number per temporal slot. For power-limited
signals this would imply an upper bound on the bandwidth B.
Consequently, the entire signal duration given by L/B = n/B
would scale linearly with n.

Quantum fingerprinting offers dramatically improved per-
formance compared to the simple scenario described above
by using an error correcting code (ECC) to define the map
z �→ θz , z = x, y and exploiting bandwidth as a free
resource. Specifically, consider a binary ECC E : {0, 1}n →
{0, 1}m, which guarantees that any two different inputs x �= y
are mapped onto codewords E(x) and E(y) for which the
Hamming distance satisfies

D
(
E(x), E(y)

)
=

m∑
j=1

Ej(x) ⊕ Ej(y) ≥ mδ. (14)

Here δ ∈ [0, 1/2[ is a constant specifying the minimum relative
Hamming distance between any two different codewords.
It will be assumed that the ECC E operates at the asymptotic
Gilbert-Varshamov bound given by [31]

n

m
= r(δ) = 1 − H2(δ), (15)

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the
binary entropy. There exist efficient ECCs operating close
to the Gilbert-Varshamov bound, such as the random Toeplitz
matrix ECC employed in a recent experimental demonstration
of quantum fingerprinting [18].

The codewords E(x) and E(y) are mapped onto L-tuples
of phases θx and θy that are used to modulate optical signals.
We shall take L = m/2 and employ a quadrature PSK map so
that an individual phase depends on a block of two consecutive
codeword bits according to

θz
l = πE2l−1(z) +

π

2
[E2l−1(z) ⊕ E2l(z)], z = x, y, (16)

where l = 1, . . . , L = m/2. Compared to binary PSK,
quadrature PSK allows for a two-fold reduction of the pulse
train length without altering otherwise the performance of the

protocol [16]. This would no longer be the case for higher PSK
constellations. Calculation of the interference visibility (12) is
aided by the following straightforward observation:

cos(θx
l −θy

l ) = 1−E2l−1(x) ⊕ E2l−1(y)−E2l(x) ⊕ E2l(y).
(17)

Assuming absence of noise, one obtains:

V =
1
L

L∑
l=1

cos(θx
l −θy

l ) = 1 − 2
m

m∑
j=1

Ej(x) ⊕ Ej(y)

= 1 − 2
m

D
(
E(x), E(y)

) ≤ 1 − 2δ, (18)

where in the last step (14) has been used. The probability of
obtaining k− = 0 for different inputs, x �= y, is consequently
upper bounded by exp(−2δLS/B). Given that L/B specifies
the signal duration, it is now possible to execute the quantum
optical fingerprinting protocol in a constant time by increasing
the modulation bandwidth in line with L which grows with
the input size n as L = n/[2r(δ)]. Without any bandwidth
limitations, it is optimal to approach δ → 1/2. In this limit the
code rate r(δ) → 0 and the number of temporal slots L → ∞.
With unlimited bandwidth these slots can be accommodated
in a constant time L/B.

It is worth noting that the ECC is used in quantum finger-
printing not to ensure faithful recovery of the messages fed into
the communication channel, but rather to augment differences
between received optical signals in order to guarantee suffi-
ciently low interference visibility when x �= y which results
in photocounts on the ‘−’ detector.

IV. HYPOTHESIS TESTING

In the remainder of the paper, the fingerprinting protocol
will be required to operate at or below a desired aver-
age probability of error ε for the equality test, assuming
equiprobable hypotheses of equal and different inputs, and
considering for the latter hypothesis the worst-case scenario
of the minimum relative Hamming distance δ between the
codewords. The objective will be to minimize the overall
duration of signals sent by Alice and Bob given by L/B. For a
fixed signal power S, the signal duration can be equivalently
characterized by the signal optical energy expressed as the
mean photon number received from Alice or Bob that is
equal to NQ = SL/B. In the noiseless case discussed in the
preceding section, assuming unlimited bandwidth and taking
δ → 1/2 yields the average probability of error equal to
ε = exp(−NQ)/2, which can be recast as:

NQ = log[1/(2ε)], ν = 0. (19)

This expression is independent of the input length n implying
constant signal duration. As expected, a lower probability
of error requires higher photon number or, equivalently for
power-limited signals, longer transmission time.

The above analysis becomes much more nuanced when
background noise is present. First, the simple test based on
whether k− = 0 or not no longer guarantees minimum
probability of error. Second, while in the noiseless case there
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was no penalty for increasing the bandwidth in order to accom-
modate more temporal slots within a constant transmission
time, higher bandwidth boosts the AWGN contribution to the
received signals, which may make the equality test based on
interference visibility increasingly more difficult.

