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Near-Term n to k Distillation Protocols
Using Graph Codes

Kenneth Goodenough , Sébastian de Bone, Vaishnavi Addala , Stefan Krastanov,
Sarah Jansen , Dion Gijswijt , and David Elkouss , Member, IEEE

Abstract— Noisy hardware forms one of the main hurdles to
the realization of a near-term quantum internet. Distillation
protocols allows one to overcome this noise at the cost of
an increased overhead. We consider here an experimentally
relevant class of distillation protocols, which distill n to k end-
to-end entangled pairs using bilocal Clifford operations, a single
round of communication and a possible final local operation
depending on the observed measurement outcomes. In the case of
permutationally invariant depolarizing noise on the input states,
we find a correspondence between these distillation protocols and
graph codes. We leverage this correspondence to find provably
optimal distillation protocols in this class for several tasks
important for the quantum internet. This correspondence allows
us to investigate use cases for so-called non-trivial measurement
syndromes. Furthermore, we detail a recipe to construct the
circuit used for the distillation protocol given a graph code.
We use this to find circuits of short depth and small number
of two-qubit gates. Additionally, we develop a black-box circuit
optimization algorithm, and find that both approaches yield
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comparable circuits. Finally, we investigate the teleportation of
encoded states and find protocols which jointly improve the rate
and fidelities with respect to prior art.

Index Terms— Quantum entanglement, entanglement distilla-
tion, quantum error correction.

I. INTRODUCTION

ENTANGLEMENT is a key feature of quantum mechan-
ics, and is the fundamental resource to be distributed

in the quantum internet. Unfortunately, experimental setups
are imperfect, leaving entanglement noisy in practice. Entan-
glement distillation is any procedure using local operations
and classical communication that (usually probabilistically)
converts n input states to (usually) a smaller number of states k
with increased fidelity [1], [2], [3], [4]. Distillation thus allows
for overcoming the effects of inherent noise in any physical
implementation of a quantum network.

Finding good distillation protocols that are also feasible
experimentally is thus important for the workings of future
quantum networks [5], [6], [7], [8], [9], [10], [11], [12], [13].
This motivates us to study distillation protocols that 1) distill
from n to k pairs for n relatively small, i.e. n ≲ 10, 2)
require only a single round of communication, and 3) use
only operations that are relatively simple to implement. For the
latter, we allow both parties to apply operations of the form
CT ⊗C†, where C is a Clifford circuit, i.e. constructed from
H , S and CNOT gates. Such Clifford circuits are relevant
since they form a key component for quantum applications
and can be efficiently implemented [14]. Furthermore, all but
the first k pairs are measured in the computational basis,
after which a final operation conditioned on the measurement
outcomes is allowed. For practical reasons we thus do not use
the full power allowed in the framework of local operations
and classical communication [15]. Specific instances of such
bilocal Clifford protocols have been considered in the literature
[1], [3], [5], [16], [17], [18], [19], [20], [21], and [22].

Our goal is to find good near-term bilocal Clifford distil-
lation protocols. To this end, we use two methods. Firstly,
an approach based on graph theory to find provably optimal
(with respect to any measure) bilocal Clifford protocols in the
case of uniformly depolarized states and no noisy operations.
Secondly, an approach based on black-box optimization with
genetic algorithms [5]. This framework is flexible, allowing
for a heuristic optimization even when considering arbitrary
Pauli noise, noisy circuits and limitations on the number of
qubits that can be simultaneously processed.
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Fig. 1. Correspondence between bilocal Clifford distillation protocols and stabilizer codes. On the left we show the general form bilocal Clifford distillation
protocols can take. That is, Alice and Bob apply CT and C† for some Clifford circuit C, and then measure out the last n− k pairs. They then use classical
communication to send the measurement outcomes to one another, and use those to decide on whether to keep the states and/or apply a final correction.
On the right we show a stabilizer code, which takes in a state |ψ⟩, and transforms it to a logical state |ψL⟩ by applying a Clifford circuit C to |ψ⟩ and n−k
auxiliary qubits. There is a one-to-one correspondence between bilocal Clifford distillation protocols and stabilizer codes, given by using a fixed Clifford
circuit C in both cases.

The graph-theoretical framework reduces the optimization
over bilocal Clifford protocols to a smaller set of certain
equivalence classes on graphs of n+ k vertices. The number
of equivalence classes is significantly smaller than the number
of possible Clifford circuits, allowing us to optimize by
performing a full enumeration.

We compare circuits found using the graph-theoretical
approach and with the black-box algorithm. We find that
both approaches yield similar results, where each approach
works best in different parameter regimes. Finally, we consider
the procedure of teleporting and correcting encoded states.
This requires two parties to share a bipartite state of local
dimension 2k. These states can be generated in multiple
ways. Here, we consider creating k bipartite states, creating
k distilled bipartite states out of 2k states through use of the
DEJMPS protocol [3], or by distilling once n pairs to k pairs.
We find that the latter option can provide higher fidelities and
success probabilities, while also using fewer resources than
distilling k pairs independently.

The rest of this work is structured as follows. We start
by laying down the preliminaries and the used notation in
Section II. In Section III we detail explicitly a correspondence
between stabilizer codes and bilocal Clifford protocols (see
Fig. 1). We note that the general correspondence between
codes and distillilation protocols was already known [1], [2],
[24]. We specialize this correspondence to the case of distilling
an n-fold tensor power of a Werner state in Section IV.
This allows us to study bilocal Clifford distillation protocols
through the study of graph codes, see Fig. 2. In particular,
we make this correspondence concrete in Corollary 2, where
we show that it is possible to find all bilocal Clifford dis-
tillation protocols on an n-fold tensor power of a Werner
state for several values of n and k by searching over certain
equivalence classes of graph codes. In Section V, we detail
a way to convert a bilocal Clifford distillation protocol via
a corresponding graph code into a circuit. We then discuss
certain heuristics that can be used to improve circuits (such
as reducing the depth) given a graph code. Given a circuit
of a distillation protocol, we discuss briefly how to calculate

the quantities of interest in Section VI. These quantities are
the probability and the coefficients of the output state as a
function of the observed measurements. Using the above tools,
we analyze the performance of our found protocols for several
communication tasks/metrics in Section VII, where we also
consider the case of noisy gates and measurements. We end
with concluding remarks and potential avenues for further
research in Section VIII.

II. PRELIMINARIES

Here we set our used notation and definitions, most of which
is similar to the notation in [22]. We denote by F2 the field
with two elements. Relevant single-qubit operations are given
by the Pauli operators I,X, Y, Z, Hadamard gate H and phase
gate S. A subscript indicates a specific qubit, e.g. H2 denotes
a Hadamard gate acting on the second qubit and the identity
I acting on the remaining qubits, where we assume there
is an ordering given on the qubits. We use the term single-
qubit Clifford operations to refer to the elements in the group
generated by Hadamard and phase gates on each qubit.

The relevant two-qubit operations are given by the
controlled-not operation CNOTij , controlled-Z operation
CZij and swap operation SWAPij . For the CNOTij oper-
ation, the subscripts i and j indicate the control and target,
respectively.

The Pauli operators expanded in the computational basis are
given by

I =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
,

Y =
[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

These single-qubit Pauli operators can be extended to n
qubits, yielding the Pauli group Pn. The group Pn consists
of all matrices that are tensor products of Pauli operators,
up to phases from {±1,±i}. That is, Pn

∼= Pn/⟨iI⊗n⟩. While
ignoring phases makes things simpler, it will still be important
to keep track of which elements (anti-)commute when not
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Fig. 2. Here we show an alternative approach to how one could implement a subset of the stabilizer encodings. That is, first prepare the k qubit input state
(the corresponding qubits are called input vertices). Then prepare n output qubits in the |+⟩ state. Then, CZ gates are applied according to some simple
graph on n + k vertices, where we distinguish between the in- and output vertices. Such objects we call (n, k)-graphs. Then, on the right the input qubits
are measured in the X-basis, initializing the remaining n output qubits in some logical state |ψL⟩. When correcting against depolarizing noise, it suffices to
consider encodings performed in this way [23]. This thus reduces the optimization to one over (n, k)-graphs. Finally, we reduce the search space even further
by showing that (n, k)-graphs that are equivalent under so-called local complementations, edge flips and (in the case of permutationally invariant depolarizing
noise) permutations of the input vertices and permutations of the output vertices yield equivalent distillation protocols. We note that the (n, k)-graph formalism
can also be used to construct circuits that implement the corresponding distillation protocols/stabilizer codes (not shown in this figure).

ignoring phases. Thus, with abuse of terminology we will say
that two elements of Pn (anti-)commute if arbitrary elements
in their pre-images (anti-)commute. Note that this is well-
defined, since it does not depend on the choice of elements in
the preimage.

