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Abstract—We introduce a distributed cooperative framework
and method for Bayesian estimation and control in decentralized
agent networks. Our framework combines joint estimation of
time-varying global and local states with information-seeking con-
trol optimizing the behavior of the agents. It is suited to nonlinear
and non-Gaussian problems and, in particular, to location-aware
networks. For cooperative estimation, a combination of belief
propagation message passing and consensus is used. For cooper-
ative control, the negative posterior joint entropy of all states is
maximized via a gradient ascent. The estimation layer provides
the control layer with probabilistic information in the form of
sample representations of probability distributions. Simulation
results demonstrate intelligent behavior of the agents and excellent
estimation performance for a simultaneous self-localization and
target tracking problem. In a cooperative localization scenario
with only one anchor, mobile agents can localize themselves after
a short time with an accuracy that is higher than the accuracy of
the performed distance measurements.

Index Terms—Agent networks, distributed estimation, dis-
tributed control, information-seeking control, distributed target
tracking, cooperative localization, belief propagation, message
passing, consensus, sensor networks, sequential estimation.

I. INTRODUCTION

A. Motivation and State of the Art

R ECENT research on distributed estimation and control
in mobile agent networks [1]–[4] has frequently been

motivated by location-aware scenarios and problems includ-
ing environmental and agricultural monitoring [5], healthcare
monitoring [6], target tracking [7], pollution source localization
[8], chemical plume tracking [3], and surveillance [9]. The
agents in a mobile agent network are generally equipped with
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sensors, wireless communication interfaces, a processing unit,
and actuators, all together forming a cyber-physical system
[10], [11] with a tight coupling between sensing, comput-
ing, communication, and control. A common task in mobile
agent networks is seeking information, either about external
phenomena or about the network itself. This task relies on
estimation (quantifying, fusing, and disseminating information)
and control (configuring the network to increase information).
A common theme in previous works is the reliance on position
information for estimation and/or control.

Estimation methods for mobile agent networks (our focus
will be on distributed Bayesian estimation) address estimation
of common global states [7], [12]–[16], estimation of local
states [17]–[22], or combined estimation of local and global
states [23]–[25]. In the first case, the agents obtain local mea-
surements with respect to external objects or the surrounding
environment, which are fused across the network. Global fusion
methods that require only local communication include consen-
sus [26] and gossip [27]. Example applications are distributed
target tracking [7], cooperative exploration of the environment
[15], and chemical plume tracking [3]. In the second case
(estimation of local states), the agents cooperate such that
each agent is better able to estimate its own local state. Here,
the dimensionality of the total state grows with the network
size, which leads to more complex factorizations of the joint
posterior probability density function (pdf). When the factor
graph [28] of this factorization matches the network topology,
efficient message passing methods for distributed inference can
be used, such as the belief propagation (BP) [28] and mean field
[29] methods. Example applications are cooperative localiza-
tion [17], synchronization [19], [22], and simultaneous localiza-
tion and synchronization [20], [21]. In the third case (estimation
of both global states and local states), a message passing
algorithm can be combined with a networkwide information
dissemination technique. An example application is cooperative
simultaneous self-localization and target tracking [23], [25].

In many cooperative estimation scenarios, it is advantageous
to control certain properties of the agent network, such as
the agent positions or the measurement characteristics (“con-
trolled sensing”) [1]–[9]. In particular, here we will address
the problem of combining distributed estimation and distributed
control in mobile agent networks. We will limit our discussion
to information-seeking control, which seeks to maximize the
information carried by the measurements of all agents about
the global and/or local states to be estimated. The use of
information measures for the control of a single agent or a
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network of agents was introduced in [30] and [31], respectively.
Suitable measures of information include negative posterior
entropy [32], mutual information [32], and scalar-valued func-
tions of the Fisher information matrix [33]. In particular, the
determinant, trace, and spectral norm of the Fisher information
matrix were considered in [34], where the control objective is to
maximize the information related to the positions of the agents
and of a target. The maximization of negative posterior entropy
was considered in [12]–[16]. In [14], a central controller steers
agents with known positions along the gradient of negative
posterior entropy to optimally sense a global state. A distributed
solution for global state estimation was proposed in [12],
[13] based on a pairwise neighboring-agents approximation
of mutual information and in [15], [16] by using a consensus
algorithm. However, the methods proposed in [12]–[16] did not
use BP, did not allow for multiple time-varying states, and did
not include estimation of local (controlled) states.

B. Contribution and Paper Organization

Here, we present a unified Bayesian framework and method
for (i) distributed, cooperative joint estimation of time-
varying global and local states and (ii) distributed, cooperative
information-seeking control. Our framework and method are
suited to nonlinear and non-Gaussian problems, they require
only communication with neighboring agents, and they are able
to cope with a changing network topology. Thereby, they are
particularly suited to localization and tracking tasks in location-
aware scenarios involving mobile networks and nonlinear
models.

For distributed estimation, following [24], [25], we combine
BP message passing, consensus, and sample-based representa-
tions of the involved probability distributions. For distributed
control, we define a global (holistic) objective function as the
negative joint posterior entropy of all states in the network at
the next time step conditioned on all measurements at the next
time step. This objective function is optimized jointly by all
agents via a gradient ascent. This reduces to the evaluation
of local gradients at each agent, which is performed by using
Monte Carlo integration based on the sample representations
provided by the estimation stage and a distributed evaluation
of the joint (networkwide) likelihood function. Our method
advances beyond [12]–[16] in the following respects:

• It constitutes a more general information-maximizing
control framework based on BP for estimation problems
involving multiple time-varying states.

• It includes estimation of the local (controlled) states of
the agents, thus enabling its use in a wider range of
applications.

Contrary to [24] and [25], which introduce the distributed
joint estimation of time-varying local and global states in agent
networks, here we focus on the information-maximizingcontrol
of the agents. Our main contribution is a derivation and sample-
based formulation of a new information-seeking controller that
maximizes the negative joint posterior entropy of time-varying
local and global states. Compared to the information-seeking
controller proposed in [12]–[16], where maximization of the

Fig. 1. Agent network with CAs and targets. The neighborhood sets A(n)
l , C(n)

l ,

T (n)
l , and C(n)

m for one CA l∈ C and one target m∈T are also shown.

negative posterior entropy reduces to maximization of the mu-
tual information between observations and states, our controller
includes an additional term that arises because the posterior
entropy involves also the local (controlled) states of the agents.
Due to this more general formulation, our controller is suited to
decentralized estimation tasks where the agents cooperatively
infer also their own states.

This paper is organized as follows. In Section II, the system
model is described and the joint estimation and control problem
is formulated. Section III reviews joint local and global state
estimation [24], [25]. In Section IV, we introduce the proposed
gradient-based controller. The distributed computation of the
gradient is discussed in Sections V–VII. Section VIII considers
two special cases of the joint estimation and control framework.
Finally, in Section IX, we present simulation results demon-
strating the performance of our method for a simultaneous self-
localization and target tracking problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network of mobile agents k ∈ A as shown in
Fig. 1. The set of all agents, A, consists of the set of cooperative
agents (CAs), C ⊆ A, and the set of “targets,” T = A \ C.
Here, a target may be anything that does not cooperate and can-
not be controlled, such as a noncooperative agent or a relevant
feature of the environment. We will typically use the indices
k ∈ A, l ∈ C, and m ∈ T to denote a generic agent, a CA, and
a target, respectively. A block diagram of the overall “signal
processing system” is shown in Fig. 2 for a CA (including the
estimation and control layers of the proposed method) and for
a target. This system is described below.

A. Agent States and Sensor Measurements

The state of agent k ∈ A at discrete time n ∈ {0, 1, . . .}
is denoted by the vector x(n)

k . For example, in a localization

scenario, x(n)
k may consist of the current position and motion-

related quantities such as velocity, acceleration, and angular
velocity [35]. The states evolve according to

x(n)
l = gl

(
x(n−1)

l , u(n)
l , q(n)

l

)
, l ∈ C (1)

or

x(n)
m = gm

(
x(n−1)

m , q(n)
m

)
, m ∈ T , (2)
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Fig. 2. Block diagram of the overall “signal processing system” for (a) a CA
l ∈ C and (b) a target m ∈ T .

where gk(·) is a possibly nonlinear function, q(n)
k is process

(driving) noise, and u(n)
l ∈Ul is a deterministic control vector that

controls the lth CA. Since u(n)
l is deterministic [36, Chap. 5],

it is either completely unknown (before it is determined) or
perfectly known (after being determined by the control layer).
Note that also targets may have control variables. However,
as these are hidden from the CAs, we will subsume any
control for target m in the noise q(n)

m . For the derivation of
the controller, we assume that for l ∈ C, gl

(
x(n−1)

l , u(n)
l , q(n)

l

)
is

bijective with respect to x(n−1)
l and differentiable with respect to

u(n)
l . The statistical relation between x(n−1)

k and x(n)
k as defined

by (1) or (2) can also be described by the state-transition pdf
f
(
x(n)

l

∣∣x(n−1)
l ; u(n)

l

)
for l ∈ C and f

(
x(n)

m
∣∣x(n−1)

m
)

for m ∈ T .
The measurement and communication topology of the net-

work is described by the neighborhood sets C(n)
l , T (n)

l , and A(n)
l

as follows. CA l acquires a measurement y(n)

l,l′ relative to CA

l′ if l′ ∈ C(n)
l . This relation is symmetric, i.e., l′ ∈ C(n)

l implies

l ∈ C(n)

l′ . It is assumed that CAs that acquire measurements
relative to each other are able to communicate, i.e., to transmit
data via a communication link. Furthermore, CA l ∈ C acquires
a measurement y(n)

l,m relative to target m if m ∈ T (n)
l ⊆ T . The

targets are noncooperative in that they do not communicate and
do not acquire any measurements. We also define A(n)

l � C(n)
l ∪

T (n)
l . Finally, the set C(n)

m contains all CAs measuring target m,

i.e., all l∈C with m∈T (n)
l . The sets C(n)

l , T (n)
l , A(n)

l , and C(n)
m are

generally time-dependent. An example of a measurement and
communication topology is given in Fig. 1. We assume that the
graph defined by {C(n)

l }l∈C is connected.