In the general scenario with background noise, the visibili-
ties corresponding to hypotheses of equal and different inputs,
assuming for the latter the worst-case scenario with the mini-
mum relative Hamming distance δ, are given respectively by

Ve =
1

1 + Bν/S
, Vd =

1 − 2δ

1 + Bν/S
. (20)

The referee needs to decide whether the pair of integers
(k+, k−) produced by the joint detection of optical signals
received from Alice and Bob was generated by the proba-
bility distribution pe(k+, k−|Ve) or pd(k+, k−|Vd). We will
use the Neyman-Pearson criterion for a priori equiprobable
hypotheses, which yields the decision rule

p(k+, k−|Ve) > p(k+, k−|Vd) : x = y

p(k+, k−|Ve) < p(k+, k−|Vd) : x �= y

and a random draw when p(k+, k−|Ve) = p(k+, k−|Vd). The
probability of error for such a test is upper bounded by the
Chernoff bound [32]

ε ≤ 1
2

exp[−C(Ve, Vd; μ)], (21)

where C(Ve, Vd; μ) is Chernoff information given by

C(Ve, Vd; μ) = − min
0≤λ≤1

log

{ ∞∑
k+,k−=0

[p(k+, k−|Ve)]λ

×[p(k+, k−|Vd)]1−λ

}
. (22)

As specified in (13), the joint probability distributions
p(k+, k−|Ve) and p(k+, k−|Vd) are products of Poissonian
distributions with respective means μ(1± Ve) and μ(1± Vd).
In such a case, Chernoff information is proportional to the
total photocount number 2μ,

C(Ve, Vd; μ) = 2μC(Ve, Vd). (23)

The multiplicative factor C(Ve, Vd) can be interpreted as
Chernoff information per count and is given by the expression

C(Ve, Vd) = 1 − 1
2

min
0≤λ≤1

[(1 + Ve)λ(1 + Vd)1−λ

+(1 − Ve)λ(1 − Vd)1−λ]. (24)

Fig. 3 depicts C(Ve, Vd) as a function of visibilities Ve and
Vd for 0 ≤ Ve, Vd ≤ 1. In this range, Chernoff information
per count attains maximum at C(1, 0) = C(0, 1) = 1/2 and
becomes zero for equal arguments. It will be useful to note
that for a fixed Ve, C(Ve, Vd) is a decreasing function on an
interval Vd ∈ [0, Ve]. The intuition behind this is that the
closer Vd becomes to Ve, the more difficult it is to discriminate
between the two visibilities based on the photocount statistics.

Fig. 3. Chernoff information per count C(Ve, Vd) as a function of
interference visibilities Ve and Vd corresponding respectively to hypotheses
of equal and different inputs.

As derived in Appendix B, for Ve, Vd � 1 the Chernoff
information per count is well approximated by the expression

C(Ve, Vd) ≈ 1
8
(Ve − Vd)2. (25)

This simple formula will greatly simplify the analysis of the
performance of the quantum fingerprinting protocol in the limit
of large input size n.

V. OPTIMIZATION

The task now is to identify the operating point achieving the
minimum transmission time equal to L/B or equivalently—
owing to the power constraint—the number of signal photons
NQ = SL/B that need to be received by the referee from
Alice and Bob. The operating point depends on the input bit
string length n, the noise strength ν and the desired average
probability of error ε which is not to be exceeded. It will be
convenient to use as independent variables in the optimization
problem the minimum relative Hamming distance δ of the
ECC used in the protocol and the rescaled bandwidth

β =
Bν

S
. (26)

Note that the inverse β−1 specifies the signal-to-noise ratio.
The range of the variables is 0 ≤ δ < 1/2 and β > 0.

Transforming the Chernoff bound (21) with the help of
definitions (11), (20), and (23) implies that the photon number

NQ ≥ log[1/(2ε)]

2(1 + β)C
(

1
1+β , 1−2δ

1+β

) (27)

is sufficient to ensure operation below a desired error proba-
bility ε. At the same time, the transmission time must be suf-
ficiently long to accommodate L = n/[2r(δ)] temporal slots
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each of duration 1/B = ν/(βS). This condition translated for
the number of received signal photons yields the inequality

NQ ≥ SL

B
=

nν/2
βr(δ)

. (28)

For a fixed β the expressions on the right hand sides of (27)
and (28) exhibit opposite monotonicity as functions of δ
over the interval 0 ≤ δ < 1/2. This is because in (27),

