
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018 2595

Guest Editorial
Scalability Issues and Solutions for

Software Defined Networks
Oliver Hohlfeld, James Kempf, Senior Member, IEEE, Martin Reisslein , Fellow, IEEE,

Stefan Schmid, and Nadir Shah

I. INTRODUCTION

A. Software-Defined Networks: A Success Story

SOFTWARE Defined Networking (in short SDN, which
is also an acronym for Software Defined Network), has

emerged as a response to the limitations and complexities of
traditional network architectures. At the heart of SDN lies the
idea to consolidate the control over network devices into a log-
ically centralized (software) controller separated from the data
plane. The separation of the control plane and the data plane
is realized via an open programming interface between the
data plane switches and the SDN controller. The decoupling
allows the control plane to evolve independently of the data
plane, which enables faster innovation since software often
exceeds hardware in innovation speed. Furthermore, logical
centralization has the potential to simplify network operation
and management by providing a single focal point where the
consequences of management actions can be assessed, and
possibly rejected if they would lead to some violation of
operational constraints. OpenFlow, the standard SDN protocol
today, is based on a simple match-action paradigm which
results in great flexibilities, e.g., in terms of traffic engineer-
ing, definition of flows, as well as in-band network control
functionalities.

While originally proposed in an academic context, SDN
has now achieved far-reaching impact in industry, with many
companies, such as Google, Facebook, Yahoo, and Microsoft,
promoting and adopting SDN through open standards devel-
opment. Today, SDN is deployed in a wide range of network
types: in enterprise and campus networks (where it originally
started), in datacenter networks, in wide-area networks (for
example, Google B4), as well as in Internet Exchange Points.

O. Hohlfeld is with the Network Architectures Group, COMSYS, RWTH
Aachen University, 52074 Aachen, Germany (e-mail: oliver@comsys.rwth-
aachen.de).

J. Kempf is with Ericsson Research, Santa Clara, CA 95054 USA (e-mail:
james.kempf@ericsson.com).

M. Reisslein is with the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe, AZ 85287-5706 USA (e-mail:
reisslein@asu.edu).

S. Schmid is with the Faculty of Computer Science, University of Vienna,
1090 Vienna, Austria (e-mail: stefan_schmid@univie.ac.at).

N. Shah is with the Department of Computer Science, COMSATS
Institute of Information Technology, Wah Cantt 47040, Pakistan (e-mail:
nadirshah82@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2872214

Fig. 1. Illustration of planes of an SDN and related scalability issues.

It is convenient to think of SDN in terms of its three main
planes, which are illustrated in Fig. 1.

• Data Plane: The data plane consists of the network
devices, such as the physical/virtual switches, routers, and
access points. These data plane devices are managed by
SDN controllers in the control plane.

• Control Plane: The SDN control plane consists of a set
of software-based controllers that provide control func-
tionality. Controllers have interfaces for communication
with other controllers in the control plane, with network
devices in the data plane, and with applications.

• Application Plane: End-user SDN applications interact
with controllers to utilize an abstract view of the network
for their internal decision making. Popular applications
include traffic engineering and load balancing.

B. Scalability: The Next Frontier

Despite the large spectrum of SDN deployments, today’s
SDNs have in common that they are relatively small in scale.
They are mostly limited to a small network or to a single
administrative domain. There is a wide consensus that the
next major challenge for SDN is to scale to massive numbers
of routers and switches, as well as to address multi-domain
networks.

We first have to note that while the centralized perspective
offered by SDN is attractive, it was always meant to be
logically centralized only, but physically distributed. Further-
more, there have already been a number of scalability related

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1606-233X

2596 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

improvements in OpenFlow specifications over the last few
years, for example the introduction of a group table mechanism
(OpenFlow version 1.1) which allows multiple flow table
entries to point to (reference) the same group identifier: the
controller only needs to update the referenced group table
entry action instead of updating the action of all flow table
entries. OpenFlow version 1.2 also allows to change the
controller, enabling a switch to establish communication with
multiple controllers in parallel.

Scalability involves generally a wide range of aspects and
a system is only as scalable as its least scalable component,
i.e., the component that first becomes a bottleneck as the net-
work size scales up. The research addressing SDN scalability
can be classified into the following main categories: data plane,
control plane, applications, and cross-cutting issues.

1) Data Plane Scalability: Data plane scalability mainly
depends on the processing power, memory/buffer capacity,
and software implementation of the data plane devices [1].
One fundamental scalability question related to the data plane
regards which functionality to include in the data plane in
order to mitigate the controller load. A specialized data plane
may be used to keep more traffic in the data plane, toward the
goal of a more scalable and efficient control plane. Another
scalability challenge arises in case of in-band control of data
plane devices, where the control traffic shares paths (and
competes for resources) with the data plane traffic, and where
a reliable management of the data plane needs to be ensured.