The weight wt of an element of Pn is the number of
non-identity Pauli elements in the string. For a subset S of
Pn, let Ew(S) be the number of elements in S with weight
w. We will refer to the collection of Ew(S) as the weight
enumerator of S. Furthermore, define the weight enumerator
polynomial of S as E(S, x, y) =

∑n
w=0 Ew(S)xn−wyw.

These objects are related to the weight enumerators used in
(quantum) error correction [25], and will turn out to be useful
to express the output states of distillation protocols with. Such
weight enumerators have also been shown to be of importance
for classical codes [26].

The Clifford group Cn on n qubits is the group generated
by H , S operations on any qubit, and CNOTij between
any two qubits i and j. The Clifford group acts on Pn

by conjugation, and in fact each automorphism of Pn that
preserves the commutation relations arises as the conjugation
by some C ∈ Cn.

A. Symplectic Representation

There is a convenient representation of Pauli operators
(without phase) and the action of the Clifford group on the
Pauli operators in terms of linear algebra over F2, see for
example [22], [27], [28], and [29].

Elements of Pn are represented by elements of F2n
2 . In par-

ticular, Xi and Zi are represented by the standard basis vectors
ei and ei+n, respectively. The representation can then be
linearly extended to arbitrary Pauli strings. It can be checked
that multiplication in Pn corresponds to vector addition in
F2n

2 .

Let Ω =
[

0 In
−In 0

]
and ω : F2n

2 ×F2n
2 → F2 be the standard

symplectic bilinear form given by

ω (v, w) = vTΩw. (2)

Two Pauli strings commute iff ω evaluated on the two corre-
sponding binary vectors v, w equals zero.

In Eq. (2) a convenient way to express the (anti-
)commutation relations was given. As noted before, Clifford
operations can be thought of as the operations that preserve
those relations. Furthermore, the transformations on the binary
vectors turn out to be given by linear transformations. As such,
conjugation by a Clifford corresponds to a so-called symplectic
linear transformation [22], [27], [28], [29]. That is, there is
a surjective group homomorphism from the Clifford group to
the symplectic group of order n over F2,

Sp(2n,F2) = {M ∈ Mat2n (F2)) |MTΩM = Ω}. (3)

Thus Sp(2n,F2) consists of those matrices M that preserve
the symplectic bilinear form from Eq. (2), i.e. ω(Mv,Mw) =
ω(v, w), ∀v, w ∈ F2n

2 .

B. Graph Theory

We consider here only simple undirected graphs — that
is, graphs with no loops and at most one edge between any
two vertices. A graph G = (V,E) has a vertex set V and
edge set E, the latter of which has as elements unordered
pairs of vertices. The neighborhood Nv of a vertex v is the
set of all adjacent vertices of v, i.e. Nv = {w ∈ V |
{v, w} ∈ E}. Given a subset S ⊆ V of a graph G, the induced
subgraph G [S] is defined as the graph with vertex set S and
an edge set containing all edges that are incident with vertices
in S only. Furthermore, G− S is defined as G [V \ S].

A local complementation τv is an operation on a graph G
that for a vertex v takes the graph complement on the induced
subgraph G [Nv], while leaving the rest of the edges invari-
ant [30]. That is, for each pair of vertices in the neighborhood
of v, an edge is added if it was not present, and removed if it
was present. We show an example of a local complementation
in Fig. 3. Two graphs that are related by a sequence of
local complementations are LC equivalent. These operations
will be important to describe operations on representations of
distillation protocols.
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Fig. 3. Example of a local complementation on a graph. The local
complementation is performed on the encircled vertex. The unconnected edges
indicate that the graph shown can be part of a larger graph, that is left
unchanged after the local complementation.

Finally, the chromatic index of a graph G will be useful
for us to express minimum circuit depths with. The chromatic
index of a graph G is the smallest number of colors needed
to color the edges of G such that no two incident edges have
the same color.

III. DISTILLATION AND ERROR CORRECTION

In this section we define bilocal Clifford distillation
protocols and stabilizer codes, and demonstrate a useful cor-
respondence between the two.

A. Bilocal Clifford Protocols

Bilocal Clifford protocols are distillation protocols consist-
ing of the following steps. First, Alice and Bob apply CT⊗C†,
for some Clifford circuit C, see Fig. 4. These Clifford circuits
are composed of Hadamard gates H , S gates, and CNOT
gates. Secondly, they measure out the last n − k qubit pairs
in the computational basis, and communicate their outcomes
to each other. They both calculate the syndrome string b of
length n, where the i’th index of b equals zero for 1 ≤ i ≤ k,
and equals the parity of the sum of the two outcome bits of
the measurement on the i’th pair for k < i ≤ n. Finally,
depending on the outcome, Alice and Bob call the distillation
a success or failure, and are otherwise allowed a final local
unitary in the case of success. We will consider first only the
case of post-selecting on b = 0 (which we will also refer to as
the trivial measurement syndrome), and consider the general
case later in Section VI.

The states that Alice and Bob distill are Bell pairs |Φ+⟩ =
|00⟩+|11⟩√

2
with noise applied to them. In particular, we assume

Bell-diagonal noise, i.e. NP (·) =
∑

P∈Pn
pPP (·)P †. That

is, the noise corresponds to having applied the Pauli strings
P with probability pP . We can assume without loss of
generality that the noise is applied to only one side of the
Bell pairs. This is due to the identity AT ⊗ I|Φ+⟩⊗n = I ⊗
A|Φ+⟩⊗n, where A is any matrix of the appropriate size [31].
Bell-diagonal noise is not only a relevant error model [22], but
states can always be transformed to be of Bell-diagonal form
by applying only local operations and classical communication
whilst preserving the fidelity [2].

Define the set Pk by

Pk = {P1 ⊗ · · · ⊗ Pk ⊗Qk+1 ⊗ · · · ⊗Qn ∈ Pn :
Pi ∈ {I,X, Y, Z} ∀i ∈ {1, . . . , k},
Qj ∈ {I, Z} ∀j ∈ {k + 1, . . . , n}}.

Fig. 4. Depiction of how bilocal Clifford circuits map
n-qubit-qubit pairs to n-qubit-qubit pairs before measuring. From
a) to b), we use that ⊗n

i=1ρi = (I ⊗NP )
((
|Φ+⟩⟨Φ+|

)⊗n
)

,

with NP (·) =
∑

P∈Pn
pPP (·)P †. In c), we use that

AT ⊗ I|Φ+⟩⊗n = I ⊗ A|Φ+⟩⊗n for any matrix A of the appropriate
size [31]. For d), we use that Cliffords act on the group of Pauli
strings Pn by conjugation. The channel can therefore be written as
NP̃ (·) =

∑
P∈Pn

pP P̃ (·) P̃ † with P̃ = C†PC.

The probability of a measurement with the all-zero syn-
drome string b = 0 depends only on the set of P ∈ Pn

that are mapped to Pk under the map P 7→ CPC† [22].
Equivalently, these are all elements in the subgroup C† (Pk),
where we abuse notation and use the shorthand C† (Pk) =
{C†PC | P ∈ Pk}. The probability pb

succ for observing the
b = 0 syndrome is given by

pb
succ =

∑
P∈C†(Pk)

pP . (4)

Similarly, the fidelity for the all-zero syndrome string b =
0 is determined by the P ∈ C† (Bk), where Bk is the set
defined as

Bk = {I1 ⊗ · · · ⊗ Ik ⊗Qk+1 ⊗ · · · ⊗Qn} ∈ Pn :
Qj ∈ {I, Z} ∀j ∈ {k + 1, . . . , n}}.

The output fidelity F b (with respect to the k-fold tensor
power of |Φ+⟩) for the case of b = 0 is given by

F b =

∑
P∈C†(Bk) pP∑
P∈C†(Pk) pP

. (5)

As was shown in [22], the set C† (Pk) determines the set
C† (Bk) and vice versa. This is because the elements of Pk

are exactly the elements that commute with all of Bk, and vice
versa. Since conjugation by Cliffords is an automorphism on
Pn, the image of Pk is uniquely determined by the image of
Bk (and vice versa) under such a conjugation. More explicitly,
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the image of Pk is the set of elements that commute with all
elements of the image of Bk. We note here that constructing
the inverse of C (in particular in the symplectic picture) can
be done efficiently. A distillation protocol is characterized by
its distillation statistics — that is, the multiset of its output
states (up to local operations) and success probabilities, for all
possible values of b.