Chernoff information per count C
(

1
1+β , 1−2δ

1+β

)
is monotoni-

cally increasing in δ as noted in Sec. IV, while the code rate
r(δ) in the denominator of (28) is monotonically decreasing
in δ. Consequently, if one seeks minimum NQ that satisfies
both inequalities (27) and (28), it is sufficient to consider the
case when the expressions on the right hand sides of these
inequalities are equal to each other. This yields an implicit
relation between β and δ in the form

βr(δ)

2(1 + β)C
(

1
1+β , 1−2δ

1+β

) = N , (29)

where

N =
nν/2

log[1/(2ε)]
. (30)

The ratio defined in (30) admits a simple interpretation. The
enumerator is the total number of noise photons if the inputs
were mapped onto quadrature PSK signals without an ECC.
The denominator is the number of signal photons required to
implement the quantum fingerprinting protocol for the desired
probability of error ε in the noiseless scenario. Hence N can
serve as a simple estimate of how severely the background
noise would impact the protocol designed for the noiseless
case. In the following we will refer to N as the noise
parameter.

Equation (29) provides a relation between β and δ that can
be used to reduce the number of independent optimization
variables to one and to find the optimum operating point
by minimizing the right hand side of either (27) or (28)
over the remaining variable. Fig. 4 depicts numerically found
optimal δ∗ and the corresponding β∗ as a function of the
noise parameter N . Two operating regimes can be identified
depending on the order of magnitude of N . When N � 1 it
is possible to attain δ∗ ≈ 1/2 and β∗ � 1. This corresponds
to large ECC expansion with the code rate approaching
r(δ∗) ≈ 0, as shown in Fig. 4(a). In this regime the minimum
photon number N∗

Q can be conveniently calculated using the
right hand side of (27) as a product of log[1/(2ε)] and a

factor 1/
[
2(1 + β∗)C

(
1

1+β∗ , 1−2δ∗
1+β∗

)]
, plotted in Fig. 4(b).

For N ≤ 10−1 this factor remains between 1 and 6.6. Thus the
fingerprinting protocol requires transmission time that depends
primarily on the desired probability of error and the minimum
number of signal photons

N∗
Q ≈ log[1/(2ε)], N � 1. (31)

is within one order of magnitude the same as in the noiseless
scenario.

Fig. 4(b) indicates that in the opposite regime, when
N � 1, the rescaled bandwidth becomes β � 1, which cor-
responds to low signal-to-noise ratio. This allows one to apply

Fig. 4. (a) Optimal Hamming distance δ∗ (solid line, right scale) and the
corresponding code rate r(δ∗) (dashed line, left scale) minimizing the signal
duration, or equivalently the signal photon number, as a function of the noise
parameter N defined in (30). (b) Optimal rescaled bandwidth β∗ (solid line)
compared with the asymptotic expression (dotted line) derived in (33). The
dash-dotted line depicts the proportionality factor between the minimum signal
photon number and log2[1/(2ε)], where ε is the desired average probability
of error.

the low-visibility approximation of the Chernoff information
per count according to (25). This approximation expressed in
presently used variables takes the form:

C
(

1
1 + β

,
1 − 2δ

1 + β

)
≈ δ2

2(1 + β)2
. (32)

Using the above closed formula in (29) and solving it with
respect to β yields β =

√N δ2/r(δ) + 1/4 − 1/2 ≈√N δ2/r(δ), where the second approximate expression can
be applied when β � 1. Inserting the latter expression for β
into the right hand side of (28) yields nν/[2

√N δ2 r(δ)] that
needs to be optimized over δ. The product δ2 r(δ) appearing
in the denominator has a single maximum over the interval
0 ≤ δ < 1/2 at the argument whose numerically found value is
equal to δ̃ ≈ 0.244. As seen in Fig. 4(a), this value agrees very
well with the results of numerical optimization for N � 1.
Consequently, one can take

β∗ ≈
√
N δ̃2/r(δ̃), N � 1, (33)
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and express the minimum photon number using the right hand
side of (28) as:

N∗
Q ≈ 6.51

√
nνlog[1/(2ε)], N � 1, (34)

where the numerical multiplicative factor is given by the

inverse of
√

2δ̃2 r(δ̃) ≈ 0.154.