We consider “pairwise” measurements1 y(n)
l,k that depend on

the state x(n)
l of a measuring CA l ∈ C and the state x(n)

k of a

1The proposed framework can be easily extended to self-measurements
(measurements that involve only the own state) and cluster measurements
(measurements that involve the states of several other agents).

measured agent (CA or target) k ∈ A(n)
l according to

y(n)
l,k = dl

(
x(n)

l , x(n)
k , v(n)

l,k

)
, l ∈ C, k ∈ A(n)

l , (3)

where dl(·) is a possibly nonlinear function and v(n)
l,k is measure-

ment noise. An example is the scalar measurement

y(n)
l,k =

∥∥∥x(n)
l − x(n)

k

∥∥∥+ v
(n)
l,k , (4)

where x(n)
k equals the position of agent k and, hence,

∥∥x(n)
l −

x(n)
k

∥∥ is the spatial distance between agents l and k. The statis-

tical relation between the measurement y(n)
l,k and the involved

states x(n)
l and x(n)

k is also described by the local likelihood

function f
(
y(n)

l,k

∣∣x(n)
l , x(n)

k

)
. For the derivation of the controller,

f
(
y(n)

l,k

∣∣x(n)
l , x(n)

k

)
is assumed differentiable with respect to x(n)

l .
We also make the following assumptions. The number of tar-

gets is known, and the targets can be identified by the CAs, i.e.,
target-to-measurement assignments are known. Furthermore,
CA l knows the state evolution models gk(·) and process noise
pdfs f

(
q(n)

k

)
for k ∈ {l} ∪ C(n)

l ∪ T ; the initial prior pdfs of the

agent states, f (x(0)
k ), for k ∈ {l} ∪ C(0)

l ∪ T ; the measurement

models dl′(·) for l′ ∈ {l} ∪ C(n)
l ; and the measurement noise pdfs

f
(
v(n)

l,k

)
, k ∈ A(n)

l and f
(
v(n)

l′,l
)
, l′ ∈ C(n)

l .

B. Problem Formulation

The following tasks are to be performed at each time n:

1) Each CA l ∈ C estimates the states x(n)
k , k ∈ {l} ∪ T (i.e.,

its own local state and the states of all targets) from prior
information and all past and present measurements in the
network.

2) The state of each CA is controlled such that the negative
joint posterior entropy of all states in the network at
the next time, conditioned on all measurements in the
network at the next time, is maximized.

We solve these two problems in a distributed and recursive
manner. Our method consists of an estimation layer and a
control layer, as shown in Fig. 2(a). In the estimation layer,
CA l computes an approximation of the marginal posterior
pdfs of the states x(n)

k , k ∈ {l} ∪ T given all the past and
present measurements and control vectors in the entire net-
work. In the control layer, CA l uses these marginal posteriors
and the statistical model to determine a quasi-optimal control
variable u(n+1)

l . In both layers, the CAs communicate with
neighbor CAs.

III. ESTIMATION LAYER

The estimation layer performs distributed estimation of the
local and global states by using the BP- and consensus-based
method introduced in [24], [25]. We will review this method in
our present context. Let us denote by x(n) �

[
x(n)

k

]
k∈A, u(n) �

[u(n)
l ]l∈C , and y(n) � [y(n)

l,k ]
l∈C, k∈A(n)

l
the stacked vectors of,

respectively, all states, control variables, and measurements at
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time n. Furthermore, let x(1:n) � [x(1)T, . . . , x(n)T]T, u(1:n) �
[u(1)T, . . . , u(n)T]T, and y(1:n) � [y(1)T, . . . , y(n)T]T. Each CA
l ∈ C estimates its local state x(n)

l and all the target states

x(n)
m , m ∈ T from the measurements of all CAs up to

time n, y(1:n). This estimation is based on the posteriors
f (x(n)

k |y(1:n); u(1:n)), k ∈ {l} ∪ T , which are marginals of the
joint posterior f (x(1:n)|y(1:n); u(1:n)).

Using Bayes’ rule and common assumptions [17], the joint
posterior can be factorized as

f
(

x(1:n)
∣∣y(1:n); u(1:n)

)

∝
(∏

k∈A
f
(

x(0)
k

)) n∏
n′=1

(∏
m∈T

f
(

x(n′)
m

∣∣x(n′−1)
m

))

×
∏
l∈C

f
(

x(n′)
l

∣∣x(n′−1)
l ; u(n′)

l

) ∏
k′∈A(n′)

l

f
(

y(n′)
l,k′
∣∣x(n′)

l , x(n′)
k′
)

. (5)

The marginal posterior of state x(n)
k is then given by

f
(

x(n)
k

∣∣y(1:n); u(1:n)
)

=
∫

f
(

x(1:n)
∣∣y(1:n); u(1:n)

)
dx(1:n)

∼k,n , (6)

where x(1:n)
∼k,n denotes x(1:n) with x(n)

k removed. Using

f (x(n)
k |y(1:n); u(1:n)), the minimum mean-square error (MMSE)

estimator [33] of x(n)
k is obtained as

x̂(n)
k,MMSE �

∫
x(n)

k f
(

x(n)
k

∣∣y(1:n); u(1:n)
)

dx(n)
k , k ∈ A . (7)

A. Sequential Calculation

For a review of the sequential calculation of (6) proposed in
[24], [25], we now switch to the following simplified notation
for the sake of readability. In the conditions of the various con-
ditional pdfs, we omit the measurements up to time n −1, i.e.,
y(1:n−1), and the control vectors up to time n, i.e., u(1:n), because
y(1:n−1) has already been observed and u(1:n) has already been
determined; hence both are considered fixed. Furthermore, we
suppress the time index n, and we write the current and previous
states of CA l as x(n)

l = xl and x(n−1)
l = x−

l , respectively. Sim-

ilarly, we write u(n+1)
l = u+

l . For sequential calculation of (6),
CA l ∈ C employs a basic Bayesian recursive filtering method
[17] consisting of a prediction step and a correction step. In the
prediction step, CA l ∈ C computes a predictive posterior of its
current state,

f (xl) =
∫

f
(
xl|x−

l

)
f
(
x−

l

)
dx−

l . (8)

Here, f (xl) and f (x−
l ) are short for f (x(n)

l |y(1:n−1); u(1:n))

and f (x(n−1)
l |y(1:n−1); u(1:n−1)), respectively. Furthermore, CA

l computes predictive posteriors of the target states

f (xm) =
∫

f
(
xm|x−

m

)
f (x−

m) dx−
m , m ∈ T . (9)

In the correction step, CA l determines the marginal posteriors
f (xl|y) and f (xm|y), m ∈ T , which are given by

f (xk|y) ∝
∫ ∏

k′∈A
f (xk′)

∏
l′∈C

∏
k1∈Al′

f (yl′,k1|xl′, xk1) dx∼k ,

k ∈ {l} ∪ T . (10)

Here, x∼k denotes x with xk removed and f (xk|y) is short for
f
(
x(n)

k

∣∣y(1:n); u(1:n)
)
. As shown in Fig. 2(a), these marginal pos-

teriors are handed over to the control layer, which determines
the control input for the next time step, u+

l .

B. BP Message Passing and Consensus

Calculation of f (xk|y) according to (10) is generally in-
feasible, due to the reliance on nonlocal information and the
inherent complexity of the marginalization process. Based on
the factorization of the joint posterior in (5), a computationally
feasible approximation of (10) is provided by a distributed, co-
operative algorithm that combines BP message passing and the
average consensus scheme [24], [25]. This algorithm computes
an approximation (“belief”) b(xk) ≈ f (xk|y) in an iterative
manner, using only communication with neighbor CAs l′ ∈ Cl.
Its complexity scales only linearly with the number of states in
the network, |A| (for a fixed number of iterations).

According to [24], [25], the belief of local state xl at message
passing iteration p ∈ {1, . . . , P} is given by

b(p)(xl) ∝ f (xl)
∏
l′∈Cl

∫
f (yl,l′ |xl, xl′) b(p−1)(xl′) dxl′

×
∏

m∈Tl

∫
f (yl,m|xl, xm) ψ

(p−1)

m→l (xm) dxm, (11)

which is initialized as b(0)(xl) = f (xl). Similarly, the belief of
target state xm at message passing iteration p is given by

b(p)(xm) ∝ f (xm)
∏
l∈Cm

∫
f (yl,m|xl, xm) ψ

(p−1)

l→m (xl) dxl , (12)

with initialization b(0)(xm) = f (xm). Here, ψ
(p−1)
m→l (xm) and

ψ
(p−1)

l→m (xl) are the “extrinsic informations” from target m to
CA l and from CA l to target m, respectively, at the previous
message passing iteration p − 1. These extrinsic informations
are calculated recursively as

ψ
(p)

m→l(xm) = b(p)(xm)∫
f (yl,m|xl, xm) ψ

(p−1)

l→m (xl) dxl

(13)

ψ
(p)

l→m(xl) = b(p)(xl)∫
f (yl,m|xl, xm) ψ

(p−1)

m→l (xm) dxm

, (14)

with initialization ψ
(0)
m→l(xm)= f (xm) and ψ

(0)
l→m(xl)= f (xl), re-

spectively. In (11), the beliefs b(p−1)(xl′) of neighbor CAs l′ ∈Cl



MEYER et al.: DISTRIBUTED ESTIMATION WITH INFORMATION-SEEKING CONTROL IN AGENT NETWORKS 2443

are used instead of the extrinsic informations. This is part of
the sum–product algorithm over a wireless network (SPAWN)
scheme for cooperative localization [17], which results from a
specific choice of the message schedule in loopy BP and has
been observed to provide highly accurate estimates [17], [24],
[25], [37].

A sample-based distributed implementation of (11)–(14)
has been proposed in [24], [25]. A problem for a distributed
implementation is that the products

∏
l∈Cm

∫
f (yl,m|xl, xm)

ψ
(p−1)

l→m (xl) dxl, m∈T involved in (12) are not available at the
CAs. However, an approximation of these products can be pro-
vided to each CA in a distributed manner (i.e., using only local
communications) either by a consensus algorithm performed in
parallel for each sample weight [25], [38], [39] or by the like-
lihood consensus scheme [7], [24], [40]. For the calculations in
the control layer—to be described in Sections IV–VII—all CAs
require a common set of samples representing the target beliefs
b(p)(xm). This can be ensured by additionally using, e.g., a max-
consensus and providing all CAs with the same seed for random
number generation [39], [41].

The output of the estimation layer is the set of beliefs
b(P)(xk), k ∈ {l} ∪ T at the final message passing iteration
p = P. These beliefs are handed over to the control layer,
which calculates the control variables u+

l (see Fig. 2(a)). Each

belief b(P)(xk) is represented by J samples {x(j)
k }J

j=1, which is

briefly denoted by {x(j)
k }J

j=1 ∼ b(P)(xk). From these samples, an
approximation of the MMSE estimate (7) is calculated as

x̂k = 1

J

J∑
j=1

x(j)
k .