B. Stabilizer Codes

A stabilizer group B is defined as an Abelian subgroup of
the Pauli group on n qubits Pn, not containing the−I element.
A stabilizer group acts on C2n

, the statespace of n qubits,
and stabilizes a subspace of dimension 2k. This subspace is
the stabilizer code associated with B. The basis codewords
of a stabilizer code are a (non-unique) collection of states
that form a basis for the stabilized subspace, the elements of
which we will also refer to as codewords. As an example,
if B = {II,XX} then a possible choice of codewords is
given by |+ +⟩ and | − −⟩.

Given a stabilizer group B, let B⊥ be the set of
elements in Pn that commute with all elements in the sta-
bilizer group. For B = {II,XX}, this set is given by
{II,XX,ZZ, Y Y, IX,XI, ZY, Y Z} (up to phases). This set
forms another group, which turns out to be an important group
for quantum error correction [25]. In the symplectic picture,
the two subgroups correspond to so-called isotropic and co-
isotropic subspaces, respectively [32], and form each others
complement under the symplectic form ω.

An important further quantity of a code is its distance d.
The distance is the smallest weight error E ∈ Pn that maps
one codeword to another. In terms of the stabilizer group B,
this is the largest integer d such that Ew(B) = Ew

(
B⊥)

, for
all 0 ≤ w < d, see [25].

Given a fixed [n, k, d] stabilizer code, it is possible to apply
Clifford operations to it to obtain any other possible [n, k, d′]
stabilizer code. In other words, we can specify any code by
specifying the fixed stabilizer code and a (non-unique) Clifford
operation that maps between the two. For the fixed stabilizer
code, we can choose a particularly simple one. For given
n and k, we fix the stabilizer subgroup Bbase as the one
generated by Zk+1, Zk+2, . . . , Zn. Applying a Clifford circuit
C† to the stabilizer group Bbase gives a new stabilizer group
C†BbaseC. We have used C† instead of C, which will turn
out to be convenient later on. We note that the states stabilized
by Bbase are the states of the form |ψ⟩|0⟩⊗(n−k), where |ψ⟩
is an arbitrary state on k qubits. We note that stabilizer states
correspond precisely to [n, 0, d] stabilizer codes [33], [34].

C. Correspondence

The above-mentioned stabilizer subgroup Bbase is exactly
the same as Bk. Furthermore, Pk is the same as B⊥

base. Thus,
applying C† to Bbase defines a new code C†BbaseC, which
also sets the P ∈ Pn that get mapped P 7→ CPC† to Bk.
As mentioned above, this specifies the output state (up to local
unitaries) and the success probability. More explicitly, for a
given stabilizer code that encodes a k-qubit state |ψ⟩ into
n qubits by applying C to |ψ⟩|0⟩⊗(n−k), the corresponding

Fig. 5. Relation between bilocal Clifford protocols and stabilizer codes, for
the specific case of n = 4, k = 2. The left figure corresponds to a two-qubit
state |ψ⟩ being encoded into four qubits through a Clifford circuit C. The
right figure shows a bilocal Clifford protocol, where C is the same Clifford
circuit as in the left. The circuit CT ⊗ C† acts on the input state of the
distillation protocol.

distillation protocol corresponds to Alice and Bob applying
the circuit CT ⊗ C† and then measuring out the last k states
in the computational basis, in effect measuring the stabilizers
of the code.

We show the correspondence in Fig. 5. Specifically, the
correspondence maps an encoding circuit C (which takes a
k-qubit input state together with n − k |0⟩ auxilliary states
to the encoded subspace) to the circuit C† applied by Bob.
We note that the general case of the correspondence between
quantum codes and distillation was considered in [24], which
we consider here a special case of, namely the correspondence
between stabilizer codes and bilocal Clifford protocols. From
now on, we will refer interchangeably to codes and distillation
protocols.

One detail here is that in the bilocal Clifford protocol
picture a ± factor in front of a stabilizer is immaterial. In the
stabilizer picture these prefactors do not change the actual
error-correcting properties of the code, and we will ignore
them here as well.

IV. REDUCTION TO GRAPH CODES

Here we show how we can reduce an optimization over all
bilocal Clifford distillation protocols to one over a subset of
graph codes in the case of permutationally invariant depolar-
izing noise. Depolarizing noise is a common noise model for
quantum systems and for a single qubit corresponds to the
following map ρ 7→ (1− p) ρ+ pTr (ρ) I

2 , where Tr indicates
the trace and I is the identity operator on the corresponding
qubit.

Graph codes are a subset of stabilizer codes, and any
of the basis codewords can be conveniently described by a
graph G′ with n vertices, along with a linear combination
of k linearly independent bitstrings ai of length n. First, we
define

|G′⟩ =
∏

{i,j}∈G′

CZij |+⟩⊗n,

where |+⟩ = |0⟩+|1⟩√
2

, and where with
∏
{i,j}∈G CZij we abuse

notation to mean that a CZij gate is applied for every edge
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{i, j} in the graph G′. The set of basis codewords are then of
the form

Zc|G′⟩, (6)

where Zc is shorthand for a Z gate for each qubit correspond-
ing to a 1 for some bitstring c ∈ Fn

2 , and the c are all linear
combinations of the ai. Since the ai are linearly independent,
there are 2k distinct c, so that the corresponding space is 2k-
dimensional. The viewpoint of graph codes as built from a
graph G′ with a collection of Z-type operators/bitstrings has
been used in for example [35] to construct quantum error
correction codes. We note that for the case of k = 0, one
retrieves the case of graph states [33], [34], since the span of
the empty set is the trivial vector space.

The above description was not constructive. That is, given
a collection of codewords of the form in Eq. (6), it is
not immediately clear what kind of circuit implements the
corresponding code. An [n, k, d] graph code can also be
described by the following constructive procedure [23], [33],
which will turn out to be useful for our purposes. First, prepare
n output qubits in the |+⟩ state, and prepare the state to be
encoded in k input qubits. Secondly, CZ gates are applied
between pairs of qubits, i.e.

∏
{i,j}∈G CZij for G some graph

is applied. Unlike the codeword picture, the graph G here
specifies the CZ gates to be applied also between input qubits
and output qubits. As such, the graph G has n + k vertices,
and not n vertices as in the graph used in Eq. (6). Finally,
by measuring all the k input qubits in the X basis and applying
a correction dependent only on the measurement outcomes, the
input qubits are encoded in the n remaining output qubits [33].
To specify a graph code, it thus suffices to specify a graph G
and label the vertices as in- and output qubits, see Fig. 6 for an
example. The example given there corresponds to the [4, 2, 2]
code [36].

Thus, to such a graph G we can associate a (family of)
states of the form

∏
{i,j}∈G CZij |ψ⟩|+⟩⊗n, where |ψ⟩ is an

arbitrary state on k qubits. The choice of |ψ⟩ only changes the
state to be encoded, and does not change the error correcting
properties of the code.

Definition 1: A graph is called an (n, k)-graph if its vertex
set V of size n+k is partitioned into two sets V in and V out =
V \ V in of vertices (called the in- and output vertices), such
that

∣∣V in
∣∣ = k.

Furthermore, we will interchangably refer to input (output)
qubits and input (output) vertices. Finally, we will refer to
permutations of the vertices that permute the n output and k
input vertices separately as (n, k)-permutations.