VI. COMPARISON

The performance of the optimized quantum fingerprinting
protocol can be compared directly with a scenario when optical
channels are used to transmit classical fingerprints of inputs
x and y. Based on results obtained by Babai and Kimmel [7]
one can specify a classical protocol that uses fingerprints of
length

IC = 2
√

n

⌈
1
2

log2

1
ε

⌉
(35)

bits each. It is also possible to devise a lower bound on the
classical fingerprint length in the form [18]

IB =
√

n

2 log 2

(
1
2
−√

ε

)
− 1

2
. (36)

It is worth noting that IB retains O(
√

n) scaling in the limit
ε → 0, which suggests that this bound is not tight. When
the desired probability of error is equal to zero, it should be
necessary to transmit entire inputs, leading to a breakdown of
O(

√
n) scaling. This is the case of IC defined in (35).

The maximum attainable rate R in bits per unit time for
transmission of classical information over an AWGN channel,
allowing for the most general detection strategies, follows from
the Holevo capacity and is given by [22]

R = B[g(S/B + ν) − g(ν)], (37)

where

g(x) = (x + 1) log2(x + 1) − x log2 x (38)

is the entropy of a thermal state of a quantized harmonic
oscillator with the mean number of excitations equal to x.
For a given signal power S and noise PSD ν the information
rate is maximized in the limit B → ∞. The first term in (37)
can be then expanded around ν up to the first order in S/B.
This yields R = Sg′(ν), where g′(x) = log2(1 + x−1)
is the first derivative of g(x). The coefficient g′(ν) has the
interpretation of photon information efficiency (PIE), which
specifies how many bits of information can be encoded in
one photon [21], [33]. Consequently, IC and IB defined
respectively in (35) and (36) divided by PIE characterize the
performance of classical fingerprinting in terms of total photon
numbers carried by optical signals sent from Alice and Bob
to the referee. Specifically,

NC =
IC

log2(1 + ν−1)
=

2
√

n

log2(1 + ν−1)

⌈
1
2

log2

1
ε

⌉
(39)

is sufficient to implement a constructive classical fingerprint-
ing protocol, and

NB =
IB

log2(1 + ν−1)

=
1

log2(1 + ν−1)

[√
n

2 log 2

(
1
2
−√

ε

)
− 1

2

]
(40)

Fig. 5. The minimum signal photon number N∗
Q required by the quantum

fingerprinting protocol (solid line) as a function of the input size n for the
noise PSD ν = 10−7 and the desired average error probability ε = 10−5.
The horizontal arrow indicates the minimum signal photon number in the
noiseless scenario and the vertical arrow corresponds to the noise parameter
value N = 1. The dotted line is the asymptotic expression given in (34).
The dashed line depicts the performance of a classical fingerprinting protocol
specified in (39) and the dash-dotted line indicates the known classical bound
given by (40).

defines a lower bound on the total signal photon number
required by any classical fingerprinting protocol.

Fig. 5 compares NC and NB specified above with the
numerically found minimum photon number N∗

Q used by the
quantum fingeprinting protocol for the input size n in the range
104 ≤ n ≤ 1012, the desired probability of error ε = 10−5,
and the noise PSD ν = 10−7 photons per unit time and unit
bandwidth. The noise parameter N defined in (30) becomes
equal to one for n = 2ν−1 log[1/(2ε)] ≈ 2.2× 108. It is seen
that below this threshold N∗

Q exhibits weak dependence on
n, staying within factor of 20 from the noiseless figure given
according to (19) by log[1/(2ε)] ≈ 10.8 photons. Well above
the threshold corresponding to N = 1, the signal photon
number NQ follows O(

√
n) scaling with the asymptotic

expression (34) that approximates well numerical results as
seen in Fig. 5. In this regime the quantum advantage has
the form of a reduced multiplicative factor compared to (39)
and (40). The principal reason behind this reduction is distinct
dependence on the AWGN strength ν: the factor 1/ log2(1 +
ν−1), corresponding to the inverse of the PIE, is replaced by√

ν in the quantum case. In the numerical example considered
here with ν = 10−7 the ratio between these two factors
exceeds two orders of magnitude and it would grow further for
lower ν.

VII. CONCLUSION

We have presented a theoretical analysis of a quantum
fingerprinting protocol using power-limited optical signals
transmitted over AWGN channels with noise strength much
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less than one photon per unit time and unit bandwidth.
Although for large input size no scaling advantage over clas-
sical fingerprinting is retained, the quantum protocol allows
one to shorten the transmission time by a multiplicative factor
that depends on the noise strength. The improvement offered
by quantum fingerprinting is rooted in the joint detection
of the received signals. Statistics provided by such detec-
tion allows one to perform the equality test more efficiently
compared to a scenario when classical fingerprints need to
be recovered faithfully after signal detection. The advantage
of the quantum fingerprinting protocol over the classical one
can be also phrased in terms of the amount of informa-
tion about the input bit strings revealed to the referee by
Alice and Bob [15].