2) Control Plane Scalability: The majority of the studies on
SDN scalability addresses the control plane. The most promi-
nent SDN control plane performance metrics are throughput
(number of flow requests handled per second) and (flow
setup) latency. A first set of scalability issues can result from
the limited amount of requests that can be handled by a
given controller per time. Distributed, flat, or hierarchical
control plane designs can mitigate the controller bottleneck.
However, such designs require inter-controller synchroniza-
tion and data distribution among controller replicas. Further
scalability issues arise from the separation of the control
and data planes, as now, network devices are managed by a
remote controlling mechanism. Indeed, the controller-switch
communication delay introduces a delay, e.g., for flow setup.
The situation is particularly problematic if the communication
network between controllers and switches can be congested
(e.g., in case of in-band management). In general, in order
to reduce control latency in wide-area networks, data plane
events should be handled close to where they occur, raising
the question of where to place controllers.

3) Application Scalability: SDN applications themselves
need to be scalable and support fine-grained and optimized
resource utilization in wide-area networks. Load balancing was
one of the first applications envisioned for SDN. One example
technique to make load balancing applications scalable is to
use wildcard-based rules to perform proactive load balancing.
Such wildcard-based rules aggregate client requests, e.g.,
based on IP prefix ranges.

4) Cross-Cutting Scalability Issues: SDN will likely be
deployed incrementally in large networks, which raises
many other scalability related questions. For instance, which

switches should be upgraded first and how can an SDN
operation be emulated with only a partial deployment of SDN
devices [2].

Further cross-cutting scalability issues arise in the context of
software-defined wireless networks. The wireless transmission
medium introduces additional opportunities for control and
optimization, i.e., presents additional tuning knobs that can be
set with SDN control. However, fine-grained wireless trans-
mission control can potentially give rise to novel bottlenecks
in SDNs.

The larger the SDN, the more attractive it may become
as a target of attacks. As an SDN is only as secure as its
individual planes, strong yet scalable security mechanisms
(e.g., for monitoring, detecting, and recovering from attacks)
are required for the data plane, the control plane, and the
application plane.

II. SUMMARY OF RESEARCH CONTRIBUTIONS

IN THIS SPECIAL ISSUE

This Special Issue (SI) presents original state-of-the-art
research studies on scalability issues and solutions for SDNs.
The relevance of and interest in this topic area is reflected
by the large number of submissions: we received a total
of 70 submissions from authors distributed geographically over
21 countries and all 6 continents (19 from China, 15 from
USA, 3 each from Canada, France, Germany, Korea, and
Tunisia, 2 each from Japan, New Zealand, Poland, Spain,
Taiwan, Turkey, and UK, and 1 each from Australia, Brazil,
Hong Kong, Hungary, India, Italy, and Montenegro). All
papers received at least three reviews and accepted papers
went through at least one revision round. Out of the 70 papers,
we eventually accepted 17 papers (acceptance ratio 24%).

The articles contained in this SI cover data plane, control
plane, and application plane scalability issues and related
solutions. The articles report on recent developments in
architectural specifications, protocols, and application designs
for achieving scalability in SDN. The papers in this SI
employ a mixture of experimental, conceptual, and theoret-
ical approaches to examine SDN scalability. The following
subsections summarize the papers contained in this SI.

A. Data Plane

Patra et al. in Towards a sweet spot of data plane
programmability, portability and performance: On the scala-
bility of multi-architecture P4 pipelines examine the perfor-
mance, portability, and scalability of the SDN data plane.
Programming Protocol-Independent Packet Processors (P4)
provide a high-level programming language for fine-grained
programmability of the SDN data plane. Patra et al. argue
that the P4 adoption is hindered by a lack of open source,
protocol independent programmable data plane components.
Patra et al. present a Multi-Architecture Compiler System
for Abstract Data planes (MACSAD) concept. MACSAD
builds on Application Programming Interfaces (APIs) from the
OpenDataPlane (ODP) project to provide low-level hardware
and software cross-platform programmability. Patra et al. iden-
tify three critical evaluation measures, namely performance,

HOHLFELD et al.: GUEST EDITORIAL SCALABILITY ISSUES AND SOLUTIONS FOR SOFTWARE DEFINED NETWORKS 2597

portability, and scalability. They comprehensively evaluate the
trade-offs between these three measures for a wide range of
packet sizes, pipeline complexity levels, and numbers of cores
across different platforms (e.g., x86 and ARM).

Oudin et al. in OFLOPS-SUME and the art of switch char-
acterization introduce a novel hardware/software co-design for
SDN switch characterization at 40 Gb/s and beyond. OFLOPS-
SUME integrates the software based open framework for
OpenFlow Switch Evaluation (OFLOPS) with the hardware
based Open Source Network Tester (OSNT). The resulting
OFLOPS-SUME can evaluate any hardware and software
device with an OpenFlow control plane, including P4 program-
mable data plane devices. Oudin et al. conduct an extensive
evaluation study of both software and hardware switches and
identify the implications of different switch profiles on the
overall network scalability and performance. Oudin et al. also
release OFLOPS-SUME as an open source tool so as to
facilitate the further refinement of the OFLOPS-SUME switch
characterization tool and to support widespread reproducibility
of SDN switch characterizations.