Let us now investigate the relation between the (n, k)-graph
picture and the codeword picture from Eq. (6). First let us
consider the case of k = 1, i.e. a single input qubit. Fix an
(n, k)-graph G with a single input qubit (labelled by v), and
prepare the input qubit in the state α|0⟩+β|1⟩. A measurement
on that input qubit leads (after a correction consisting solely
of Pauli operations) to a state α|G−{v}⟩+ZNvβ|G−{v}⟩,
where |G−{v}⟩ is the graph state corresponding to the graph
G with vertex v deleted, and ZNv is shorthand for

∏
i∈Nv

Zi.
Now let us consider k arbitrary. After measuring out all input
qubits vi ∈ V in and applying the necessary corrections, we find

Fig. 6. Example of an (n, k)-graph, corresponding to the [4, 2, 2] graph
code [36]. The two-qubit input to the code is initialized on the diamond
vertices, and then measured in the X basis. After (local) corrections depending
on the measurement outcomes, the input state is encoded on the remaining
four vertices.

that we end up with a superposition of (in general) 2k states
of the form

Zc|
(
G− V in)⟩. (7)

By equating Eqs. (6) and (7), we find that G′ =
(
G− V in

)
is the graph obtained by removing all input vertices v ∈ V in

from G, and that the possible c are linear combinations (over
F2) of the k strings ai. Importantly, the ai are exactly those
bitstrings that have a 1 for the vertices in G− V in connected
to vi for each vi ∈ V in, and zero otherwise. We note that the
correction that needs to be performed is a stabilizer of |G′⟩
(and thus consists of only Pauli corrections), and is chosen
to anti-commute with exactly those Zc that acquired a minus
sign after the measurement. While both the codeword (from
Eq. (6)) and (n, k)-graph picture are useful for understanding
graph codes, the (n, k)-graph picture will be more fruitful
than the codeword picture for the enumeration of such codes.
On the other hand, the codeword picture is particularly useful
for understanding how to construct distillation circuits (see
Section V). For related literature on the (n, k)-graph picture,
see [36] and [37].

As mentioned above, graph codes are a strict subset of sta-
bilizer codes that admit a convenient graphical representation.
However, we will show that we can restrict to graph codes.
First, let us define the subgroup Kn of the Clifford group on
n qubits as

Kn = ⟨ {SWAPij}1≤i<j≤n ∪ {Hi}n
i=1 ∪ {Si}n

i=1 ⟩.

This subgroup corresponds to permutation of the qubits,
and single-qubit Clifford operations. We now define two
equivalence relations on distillation protocols.

Definition 2: Two bilocal Clifford distillation protocols are
distillation equivalent if the two protocols yield the same
output states (up to local rotations) with the same success
probability when distilling an n-fold tensor power of a Werner
state and when conditioning on seeing the trivial measurement
syndrome b = 0.

Definition 3: Two bilocal Clifford distillation protocols are
locally equivalent if their associated subgroups B1 and B2 are
equal up to conjugation by an element K in Kn, i.e.

B1 ∼ B2 ⇐⇒ B1 = KB2K
−1.

The motivation for the first equivalence is clear — if two
protocols output the same state with the same probability, they
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are indistinguishable in their distillation capabilities, at least
for b = 0. Ideally, one would call two distillation protocols
equivalent if for each syndrome string b there exists another
syndrome string b′ such that the output state for the first
protocol with syndrome string b is the same as the output
state up to local rotations for the second protocol with syn-
drome string b′. This is however impractical for enumeration
purposes, since the number of possible syndrome strings grows
as 2n−k, the number of coefficients to compare grows as 4k,
and each coefficient is described by a weight enumerator of
length n + 1 (see Section VI). In Section VII we provide a
heuristic motivation for restricting to the b = 0 case. Thus,
an enumeration over distillation protocols means finding a
set of pairwise inequivalent distillation protocols for fixed
n and k. The second equivalence is motivated by the fact
that Kn is the subgroup of the Clifford group that stabilizes
an n-fold tensor power of a Werner state. Thus, the states
before measuring when distilling with circuits C and CK with
K ∈ Kn are equal, which means they are indistinguishable in
their performance as a distillation circuit in the case of no
noise. We note that the same equivalence was given in terms
of double cosets in [22], and that local equivalence implies
distillation equivalence.

Now, every stabilizer code is equal to some graph code,
up to single-qubit Cliffords [23], [38]. This means that it
suffices to consider graph codes up to permutation of the
qubits.

While every bilocal Clifford protocol is equivalent to a
graph code, this graph code is not unique. This induces an
equivalence relation on graph codes themselves. It will turn
out to be most convenient to phrase this equivalence on (n, k)-
graphs.

Definition 4: Two (n, k)-graphs G1, G2 are locally equiv-
alent if there are two stabilizer states |ψ⟩, |ψ′⟩ such that∏
{i,j}∈G1

CZij |ψ⟩|+⟩⊗n and
∏
{i,j}∈G2

CZij |ψ′⟩|+⟩⊗n are
the same up to (not necessarily single-qubit) Clifford opera-
tions on the input qubits and single-qubit Clifford operations
plus permutations on the output qubits.

This equivalence under single-qubit Clifford operations and
permutations on the output qubits stems from the same rea-
soning as in definition 3 when distilling Werner states. The
equivalence under arbitrary Clifford operations on the input
qubits stems from the fact that the state to be encoded does
not change the error correcting properties of the code, as noted
before. That is, the resultant codewords from Eq. (6) will
not change, only their weights. The term locally equivalent
is motivated by imagining the input qubits to being local to
a single node, while the remaining qubits are assumed to be
separated in space. We note that permutations on the output
qubits are not local in this sense, however.

Proposition 1: Local equivalence on (n, k)-graphs is
equivalent to the underlying (n, k)-graphs being related by a
sequence of (n, k)-permutations, local complementations and
edge flips, i.e. the addition or removal of an edge between two
input vertices.
The above proposition follows from a result from [39], which
deals with transforming graph states when qubits are grouped
in such a way to be local to a node. In other words, each party

is allowed to perform arbitrary Clifford operations on their
locally held qubits. The result from [39] now states that two
graph states |G⟩, |G′⟩ are related by such party-local Clifford
transformations if and only if the underlying graphs are related
by a sequence of edge flips and local complementations. Here,
the edge flips are only allowed between vertices corresponding
to a local party.

Corollary 1: To enumerate all [n, k, d] bilocal Clifford dis-
tillation protocols, it suffices to enumerate over (n, k)-graphs
up to local equivalence.

Furthermore, the equivalence relation can be relaxed to a
finer — but better studied — equivalence relation.

Corollary 2: To enumerate all [n, k, d] bilocal Clifford dis-
tillation protocols, it suffices to enumerate over all graphs
with n + k vertices up to graph isomorphism and local
complementation, together with all subsets of the vertices with
size k (which effectively corresponds to selecting the k input
vertices).

We can furthermore restrict to connected graphs. That is
because if G is not connected, there are qubits that do not
interact with each other. The corresponding distillation proto-
col would then naturally decompose into smaller distillation
protocols. Connected representatives under the LC + permu-
tation equivalence relation have been found up to n = 12
[40], meaning that in principle we can enumerate all n to
k distillation protocols such that n + k = 12. We note that
a restriction to connected graphs was not possible from the
viewpoint considered in for example [35].

For distillation protocols with n + k > 12, a naive
method would be to partition the set of (n, k)-graphs into
the equivalence classes directly. Similar to the approach from
[41] and [42] a more efficient approach exists, however.
This approach is based on so-called extensions. We have not
used this approach however, but detail it for completeness in
Appendix B.

We close this section with two remarks. First, a slightly
more general scenario can be considered where besides in- and
output qubits there exist also auxiliary qubits. Similarly to the
output qubits, these qubits are prepared in the |+⟩ state and
have the CZ gates applied to them. Unlike the output qubits
however, they are measured out in the X basis, similar to the
input qubits. Importantly, we do not have to consider the case
of auxiliary qubits, since measuring an auxiliary qubit in the X
basis maps graph states to graph states, where importantly the
two possible graph states that can arise are LC equivalent [34].
Thus, the resulting states can be transformed by single-qubit
Cliffords, and thus will yield equivalent codes.

Finally, we note that we restricted ourselves in definitions 3
and 4 to equivalences phrased in terms of arbitrary Clifford
operations, instead of arbitrary unitaries. This is motivated by
the following. It was conjectured that equivalence of two graph
states up to single-qubit unitaries implied equivalence up to
single-qubit Clifford operations [43], [44]. However, this was
shown to be false [45]. So far, there has been no good (graph-
theoretical) understanding of the equivalence up to single-qubit
unitaries for graph states, let alone for the case of k > 0.
For this reason, we consider only equivalence up to Clifford
operations.



GOODENOUGH et al.: NEAR-TERM n TO k DISTILLATION PROTOCOLS USING GRAPH CODES 1837

V. DISTILLATION CIRCUITS

In the previous sections we used the (n, k)-graph represen-
tation to enumerate over bilocal Clifford distillation protocols.
However, given an (n, k)-graph, it is not clear how to construct
a bilocal Clifford circuit corresponding to the code. In partic-
ular, the encoding picture requires a total of n + k qubits,
while there exists a bilocal Clifford circuit that only processes
n qubits simultaneously.