It is worth noting that joint detection used in quantum
fingerprinting exploits both wave and particle properties of
light: the received optical fields interfere as waves on the
beam splitter, but subsequently produce discrete photocounts
which at the fundamental level correspond to absorption of
individual particles—photons—from light incident on pho-
todetectors. The process of generating photocounts by an
incident electromagnetic field is inherently random. In the
case of the quantum fingerprinting protocol described here,
generation of a photocount by one of the photodetectors in a
given temporal slot provides certain information on the phase
relation between pulses transmitted in that slot. In turn, this
phase relation depends on specific bits in codewords E(x) and
E(y) encoding inputs. Informally speaking, photon counting
selects randomly, through the physics of the photodetection
process, a small subset of codeword bits that are effectively
compared by the referee. Signals sent by Alice and Bob are
so weak that they generate photocounts only in very few slots
out of their total number.

It is insightful to juxtapose the above observation with a
classical fingerprinting protocol which uses shared randomness
between Alice and Bob [8]. In such a protocol Alice and
Bob send only subsets of codeword bits that are specified by
a shared random key. It is then sufficient to send classical
fingerprints of constant length for a given probability of
error. Quantum fingerprinting can be viewed as a method to
replace the random key shared between Alice and Bob by
the randomness of the photodetection process. In the quantum
case, selection of codeword bits to be compared occurs only at
the detection stage and does not require any ancillary resource
to be shared between Alice and Bob.

The quantum fingerprinting protocol described here requires
setting a proper phase relation between the fields received from
Alice and Bob that are interfered at the beam splitter on the
referee side. This requirement can be satisfied by transmitting
additional reference signals that are measured by the referee
to estimate the relative phase between the received optical
fields and to adjust their phase relation with the help of a
phase modulator inserted before the receiver beam splitter.
Implementation of this strategy requires only a minor overhead
in terms of the total transmitted optical energy, enabling
one to maintain the advantage of the quantum fingerprinting
protocol. To give a quantitative example, Nest = 18/(Δφ)2

photons is sufficient to estimate the relative phase with the

uncertainty below Δφ and 99.7% confidence [34]. Assuming
Gaussian phase fluctuations, the uncertainty (Δφ)2 contributes
a multiplicative factor W = exp[−(Δφ)2/2] to the visibilities
defined in (20). Taking for concreteness W = 0.95 yields
Nest ≈ 180 photons. This figure is substantially lower than
the gap between N∗

Q and NB for the numerical example
depicted in Fig. 5, in the regime n � 2 log[(1/(2ε)]/ν which
corresponds to the noise parameter N � 1. Importantly,
in this regime both visibilities Ve and Vd for the optimal
bandwidth β∗ are substantially below one, as implied by
Fig. 4. Therefore, their rescaling by W can be included in
a straightforward manner in the approximation (32) leading
to (34). This produces an additional multiplicative factor W−1

in the expression for N∗
Q derived in (34). In the present

example W−1 ≈ 1.05 which implies that the assumed phase
uncertainty does not alter noticeably N∗

Q in Fig. 5 when
N � 1.

A practical limitation when implementing the quantum
fingerprinting protocol with phase estimation described above
is the number of temporal slots that can be accommodated
within the coherence time of the generated optical signals.
Using state-of-the-art sub-Hz linewidth lasers [35] and phase
modulators reaching 100 GHz bandwidth [36] yields the
available number of slots up to 1011. Given that the required
code rate is above 0.1 in the regime N � 1, this number of
slots should be sufficient to achieve the quantum advantage
for the input size n ∼ 109–1010 and other parameters as
in Fig. 5, even when taking into account the overhead required
for phase estimation. A more universal strategy, applicable also
for longer inputs, is to interleave the fingerprint signal with
the reference signal at intervals shorter than the coherence
time so that the referee can track the relative phase between
the received signals. In terms of the required optical energy,
such phase tracking adds an overhead scaling linearly with the
transmission time and hence proportional to N∗

Q, which retains
a constant separation between N∗

Q and NB for large input size
n in the logarithmic scale of Fig. 5. Yet another option to
implement the quantum fingerprinting protocol is to exploit
higher-order optical interference for signals without a defined
phase relation [37], [38]. For this scenario, a preliminary
analysis of the quantum advantage in terms of transmitted
information has been recently presented [39].