The next-generation 5G core will likely depend on a pro-
grammable data plane to support mobile edge computing,
network slicing, and network function virtualization at scale.
In order to support telcos and vendors to make the transition
from the legacy mobile core to an SDN-based 5G-capable
data plane, Lévai et al. in The price for programmability
in the software data plane: The vendor perspective evalu-
ate the performance and scalability of several programmable
software switches for representative scenarios taken from real
5G deployments. In particular, Lévai et al. first introduce a
taxonomy for data plane scalability together with a novel
data-plane scalability benchmarking tool called TIPSY for
Telco pIPeline benchmarking SYstem. Then, a set of ten
standard telco pipelines is defined for benchmarking. Pro-
grammable software data planes based on eight different types
of SDN programmable switches are then benchmarked. The
evaluations indicate that most programmable switches result
in significantly reduced performance, i.e., requiring signifi-
cantly higher investments in hardware and energy (by up to
roughly an order of magnitude) than conventional statically
configured systems, i.e., there is a very high price to pay for
the flexible configurability and management through program-
mable switches. Only one proprietary programmable switch
has demonstrated the potential to match the performance of
conventional systems.

Khalili et al. in Flow setup latency in SDN networks
examine a path aggregation strategy to reduce the flow setup
latency as SDN networks scale to large numbers of switches.
Khalili et al. first measure flow setup latencies in conventional
SDN networks and discover that the 99 percentiles of the laten-
cies are on the order of half a second. In order to address these
long latencies, Khalili et al. propose to pre-configure pipes that
interconnect any pair of edge switches. The individual flows
are processed at the ingress edge switches, from where they
are forwarded through pre-configured fabric pipes to the egress
edge switches. This approach reduces the number of switches
that need to be configured for setting up a flow to typically
two switches, decreasing the 99 percentile latencies to less
than 10 milliseconds.

Xiao and Krunz in Dynamic network slicing for scalable
fog computing systems with energy harvesting investigate
SDN-based dynamic network slicing. Specifically, network
slicing for a prescribed region of fog nodes is controlled by
a regional orchestrator. The orchestrator coordinates with the
region’s fog nodes to dynamically distribute the resources of
the network slices according to the local service demands and
availability of harvested energy. Xiao and Krunz model the
dynamic network slicing and the resource allocation problem
as a stochastic overlapping coalition-formation game. The
model reveals an increase in the overall computing capacity if
fog nodes consider a belief function about the unknown states
and private information of the other fog nodes. Xiao and Krunz
optimize the dynamic network slicing through a belief-state
partially observable Markov decision process. Numerical eval-
uations based on data from 400 base station locations in a
real cellular network illustrate that cooperation of each fog
node with its closest neighbor nearly doubles the processed
workload.

Allybokus et al. in Multi-path alpha-fair resource allocation
at scale in distributed software defined networks address the
problem of fair bandwidth sharing for good network perfor-
mance. In particular, the authors consider allocation problems
for the important case that flows evolve over time. The authors
propose a distributed algorithm to solve the multi-path fair
resource allocation problem in a distributed SDN control
architecture, overcoming the challenges of standard primal-
dual decomposition methods. The authors then demonstrate the
scalability of their approach on large instances with hundreds
of nodes and thousands of requests and paths.

Bruyere et al. in Rethinking IXPs’ architecture in the age
of SDN propose to improve the scalability of the SDN control
plane by handling the control traffic directly within the data
plane. This approach is realized in the Umbrella switching
fabric architecture and management approach. The Umbrella
management approach improves the overall robustness by lim-
iting the control plane dependency and is suitable for existing
Internet eXchange Point (IXP) topologies. The scalability of
Umbrella is demonstrated through the successful deployment
at two commercial IXPs. Umbrella can be seen as a first
step towards SDN architectures that are less dependent on
the control plane and thus are better scalable. In such future
architectures, the data plane components support the controller
in its role of an intelligent supervisor, rather than as an active
and critical decision point.

B. Control Plane

Yan et al. in BigMaC: Reactive network-wide policy
caching for SDN policy enforcement address control and
data plane scalability by proposing a reactive policy enforce-
ment framework. BigMaC’s main contribution is to provide
a policy-consistency guarantee (i.e., packets should receive
the same actions in the big switch abstraction and in the
data plane switches with cached entries) across the network.
The model presents layered views of the network with a big
switch abstraction, a logical network, and a physical network.
Yan et al. propose a network-wide “bucket”-based policy
mapping and caching mechanism which guarantees policy-
consistency, optimizes the flow table usage of physical network

2598 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

devices, and reduces the churn incurred by policy updates.
Trace-driven simulations indicate that BigMaC achieves better
performance than traditional schemes, in particular, BigMaC
saves table space and reduces the update complexity.

Görkemli et al. in Dynamic control plane for SDN at
scale have been motivated by the scalability and reliability
requirements of wide area networks and 5G core networks.
In particular, the paper is concerned about the possibility of
bottlenecks due to the controller CPU or the throughput of the
in-band control channels. The authors propose a programmable
distributed control plane architecture based on a dynamically
managed in-band control network. Towards this end, the
authors introduce a “control flow table” to manage in-band
control flows, enabling for instance the offloading of congested
controllers and congested in-band control channels.