In this section we provide first a way to construct a bilo-
cal Clifford circuit from an (n, k)-graph. We then introduce
heuristics for reducing the number of two-qubit gates (and/or
optimize any other quantity of interest) of the corresponding
circuits.

A. From Graph Codes to Circuits

To find a circuit from a given graph code, we find a way to
map the codewords of the code to codewords of the form

Zc′ |+⟩⊗n, (8)

where the c′ are all the 2k bitstrings that are 0 on the last n−k
indices. These codewords are chosen since they correspond to
the situation after decoding, see the left-hand side of Fig. 5.

The codewords of a graph code are always of the form
shown in Eq. (6). Applying the

∏
{i,j}∈(G−V in) CZij circuit to

such codewords yields codewords of the form Zc|+⟩n (where
we have assumed an ordering on the vertices). Since the c are
all the linear combinations of the ai, it suffices to map the ai

to a basis of the subspace that has a 0 for all the qubits that are
to be measured. Now, note that the a1,a2, . . . ,ak are linearly
independent. Thus, after Gaussian elimination the matrix

A = [a1,a2, . . . ,ak]T

will have k pivots. A pivot is the left-most non-zero entry of a
nonzero row. By relabeling the vertices, it is possible to have
pivots in columns 1 to k after Gaussian elimination. It will be
convenient to use such a labeling. In particular, let the in- and
output vertices of an (n, k)-graph be labeled by

V in = {vin
i }

k

i=1 and V out = {vout
i }n

i=1,

respectively. Such a labeling also splits the output vertices into
those that are kept and measured out by setting

V out
keep = {vout

i }k
i=1 and V out

meas = {vout
i }n

i=k+1,

respectively.
Definition 5: A labeling V in, V out is a valid labeling if

the matrix A has pivots in columns 1 to k after Gaussian
elimination.

An example of a valid labeling is shown in Fig. 7. A
non-valid labeling would be one with output vertices 2 and
4 switched, since then

A =
[
1 1 0 0
0 0 1 1

]
has pivots in columns 1 and 3.

Given a valid labeling of an (n, k)-graph, it is possible to
find a canonical set of CNOT gates (up to ordering) such that
the Zavi operators are mapped to have support on only V out

keep.

Fig. 7. Constructing a circuit from an (n, k)-graph. The CZ gates correspond
to the induced subgraph on the output qubits, while the CNOT gates map
Z1Z3Z4 (the neighbors of the left input qubit) and Z2Z3 (neighbors of the
right input qubit) to Z1 and Z2.

In particular, for 1 ≤ i ≤ k, perform a CNOTji for every
non-zero entry j ̸= i in the i’th row of A. For example, the
matrix

A =
[
1 0 1 1
0 1 0 1

]
corresponds to performing CNOT31CNOT41CNOT42. Note
that the CNOT gates in this construction have the control
on qubits in V out

meas and target on qubits in V out
keep, and thus all

commute. This fact will turn out to be useful for our heuristics
for circuit construction later in this section.

Thus, to construct a circuit corresponding to an (n, k)-
graph, a valid labeling needs to be established first. We empha-
sise that the labeling does not change the statistics when
distilling an n-fold tensor power of a Werner state, and only
affects the construction of the circuit. Then, CZij is applied
for each edge in the graph G − V in. Afterwards the above
construction for the CNOT gates is applied. Finally, for each
qubit in V out

meas a Hadamard is applied and then measured out.
See Fig. 7 for an example of the circuit constructed from an
(n, k)-graph (with the associated valid labeling). We note a
related approach was taken in [37].

We now use this circuit picture to show that it is always
possible to remove CZ gates that act only on qubits that are
kept (i.e. vertices in V out

keep), without changing the distillation
statistics. Important for the proof are the following commuta-
tion relations,

CNOTijCZkl = CZklCNOTij ,

CNOTijCZij = CZijCNOTij ,

CNOTikCZij = CZijCNOTik ,

CNOTikCZjk = CZijCZjkCNOTik , (9)

where the i, j, k, l are distinct.
Lemma 1: Fix a valid labeling of an (n, k)-graph G. Then

G is locally equivalent to an (n, k)-graph G′ that has no edges
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Fig. 8. A graph with 2 input vertices, but whose corresponding code only
encodes one qubit.

between any pair of vertices in V out
keep. Furthermore, the edge

sets of G and G′ differ only by edges {i, j} with i, j ∈ V out
keep

or i, j ∈ V out
meas.

Proof: Given a valid labeling, there is a canonical circuit
(up to ordering of the CZ and CNOT gates). Assume for that
circuit there is some CZij with i, j in V out

keep. Let us now attempt
to commute this CZij gate through one of the CNOTkl gates,
where by construction k ∈ V out

meas and l ∈ V out
keep. There are two

cases — either the CZij and CNOTkl gates commute, or a
CZik gate is added. Repeating this procedure until the CZij

gate is moved to the end will thus lead to a sequence of CZpq

gates (with p ∈ V out
keep, q ∈ V out

meas) and CNOTkl gates (where
as before k ∈ V out

meas, l ∈ V out
keep), followed by the CZij at the

end. Note that the CZij gate at the end is on qubits in V out
keep,

and thus does not change the distillation statistics. Each of
the other CZpq gates with p ∈ V out

keep, q ∈ V out
meas can now

be commuted back to the other CZ gates at the beginning
of the circuit. As before, either a CZpq gate will commute
with a CNOTkl gate, or add a CZqk gate, with q, k ∈ V out

meas.
To summarize, since q, k ∈ V out

meas, it is possible to commute
a CZ gate acting on qubits in V out

keep through the CNOT gates
(after which it can be ignored since it acts on qubit pairs that
are to be kept), without introducing any CZ gate acting only
on qubits in V out

keep.
By repeating the above procedure for every CZij gate with

i, j ∈ Vout, there will eventually be no such CZij gate remain-
ing. Furthermore, this procedure only added CZ gates between
vertices in V out

meas, and did not change any edges incident with
V out. Thus, since the above procedure did not depend on which
valid labeling was used, the statement follows. □

We will use this Lemma in Section VI to find another
way to enumerate distillation protocols using the symplectic
formalism.

We close this section with the following two subtleties.
While it is true that any [n, k, d] code is locally equivalent to
a graph code specified by an (n, k)-graph, the converse is not
true. That is, while any (n, k)-graph specifies a stabilizer/graph
code, it is not true that that code is necessarily a stabilizer
[n, k, d] code. A trivial example is given when none of the k
input qubits are connected with any output qubit. In this case,
while the number of input qubits is greater than zero, the input
state is prepared on a fixed state, and thus encodes no logical
qubits. A less trivial example is given by the (n, k)-graph in
Fig. 8. Here, the problem is that the resultant codewords of the
code span a space of dimension less than k. This is because the

Fig. 9. A graph code and corresponding circuit that is LC equivalent to the
code and circuit in Fig. 7. Here the CNOT gates map Z1Z3Z4 and Z1Z2 to
Z1 and Z1Z2, respectively.

two input vertices share the same neighbors. As noted before,
this is due to the fact that the ai are not linearly independent.
Note that such examples do not have any impact on any of
the statements made in this section regarding our search for
distillation protocols.

Finally, in the construction of the circuit a valid labeling
of the (n, k)-graph was required. The labeling will lead to
different constructed circuits, which could potentially lead to
better circuits. We do not pursue optimizing over the different
labelings, however.

B. Heuristics for Circuit Compilation

In the previous subsection we found a way to system-
atically construct a circuit from an (n, k)-graph. Here we
are concerned with constructing good circuits that achieve
the same distillation statistics. Depending on the physical
model, different criteria/metrics can be used for defining a
good circuit. The first and most important metric we use is
the number of two-qubit gates, which should be minimized.
If decoherence over time is significant, it is important to
minimize the depth of the circuit. If the gate noise is the
predominant source of noise, we aim to reduce the number
of two-qubit acting on the qubit(s) to be kept. We will refer to
gates that act on the qubits to be kept as keep-gates for short.
In what follows, we detail three heuristics methods to search
through a set of circuits that achieve the distillation statistics
corresponding to a given (n, k)-graph.

Firstly, given an (n, k)-graph G, we can construct a circuit
using any (n, k)-graph that is locally equivalent to G. This is
because the distillation statistics will necessarily be the same
for the constructed circuits. As an example, we show a graph
in Fig. 9 that is LC equivalent to the graph in Fig. 7 (by an
LC on vertex 2). Note that the graph in Fig. 7 yields a shorter
circuit.