IV. CONTROL LAYER

Next, we present the information-seeking controller. We
temporarily revert to the full notation.

A. Objective Function and Controller

According to our definition at the beginning of Section III,
the vector comprising all the measurements in the network at
the next time n + 1 is y(n+1) = [y(n+1)

l,k ]
l∈C,k∈A(n+1)

l
. However,

in this definition of y(n+1), we now formally replace A(n+1)
l

by A(n)
l since at the current time n, the sets A(n+1)

l are not yet
known. Thus, with an abuse of notation, y(n+1) is redefined as

y(n+1) �
[
y(n+1)

l,k

]
l∈C,k∈A(n)

l

. (15)

In the proposed control approach, each CA l ∈ C determines its
next control variable u(n+1)

l such that the information about the
next joint state x(n+1) given y(1:n+1) is maximized. We quantify
this information by the negative conditional differential entropy
[32, Chap. 8] of x(n+1) given y(n+1), with y(1:n) being an

additional condition that has been observed previously and is
thus fixed:

−h
(
xxx(n+1)

∣∣yyy(n+1); y(1:n), u(1:n+1)
)

=
∫ ∫

f
(

x(n+1), y(n+1)
∣∣y(1:n); u(1:n+1)

)

× log f
(

x(n+1)
∣∣y(n+1), y(1:n); u(1:n+1)

)

× dx(n+1)dy(n+1), (16)

where log denotes the natural logarithm. Note that
h
(
xxx(n+1)

∣∣yyy(n+1); y(1:n), u(1:n+1)
)

depends on the random vectors
x(n+1) and y(n+1), i.e., on their joint distribution but not on their
values. Our notation indicates this fact by using a sans serif
font for xxx(n+1) and yyy(n+1) in h

(
xxx(n+1)

∣∣yyy(n+1); y(1:n), u(1:n+1)
)
.

According to expression (16), −h
(
xxx(n+1)

∣∣yyy(n+1); y(1:n),

u(1:n+1)
)

is a function of the control vector u(n+1). This function
will be denoted by Dh

(
u(n+1)

)
, i.e.,

Dh
(
u(n+1)

)
� − h

(
xxx(n+1)

∣∣yyy(n+1); y(1:n), u(1:n+1)
)
, (17)

and it will be used as the objective function for control at
each CA. This objective function is holistic in that it involves
all the next states (of both the CAs and the targets), x(n+1),
and all the next measurements, y(n+1). Instead of a full-blown
maximization of Dh

(
u(n+1)

)
, we perform one step of a gradient

ascent [42] at each time n. Thus, u(n+1) is determined as

û(n+1) = u(n+1)
r + c(n+1) ∇Dh

(
u(n+1)

)∣∣
u(n+1)=u(n+1)

r
, (18)

where u(n+1)
r is a reference vector and c(n+1) > 0 is a step

size. The choice of u(n+1)
r depends on the manner in which

the local control vectors u(n)
l (which are subvectors of u(n))

appear in the state evolution functions gl
(
x(n−1)

l , u(n)
l , q(n)

l

)
in

(1); two common choices are u(n+1)
r = u(n) and u(n+1)

r = 0
(cf. Section IX-A).

Since u(n+1) = [u(n+1)
l

]
l∈C , we have

∇Dh(u(n+1)) =
[
∂Dh(u(n+1))

∂u(n+1)
l

]
l∈C

,

and thus the gradient ascent (18) with respect to u(n+1) is
equivalent to local gradient ascents at the individual CAs l with
respect to the local control vectors u(n+1)

l . At CA l, the local
gradient ascent is performed as

û(n+1)
l = u(n+1)

r,l + c(n+1)
l

∂Dh
(
u(n+1)

)
∂u(n+1)

l

∣∣∣∣
u(n+1)=u(n+1)

r

, (19)

where u(n+1)
r,l is the part of u(n+1)

r that corresponds to CA l

(we have u(n+1)
r = [u(n+1)

r,l

]
l∈C). The local step sizes c(n+1)

l are

constrained by the condition u(n+1)
l ∈ Ul for given sets Ul. In

practice, this condition can be easily satisfied by an appropriate
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scaling of the c(n+1)
l . Note that, as in [15], we use different

local step sizes c(n+1)
l at the individual CAs l. This heuristic

modification is made to account for the possibly different sets
Ul and to avoid the necessity of reaching a consensus on a
common step size across all the CAs; it was observed to yield
good results. Because the objective function Dh(·) changes over
time n, the local ascent described by (19) generally is not
guaranteed to converge; this is similar to existing information-
seeking control algorithms [13], [15]. Indeed, the goal of the
proposed control algorithm is to make available informative
measurements to the estimation layer; because of the dynamic
scenario, this is generally not compatible with convergence.

B. Expansion of the Objective Function

A central contribution of this paper is a distributed
sample-based technique for calculating the gradients
∂Dh(u(n+1))

∂u(n+1)
l

∣∣∣
u(n+1)=u(n+1)

r
in (19). As a starting point for

developing this technique, we next derive an expansion of
the objective function Dh

(
u(n+1)

)
. We will use the following

simplified notation. We do not indicate the conditioning on
y(1:n) and the dependence on u(1:n) because at time n + 1,
y(1:n) has already been observed and u(1:n) has already been
determined; hence both are fixed. (Note that in Section III, we
did not indicate the conditioning on y(1:n−1), rather than y(1:n).)
Also, we suppress the time index n and designate variables
at time n +1 by the superscript “+”. For example, we write
h(xxx+|yyy+; u+) instead of h

(
xxx(n+1)

∣∣yyy(n+1); y(1:n), u(1:n+1)
)
.

For calculating the gradient, following [13] and [15], we
disregard the unknown driving noise ql in (1) by formally
replacing it with its expectation, q̄l �

∫
ql f (ql) dql. We can

then rewrite (1) (with n replaced by n + 1) as

x+
l = gl(xl, u+

l , q̄+
l ) = g̃l(xl, u+

l ) , l∈ C . (20)

As shown in Appendix A, the conditional differential entropy
in (17) can be expressed as

h(xxx+|yyy+; u+) = h(xxxC,xxx+
T |yyy+; u+) +

∑
l∈C

Gl(u
+
l ) , (21)

where xC �
[
xl
]

l∈C , x+
T �

[
x+

m

]
m∈T , and

Gl(u
+
l ) �

∫
f (xl) log |Jg̃l(xl; u+

l )| dxl ,

with Jg̃l(xl; u+
l ) � det

∂ g̃l(xl, u+
l )

∂xl
. (22)

The first term on the right-hand side of (21) can be decom-
posed as [32, Chap. 8]

h(xxxC,xxx+
T |yyy+; u+) = h(xxxC,xxx+

T ) − I(xxxC,xxx+
T ;yyy+; u+) . (23)

Here, I(xxxC,xxx+
T ;yyy+; u+) denotes the two-variable mutual infor-

mation between (xC, x+
T ) and y+ (with u+ being a deterministic

parameter, i.e., not a third random variable), which is given by
[32, Chap. 8]

I(xxxC,xxx+
T ;yyy+; u+)

=
∫ ∫ ∫

f (xC, x+
T , y+; u+) log

f (xC, x+
T , y+; u+)

f (xC, x+
T )f (y+; u+)

× dxC dx+
T dy+. (24)

Note that h(xxxC,xxx+
T ) in (23) does not depend on u+, since

neither the CA states xC nor the future target states x+
T are con-

trolled by the future control variable u+. We explicitly express
the dependence of I(xxxC,xxx+

T ;yyy+; u+) on u+ by defining the
function

DI(u+) � I(xxxC,xxx+
T ;yyy+; u+) . (25)

Combining (17), (21), (23), and (25) then yields the following
expansion of the objective function:

Dh(u+) = −h(xxxC,xxx+
T ) + DI(u+) −

∑
l∈C

Gl(u
+
l ) . (26)

This entails the following expansion of the gradient in (19):

∂Dh(u+)

∂u+
l

= ∂DI(u+)

∂u+
l

− ∂Gl(u+
l )

∂u+
l

. (27)

In Sections V–VII, we will develop sample-based techniques

for calculating ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
and

∂Gl(u
+
l )

∂u+
l

∣∣∣
u+

l =u+
r,l

. The calcula-

tion of ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
is cooperative and distributed; it requires

communication with neighbor CAs l′ ∈ Cl. The calculation

of
∂Gl(u

+
l )

∂u+
l

∣∣∣
u+

l =u+
r,l

is performed locally at each CA l. Both

calculations use the samples of relevant marginal posteriors
that were computed by the estimation layer. The operations
performed in the control layer as described in this section and in
Sections V–VII are summarized in Figs. 3 and 4 for two alter-
native distributed implementations (discussed in Section VI).

V. CALCULATION OF THE GRADIENT OF DI(u+)

In this section, we develop a Monte Carlo approximation

of ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
that uses importance sampling. The dis-

tributed computation of this approximation will be addressed in
Section VI.

The mutual information in (24) can be rewritten as

DI(u+) =
∫ ∫ ∫

f (y+|xC, x+
T ; u+) f (xC, x+

T )

× log
f (y+|xC, x+

T ; u+)

f (y+; u+)
dxC dx+

T dy+.
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Fig. 3. Flowchart of the flooding-based implementation of the control layer at CA l (see Section VI-A).

Fig. 4. Flowchart of the consensus-based implementation of the control layer at CA l (see Section VI-B).

Invoking [15, Th. 1], we obtain

∂DI(u+)

∂u+
l

=
∫ ∫ ∫

∂ f (y+|xC, x+
T ; u+)

∂u+
l

f (xC, x+
T )

× log
f (y+|xC, x+

T ; u+)

f (y+; u+)
dxC dx+

T dy+. (28)

The likelihood function f (y+|xC, x+
T ; u+) involved in (28) can

be written as

f (y+|xC, x+
T ; u+) =

∏
l∈C

∏
l′∈Cl

f (y+
l,l′ |xl, xl′ ; u+

l , u+
l′ )

×
∏

m∈Tl

f (y+
l,m|xl, x+

m; u+
l ) , (29)
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with

f (y+
l,l′ |xl, xl′ ; u+

l , u+
l′ )

= f (y+
l,l′ |x+

l,x
+
l′ )
∣∣
x+

l = g̃l(xl,u
+
l ),x+

l′ = g̃l′ (xl′ ,u+
l′ )

, l∈ C, l′ ∈ Cl (30)

f (y+
l,m|xl, x+

m; u+
l )

= f (y+
l,m|x+

l , x+
m)
∣∣
x+

l = g̃l(xl,u
+
l )

, l∈ C, m∈ Tl .