Sakic and Kellerer in Impact of adaptive consistency on
distributed SDN applications: An empirical study examine the
scalability of the SDN control plane where state is replicated,
e.g., for fault-tolerance. Sakic and Kellerer explore the effects
of deployed consistency models on scalability and correctness,
comparing strong and eventual consistency, and make the case
for a novel adaptive consistency model. Sakic and Kellerer
show how an adaptive consistency model offers scalability
benefits in terms of the total request handling throughput and
response time, in contrast to the strong consistency model.
They also outline how the adaptive consistency model can
provide correctness semantics, that are unachievable with the
eventual consistency model. The paper further reports on an
emulated testbed with a load balancer controller application.

Lyu et al. in Multi-timescale decentralized online orches-
tration of software-defined networks enhance SDN scalability
with a hierarchical network of controllers, whereby controllers
further down in the hierarchy can be switched off at different
times depending on traffic conditions. Each switch in the
network is associated with a controller at the first level, and
if the controller is switched off, it forwards PACKET_IN
messages from switches to the next level up. Lyu et al. develop
an analytical formulation of a distributed online optimization
problem which allows the control plane to determine the
optimal set of active controllers. They test the algorithm in
a MATLAB simulation platform with 320 switches and 14
controllers arranged in three levels: two root controllers, four
intermediate controllers, and eight local controllers. They sim-
ulate three orchestration approaches: static orchestration, real-
time dynamic orchestration, where the controller activation,
request processing, and dispatching are carried out instanta-
neously at every time slot, and T -slot dynamic orchestration,
where the request processing and dispatching are carried out
per slot and the controller activation is carried out every T
slots, with T = 10. The real-time orchestration achieves the
lowest system cost, saving 73% over the static orchestration
cost. The T = 10 slot orchestration approach achieves slightly
less optimal performance than the real-time approach.

C. Scalable SDN Applications and Use Cases

Cheng and Jia in Compressive traffic monitoring in hybrid
SDN investigate scalable load estimation, which can inform
traffic engineering (an important application of SDN control).

In particular, Cheng and Jia propose a novel compressive
traffic monitoring method for the accurate real-time collection
of the load information of all links. The focus is on hybrid
SDN networks and the main idea is to judiciously place a
small number of SDN switches such that controllers only need
to collect the load information of a small subset of important
links. The loads of the other links are then estimated.

Moradi et al. in Dragon: Scalable, flexible and efficient
traffic engineering in software defined ISP networks describe
the Dragon SDN-based traffic engineering system for Internet
Service Provider (ISP) networks that scales to large networks.
To address the scalability challenge, Dragon consists of hierar-
chical and recursive traffic engineering algorithms that divide
the flow optimization problems into subtasks and execute
them in parallel. This approach finds an approximate solution
much quicker than a full optimization problem. Dragon further
enables ISPs to express diverse objectives for different parts
of their network. Dragon also has optimizations to reduce the
size of packets (avoiding excessive headers) and the Ternary
Content-Addressable Memory (TCAM) size. Dragon has been
evaluated for several network topologies.

Fu et al. in Taming the wild: A scalable anycast-based
CDN architecture (T-SAC) utilize SDN to improve the scala-
bility of anycast-based Content Distribution Networks (CDNs)
by proposing to use OpenFlow and Network Function Vir-
tualization (NFV) to complement current Domain Name
System (DNS)-based redirection schemes. T-SAC achieves
fine-grained control of redirections within the CDN through
load-aware algorithms and setting a re-direction bit in the
status/health check messages. T-SAC aims at fostering the
collaboration of CDNs and ISPs by enabling more flexible
routing decisions than a standard anycast architecture. The
network itself measures the load imposed on CDN nodes
and makes corresponding redirection decisions. At the same
time, the CDN may influence the routing decision by sig-
naling that certain CDN nodes are not capable of serving
additional connections. The benefits of the T-SAC architecture
are demonstrated by a real Amazon Web Services (AWS)
based implementation.

Uddin et al. in SDN-based multi-protocol edge switching for
IoT service automation propose an architecture called Muppet,
for multiprotocol at the edge for IoT. The Muppet architecture
consists of a collection of P4 Muppet switches at the edge
that handle peer-to-peer non-IP traffic by tunneling over IP
to other Muppet switches on the edge near the destination
devices. This allows the IoT network to expand beyond a
simple peer-to-peer network by using the IP backbone. The
Muppet switches are programmed from a P4 SDN controller;
the controller can install policy rules that allow traffic to be
filtered depending on the content. The Muppet architecture
is divided into three planes: a management plane which on-
boards devices having specific link layer protocols, a data
plane which supports packet inspection and processing using
match-action rules, and a control plane that allows the P4 con-
troller to program the switches. Uddin et al. demonstrate
the Muppet architecture by supporting two different non-IP
protocols, namely Bluetooth Low Energy (BLE) and Zigbee.
The authors then describe a prototype implementation which

HOHLFELD et al.: GUEST EDITORIAL SCALABILITY ISSUES AND SOLUTIONS FOR SOFTWARE DEFINED NETWORKS 2599

reduces the power consumption and increases the throughput
compared to alternative systems (peer to peer with BLE,
cloud with WiFi, and cloud with LTE). Muppet achieves
these performance improvements by allowing the switches
to filter device readings that do not match a specific policy
(e.g., temperature readings that are above a threshold). They
also tested the scalability using virtual BLE adaptors and found
that the CPU usage of Muppet switches scales linearly with
the number of ports, up to 1000 ports.