Before moving on to the other heuristics, we investigate now
briefly how to calculate (upper bounds) on the depth and the
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number of two-qubit gates corresponding to the circuit of an
(n, k)-graph. First, the number of two-qubit gates is given by
the sum of the number of CZ and CNOT gates. The number
of CZ gates is equal to the number of edges in G− V in. The
number of CNOT gates is equal to the non-zero entries of
[a1, . . . ,ak]T after Gaussian elimination, minus the number of
pivots. The depth needed to perform the CZ gates is equal to
the chromatic index of G−V in, see Section II. For calculating
the depth of the CNOT gates, we note that all the CNOT gates
commute. Thus, the minimum depth for the CNOT gates is
the chromatic index of the graph with n vertices and an edge
between two vertices vi, vj if there is a CNOTij gate. Finally,
one more time step is needed to perform the layer of Hadamard
gates. We note that in certain cases it is possible to perform
some of the CZ and CNOT gates at the same time, which
can reduce the depth even further.

Secondly, it is possible to change the order of all of the
CZ and CNOT gates by commuting all of them through each
other. For this, we use the commutation relations from Eq. (9).
In certain cases, the additional CZ gates incurred will cancel
with CZ gates already present, leading potentially to a smaller
number of two-qubit gates/depth/keep-gates.

In the above paragraphs we had circuits that first had a round
of CZ/CNOT gates, followed by a round of CNOT/CZ
gates. As our final heuristic, we break this structure to find
better circuits. First, note it is possible to apply a CNOT gate
(just before measuring) with control and target on the n − k
qubits that are measured out, without changing the distillation
statistics. By commuting such a gate through (one of) the CZ
gates, it is possible that some CZ gates will cancel. This can
lead to keeping the total number of two-qubit gates the same
(or even lower them), but allowing in certain cases to reduce
the depth/keep-gates. Similarly, we also consider the case
when permuting at most one of the CZ gates with the CNOT
gates. We show an example of our heuristics in Fig. 10. In this
example, we reconstruct the circuit also presented in [22], but
which was found using a brute-force method.

Thus, to heuristically find good enough circuit(s) for a given
(n, k)-graph G, we first sample (n, k)-equivalent graphs by
randomly applying local complementations (using the imple-
mentation from [46]) and edge flips. For each (n, k)-equivalent
graph G′, we calculated the number of two-qubit gates for
the circuit found directly from G′, and also from the circuit
found from commuting all CZ gates through the CNOT gates.
Out of these, only the circuits with the smallest number of
two-qubit gates was kept. After having sampled through a
sufficient number of (n, k)-graphs, the heuristics from the
previous paragraph are applied to minimize either the depth
or number of keep-gates.

VI. ENUMERATING PROTOCOLS AND CALCULATING
STATISTICS IN THE SYMPLECTIC PICTURE

With the ability to enumerate all bilocal Clifford protocols,
we need a way to gauge the performance of a given distillation
protocol. The quantities of interest are the success probability
(for a given observed syndrome b) and the coefficients of the
output state (conditioned on observing b). These quantities will
depend on the initial probability distribution of the input state

{pP }P∈Pn and the given Clifford circuit C. Calculating these
quantities in the density matrix formalism becomes unwieldy
and impractical. Luckily, all of the necessary calculations can
be phrased in the stabilizer/symplectic formalism.

In this section, we first construct the symplectic matrix given
an (n, k)-graph. Then, we show how to reduce the search space
of distillation protocols to symplectic matrices of a certain
form. We close with discussing how to calculate the quantities
of interest for distillation.

A. Constructing Symplectic Matrices

Here we describe how to find the symplectic matrix M given
an (n, k)-graph. Following the recipe from Section V, we first
apply a CZij gate for each edge {i, j} ∈ G−V in. We use the
fact that the symplectic representation of

∏
{i,j}∈G−V in CZij

is equal to [
In 0

Adj
(
G− V in

)
In

]
,

where Adj
(
G− V in

)
=

[
Q RT

R S

]
, is the adjacency matrix of

G − V in where we have rewritten the matrix without loss of
generality with Q ∈ Fk×k

2 , S ∈ F(n−k)×(n−k)
2 symmetric and

R ∈ F(n−k)×k
2 .

Now, the CNOTij gates are applied. Let T ∈ F(n−k)×k
2

be the matrix with Ti,j = 1 if a CNOT gate is performed
between j+k and i and 0 otherwise. Note that T is the bottom
(n− k)×k submatrix of AT. The resulting symplectic matrix
is then of the form [

AT 0
B′ A

]
,

where

A =


Ik 0

T In−k

 , (10)

B′ =


Q RT

R+ TQ S+TRT

 . (11)

Now the final layer of Hadamard gates is applied. For
convenience, we multiply both from the left and right with
H⊗n. Note that multiplying by the right with H⊗n does not
change the distillation statistics, since H⊗n ∈ Kn.

The symplectic matrix is then of the form[
A B′

0 AT

]
,

with A and B′ as above.
Note that by Lemma 1 it suffices to consider those (n, k)-

graphs such that Q = 0. We then retrieve the following.
Theorem 1: Given a symplectic matrix M corresponding

to a distillation protocol, there is always a matrix M ′ of the
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Fig. 10. The top left graph is known to correspond to the five qubit code [23]. The top middle graph is obtained after a local complementation on two
adjacent output vertices. For the top right graph we choose a specific labelling of the input qubits. Below, the first circuit is constructed from the top right
graph. The second circuit is obtained from commuting the CNOT gates through the CZ gates. The last circuit results from adding a CNOT34 gate before
measuring (which does not change the statistics), and commuting it through the CZ gates. Note that the last circuit has a lower depth than the one above it.
We note that the last circuit is the same circuit as found in [22], but which was found using a brute-force method.

following form that will yield the same distillation statistics,

M ′ =
[
A B
0 AT

]
, A =


Im 0

T In−k

 , B =


0 RT

R S+TRT

 ,
where R ∈ F(n−k)×k

2 and S ∈ F(n−k)×(n−k)
2 is symmetric

with zeroes on the diagonal.
Now let ti, ri be the i’th column of T and R, respectively.

Using a similar argument from [22], it suffices to consider
those T, R such that for each 1 ≤ i ≤ k it holds that ti ≤
ri ≤ ti + ri. Furthermore, it suffices to consider for S the
adjacency matrices of all graphs of order n − k up to graph
isomorphism. This result is a generalization from Lemma V.I
in [22].

We use corollary 2 and Theorem 1 to perform our enu-
meration over distillation protocols. Interestingly, in certain
cases one of the two approaches work better. For example,
corollary 2 allows for a full enumeration over all n = 9 to
k = 1 protocols within a reasonable time, while this is not
possible using the approach from Theorem 1. On the other
hand, since a characterization of LC equivalent graphs is
missing for up to 17 vertices, we could only enumerate over
all n = 10 to k = 7 protocols using Theorem 1.

B. Distillation Statistics From Symplectic Matrices

With a given symplectic matrix M in hand, we now turn to
calculating the corresponding distillation statistics. As defined
before, let b ∈ {0, 1}n be such that for 1 ≤ i ≤ k bi = 0, and
bi is the parity of the two outcome bits of the measurement
on the i’th pair for k < i ≤ n. Before delving into the
calculations, let us first motivate the idea of post-selecting
on sets of different measurement syndromes. A number of
entanglement distillation protocols (such as those studied in [5]
and [22]) were based on error detection — that is, only the
b = 0 case was deemed a success. On the other hand, one can

consider all possible syndrome strings, such as done in [47].
This is commonly called error correction. Error detection
succeeds with a lower probability than error correction (since
there are less accepted syndromes), but will have a higher
(average) fidelity. This motivates us to consider arbitrary sets
of syndrome strings to accept — this will lead to a more fine-
grained trade-off between the success probability and average
fidelity.