On an ending note, the problem of comparing weak optical
signals carrying classical or quantum information occurs in
a number of quantum information protocols. Two relevant
classes are quantum digital signatures [40], which provide a
secure method to sign a message preventing impersonation,
repudiation, or message tampering, and communication com-
plexity protocols based on the so-called quantum switch [41].
Quantum fingerprinting can be viewed as a generic example
of efficient extraction of information via optical interference
and its thorough characterization may come in useful when
analyzing other protocols based on a similar paradigm.

APPENDIX A

Using the orthogonality properties of the pulse mode func-
tion given in (2), the integrals (8) can be brought to the
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form

I± =
∫ ∞

−∞
|E±(t)|2 =

L∑
l=1

∣∣∣∣αx
l ± αy

l√
2

∣∣∣∣
2

=
L∑

l=1

[
|γ±

l |2 +
∣∣∣∣ξl ± ζl√

2

∣∣∣∣
2

+ 2Re

(
γ±

l

ξl ± ζl√
2

)]
, (41)

where

γ±
l =

√
S

2B
(eiθx

l ± eiθy
l ). (42)

Note that linear combinations (ξl ± ζl)/
√

2 are Gaussian
random variables with zero mean and variance Var[(ξl ±
ζl)/

√
2] = ν. This allows one to calculate directly the

expectation value in (9) which yields:

Z(λ+, λ−)

= exp

[
(eiλ+ − 1)

(
1 +

(eiλ+ − 1)ν
1 − (eiλ+ − 1)ν

) L∑
l=1

|γ+
l |2

+(eiλ− − 1)
(

1 +
(eiλ− − 1)ν

1 − (eiλ− − 1)ν

) L∑
l=1

|γ−
l |2
]

×
(

1
1 − (eiλ+ − 1)ν

)L ( 1
1 − (eiλ− − 1)ν

)L

. (43)

The terms in the exponent involving ν produce expressions of
the order O(νLS/B) and will be neglected. Sums over l can
be written as

L∑
l=1

|γ±
l |2 =

LS

B

(
1 ± 1

L

L∑
l=1

cos(θx
l − θy

l )

)
. (44)

Furthermore, for ν � 1 and large L the power factors in (43)
can be approximated by exponents 1/[1 − (eiλ± − 1)ν]L ≈
exp[(eiλ± − 1)νL]. Combining these steps together yields

Z(λ+, λ−)

= exp

[
(eiλ+ − 1)L

(
S

B
+ ν +

1
L

L∑
l=1

cos(θx
l − θy

l )

)

+ (eiλ−−1)L

(
S

B
+ν− 1

L

L∑
l=1

cos(θx
l − θy

l )

)]
(45)

which is identical with (10) when expressed in terms of μ and
V defined respectively in (11) and (12).

APPENDIX B

The argument λ∗ optimizing the right hand side of (24) can
be found by solving equation df/dλ = 0, where

f(λ)=1− 1
2
[(1+Ve)λ(1+Vd)1−λ+(1 − Ve)λ(1−Vd)1−λ].

(46)

The solution is given by the following closed expression:

λ∗ =
log
[

1−Vd

1+Vd

log
1−Vd
1−Ve

log 1+Ve
1+Vd

]

log
(

1+Ve

1−Ve

1−Vd

1+Vd

) . (47)

For Ve, Vd � 1 the above formula can be approximated up to
the second order by

λ∗ ≈ 1
2

+
V 2

d − V 2
e

24
. (48)

Inserting this expression into (46) yields up to the second order
in Ve, Vd:

C ≈ 1
8

(Ve − Vd)
2
. (49)

The same result is obtained by using the zeroth order expan-
sion λ∗ ≈ 1/2 in (46).

ACKNOWLEDGMENT

Insightful discussions with B. A. Bash, N. Lütkenhaus,
F. Xu, and Q. Zhang are gratefully acknowledged.

REFERENCES

[1] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptogra-
phy,” Rev. Mod. Phys., vol. 74, no. 1, pp. 145–195, 2002.

[2] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütken-
haus, and M. Peev, “The security of practical quantum key distribution,”
Rev. Mod. Phys., vol. 81, no. 3, pp. 1301–1350, Sep. 2009.

[3] F. Xu, X. M. Q. Zhang, H.-K. Lo, and J.-W. Pan, “Quantum
cryptography with realistic devices,” Mar. 2019, arXiv:1903.09051.
Accessed: Jul. 10, 2019. [Online]. Available: https://arxiv.org/abs/
1903.09051

[4] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting (preliminary report),” in Proc. 11th Annu. ACM Symp. Theory
Comput. Atlanta, GA, USA: ACM, 1979, pp. 209–213.