Zhang and Zhu in Scalable virtualization and offloading
based software-defined architecture for heterogeneous statis-
tical QoS provisioning over 5G multimedia mobile wireless
networks propose an SDN architecture for offloading multi-
media traffic to efficiently support multimedia traffic in 5G
networks. The architecture consists of three virtual networks:
a virtual network without offloading, a virtual network with
WiFi offloading, and a virtual network with peer-to-peer
offloading. The architecture achieves statistical QoS provision-
ing by different means on the different virtual networks. On the
virtual networks without offloading, the authors analytically
derive optimal wireless resource allocations to maximize the
spectral efficiency. On virtual networks with WiFi offloading,
an optimal power allocation scheme is developed to maximize
the aggregate effective capacity. On virtual networks with peer-
to-peer offloading, the performance improvements in terms of
throughput, data content, and downloading delay are modelled.
An SDN control plane makes the decision about what traffic
to offload based on the characteristics of the traffic. Zhang
and Zhu also estimate the scalability improvement of the
overall integrated network. The advantages of the architecture
are demonstrated through an analytical comparison with a
standard base station cellular deployment.

Fawcett et al. in TENNISON: A distributed SDN framework
for scalable network security describe a system for security
monitoring and control based on a three layer architecture.
At the bottom, in the Collection layer, existing tools collect
data at L1 (sFlowRT), L2 (Open Network Operating System,
ONOS), and L3 (Snort and Bro) to provide control and
monitoring to higher layers. At the next layer, the Coordination
layer, the Tennison controller provides coordination between
different security applications. At the top layer, the Application
layer, various security applications run and coordinate their
activity southbound through the Tennison controller API.
The Tennison controller design scales readily to multiple
distributed instances so as to match the network topology. Faw-
cett et al. present emulation results from a Mininet simulation
with 350 nodes connected to 19 partially connected switches,
which is representative of a large-size business network, for
four attack scenarios: Denial of Service (DoS), Distributed
DOS (DDoS), scanning, and intrusion. They found that
Tennison was able to detect an attack in less than 6 seconds,
with the maximum amount of time needed for DDoS.

III. THE ROAD AHEAD: OPEN RESEARCH CHALLENGES

While the papers contained in this SI have achieved signif-
icant advances in making SDNs more scalable, there are still
many important research challenges that need to be addressed
to make large-scale SDNs a reality. We provide a perspective

of the main open research challenges towards scalable SDNs in
this section. We first outline the main open research challenges
in the data plane, the control plane, and the applications plane.
We then outline several open research challenges that cut
across these different planes and require a holistic approach
to scalability.

A. Data Plane
1) Flow Tables: SDN switches are kept very simple by

implementing only elementary data plane functionalities. The
simple SDN switch design poses the challenge of efficiently
using the limited SDN switch resources. For instance, how
can the limited switch TCAM memory be used efficiently to
store increasing numbers of active flows in the TCAM based
switch flow table? How can the matching of an incoming
packet with the patterns of large numbers of flow entries
stored in the switch flow table be sped up? How can packets
waiting for the controller commands be efficiently buffered at
the switches? While a few approaches have been proposed to
address these challenges, the scalability characteristics of flow
table management require extensive future research.

2) Adding Capabilities to Data Plane: There is an emerg-
ing trend to offload more functionality to the data plane,
e.g., through so-called smart Network Interface Controllers
(NICs) that take over some of the control plane functions.
The “smarter” data plane strives to offload the controller
so as to make the controller more scalable. A smarter data
plane can increase scalability also along other dimensions and
positively affect applications. Aligned with this trend, and to
give another example, there are studies evaluating under which
conditions NICs and switches are suitable to work as CPU
co-processors for neural networks, e.g., to accelerate Artificial
Intelligence (AI).

3) Consistent Data Plane Updates: Some studies have
addressed the problem of efficiently updating the flow tables
at the switches to avoid inconsistencies. However, for large
networks with frequent updates, the proposed protocols do
not perform in real time and require extensive computation
resources and network bandwidth. Thus, the consistent updat-
ing of the data plane in a scalable manner is still an open
research challenge.

4) Scalable Resilience Mechanism in Data Plane: Links
and nodes can fail in a network, affecting flows for criti-
cal applications [3]. To provide resilience against such fail-
ures, traditional networks employ distributed protocols. The
logically centralized controller in SDNs can facilitate the
efficient failure handling. The failure handing in SDNs poses
unique challenges and several approaches have been pro-
posed, e.g., [3]. In order to provide resilience against failures,
the existing approaches install multiple paths for a given flow
at the switches. The computational processing capacity and
flow table memory of switches limit the scalability of the
approach of installing multiple paths for a given flow. An open
challenge is to examine approaches that compute the reliability
levels of links and nodes, and then install the appropriate
numbers of multiple paths based on the reliability levels. More
specifically, if a path is highly stable, then we should not
install multiple paths for a flow at the switches along the path.