(The latter expressions are obtained using (3) and (20).)
Let ỹ+

l denote the subvector of y+ = [y+
l,k

]
l∈C,k∈Al

(cf. (15))
whose likelihood function includes all those factors of
f (y+|xC, x+

T ; u+) in (29) that depend on the local control vector
u+

l . This subvector is given by

ỹ+
l �

[[
y+

l,k

]T
k∈Al

[
y+

l′,l
]T

l′∈Cl

]T
, (31)

and its likelihood function is obtained as

f (ỹ+
l |xl, xCl, x+

Tl
; u+

Cl
)

=
∏
l′∈Cl

f (y+
l,l′ |xl, xl′ ; u+

l , u+
l′ ) f (y+

l′,l|xl′, xl; u+
l′ , u+

l )

×
∏
m∈Tl

f (y+
l,m|xl, x+

m; u+
l ) , (32)

with u+
Cl
�
[
u+

l′
]

l′∈{l}∪Cl
. By comparing (32) with (29), it is

seen that ỹ+
l is also the subvector of y+ whose likelihood

function includes all those factors of f (y+|xC, x+
T ; u+) in (29)

that involve the state x+
l .

Using (29) and (32), it is shown in Appendix B that a Monte
Carlo (i.e., sample-based) approximation of (28) evaluated at
u+ =u+

r is given by2

∂DI(u+)

∂u+
l

∣∣∣∣
u+=u+

r

≈ 1

JJ′
J∑

j=1

J′∑
j′=1

1

f
(
ỹ+(j,j′)

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)

× ∂ f
(
ỹ+(j,j′)

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

Cl

)
∂u+

l

∣∣∣∣
u+
Cl

=u+
r,Cl

× log
f
(
y+(j,j′)∣∣x(j)

C , x+(j)
T ; u+

r

)
f
(
y+(j,j′); u+

r
) , (33)

with

f
(
y+(j,j′); u+

r

) ≈ 1

J

J∑
j′′=1

f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
. (34)

Here, y+(j,j′), x(j)
C , and x+(j)

T are samples of y+, xC , and x+
T ,

respectively that are drawn from the importance density [43]

2With an abuse of notation, the superscript (j) now indicates the jth sample,
whereas previously, in our full-blown notation, the superscript (n) indicated the
nth time step.

q(y+, xC, x+
T ) � f (xC, x+

T )f (y+|xC, x+
T ; u+

r ) via the following

two-stage procedure. First, samples
{(

x(j)
C , x+(j)

T
)}J

j=1 are drawn
from

f (xC, x+
T ) =

∏
l∈C

f (xl)
∏
m∈T

f (x+
m) . (35)

(This factorization expresses the conditional statistical indepen-
dence of the xl, l ∈ C and the x+

m , m ∈ T given y(1:n). This
is a common approximation, which was introduced in [17]
and is also used in the estimation layer [24], [25].) Then,

for each sample
(
x(j)
C , x+(j)

T
)
, samples

{
y+(j,j′)}J′

j′=1 are drawn

from the conditional pdf f
(
y+∣∣x(j)

C , x+(j)
T ; u+

r

)
. The distributed

calculation of these samples will be discussed in Section VI
and in Appendix C. Finally, we note that using (32), one
easily obtains a (rather unwieldy) expression of the derivative
∂f (ỹ+

l |xl,xCl ,x
+
Tl

;u+
Cl

)

∂u+
l

occurring in (33). This expression involves

the factors in (32) and the derivatives
∂ g̃l(xl,u

+
l )

∂u+
l

,
∂f (y+

l,l′ |x+
l ,x+

l′ )
∂x+

l
for

l′ ∈ Cl, and
∂f (y+

l,m|x+
l ,x+

m)

∂x+
l

for m ∈ Tl.

VI. DISTRIBUTED PROCESSING

In this section, we present two alternative schemes for a dis-

tributed, sample-based computation of ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
according

to (33) and (34). Both schemes are distributed in that they
require only local communication, i.e., each CA l ∈ C transmits
data only to its neighbors l′ ∈ Cl.

A. Flooding-Based Processing

We first discuss a distributed scheme where each CA l ∈ C
performs an exact (“quasi-centralized”) calculation of (33) and
(34). As a result of the estimation layer, samples

{
x(j)

k

}J
j=1 ∼

f (xk), k ∈ {l} ∪ T are available at CA l (see (10), noting that
f (xk) was denoted f (xk|y) there). A flooding protocol [44]
is now used to make available to each CA l the reference
vectors u+

r,l′ and the samples
{
x(j)

l′
}J

j=1 ∼ f (xl′) of all the other

CAs l′ ∈ C\{l}. The flooding protocol requires each CA l to
communicate with its neighbor CAs l′ ∈ Cl. In addition, CA l
locally calculates predictive marginal posteriors for all target
states via the following prediction step (which is (9) with n
replaced by n + 1):

f (x+
m) =

∫
f (x+

m |xm)f (xm) dxm , m ∈ T . (36)

An implementation of (36) using the samples
{
x(j)

m
}J

j=1, m∈
T produced by the estimation layer (which are available at
CA l) and yielding samples

{
x+(j)

m
}J

j=1 ∼ f (x+
m), m∈T is de-

scribed in [24], [25]. At this point, samples
{
x(j)

l′
}J

j=1 ∼ f (xl′)

for l′ ∈ C and
{
x+(j)

m
}J

j=1 ∼ f (x+
m) for m ∈ T are available at

CA l. Because all states xl, l ∈ C and x+
m , m ∈ T are con-

ditionally independent given y(1:n) (see (35)), CA l can now
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obtain samples
{(

x(j)
C , x+(j)

T
)}J

j=1 ∼ f
(
xC, x+

T
)

by the simple stack-

ing operations x(j)
C = [x(j)

l′
]

l′∈C and x+(j)
T = [x+(j)

m
]

m∈T . Finally,

for each
(
x(j)
C , x+(j)

T
)
, CA l computes samples

{
y+(j,j′)}J′

j′=1 ∼
f
(
y+∣∣x(j)

C , x+(j)
T ; u+

r

)
as described in Appendix C.

Using the samples
(
x(j)
C , x+(j)

T
)

and y+(j,j′), j = 1, . . . , J, j′ =
1, . . . , J′, as well as the reference vectors u+

r,l′ , l′ ∈ C, CA l

can compute the gradient ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
locally according to

(33) and (34). Note, however, that this flooding-based scheme
presupposes that each CA l knows the state evolution models
(1) and the measurement models (3) of all the other CAs
l′ ∈ C\{l}.

The communication cost of the flooding-based scheme, in
terms of the number of real values transmitted by each CA,
is (JM + Mu)W ≈ JMW. Here, M and Mu are the dimensions
of the vectors xl and ul, respectively, and W depends on the
network size and topology and is bounded as 1 ≤ W ≤ |C|.
Thus, the number of transmissions scales linearly with J and
does not depend on J′. In large networks, flooding protocols
tend to require a large memory and book-keeping overhead and
introduce a significant delay [45]. If the network formed by
the CAs is fully connected, i.e., C = {l} ∪ Cl ∀ l ∈ C, then all
the samples

{(
x(j)
C , x+(j)

T
)}J

j=1 can be obtained without flooding:

CA l simply broadcasts its reference vector u+
r,l and its sam-

ples
{
x(j)

l

}J
j=1 ∼ f (xl) to all the other CAs in the network and

receives their reference vectors and samples. Here, the number
of real values transmitted by each CA is only JM + Mu.

Finally, the computational complexity per CA of the
flooding-based scheme—i.e., evaluation of (33) and (34), with
J and J′ fixed—scales linearly with the number of agents in the
network. Because the computational complexity and the com-
munication cost increase with the network size, the flooding-
based distributed processing scheme is primarily suited to small
networks.

B. Consensus-Based Processing

Next, we present an alternative distributed computation of
(33) and (34) that avoids the use of a flooding protocol and
does not require each CA to know the state evolution and
measurement models of all the other CAs. As a first step, CA l
broadcasts its own samples

{
x(j)

l

}J
j=1 ∼ f (xl) calculated in the

estimation layer to all neighbor CAs l′ ∈ Cl, and it receives
from them their own samples

{
x(j)

l′
}J

j=1 ∼ f (xl′), l′ ∈ Cl. In ad-

dition, CA l locally calculates samples
{
x+(j)

m
}J

j=1 ∼ f (x+
m) for

all m ∈ Tl via the prediction step (36) (with T replaced by Tl),
using the sample-based implementation described in [24], [25].
Thus, after the stacking operations x(j)

Cl
= [x(j)

l′
]

l′∈Cl
and x+(j)

Tl
=[

x+(j)
m
]

m∈Tl
, samples

{(
x(j)

l , x(j)
Cl

, x+(j)
Tl

)}J
j=1 ∼ f (xl, xCl , x+

Tl
) are

available at CA l. Then, for each sample
(
x(j)

l , x(j)
Cl

, x+(j)
Tl

)
,

J′ samples
{
ỹ+(j,j′)

l

}J′
j′=1 ∼ f

(
ỹ+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
are com-

puted as described in Appendix D. This only involves commu-
nication between neighboring CAs.

The key question at this point is as to whether the quantities

f
(
ỹ+(j,j′)

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
,

∂f (ỹ+(j,j′)
l |x(j)

l ,x(j)
Cl

,x+(j)
Tl

;u+
Cl

)

∂u+
l

∣∣∣
u+
Cl

=u+
r,Cl

,

and f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
(and, in particular, f

(
y+(j,j′)∣∣x(j)

C ,

x+(j)
T ; u+

r

)
) involved in (33) and (34) are locally available at CA

l. The factors of f
(
ỹ+

l

∣∣xl, xCl, x+
Tl

; u+
r,Cl

)
(see (32)) correspond

to measurements to be acquired by CA l or by its neighbor
CAs l′ ∈ Cl; they are known to CA l since its own state
evolution and measurement models and those of its neighbors
are known to CA l (cf. (30)). Thus, we conclude that the

f
(
ỹ+(j,j′)

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
are available at CA l. On the other

hand, many of the factors of f (y+∣∣xC, x+
T ; u+

r ) (see (29)) corre-
spond to measurements to be acquired by CAs that are not in the
neighborhood of CA l; they are not known to CA l since, typ-
ically, the respective state evolution and measurement models

are unknown to CA l. Therefore, the f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
are not available at CA l.