For the symplectic matrix M corresponding to a given
distillation protocol and observing a given syndrome b, we find
a success probability of

pb
suc =

∑
v∈M−1(Pk+vb)

pv, (12)

where vb is the symplectic representation of the operator
Xb =

∏n
i=1X

bi . This is because observing the syndrome b
corresponds to applying the operator Xb just before measur-
ing. Furthermore, we abuse notation and use Pk to refer to the
symplectic representation of Pk. Similarly, the corresponding
fidelity is

F b =

∑
v∈M−1(Bk+vb)

pv∑
v∈M−1(Pk+vb)

pv
. (13)

The fidelity corresponds to the coefficient belonging to the
identity Pauli string. Generalizing the above, the coefficient
F b

P corresponding to an arbitrary Pauli string P is

F b
P =

∑
v∈M−1(Bk+vb+vP ) pv∑

v∈M−1(Pk+vb)
pv

. (14)

where vP is the symplectic representation of P .
We will now specialize to simplifying the calculation for

the case of distilling an n-fold tensor power of a Werner
state. In the case of distilling an n-fold tensor power of a
Werner state, the coefficient pP of a Pauli string P is entirely
determined by the input fidelity and the weight wt (P ) of the
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string. Concretely,

pP = Fn−wt(P )

(
1− F

3

)wt(P )

, (15)

where F is the initial fidelity of the input Werner states.
This implies that it is sufficient to keep track only

of the number of different weight operators for calcu-
lations. In particular, in the terminology introduced in
Section II, it suffices to consider the weight enumera-
tors Ew

(
M−1 (Bk + vb + vP )

)
and Ew

(
M−1 (Pk + vb)

)
,

see Section II. That is,

F b
P =

∑
v∈M−1(Bk+vb+vP ) pv∑

v∈M−1(Pk+vb)
pv

=
∑n

w=0 Ew

(
M−1 (Bk + vb + vP )

)
Fn−w

(
1−F

3

)w∑n
w=0 Ew(M−1 (Pk + vb))Fn−w

(
1−F

3

)w

=
E
(
M−1 (Bk + vb + vP ) , F, 1−F

3

)
E
(
M−1 (Pk + vb) , F, 1−F

3

) . (16)

Similarly, we find that the success probability equals

pb
suc = E

(
M−1 (Pk + vb) , F,

1− F

3

)
. (17)

Furthermore, we do not have to find the individual sum-
mands of the numerator and denominator of Eq. 16 for the
case of b = 0, P = I⊗n. This is because E

(
M−1 (Pk)

)
w

and E
(
M−1 (Bk)

)
w

are related by the so-called quantum
MacWilliams identity [25], [48],

2n−k · Ew

(
M−1 (Pk)

)
=

n∑
w′=0

[
w∑

s=0

(−1)s3w−s

(
w′

s

)(
n− w′

w − s

)]
Ew′

(
M−1 (Bk)

)
.

(18)

Calculating the probability using Eq. 17 requires 2n+k

sums. However, using Eq. 18 it suffices to calculate only
E
(
M−1 (Bk)

)
w

, which requires only a sum over 2n−k terms,
and then performing O

(
n3

)
sums. This gives a speedup for

calculating the fidelity and success probability for the case of
b = 0.

This motivates generalizing the MacWilliams identity to the
case of b ̸= 0. That is, finding a relationship between

Ew

(
M−1

1 (Bk + vb)
)

and Ew

(
M−1

2 (Pk + vP )
)

We note that an invertible relation does not exist for the case
of vb replaced with general vP . This is because examples were
found of symplectic matrices M1 and M2 such that

Ew

(
M−1

1 (Bk)
)

= Ew

(
M−1

2 (Bk)
)
.

but there exist no P1, P2 ̸= I⊗n such that

Ew

(
M−1

1 (Bk + vP1)
)

= Ew

(
M−1

2 (Bk + vP2)
)
.

More informally, this is because we found examples of sym-
plectic matrices M1 and M2 such that the resulting states have
the same fidelity and success probability, but the other coef-
ficients of the output state differ (even after local operations).
This is related to the existence of codes/stabilizer states that

are locally inequivalent, yet share the same Ew

(
M−1 (Bk)

)
and Ew

(
M−1 (Pk)

)
[41].

We note here that, since an [n, k, d] code has
E
(
M−1 (Bk)

)
w

= E
(
M−1 (Pk)

)
w

for all w < d [25],
expanding the expression for the fidelity for b = 0 in Eq. (16)
around Fin = 1 gives a distillation protocol with output
fidelity

Fout = 1− Bd −Ad

3d
(1− Fin)d +O(1− Fin)d+1). (19)

Finally, we note that it is also possible to formulate the
calculation of the weight enumerators in terms of the (n, k)-
graph only (i.e. without constructing a symplectic matrix first).
This is done by first constructing the codewords, and then cal-
culating the weight distributions as in [35]. A related approach
was given in [35], where a graph-theoretical approach was
given to calculate the distance of a graph code.1

VII. RESULTS

We have used our tools to find practical distillation proto-
cols, which we now report on here. As in the previous sections,
we focus on the scenario of distilling an n-fold tensor power
of a Werner state.

First, we compare our results with previous distillation
protocols for Werner states. Secondly, we investigate the
potential benefits that considering non-trivial measurement
syndromes (i.e. b ̸= 0) can give for n to 1 distillation. Third,
we evaluate how well the heuristically found circuits perform
under gate- and measurement noise. We compare the output
fidelities of our circuits with those found using the genetic
algorithm from [5]. Finally, we explore the advantages more
general n to k distillation protocols can bring in comparison
with n to 1 distillation. To this end, we use the highest
fidelity 10 to 7 distillation protocol to teleport one half of a
maximally entangled state encoded in the Steane code between
two parties. We compare this approach with two more standard
approaches — one based on no distillation at all, and one that
concatenates the 2 to 1 DEJMPS distillation protocol [3].

A. Comparison with prior distillation protocols

We provide a brief comparison with several prior distillation
protocols, in particular the BBPSSW [1], DEJMPS [3], and
LOCCNet [49] protocols. All three can be thought of as
bilocal Clifford protocols — as such, our results subsume
all of these protocols, at least when distilling from an n-
fold tensor power of a Werner state. The BBPSSW protocol
was the first proposed distillation protocol, and distills two
Werner states to a single Bell-diagonal state by performing
a bilocal CNOT gate and measuring [1]. Since the BBPSSW
protocol was designed for Werner states, the resultant state was
twirled into Werner form such that two such states could be
distilled again with the BBPSSW protocol. It was however
realized that one can generalize the BBPSSW protocol to
Bell-diagonal states, by allowing for some prerotations before

1We note that in [35] the results were framed in terms of the graph
codewords (see Eq. (6)) and not (n, k)-graphs. However as noted in this
paper, these different approaches can be mapped to one another.
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Fig. 11. Envelope of the achieved fidelity and success probabilities, where
we compare post-selecting on detecting all correlated outcomes (solid) with
optimizing over all possible corrections after measuring (dotted). The envelope
is shown for several input fidelities, and for all n to 1 bilocal Clifford protocols
with n = 2 . . . 5.

applying the bilocal CNOT gates. The resultant protocol is
called the DEJMPS protocol [3], and the prerotations are
chosen based on the coefficients in the Bell-basis. Since there
is no need to twirl the state after each round of distillation,
the DEJMPS protocol achieves a better performance than the
BBPSSW protocol. There are several ways to concatenate
the DEJMPS protocol (together with prerotations), leading
to a subset of bilocal Clifford protocols called concatenated
DEJMPS protocols [22]. An explicit comparison with the
optimal protocol and the concatenated DEJMPS protocol was
performed for n ≤ 8 in [22], where for n > 3 there was a gap
in the achieved fidelities. We finally compare with a protocol
found by LOCCNet [49], a machine-learning framework for
LOCC protocols. The LOCCNet protocol found for distilling
n = 4 Werner states is also a bilocal Clifford protocol, and
achieves a higher fidelity than what can be achieved with
a concatenated DEJMPS protocol [49]. As shown in [22],
the protocol found with LOCCNet has the same distillation
statistics as the n = 4 protocol found in [22] (and thus also
this paper). While the number of two-qubit gates is the same,
the circuit from [22] has a smaller depth (4) than the one
found in [49]. which has depth 5. We note that the LOCCNet
framework is more flexible, and would be able to explicitly
include noisy operations in their optimization.

B. Non-Trivial Measurement Syndromes

For our first exploration of the impact of non-trivial mea-
surement syndromes, we consider both the success probability
and output fidelity Fout for different input fidelities Fin.
In Fig. 11 we consider the envelope of all found protocols,
both with only b = 0 (solid) and optimizing over all syndrome
sets (dashed). Since the possible number of syndrome sets to
condition is equal to 22n−k

, the results shown are only for up
to n = 5.