2600 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

Otherwise, we should install a number of multiple flow paths
that is appropriate for compensating for the reliability levels
of the paths.

B. Control Plane

1) Multi-Controller Architectures: A single controller can
limit the scalability of an SDN. Multi-controller architec-
tures have recently been proposed to increase the scalability
of SDNs. However, there are several open challenges that
still need to be addressed for multi-controller architectures.
One main open challenge is the optimal arrangement of the
controllers. Generally, multiple controllers can be arranged
in different ways, such as isolated (in which a controller
manages its own domain without communicating with other
controllers), flat (in which multiple controllers are arranged
in a flat structure and the controllers coordinate with each
other to control and manage the network), and hierarchical
(in which the controllers are arranged in layers and each
controller has different roles, for example, local controller vs.
global controller).

2) Optimal Controller Placement: Another open challenge
is the optimal controller placement. The controllers should be
placed to support efficient network operation. The controllers
can be placed according to different operational objectives,
e.g., each host should have the nearest controller within a
prescribed maximum distance, or the overall flow setup latency
should be minimized, or each controller should handle the
same number of flows so as to balance the controller loads,
or various combinations of these objectives.

3) Reliable Distributed SDN Control: The existing
approaches for distributed SDN control limit some of the
scalability aspects. For example, different links and switches
have different reliability levels [3]. In order to address the
reliability issue, the study [4] has advocated to place multiple
controllers in the network using an in-band control plane. The
in-band control plane conducts the communication between
the switches and the controller over the communication links
used for communication among the switches. In particular,
the study [4] has advocated to connect the switches to the
controllers so as to fairly balance the loads on the controllers,
while the controllers back each other up in case of failures.
Future research needs to consider the reliability levels of
the paths from the switches to the controllers as well as
the paths interconnecting the controllers in the switch to
controller assignments. The reliability levels of a path will
depend on the reliability of the bottleneck link of the path,
i.e., the link with the lowest reliability level. More broadly,
future research needs to ensure that the control plane does
not become a performance bottleneck, nor a source for
reliability problems as SDNs scale up in size and number of
handled flows. Moreover, the control plane needs to efficiently
and reliably support network virtualization, which requires
hypervisors that intercept the data plane to controller traffic.

C. Scalable SDN Applications and Use Cases

1) Scalable Approaches for Auto Network Debugging:
Recently, many approaches have been proposed for debugging

and verification of the network configurations and operations,
such as RuleScope [5]. These approaches have major scala-
bility problems: when the network scales, e.g., in terms of the
number of switches and flow rules or in terms of the number
of faulty rules, the execution time increases exponentially.
Thus, as the network sizes scale up, it becomes increasingly
harder to verify the network operations in real time. Therefore,
the scalability of auto network debugging approaches is an
important open research challenge.

2) Network Updates: Network maintenance and
upgrades are vital tasks that require care and attention.
Upgrades or maintenance of existing device hardware and
software require temporarily the shifting of network traffic to
other devices. Nevertheless, the overall network traffic service
level should be maintained and congestion should be avoided.
A range of mechanisms have been proposed for achieving
these objectives in SDNs. However, these approaches suffer
from scalability issues: when the network size increases
in terms of the number of switches, the size of the traffic
matrix, or the number flow rules, then the computation times
of these approaches increase linearly. This can lead to network
performance degradations, e.g., long computation times will
cause congestion during the execution of the computations.
Scalable network update mechanisms and corresponding
resource allocation and dimensioning approaches are needed
to ensure uninterrupted network service during upgrades and
maintenance.

D. Cross-Cutting Challenges

1) Hybrid SDNs: Despite the benefits of SDN, many orga-
nizations hesitate to adopt SDN in practice due to a variety
of reasons [2]. One main reason is that organizations often
hesitate to invest large funds at once to completely replace
traditional networks by SDNs. In order to reap the benefits of
SDN while avoiding these concerns, researchers have proposed
a new network architecture, referred to as a hybrid SDN.
Hybrid SDNs enable the organizations to incrementally replace
their traditional network devices with SDN devices. Due to
their unique architecture, hybrid SDNs pose many scalability
related research challenges.

These research challenges span all SDN planes. For
instance, one data plane challenge is to optimize the locations
of the SDN switches. An example of a control plane challenge
is to design a scalable controller that can effectively control a
large traditional network through a small set of SDN devices.
Moreover, scalable protocols for communication among SDN
devices and traditional network devices are an open research
challenge. For example, Cheng and Jia in Compressive traffic
monitoring in hybrid SDN in this SI achieve scalability by
collecting the load levels of a small subset of important links
and then use these load samples to infer the load levels of
the remaining links. However, the problem of computing the
subset of important links is NP-complete. Moreover, the prob-
lem of identifying the traditional routers to be replaced by
SDN switches such that all important links are SDN-based is
NP-hard.