We will now present a distributed computation of

f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
. Let y+

l denote the subvector of y+ =[
y+

l,k

]
l∈C,k∈Al

in (15) that comprises the measurements acquired
by CA l at the next time, i.e.,

y+
l �

[
y+

l,k

]
k∈Al

. (37)

The likelihood function of y+
l combines all the factors in (29)

that involve the entries of y+
l , i.e.,

f
(
y+

l

∣∣xl, xCl , x+
Tl

; u+
Cl

)
=
∏
l′∈Cl

f (y+
l,l′ |xl, xl′ ; u+

l , u+
l′ )
∏

m∈Tl

f (y+
l,m|xl, x+

m; u+
l ) . (38)

Using (29) and (38), one can show that

f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

) = exp
(|C|Fj,j′,j′′

)
, (39)

where

Fj,j′,j′′ �
1

|C|
∑
l∈C

F(l)
j,j′,j′′ (40)

with

F(l)
j,j′,j′′ � log f

(
y+(j,j′)

l

∣∣x(j′′)
l , x(j′′)

Cl
, x+(j′′)

Tl
; u+

r,Cl

)
, (41)

for j = 1, . . . , J, j′ = 1, . . . , J′, and j′′ = 1, . . . , J. To com-

pute F(l)
j,j′,j′′ in (41), CA l needs samples

{
y+(j,j′)

l

}J′
j′=1 ∼

f
(
y+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
and the reference vectors u+

r,l′ for

l′ ∈ {l} ∪ Cl. The samples
{
y+(j,j′)

l

}J′
j′=1 are already available at

CA l since y+
l is a subvector of ỹ+

l (see (31) and (37)) and

samples
{
ỹ+(j,j′)

l

}J′
j′=1 ∼ f

(
ỹ+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
have already

been computed as described above. The u+
r,l′ can be obtained at

CA l through communication with the neighbor CAs l′ ∈ Cl.
Once the F(l)

j,j′,j′′ have been calculated at CA l, their av-
erages Fj,j′,j′′ in (40) can be computed in a distributed way
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by using J2J′ parallel instances of an average consensus or
gossip scheme [26], [27]. These schemes are iterative; they are
initialized at each CA l with F(l)

j,j′,j′′ . They are robust to com-

munication link failures [26], [27] and use only communication
between neighbor CAs (i.e., each CA l ∈ C transmits data to
each neighbor l′ ∈ Cl). After convergence of the consensus or

gossip scheme, Fj,j′,j′′ and, hence, f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
for

all j, j′, j′′ is available at each CA l.

At this point, CA l has available f
(
ỹ+(j,j′)

l

∣∣x(j)
l , x(j)

Cl
,

x+(j)
Tl

; u+
r,Cl

)
and

∂f (ỹ+(j,j′)
l |x(j)

l ,x(j)
Cl

,x+(j)
Tl

;u+
Cl

)

∂u+
l

∣∣∣
u+
Cl

=u+
r,Cl

, and an ap-

proximation of f
(
y+(j,j′)∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
has been provided by

the consensus or gossip scheme, for j = 1, . . . , J, j′ = 1, . . . , J′,
and j′′ = 1, . . . , J. Therefore, CA l is now able to evaluate (33)
and (34).

In the course of the overall distributed computation, CA
l transmits J2J′|Cl|R + JJ′|Cl|My + JM + Mu ≈ J2J′|Cl|R real
values, where R is the number of iterations used for one instance
of the consensus or gossip scheme and My is the dimension of
the vectors yl,k. Asymptotically, for R → ∞, this distributed

computation of ∂DI(u+)

∂u+
l

∣∣∣
u+=u+

r
converges to the exact central-

ized result given by (33) and (34). The speed of convergence
depends on the topology and size of the network [26], [27]. As
R increases, the information available at each agent converges,
which means that local data is disseminated over large distances
in the network. However, because the control vector of a given
CA might not be strongly affected by information from far
away CAs, a small R might be sufficient for good performance.
Because the communication requirements are proportional to
J2J′, they are typically higher than those of the flooding-based
scheme discussed in Section VI-A unless the network is large
and R is small.

Finally, the computational complexity per CA of the dis-
tributed processing—i.e., evaluation of (33) and (34), with J, J′,
and R fixed—is constant in the number of agents in the network.

VII. CALCULATION OF THE GRADIENT OF Gl(u
+
l )

Next, we consider the second gradient in the expansion (27),

i.e.,
∂Gl(u

+
l )

∂u+
l

∣∣∣
u+

l =u+
r,l

. Using (22), we obtain

∂Gl(u
+
l )

∂u+
l

∣∣∣∣
u+

l =u+
r,l

=
∫

f (xl)
∂ log |Jg̃l(xl; u+

l )|
∂u+

l

∣∣∣∣
u+

l =u+
r,l

dxl

=
∫

f (xl)
1

|Jg̃l(xl; u+
r,l)|

∂|Jg̃l(xl; u+
l )|

∂u+
l

∣∣∣∣
u+

l =u+
r,l

dxl . (42)

Here, we assumed that |Jg̃l(xl; u+
l )| is continuous and satisfies

|f (xl) ∂ log |Jg̃l(xl; u+
l )|/∂u+

l | ≤ α(xl, u+
l ) for all (xl, u+

l ), for
some function α(xl, u+

l ) ≥ 0 that is integrable with respect
to xl for each u+

l [46, Cor. 5.9]. Furthermore, we assumed
that for each value of xl, |Jg̃l(xl; u+

l )| is differentiable with

respect to u+
l at u+

r,l. A sufficient condition is that Jg̃l(xl; u+
l )

is differentiable with respect to u+
l at u+

r,l and nonzero for all

u+
l in some (arbitrarily small) neighborhood of u+

r,l.

Based on the samples
{
x(j)

l

}J
j=1 ∼ f (xl) that were calculated

in the estimation layer, a Monte Carlo approximation of (42) is
obtained as

∂Gl(u
+
l )

∂u+
l

∣∣∣∣
u+

l =u+
r,l

≈ 1

J

J∑
j=1

1∣∣Jg̃l

(
x(j)

l ; u+
r,l

)∣∣ ∂
∣∣Jg̃l

(
x(j)

l ; u+
l

)∣∣
∂u+

l

∣∣∣∣
u+

l =u+
r,l

. (43)

For many practically relevant state evolution models (20),

the computation of
∂Gl(u

+
l )

∂u+
l

∣∣∣
u+

l =u+
r,l

can be avoided altogether

or
∂Gl(u

+
l )

∂u+
l

∣∣∣
u+

l =u+
r,l

can be calculated in closed form, without a

sample-based approximation. Some examples are considered in
the following.

1) Jg̃l(xl; u+
l ) does not depend on u+

l : In this case,
∂Gl(u

+
l )

∂u+
l

=
0. An important example is the “linear additive” state
evolution model g̃l(xl, u+

l ) = Axl + ζ(u+
l ) with some

matrix A and function ζ(·) of suitable dimensions. Here,

we obtain Jg̃l(xl; u+
l ) = det A and thus

∂Gl(u
+
l )

∂u+
l

= 0. A

second important example is the odometry motion model
[47, Sec. 5.3]. Here, the local state xl is the pose of a
robot, which consists of the 2D position (xl,1, xl,2) and the
orientation θl, and the control vector ul consists of the
translational velocity νl and the rotational velocity ωl.
The state evolution model is given by

g̃l(xl, u+
l ) =

⎡
⎣xl,1 + ν+

l cos(θl + ω+
l )

xl,2 + ν+
l sin(θl + ω+

l )

θl + ω+
l

⎤
⎦ .

Here, Jg̃l(xl; u+
l ) = 1 and thus

∂Gl(u
+
l )

∂u+
l

= 0.

2) Jg̃l(xl; u+
l ) does not depend on xl: If Jg̃l(xl; u+

l ) =
Jg̃l(u

+
l ), then (22) simplifies to Gl(u+

l ) = log |Jg̃l(u
+
l )|.

Thus, we have

∂Gl(u
+
l )

∂u+
l

= 1

|Jg̃l(u
+
l )|

∂|Jg̃l(u
+
l )|

∂u+
l

,

which can be calculated in closed form.

VIII. TWO SPECIAL CASES

A. Cooperative Estimation of Local States

Here, we assume that there are no targets, and thus the task
considered is only the distributed, cooperative estimation of the
local states.

1) Estimation Layer: The marginal posteriors correspond-
ing to the targets are no longer calculated. In the calculation
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of the marginal posterior of CA l, the correction step (10)
simplifies to

f (xl|y) ∝
∫ ∏

l′∈C
f (xl′)

∏
l1∈Cl′

f (yl1,l′ |xl1, xl′) dx∼l , (44)

while the prediction step (8) remains unchanged. A feasible
and, typically, accurate approximation of f (xl|y) in (44) can be
obtained by evaluating

b(p)(xl) ∝ f (xl)
∏
l′∈Cl

∫
f (yl,l′ |xl, xl′) b(p−1)(xl′) dxl′ (45)

for iteration index p = 1, . . . , P, where b(0)(xl′) = f (xl′), l′ ∈
Cl. This amounts to the BP-based SPAWN scheme presented
in [17]. All quantities involved in (45) are locally available at
CA l or can be made available by communicating only with the
neighbor CAs l′ ∈ Cl. A sample-based implementation of (45)
is discussed in [37] and [48].

2) Control Layer: Since there are no targets, the com-
ponent DI(u+) = I(xxxC,xxx+

T ;yyy+; u+) of the objective function
in (26) simplifies to DI(u+) = I(xxxC;yyy+; u+). The expres-
sion of the gradient of DI(u+) in (33) and (34) simpli-
fies as well because f (ỹ+

l |xl, xCl, x+
Tl

; u+
Cl
) = f (ỹ+

l |xl, xCl; u+
Cl
)

and f (y+|xC, x+
T ; u+) = f (y+|xC; u+) (according to (32) and

(29), since T = ∅); furthermore, sampling from f (xC, x+
T )

(see Section VI) reduces to sampling from f (xC).

B. Cooperative Estimation of Global States

Next, we discuss the case where the local states of the CAs
are known, and thus our task is only the distributed, cooperative
estimation of the target states.