[5] A. Ambainis, “Communication complexity in a 3-computer model,”
Algorithmica, vol. 16, no. 3, pp. 298–301, Sep. 1996.

[6] I. Newman and M. Szegedy, “Public vs. private coin flips in one round
communication games,” in Proc. 28th ACM Symp. Theory Comput.
New York, NY, USA: ACM, 1996, p. 596.

[7] L. Babai and P. Kimmel, “Randomized simultaneous messages: Solution
of a problem of Yao in communication complexity,” in Proc. 12th Annu.
IEEE Conf. Comput. Complex., Nov. 1997, p. 239.

[8] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, “Quantum finger-
printing,” Phys. Rev. Lett., vol. 87, no. 16, p. 167902, Sep. 2001.

[9] H. Buhrman and R. De Wolf, “Communication complexity lower bounds
by polynomials,” in Proc. 16th Annu. IEEE Conf. Comput. Complex.,
2001, pp. 120–130.

[10] S. Aaronson, “Limitations of quantum advice and one-way communi-
cation,” in Proc. 19th IEEE Annu. Conf. Comput. Complex., Nov. 2004,
pp. 320–332.

[11] A. C.-C. Yao, “On the power of quantum fingerprinting,” in Proc. 35th
ACM Symp. Theory Comput. (STOC), 2003, pp. 77–81.

[12] D. Gavinsky, J. Kempe, and R. De Wolf, “Strengths and weaknesses
of quantum fingerprinting,” in Proc. 21st Annu. IEEE Conf. Comput.
Complex. (CCC), Los Alamitos, CA, USA, Jul. 2006, pp. 288–298.

[13] A. S. Holevo, “Bounds for the quantity of information transmitted by
a quantum channel,” Problems Inf. Transm., vol. 9, no. 3, pp. 177–183,
1973.

[14] A. Holevo, “The capacity of the quantum channel with general signal
states,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 269–273, Jan. 1998.

[15] J. M. Arrazola and N. Lütkenhaus, “Quantum fingerprinting with coher-
ent states and a constant mean number of photons,” Phys. Rev. A, Gen.
Phys., vol. 89, no. 6, Jun. 2014, Art. no. 062305.

[16] B. Lovitz and N. Lütkenhaus, “Families of quantum fingerprinting pro-
tocols,” Phys. Rev. A, Gen. Phys., vol. 97, no. 3, 2018, Art. no. 032340.

[17] F. Xu et al., “Experimental quantum fingerprinting with weak coherent
pulses,” Nature Commun., vol. 6, no. 1, p. 8735, Dec. 2015.

[18] J. Y. Guan et al., “Observation of quantum fingerprinting beating
the classical limit,” Phys. Rev. Lett., vol. 116, no. 24, Jun. 2016,
Art. no. 240502.

[19] D. M. Boroson, “On achieving high performance optical communica-
tions from very deep space,” Proc. SPIE, Free-Space Laser Commun.
Atmos. Propag., vol. 10524, Feb. 2018, Art. no. 105240B.

[20] W. Zwoliński, M. Jarzyna, and K. Banaszek, “Range dependence of an
optical pulse position modulation link in the presence of background
noise,” Opt. Express, vol. 26, no. 20, p. 25827, Oct. 2018.



LIPKA et al.: QUANTUM FINGERPRINTING OVER AWGN CHANNELS WITH POWER-LIMITED OPTICAL SIGNALS 505

[21] K. Banaszek, L. Kunz, M. Jarzyna, and M. Jachura, “Approaching
the ultimate capacity limit in deep-space optical communication,”
Proc. SPIE, Free-Space Laser Commun., vol. 10910, Mar. 2019,
Art. no. 109100A.

[22] V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo, “Ultimate
classical communication rates of quantum optical channels,” Nature
Photon, vol. 8, no. 10, pp. 796–800, Oct. 2014.

[23] J. Shapiro, “The quantum theory of optical communications,” IEEE
J. Sel. Topics Quantum Electron., vol. 15, no. 6, pp. 1547–1569,
Aug. 2009.

[24] H. Hemmati, Deep Space Optical Communications. Hoboken, NJ, USA:
Wiley, 2006.

[25] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28,
no. 4, pp. 662–701, Feb. 15, 2010.

[26] B. Brecht, A. Eckstein, A. Christ, H. Suche, and C. Silberhorn, “From
quantum pulse gate to quantum pulse shaper–engineered frequency
conversion in nonlinear optical waveguides,” New J. Phys., vol. 13, no. 6,
Jul. 2011, Art. no. 065029.