A related open problem is the hybrid SDN control for
large-scale hybrid SDNs. The recent Magneto study [6] has

HOHLFELD et al.: GUEST EDITORIAL SCALABILITY ISSUES AND SOLUTIONS FOR SOFTWARE DEFINED NETWORKS 2601

proposed an SDN control mechanism to control traditional
switches through SDN switches in a hybrid SDN. However,
the performance evaluation of the Magneto control mechanism
revealed that for a given fraction of SDN switches, a lower
percentage of traditional switches is controlled by the SDN
control mechanism in large-sized network topologies as com-
pared to small-size and medium-size typologies [6, Fig. 7(c)].
Future research needs to develop effective hybrid SDN control
mechanisms that scale well for large network topologies.

2) Plane Interfaces: The standardized SDN interfaces
between the various planes are critical for the success of SDN.
The so-called south-bound interface (Application Program-
ming Interface, API), which is formally referred to as Data-
Controller Plane Interface (D-CPI), interconnects the control
plane with the data plane, while the so-called north-bound
interface, formally referred to as Application-Controller Plane
Interface (A-CPI), interconnects the control plane with the
application plane. Moreover, the intermediate Controller Plane
Interface (I-CPI) interconnects the SDN controllers of different
network domains. Clearly, highly scalable SDNs require highly
“scalable interfaces” that support efficient communication
between the planes. More specifically, the interfaces need to
be designed to efficiently handle growing flow numbers and
network sizes. Growing network sizes, for instance, will likely
require complex distributed control planes, which in turn com-
plicate the south-bound interface. Accordingly, an interesting
open question is whether today’s interfaces are indeed future
proof, or whether improved programming interfaces need to
be designed.

3) Scalable Wireless SDN Networks: Recently, SDN has
been used in wireless networks for enhancing a wide range
of wireless network functions, such as traffic offloading,
making the wireless data plane more programmable, and
managing node mobility more efficiently [7], [8]. Some studies
have sought to make these wireless network enhancements
scalable for large networks. For example, Aeroflux [7] has
introduced two types of controllers, namely local controllers
and global controllers. The local controller handles the local
wireless network events while the globular controller handles
the global events so as to improve the overall wireless net-
work scalability. As another example, the SDN based smart
GateWay (Sm-GW) [8] aggregates a large number of local
wireless access nodes, e.g., numerous femto call base stations,
to simplify the backhaul of the wireless traffic to and from the
Internet at large.

Despite these and other recent advances towards scalable
wireless SDNs, vast open research challenges remain. For
instance, in the context of the emerging 5G wireless standard,
thousands or even millions of Internet of Things (IoT) devices
require connectivity at a fraction of the cost of today’s mobile
devices. The question of which functionality to include in the
data plane is particularly interesting for wireless SDNs due to
the additional “tuning knobs” related to, e.g., power and rate
control, as well as the inherent node mobility and changing
wireless channel conditions. Additional challenges arise in
multi-tenant wireless SDNs that require scalable isolation of
the numerous wireless network slices and the abstraction of

the wireless network characteristics for the individual tenant
controllers.

4) Security: SDNs need efficient and powerful security
mechanisms to avoid security vulnerabilities across the data,
control, and application planes. A number of security mech-
anisms have been proposed for SDNs. A security mechanism
generally involves three phases, namely monitoring the net-
work (this generates extra traffic both at the control and data
planes), detecting the security breach (this takes some time
for algorithm execution), and the recovery (once the attack is
detected, this phase incurs both time delay and traffic overhead
by taking the proper counter measures against the detected
attack). The scalability of the existing security mechanisms is
a big concern as the number of hosts, switches, controllers,
flows, and attackers increases. The existing approaches typi-
cally attempt to achieve the scalability by improving the per-
formance of an individual phase. For example, Fawcett et al. in
TENNISON: A distributed SDN framework for scalable net-
work security in this SI reduce the traffic overhead and the
execution time of the monitoring phase. Similarly, the Athena
approach [9] focuses on avoiding security vulnerabilities in the
data plane. The main open research challenge is to develop
holistic security approaches that improve the performance
of all phases across all planes. These holistic approaches
should reduce the execution time and increase the accuracy
for increasing numbers of controllers and flows.

ACKNOWLEDGMENT

We are indebted to the authors that submitted papers for
review for this SI. We are grateful to all the anonymous
reviewers. This SI would not have been possible without the
timely thorough reviews which have helped greatly to further
refine and improve the papers in the revision round. We thank
Muriel Médard and Raouf Boutaba, the former and present
Editor-in-Chief of the IEEE JOURNAL ON SELECTED AREAS

IN COMMUNICATIONS for their helpful guidance. A special
thank you goes to Laurel Greenidge and Janine Bruttin, former
and current Executive Editor of IEEE JSAC, who helped
with countless logistical and procedural issues during the
paper review and SI production process. We are also grateful
to Prof. Moshe Zukerman, IEEE JSAC Senior Editor, for
shepherding this SI.