1) Estimation Layer: The marginal posteriors corresponding
to the CAs are no longer calculated, and the correction step (10)
in the calculation of the marginal posterior of the mth target
simplifies to

f (xm|y) ∝ f (xm)
∏
l∈Cm

f (yl,m|xl, xm) , (46)

where f (xm) is calculated according to (9). A computationally
feasible sample-based approximation of sequential state esti-
mation as given by (46) and (9) is provided by the particle filter
[7], [40], [49].

The product of local likelihood functions
∏

l∈Cm
f (yl,m|xl, xm)

is not available at the CAs. However, as in Section III-B, an
approximation of these products can be provided to each CA
in a distributed manner by a consensus (or gossip) algorithm
performed in parallel for each sample weight [25], [38], [39] or
by the likelihood consensus scheme [7], [24], [40].

For the calculations in the control layer (described presently),
a common set of samples is required at each CA. This can

be ensured by additionally using, e.g., a max-consensus and
providing all CAs with the same seed for random number
generation [39], [41].

2) Control Layer: Since there are no unknown CA
states, the objective function in (26) simplifies in that
DI(u+) = I(xxx+

T ;yyy+; u+) and Gl(u
+
l ) = 0 for all l∈C. The

expression of the gradient of DI(u+) in (33) and (34)
simplifies because f (ỹ+

l |xl, xCl, x+
Tl

; u+
Cl
) = f (ỹ+

l |xl, x+
Tl

; u+
Cl
)

and f (y+|xC, x+
T ; u+) = f (y+|x+

T ; u+); furthermore, sampling
from f (xC, x+

T ) reduces to sampling from f (x+
T ).

This special case was previously considered in [15]. More
specifically, [15] studied estimation of one static global
state and proposed a distributed, gradient-based, information-
seeking controller and a sample-based implementation.

IX. SIMULATION RESULTS

We demonstrate the performance of the proposed method for
three different localization scenarios. In Section IX-B, we study
the behavior of the controller by considering noncooperative
self-localization of four mobile CAs based on distance mea-
surements relative to an anchor. In Section IX-C, we consider
cooperative self-localization of three mobile CAs. Finally, in
Section IX-D, two mobile CAs perform cooperative simultane-
ous self-localization and tracking of a target. Further simulation
results demonstrating the performance of the estimation layer
in larger networks are reported in [25]. Simulation source files
and animated plots are available at http://www.nt.tuwien.ac.at/
about-us/staff/florian-meyer/.

A. Simulation Setup

The following aspects of the simulation setup are common
to all three scenarios. The states of the CAs consist of their 2D
position, i.e., x(n)

l � [x(n)
l,1 , x(n)

l,2 ]T in a global reference frame. In
addition to the mobile CAs, there is one anchor CA (indexed by
l = 1), i.e., a static CA that broadcasts its own (true) position to
the mobile CAs but does not perform any measurements. The
CA network is fully connected. The states of the mobile CAs
evolve independently according to [35]

x(n)
l = x(n−1)

l + u(n)
l + q(n)

l , n=1, 2, . . . . (47)

Here, q(n)
l ∈ R

2 is zero-mean Gaussian with independent and

identically distributed entries, i.e., q(n)
l ∼ N (0, σ 2

q I) with σ 2
q =

10−3, and q(n)
l and q(n′)

l′ are independent unless (l, n)=(l′, n′).
The admissible set Ul of the control vector u(n)

l is defined

by the norm constraint
∥∥u(n)

l

∥∥ ≤ umax
l . For the interpretation

of u(n)
l within (47), it is assumed that the CAs know the

orientation of the global reference frame. In the initialization
of the algorithms, at time n = 0, we use a state prior that is
uniform on [−200, 200]×[−200, 200].

The mobile CAs acquire distance measurements according
to (4), i.e., y(n)

l,k = ∥∥x(n)
l − x(n)

k

∥∥+ v
(n)
l,k , where the measurement
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noise v
(n)
l,k is independent across l, k, and n and Gaussian with

variance

σ
(n)2
l,k =

⎧⎨
⎩

σ 2
0 ,

∥∥x(n)
l − x(n)

k

∥∥ ≤ d0

σ 2
0

[( ‖x(n)
l −x(n)

k ‖
d0

−1
)κ +1

]
,
∥∥x(n)

l − x(n)
k

∥∥ > d0 .
(48)

That is, σ
(n)2
l,k is a function of

∥∥x(n)
l − x(n)

k

∥∥ that stays constant
up to some distance d0 and then increases polynomially with
some exponent κ . This is a simple model for time-of-arrival
distance measurements [50]. We set σ 2

0 = 50 and κ = 2 and, if
not stated otherwise, d0 = 50.

In the estimation layer, we use J = 3,600 samples. (Choos-
ing J below 3,000 was observed in some rare cases to lead
to a convergence to the wrong estimate.) A resampling step
is performed to avoid weight degeneracy [51]. Resampling
transforms weighted samples

{(
x̃(n)(j)

k , w(n)(j)
k

)}J
j=1 representing

the belief b
(
x(n)

k

)
into nonweighted samples

{
x(n)(j)

k

}J
j=1. (We

note that weighted samples arise in the estimation layer, as
discussed in [24], [25].) We use a somewhat nonorthodox
type of resampling that helps move samples to positions with
high probability mass, thereby reducing the number of sam-
ples needed. More specifically, at every Lth time step n, we
sample from a kernel approximation of the belief; at all other
time steps, we perform standard systematic resampling [51].
The kernel approximation of the belief b

(
x(n)

k

)
is obtained

as [52]

b̃
(
x(n)

k

) =
J∑

j=1

w(n)(j)
k K

(
x(n)

k −x̃(n)(j)
k

)
,

with the Gaussian kernel K(x) = (2πσ 2
K )−1 exp

(−‖x‖2/

(2σ 2
K )
)
. Here, the variance σ 2

K is chosen as σ 2
K = J1/3T(n)

k /2

if T(n)
k < 2σ 2

0 and σ 2
K = σ 2

0 otherwise, where T(n)
k denotes the

trace of the weighted sample covariance matrix defined as

C(n)
k =

J∑
j=1

w(n)(j)
k x̃(n)(j)

k x̃(n)(j)T
k − μμμ

(n)
k μμμ

(n)T
k ,

with μμμ
(n)
k =∑J

j=1 w(n)(j)
k x̃(n)(j)

k . This case distinction in choos-

ing σ 2
K is used since σ 2

K = J1/3T(n)
k /2 is only accurate for a

unimodal distribution [52] whereas σ 2
K = σ 2

0 is suitable for an-

nularly shaped distributions [48]. We choose L = 40 if T(n)
k <

80, L = 20 if 80 ≤ T(n)
k < 1,000, and L = 10 if T(n)

k ≥ 1,000;
this led to good results in our simulation setting.

We employ a censoring scheme [37] to reduce the number
of samples and avoid numerical problems during the first time
steps, where the mobile CAs still have uninformative beliefs.
More specifically, only CAs l with T(n)

l < 10 are used as lo-
calization partners by neighbor CAs and (in our third scenario)
are involved in localizing the target. In the control layer, this
censoring scheme corresponds to the following strategy: as long

Fig. 5. Example trajectories for noncooperative self-localization with
information-seeking control (except CA 5). The initial CA position and the
anchor position are indicated by a bullet and a star, respectively.

as CA l is not localized (i.e., T(n)
l ≥ 10), its objective func-

tion is D̃h
(
u(n+1)

l

)
� −h

(
xxx(n+1)

l

∣∣y(n+1)
l,1 ; y(1:n)

l,1 , u(1:n+1)
l

)
, i.e., the

negative differential entropy of only the own state condi-
tioned on only the own measurement relative to the anchor
CA, y(n+1)

l,1 .
The local gradient ascents in the controller (see (19)) use

the reference points u(n)
r,l = 0, which are consistent with the

state evolution model (47), and step sizes c(n)
l chosen such that∥∥u(n)

l

∥∥ = umax
l . Thus, each CA l ∈ C moves with maximum

nominal speed (determined by umax
l ) in the direction of max-

imum local increase of the objective function. If not stated
otherwise, the number of samples used in the control layer
is JJ′ = 60,000, with J = 1,200 and J′ = 50. (The J = 1,200
samples are obtained by random selection from the 3,600
samples produced by the estimation layer.) We note that a
reduction of J′ to J′ =1 was observed to result in more jagged
CA trajectories and a slightly slower reduction of the estimation
error over time.

B. Noncooperative Self-Localization

To study the behavior of the controller, we consider four
mobile CAs l = 2, 3, 4, 5 that perform self-localization without
any cooperation during 300 time steps n. The mobile CAs
measure their distance to the static anchor CA (l = 1), which
is located at position [0, 0]T, but they do not measure any
distances between themselves. Their measurement models use
different values of d0, namely d0 = 20, 50, 100, and 100 for
l = 2, 3, 4, and 5, respectively. The mobile CAs start at position
[100, 0]T and move with identical nominal speed determined
by umax

l = 1. The objective function for the control of CAs

2, 3, and 4 is D̃h
(
u(n+1)

l

)
� −h

(
xxx(n+1)

l

∣∣y(n+1)
l,1 ; y(1:n)

l,1 , u(1:n+1)
l

)
.

CA 5 is not controlled; it randomly chooses a direction at time
n =1 and then moves in that direction with constant nominal
speed determined by umax

l = 1. Fig. 5 shows an example of the
trajectories of the four mobile CAs. These trajectories are quite
different because of the different values of d0 and the fact that
CA 5 is not controlled. CA 4, after an initial turn, is roughly
localized in the sense that the shape of its marginal posterior
has changed from an annulus to only a segment of an annulus.
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Fig. 6. Self-localization RMSE for noncooperative self-localization with
information-seeking control (except CA 5).

Thereafter, CA 4 turns around the anchor, which is reasonable
in view of the single distance measurement available at each
time n and the fact that, since d0 = 100, the measurement
noise cannot be decreased by approaching the anchor. CA 3
(with d0 = 50) initially approaches the anchor. At a distance of
50 to the anchor, the measurement noise cannot be decreased
any more, and thus CA 3 turns around the anchor without
approaching it further. A similar behavior is exhibited by CA
2 (with d0 = 20).