[27] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon tem-
poral modes: A complete framework for quantum information science,”
Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. 041017.

[28] A. Shahverdi, Y. M. Sua, L. Tumeh, and Y.-P. Huang, “Quantum
parametric mode sorting: Beating the time-frequency filtering,” Sci. Rep.,
vol. 7, no. 1, Jul. 2017, Art. no. 6495.

[29] D. V. Reddy and M. G. Raymer, “High-selectivity quantum pulse gating
of photonic temporal modes using all-optical Ramsey interferometry,”
Optica, vol. 5, no. 4, p. 423, Apr. 2018.

[30] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics.
Cambridge, U.K.: Cambridge Univ. Press, 1995, ch. 9.

[31] J. H. van Lint, Introduction to Coding Theory, 3rd ed. Berlin, Germany:
Springer, 1987.

[32] T. M. Cover and J. A. Thomas, Elements of Information Theory,
D. L. Schilling, Ed. Hoboken, NJ, USA: Wiley, 1991.

[33] S. Guha, Z. Dutton, and J. H. Shapiro, “On quantum limit of optical
communications: Concatenated codes and joint-detection receivers,” in
Proc. IEEE Int. Symp. Inf. Theory, Jul. 2011, pp. 274–278.

[34] V. Makarov, A. Brylevski, and D. R. Hjelme, “Real-time phase track-
ing in single-photon interferometers,” Appl. Opt., vol. 43, no. 22,
pp. 4385–4392, 2004.

[35] OEwaves HI-Q 1.5 MICRON LASER SUB-HERTZ OE4030 Datasheet.
Accessed: Dec. 10, 2019. [Online]. Available: https://oewaves.com/hi-q-
1-5-micron-lasers-1

[36] K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3

optical modulators,” J. Lightw. Technol., vol. 16, no. 4, pp. 615–619,
Apr. 1998.

[37] M. Jachura, M. Lipka, M. Jarzyna, and K. Banaszek, “Quantum finger-
printing using two-photon interference,” Opt. Express, vol. 25, no. 22,
Oct. 2017, Art. no. 27475.

[38] M. Jachura, M. Jarzyna, M. Lipka, W. Wasilewski, and K. Banaszek,
“Visibility-based hypothesis testing using higher-order optical interfer-
ence,” Phys. Rev. Lett., vol. 120, no. 11, Mar. 2018, Art. no. 110502.

[39] M. Lipka, M. Jarzyna, and K. Banaszek, “Feasibility of quantum finger-
printing using optical signals with random global phase,” in Proc. SPIE,
Quantum Inf. Sci. Technol. IV, vol. 10803, Oct. 2018, Art. no. 108030K.

[40] P. L. Clarke, R. Collins, V. Dunjko, E. Andersson, J. Jeffers, and
G. S. Buller, “Experimental demonstration of quantum digital signatures
using phase-encoded coherent states of light,” Nature Commun., vol. 3,
p. 1174, 2012.

[41] K. Wei et al., “Experimental quantum switching for exponentially
superior quantum communication complexity,” Phys. Rev. Lett., vol. 122,
Mar. 2019, Art. no. 120504.

Michał Lipka received the B.Sc. degree in physics
from the University of Warsaw, Poland, in 2018.
He is currently pursuing the M.Sc. degree in physics
with the University of Warsaw and since 2015 works
there in the Quantum Memories Laboratory, which
is part of the Centre for Quantum Optical Technolo-
gies, University of Warsaw.

In 2019, he has been awarded National (Poland)
Ministry of Science and Higher Education’s
“Diamond Grant” to develop real-time single photon
localization technologies.

Marcin Jarzyna received the M.Sc. and Ph.D.
degrees in physics from the University of Warsaw,
Warsaw, Poland, in 2011 and 2016, respectively.

He has been with the Centre of New Technologies,
University of Warsaw, since 2016. Research leading
to his Ph.D. was focused mainly on quantum
metrology and the impact of entanglement on the
asymptotic precision limits under decoherence. His
current research interests include low power limits
of communication, impact of signal amplification,
superresolution effects in optical imaging, and

optical realizations of communication complexity problems

Konrad Banaszek (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in physics from the
University of Warsaw, Poland in 1997 and 2000,
respectively.

He held postdoctoral positions at the University of
Rochester, NY, USA, and the University of Oxford,
U.K., followed by a Junior Research Fellowship
at St. John’s College, Oxford, U.K., and faculty
appointments at the Nicolaus Copernicus University,
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