REFERENCES

[1] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[2] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Commun. Surveys Tuts., to be published.

[3] P. Thorat, S. Jeon, and H. Choo, “Enhanced local detouring mechanisms
for rapid and lightweight failure recovery in OpenFlow networks,”
Comput. Commun., vol. 108, pp. 78–93, Aug. 2017.

[4] D. M. F. Mattos, O. C. M. B. Duarte, and G. Pujolle, “A resilient
distributed controller for software defined networking,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[5] X. Wen et al., “RuleScope: Inspecting forwarding faults for software-
defined networking,” IEEE/ACM Trans. Netw., vol. 25, no. 4,
pp. 2347–2360, Aug. 2017.

[6] C. Jin, C. Lumezanu, Q. Xu, H. Mekky, Z.-L. Zhang, and G. Jiang,
“Magneto: Unified fine-grained path control in legacy and OpenFlow
hybrid networks,” in Proc. ACM Symp. SDN Res., 2017, pp. 75–87.

2602 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 12, DECEMBER 2018

[7] N. A. Jagadeesan and B. Krishnamachari, “Software-defined networking
paradigms in wireless networks: A survey,” ACM Comput. Surv., vol. 47,
no. 2, pp. 27:1–27:11, Jan. 2015.

[8] A. S. Thyagaturu, Y. Dashti, and M. Reisslein, “SDN-based smart
gateways (Sm-GWs) for multi-operator small cell network manage-
ment,” IEEE Trans. Netw. Service Manag., vol. 13, no. 4, pp. 740–753,
Dec. 2016.

[9] S. Lee, J. Kim, S. Shin, P. Porras, and V. Yegneswaran, “Athena:
A framework for scalable anomaly detection in software-defined net-
works,” in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2017, pp. 249–260.

Oliver Hohlfeld received the Ph.D. degree in com-
puter science from TU Berlin in 2013. From 2008 to
2013, he was with TU Berlin/Deutsche Telekom
Innovation Laboratories. He currently leads the
Network Architectures Group, RWTH Aachen Uni-
versity. His research focuses on empirically under-
standing networked systems through large-scale
measurements and subsequently optimizing their
user experiences.

James Kempf (SM’18) received the Ph.D. degree
in systems and industrial engineering, computer sci-
ence minor, from the University of Arizona, Tucson,
AZ, USA, in 1984. He promptly went to work in
Silicon Valley. He spent three years at HP, 13 years
at Sun Microsystems, primarily in research, and
eight years at Docomo Innovations, Inc., Palo Alto,
CA, USA, as a Research Fellow. He was with IETF
for 10 years. He was the Chair of three working
groups involved in developing standards for the
mobile and wireless Internet and a member of the

Internet Architecture Board for two years. He holds 26 patents and authored
many technical papers and three books, the latest of which, Wireless Internet
Security: Architecture and Protocols (Cambridge University Press, 2008).
Since 2008, he has been a Principal Researcher with Ericsson Research,
Silicon Valley, where he was involved in software defined networking, network
function virtualization, and cloud computing.

Martin Reisslein (S’96–M’98–SM’03–F’14)
received the Ph.D. in systems engineering from
the University of Pennsylvania, Philadelphia, PA,
USA, in 1998. He is currently a Professor with
the School of Electrical, Computer, and Energy
Engineering, Arizona State University, Tempe,
AZ, USA. He currently serves as an Associate
Editor for the IEEE TRANSACTIONS ON MOBILE

COMPUTING, the IEEE TRANSACTIONS ON

EDUCATION, the IEEE ACCESS, and Computer
Networks. He is an Associate Editor-in-Chief of

the IEEE COMMUNICATIONS SURVEYS & TUTORIALS and the Co-Editor-
in-Chief of Optical Switching and Networking. He chairs the Steering
Committee of the IEEE TRANSACTIONS ON MULTIMEDIA.

Stefan Schmid received the Ph.D. (Dr.sc.) degree
from ETH Zurich, Switzerland, in 2008. He is
currently a Professor in computer science with the
University of Vienna, Austria. He currently serves
as an Editor of the Distributed Computing Column
of the Bulletin of the EATCS and an Associate
Editor for the IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT. He received the
IEEE Communications Society ITC Early Career
Award 2016.

Nadir Shah received the B.Sc. and M.Sc. degrees
in computer science from Peshawar University,
Peshawar, Pakistan, in 2002 and 2005, the M.S.
degree in computer science from International
Islamic University, Islamabad, Pakistan, in 2007, and
the Ph.D. degree from the Sino-German Joint Soft-
ware Institute, Beihang University, Beijing, China.
He was a Lecturer with the Department of Computer
Science, COMSATS Institute of Information Tech-
nology, Abbottabad, Pakistan, from 2007 to 2008.
He is currently an Associate Professor with the

COMSATS University Islamabad, Wah Campus. His current research interests
include computer networks, distributed systems, and network security. He is
serving in the Editorial Board of the IEEE SOFTWARIZATION, AHWSN,
and MJCS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