Fig. 6 shows the self-localization root-mean-square errors
(RMSEs) of the four mobile CAs. These RMSEs were de-
termined at each time n by averaging over 300 simulation
runs. As can be seen, the three CAs performing information-
seeking control (l = 2, 3, 4) are fairly well localized after about
100 time steps. CA 2 (with d0 = 20) takes longer to localize
itself than CAs 3 and 4 since, prior to reaching a distance
of 20 to the anchor, it has a larger noise variance (see (48)).
The performance of CA 3 and CA 4 is almost identical; the
larger noise variance of CA 3 during the initial time steps is
compensated by a smaller turning radius once a distance of 50
to the anchor has been reached. CA 5 is unable to localize itself,
due to the lack of intelligent control.

C. Cooperative Self-Localization

Next, we study the proposed method for cooperative self-
localization with information-seeking control (abbreviated as
C-C). There are three mobile CAs l = 2, 3, and 4 with dif-
ferent start points ([−50, 0]T, [0,−50]T, and [0, 70]T, respec-
tively) and different nominal speeds (umax

l = 1, 0.3, and 0.1,
respectively). The mobile CAs measure their distances to a
static anchor l = 1 located at [−60, 0]T and to each other,
using d0 = 50. Example trajectories are shown in Fig. 7. For
comparison, we also consider noncooperative self-localization
with information-seeking control as studied in Section IX-B
(abbreviated as N-C). Finally, we consider another scheme
(abbreviated as C-N) where the CAs cooperate in the estimation
layer but no intelligent control is performed. Here, each CA
randomly chooses a direction and then moves in that direction
with constant nominal speed determined by umax

l .
Fig. 8 shows the self-localization RMSEs of the three

schemes, which were determined by averaging over the three

Fig. 7. Example trajectories for cooperative self-localization with information-
seeking control (C-C scheme). The initial CA positions and the anchor position
are indicated by bullets and a star, respectively.

Fig. 8. Self-localization RMSE of the proposed estimation/control method and
of two reference methods.

mobile CAs and over 300 simulation runs. It is seen that the
RMSEs of the two reference schemes N-C and C-N decrease
only very slowly whereas, after about 100 time steps, the RMSE
of the proposed C-C scheme has decreased to a low value.
This behavior can be explained as follows. Without cooperation
(N-C) or without intelligent control (C-N), CAs 3 and 4 need
a long time to localize themselves because they are slow and
initially far away from the anchor. On the other hand, CA
2 localizes itself very quickly because it is fast and initially
close to the anchor. With cooperation and control (C-C), CA
2 moves in such a way that it supports the self-localization
of the two other CAs. In fact, as shown by Fig. 7, CA 2 first
localizes itself by starting to turn around the anchor and then
makes a sharp turn to approach CAs 3 and 4, which helps
them localize themselves. This demonstrates the function and
benefits of cooperative estimation and control.

D. Cooperative Self-Localization and Target Tracking

Finally, we consider cooperative simultaneous self-
localization and target tracking. Two mobile CAs l=2, 3
starting at position [20, 20]T and [−10,−10]T, respectively
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Fig. 9. Example trajectories for cooperative simultaneous self-localization and
target tracking with information-seeking control (C-C scheme). The initial CA
positions are indicated by bullets, the initial target position by a cross, and the
anchor position by a star.

and with nominal speed determined by umax
l = 1 cooperatively

localize and track themselves and a mobile target. There
is also a static anchor l = 1 at position [−50, 0]T. The
target state x(n)

m = x(n)
4 consists of position and velocity,

i.e., x(n)
4 �

[
x(n)

4,1, x(n)
4,2, ẋ(n)

4,1, ẋ(n)
4,2

]T. The target state evolves
according to [35]

x(n)
4 = Gx(n−1)

4 + Wq(n)
4 , n=1, 2, . . . ,

where

G =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, W =

⎛
⎜⎜⎝

0.5 0
0 0.5
1 0
0 1

⎞
⎟⎟⎠,

and q(n)
4 ∈ R

2 is zero-mean Gaussian with independent and

identically distributed entries, i.e., q(n)
4 ∼ N (0, σ̃ 2

q I) with σ̃ 2
q =

10−5, and with q(n)
4 and q(n′)

4 independent unless n=n′. The tar-

get trajectory is initialized with position
[
x(0)

4,1, x(0)
4,2

]T = [50, 0]T

and velocity
[
ẋ(0)

4,1, ẋ(0)
4,2

]T = [0.05, 0.05]T. In the initialization
of the algorithms, we use a target position prior that is uni-
form on [−200, 200]×[−200, 200] and a target velocity prior
that is Gaussian with mean [0, 0]T and covariance matrix
diag{10−1, 10−1}. The number of samples used in the esti-
mation layer is J = 120,000; the number of samples used in
the control layer is JJ′ = 6,000, with J = 1,200 and J′ = 5.
Fig. 9 shows an example of CA and target trajectories ob-
tained with the proposed method for cooperative localization
with information-seeking control (C-C). One can observe that
the two CAs first start turning around the anchor to localize
themselves and then approach the target. Finally, at a distance
of 50 to the target, where further approaching the target would
no longer decrease the measurement noise, the CAs spread
out to achieve a geometric formation that is favorable for
cooperatively localizing and tracking the target.

As before, we compare our C-C method with two ref-
erence methods, namely, noncooperative localization with

information-seeking control (N-C) and cooperative localization
with fixed, randomly chosen directions of movement (C-N).
Fig. 10 shows the self-localization RMSEs and target localiza-
tion RMSEs of the three schemes, which were determined by
averaging over the two CAs and over 100 simulation runs. The
following observations can be made:

• The self-localization performance of C-N is very poor:
after an initial decrease, the RMSE slowly increases. In
fact, typically, no cooperation actually takes place, since
the CAs are unable to localize themselves and thus each
CA is censored by the respective other CA. The self-
localization RMSEs of C-C and N-C decrease rather
quickly to a low value. They are very similar, which
can be explained as follows. Because both CAs move
with the same nominal speed, they localize themselves
approximately in the same manner. Therefore, as long as
the CAs are not localized, no cooperation takes place due
to censoring, and after they are localized, no further gain
can be achieved by cooperation.

• The target localization RMSEs of the three methods are
initially equal to 50 and slowly increase during the first
40 time steps. Indeed, due to the censoring scheme,
the CAs start localizing the target only when they are
localized themselves. Therefore, during the first 40 time
steps, no measurements of the distance to the target
are used by the CAs, and thus the CAs’ target position
estimation is solely based on the prior distribution, which
is uniform. This leads to a target position estimate of
[0, 0]T and in turn (since the target is initially located
at [50, 0]T) to an initial target localization RMSE of
50 at time n = 1. During the first 40 time steps, the
RMSE slowly increases since the target slowly moves
away from [0, 0]T. The RMSE of C-N continues to
increase in this manner even after n = 40 since with
C-N, the CAs are never localized and therefore never
start localizing the target. For C-C and N-C (both em-
ploying information-seeking control), after n = 40, the
RMSE first increases and then decreases. The RMSE
of C-C decreases sooner and more quickly than that
of N-C, which again shows the benefits of cooperative
estimation.

The initial increase and subsequent decrease of the
target localization RMSE observed with C-C and N-C
after n = 40 can be explained as follows. After the
CAs localized themselves and start localizing the target,
the target position posterior at a given CA is roughly
annularly shaped, with the center of the annulus being
the CA position. (This position is equal to the turning
point of the respective CA trajectory in Fig. 9.) The
resulting target position estimate is located at that center.
Thus, it is more distant from the true target position
than the estimate [0, 0]T that was obtained when the CA
was not yet localized and the target position posterior
was still uniform. As the CAs approach the target, the
target position posterior becomes unimodal and the target
can be localized, resulting in a decrease of the target
localization RMSE.
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Fig. 10. Performance of three different methods for simultaneous self-localization and target localization. (a) Self-localization RMSE. (b) Target-localization
RMSE.

X. CONCLUSION

We proposed a Bayesian framework and method for dis-
tributed estimation with information-seeking control in agent
networks. Distributed, cooperative estimation is performed for
time-varying global states (related to noncooperative targets or
features of the environment) and/or time-varying local states
(related to individual cooperative agents), using a combination
of belief propagation message passing and consensus. The
distributed, cooperative control seeks to optimize the behavior
of the cooperative agents by maximizing the negative joint
posterior entropy of the agent states via a gradient ascent. A
probabilistic information transfer from the estimation layer to
the control layer enables effective control strategies and thus
leads to excellent estimation performance.

A major advantage of the proposed approach is its generality.
Our method relies on general state evolution and measurement
models, an information-theoretic objective function for con-
trol, and sample-based representations of probability distribu-
tions. These characteristics make it suitable for nonlinear and
non-Gaussian systems, such as those arising in location-aware
networks. Numerical simulations for a simultaneous agent
self-localization and target tracking problem demonstrated in-
telligent behavior of the cooperative agents and a resulting
improvement of estimation performance.

Possible directions for future research include an extension
of the myopic controller (i.e., optimizing only one time step
ahead) to a receding horizon [53]; this can be expected to im-
prove the performance in scenarios with multiple time-varying
global states. Furthermore, the complexity and communication
cost of the proposed method can be reduced by introducing
Gaussian or Gaussian mixture approximations [54] and using
cubature points [55] instead of random samples.

APPENDIX A
PROOF OF EQUATION (21)

We will use the following transformation rule for differential
entropy [56, Eq. 18]: For a continuous random vector a and
a transformed random vector of identical dimension b = g(a),

where g(·) is a bijective differentiable function with Jacobian
determinant Jg(a) = det ∂g(a)

∂a ,

h(bbb) = h(aaa) + e(aaa), with e(aaa) �
∫

f (a) log |Jg(a)| da . (49)

The conditional differential entropy h(xxx+|yyy+; u+) can be
expanded as [32, Chap. 8]

h(xxx+|yyy+; u+) = h(xxx+,yyy+; u+) − h(yyy+; u+) . (50)

The vector x+ consists of x+
l and x+

A\{l}�
[
x+

k

]
k∈A\{l}, and there

is x+
l = g̃l(xl, u+

l ) (see (20)). Thus, the first term on the right-
hand side of (50) can be expressed as h(xxx+,yyy+; u+) = h

(
g̃l(xxxl,

u+
l ),xxx+

A\{l},yyy+; u+). Applying the transformation rule (49) to

the “extended state evolution mapping” g̃∗
l :[xT

l , x+T
A\{l}, y+T

]T �→[(
g̃l(xl, u+

l )
)T

, x+T
A\{l}, y+T

]T, we then obtain

h(xxx+,yyy+; u+) = h
(
xxxl,xxx+

A\{l},yyy+; u+)
+ e
(
xxxl,xxx+

A\{l},yyy+; u+
l

)
, (51)

where

e
(
xxxl,xxx+

A\{l},yyy+; u+
l

)
�
∫ ∫ ∫

f
(
xl, x+

A\{l}, y+) log
∣∣Jg̃∗

l

(
xl, x+

A\{l}, y+; u+
l

)∣∣
× dxl dx+

A\{l}dy+.

Here, Jg̃∗
l

(
xl, x+

A\{l}, y+; u+
l

)
is the Jacobian determinant of

g̃∗
l

(
xl, x+

A\{l}, y+; u+
l

)
. It is easily seen that Jg̃∗

l

(
xl, x+

A\{l}, y+;
u+) = Jg̃l(xl; u+), and thus we obtain further

e
(
xxxl,xxx+

A\{l},yyy+; u+
l

)
=
∫ [ ∫ ∫

f
(
xl, x+

A\{l}, y+) dx+
A\{l}dy+

]
× log |Jg̃l(xl; u+

l )| dxl

=
∫

f (xl) log |Jg̃l(xl; u+
l )| dxl

= Gl(u+
l ) . (52)
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Inserting (52) into (51) and the resulting expression of
h(xxx+,yyy+; u+) into (50) gives

h(xxx+|yyy+; u+) = h
(
xxxl,xxx+

A\{l},yyy+; u+)+ Gl(u
+
l ) − h(yyy+; u+).

(53)

Next, we repeat this transformation procedure but apply it to
the term h

(
xxxl,xxx+

A\{l},yyy+; u+) in (53) instead of h(xxx+,yyy+; u+).

Consider an arbitrary l′ ∈ C\{l}, and note that x+
A\{l} consists

of x+
l′ and x+

A\{l,l′}�
[
x+

k

]
k∈A\{l,l′}, where x+

l′ = g̃l′(xl′, u+
l′ ) ac-

cording to (20). Proceeding as above and inserting the resulting
expression of h

(
xxxl,xxx+

A\{l},yyy+; u+) into (53) yields

h(xxx+|yyy+; u+) = h
(
xxxl,xxxl′,xxx+

A\{l,l′},yyy+; u+)+ Gl′(u
+
l′ )

+ Gl(u
+
l ) − h(yyy+; u+) .

We continue this procedure in a recursive fashion, splitting
off CA state vectors from x+

A\{l,l′} until only the target states

(contained in x+
T ) are left, and applying the transformation rule

at each recursion. In the end, we obtain

h(xxx+|yyy+; u+) = h(xxxC,xxx+
T ,yyy+; u+)+

∑
l∈C

Gl(u
+
l ) − h(yyy+; u+).

Finally, Equation (21) is obtained by noting that h(xxxC,xxx+
T ,yyy+;

u+) = h(xxxC,xxx+
T |yyy+; u+) + h(yyy+; u+).

APPENDIX B
DERIVATION OF (33) AND (34)

1) Derivation of (33): Let us first define the vector y̆+
l �[

y+
l′,k
]

l′∈C\{l},k∈Al′
, which contains all those measurements y+

l′,k
that are not contained in ỹ+

l (cf. (31)). The corresponding
likelihood function is given by

f (y̆+
l |xC, x+

T ; u+) = f (y+|xC, x+
T ; u+)

f (ỹ+
l |xl, xCl, x+

Tl
; u+

Cl
)
, (54)

which, according to (29) and (32), involves all factors of
f (y+|xC, x+

T ; u+) that do not depend on the local control vector
u+

l . Using (54) in (28) yields

∂DI(u+)

∂u+
l

=
∫ ∫ ∫

f (xC, x+
T ) f (y̆+

l |xC, x+
T ; u+)

× ∂ f (ỹ+
l |xl, xCl , x+

Tl
; u+

Cl
)

∂u+
l

× log
f (y+|xC, x+

T ; u+)

f (y+; u+)
dxC dx+

T dy+. (55)

Setting u+ = u+
r , and multiplying and dividing the integrand in

(55) by f (ỹ+
l |xl, xCl, x+

Tl
; u+

r,Cl
), we obtain further

∂DI(u+)

∂u+
l

∣∣∣∣
u+=u+

r

=
∫ ∫ ∫

q(y+, xC, x+
T )

1

f (ỹ+
l |xl, xCl, x+

Tl
; u+

r,Cl
)

× ∂ f (ỹ+
l |xl, xCl , x+

Tl
; u+

Cl
)

∂u+
l

∣∣∣∣
u+
Cl

=u+
r,Cl

× log
f (y+|xC, x+

T ; u+
r )

f (y+; u+
r )

dxC dx+
T dy+, (56)

where

q(y+, xC, x+
T ) � f (xC, x+

T ) f (ỹ+
l |xl, xCl, x+

Tl
; u+

r,Cl
)

× f (y̆+
l |xC, x+

T ; u+
r ) .

Then, (33) is recognized to be a Monte Carlo approximation
of (56) that is obtained by performing importance sampling
[43] using q(y+, xC, x+

T ) as importance density, i.e., the sam-

ples y+(j,j′), x(j)
C , and x+(j)

T occurring in (33) are drawn from
q(y+, xC, x+

T ). Using (54), this importance density can be ex-
pressed as

q(y+, xC, x+
T ) = f (xC, x+

T ) f (y+|xC, x+
T ; u+

r )

= f (xC, x+
T , y+; u+

r ) .

The first expression, f (xC, x+
T )f (y+|xC, x+

T ; u+
r ), underlies the

two-stage sampling procedure described in Section V.
2) Derivation of (34): We have

f (y+; u+
r ) =

∫ ∫
f (y+|xC, x+

T ; u+
r ) f (xC, x+

T ) dxC dx+
T . (57)

Using samples
{(

x(j)
C , x+(j)

T
)}J

j=1 ∼ f (xC, x+
T ) (see Section V), a

Monte Carlo approximation of (57) is obtained as

f (y+; u+
r ) ≈ 1

J

J∑
j′′=1

f
(
y+∣∣x(j′′)

C , x+(j′′)
T ; u+

r

)
.

Evaluating this for y+=y+(j,j′) (again see Section V) yields (34).

APPENDIX C
DRAWING SAMPLES FROM f

(
y+∣∣x(j)

C , x+(j)
T ; u+

r

)
We consider the setting of Section VI-A. As discussed there,

samples
{
x(j)

l′
}J

j=1 ∼ f (xl′), l′ ∈C and
{
x+(j)

m
}J

j=1 ∼ f (x+
m), m ∈ T

are available at CA l, and it is assumed that the state evolution
and measurement models of all CAs l′ ∈ C are known to CA l.
We start by noting that by combining (15) and (3), the compos-
ite measurement vector y+ can be written as

y+ = [dl(x
+
l , x+

k , v+
l,k)
]

l∈C,k∈Al
. (58)
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First, CA l obtains samples
{
x+(j)

l′
}J

j=1 ∼ f̃ (x+
l′ ) �

f (x+
l′ )
∣∣
x+

l′ = g̃l′ (xl′ ,u+
r,l′ )

(see (20)) for all l′ ∈ C by evaluating

g̃l′(xl′, u+
l′ ) at xl′ = x(j)

l′ and u+
l′ = u+

r,l′ , i.e.,

x+(j)
l′ = g̃l′

(
x(j)

l′ , u+
r,l′
)
, j = 1, . . . , J. (59)

Thus, at this point, samples
{
x+(j)

k

}J
j=1 for all k ∈ A are avail-

able at CA l. Next, for each j ∈ {1, . . . , J}, CA l draws samples{
v+(j,j′)

l′,k
}J′

j′=1 ∼ f (v+
l′,k) for l′ ∈ C and k ∈ Al′ . Finally, CA l ob-

tains samples
{
y+(j,j′)}J′

j′=1 ∼ f
(
y+∣∣x(j)

C , x+(j)
T ; u+

r

)
by evaluating

(58) using the appropriate samples, i.e.,

y+(j,j′) = [dl′
(
x+(j)

l′ , x+(j)
k , v+(j,j′)

l′,k
)]

l′∈C,k∈Al′
, j′ = 1, . . . , J′.

APPENDIX D
DRAWING SAMPLES FROM f

(
ỹ+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
In the setting of Section VI-B, samples

{
x(j)

l′
}J

j=1 ∼ f (xl′), l′ ∈
{l} ∪ Cl and

{
x+(j)

m
}J

j=1 ∼ f (x+
m), m ∈ Tl are available at CA l.

We start by noting that combining (37) and (3) yields

y+
l = [dl(x

+
l , x+

k , v+
l,k)
]

k∈Al
. (60)

Based on the analogy of this expression to (58), CA l

first obtains samples
{
y+(j,j′)

l

}J′
j′=1 ∼ f

(
y+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
by carrying out the steps of Appendix C with obvious
modifications—in particular, y+ is replaced by y+

l , C by {l} ∪
Cl, and T by Tl. More specifically, CA l obtains samples{
x+(j)

l′
}J

j=1 for l′ ∈ {l} ∪ Cl according to (59). Then, for each

j ∈ {1, . . . , J}, CA l draws samples
{
v+(j,j′)

l,k

}J′
j′=1 ∼ f (v+

l,k) for

k ∈ Al and, in turn, obtains samples
{
y+(j,j′)

l

}J′
j′=1 by evaluating

(60) using the appropriate samples, i.e.,

y+(j,j′)
l = [dl

(
x+(j)

l , x+(j)
k , v+(j,j′)

l,k

)]
k∈Al

, j′ = 1, . . . , J′.

It remains to obtain samples of those entries of ỹ+
l that

are not contained in y+
l (cf. (31) and (37)). More specifically,

for each sample y+(j,j′)
l , CA l needs to obtain samples y+(j,j′)

l′,l ,
l′ ∈ Cl . This is done through communication with neighbor
CAs: CA l transmits to each neighbor CA l′ ∈ Cl the samples{
y+(j,j′)

l,l′
}J′

j′=1, j = 1, . . . , J, and it receives from CA l′ ∈ Cl

the samples
{
y+(j,j′)

l′,l
}J′

j′=1, j = 1, . . . , J. Thus, finally, samples{
ỹ+(j,j′)

l

}J′
j′=1 ∼ f

(
ỹ+

l

∣∣x(j)
l , x(j)

Cl
, x+(j)

Tl
; u+

r,Cl

)
are locally available

at CA l.
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