From Fig. 11 it can be seen that including non-trivial
measurement syndromes provides a more significant benefit
for larger input fidelities. However, note that it is in princi-
ple possible to always achieve the convex hull of a set of

Fig. 12. Achieved secret-key rate using the asymptotic BB84 protocol after
distilling from n to 1 pairs, where the envelope is taken over all n to 1
protocols for fixed n. The solid line corresponds to separating the generated
states into bins according to the observed syndrome, and performing the BB84
post-processing for each such bin separately. The dotted line corresponds to
only using the state with the syndrome string b = 0 (i.e. error detection).

distillation protocols by probabilistically mixing distillation
protocols. Observe that the convex hull of the solid and dotted
lines are equal for input fidelities equal to or less than 0.85.
This implies that for input fidelities ≲ 0.85 the inclusion of
non-trivial measurement syndromes provides no benefit, while
for input fidelities somewhere in between 0.85 and 0.95 non-
trivial measurement syndromes start to perform better than
probabilistic mixing of trivial measurement syndromes. This
is consistent with the results from [47].

Secondly, we consider using distillation for quantum key
distribution. We consider the secret-key rate achieved when
using asymptotic asymmetric BB84 [50] after performing
n to 1 distillation. Furthermore, we consider two different
approaches. Firstly, we consider only using the output state
when measuring a trivial measurement syndrome b = 0.
Secondly, we consider using all the possible states for each
possible syndrome string b. Importantly, we bin the states.
That is, we separate the measured statistics into bins according
to the syndrome string b. This allows us to separate the
observed bits into those that had smaller or greater quantum
bit error rates. From the convexity of the secret-key rate this
can lead to increased secret-key rates, see for example [51]
for a similar approach. We show the resultant rates for
n = 2, . . . , 7 in Fig. 12, where the solid line corresponds
to the above-mentioned binning approach, the dotted line
corresponds to only using the syndrome string b = 0. The
plot only shows the results for up to n = 7, since calculating
the output states for the 2n−1 different syndromes became too
computationally intensive.

As would be expected, distilling with a larger number
of pairs allows for a higher noise tolerance. Furthermore,
we see that the envelope of both strategies is the same.
This thus suggests that it suffices to condition only on the
b = 0 syndrome when one can choose the number of
pairs n to distill one pair out of, similar to the conclusion
from [51]. Even for larger n, any potential difference between
the strategies would be marginal and for a small range of
fidelities.
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Fig. 13. Output fidelity when distilling from n to 1 pairs as a function of the gate noise. The input fidelity of the initial states is Fin = 0.7 (top row),
Fin = 0.9 (middle row), and Fin = 0.95 (bottom row). We consider two cases: distilling with circuits found using our heuristics (‘Heur.’) and distilling with
circuits found using the software from [5] (‘ML’). For the heuristic results, all n to 1 data points for a specific n represent the same circuit: for each n, this
circuit can be found in Appendix D. For the ‘ML’ data, each data point is a specific circuit that came out of the black-box optimizer. For these data, an open
(closed) marker indicates that this circuit has different (the same) distillation statistics as the optimal circuit in case of no gate and measurement noise (i.e.,
as the corresponding circuit of Appendix D).

That is, for tasks such as for example QKD, considering
non-trivial measurement syndromes does not provide a benefit.
This then provides a heuristic motivation for the equivalence
defined in Definition 2, where two distillation protocols were
deemed distillation equivalent if the output states for b =
0 were the same up to local rotations. On the other hand, deter-
ministic distillation (i.e. including all possible measurement
syndromes) is a key component of second generation quantum
repeaters [47]. Furthermore, it is not clear how non-trivial
syndromes would impact the capabilities of general n to k
bilocal Clifford protocols, especially for such tasks as QKD.

We conclude this subsection by noting that a possible
strategy is to take the average state over all syndrome strings b
after local corrections. However, for the values of n considered
here, this only increases the output fidelity for input fidelities
Fin ⪆ 0.88 [47]. Since asymptotic BB84 requires an input
fidelity of Fin ⪆ 0.835 (assuming a Werner state as input),
distilling does not allow for generating key at input fidelities
lower than Fin ⪆ 0.835. At the same time, the fact that more
states are used and the success probabilities drop down as n
increases, leads to the fact that distilling with bilocal Clifford
protocols with such a strategy does not bring any benefits for

quantum key distribution. This shows the benefits of using
additional measurement information and binning accordingly
for certain quantum communication tasks [51].

C. Noisy Circuit Comparison

The results from the previous section assumed perfect
gates and measurements. In practice operations will be noisy,
reducing the benefits of distillation. This motivates us to
investigate how well our found circuits perform in the case
of noise. As a comparison, we use the genetic algorithm tools
from [5]. The approach taken there is to represent purification
protocols as sequences of gates, however, permitting only gates
that map Bell states to other Bell states. As detailed in the
Appendix, that is sufficient to describe the purification proto-
cols considered here and it permits very efficient simulation.
Moreover, the simulation can take into account local gate and
measurement noise, not only network noise in the initial Bell
pairs. Thus, the optimizer, which is a simple genetic algorithm
over the sequence of gates, can find circuits more resilient to
the imperfections of real hardware.

We note that the framework from [5] explicitly allows for
the optimization of circuits in the case of there being a limit
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Fig. 14. Black-box optimization of circuits helps in the presence of local
errors, but misleads if the local node hardware is perfect. This plots details
the performance of circuits obtained from black-box optimization with genetic
algorithms (dashed line) versus the performance of the best circuits obtained
through graph enumeration (solid line). Output fidelity (vertical axis) is plotted
against input fidelity (horizontal axis) at different local gate noise levels
(color coded) for the best 10-to-7 purification circuit. The dashed lines do not
correspond to a single circuit, rather at each parameter value we optimize a
new circuit (e.g., at very high Fin the circuit is the trivial no-operation circuit,
in order to avoid adding additional noise). For low gate noise parameters,
the graph enumeration method discovers the best possible circuits and it
outperforms the black-box method. On the other hand, the black-box method
performs better in the presence of significant gate noise.

on the number of qubits that can be processed simultaneously.
Such considerations are especially relevant for distillation on
NISQ devices [5], [52]. In the framework considered in the
present paper, there is no such restriction. Furthermore, the
software from [5] allows for an optimization when considering
arbitrary Pauli noise, i.e. it is not restricted to depolarizing
noise.

Lastly, the genetic algorithm black-box optimizer needs to
be executed for every set of hardware parameters, as different
levels of noise might be addressed by different circuits, as seen
in Fig. 14.

We model the noise in the circuit by gate and measurement
noise. Measurement noise is modeled with a probability pm

of the measurement producing the wrong outcome. Gate noise
is included with a two-qubit depolarizing channel with error
probability pg . In the simulations, we set pg = pm and vary
this noise probability parameter between 0.001 and 0.045.

We have applied the heuristics in Section V to find good
circuits. We show our used circuits in Appendix D. In Fig. 13,
we show how these circuits behave in the presence of operation
noise versus circuits found with the genetic tools of [5], for
three different input fidelities of the initial Bell states Fin.
Details about how the data is generated can be found in
Appendix D.

It is clear from Fig. 13 that the genetic algorithm is more
consistent in finding good protocols at 4 ≤ 7 than at n =
8 and n = 9. As explained in more detail in Appendix D,
we used approximately 12 hours calculation time for each
genetic algorithm data point. We expect that the n = 8 and
n = 9 results become more consistent if one increases the
calculation time.

Fig. 15. Resultant infidelity after first teleporting one half of the logical
maximally entangled state of the Steane code [53], and then decoding
the transmitted state. We find that teleportation using states from a 10 to
7 distillation protocol leads to an increase in fidelity for initial fidelities greater
than ≈ 0.85.

Furthermore, for each data point of the black-box method in
Fig. 13, we plot a closed marker if the noiseless version of the
circuit achieves the same distillation statistics as the protocol
that achieves the highest fidelity in the case of no noise. Data
points with an open marker have different distillation statistics
without operation noise. From the results it becomes clear that,
typically, at low pg = pm, the circuits found with [5] have
the same distillation statistics as the best-performing noiseless
circuits. At higher pg = pm, this is typically no longer the
case: it is in this regime where the black-box method clearly
outperforms the purely theoretical approach. This behaviour is
not consistently present for n = 8 and n = 9: it might be that
increasing the calculation time will show that protocols with
the same distillation statistics as the optimal circuit with no
operation noise will also work the best at low pg = pm for
n = 8 and n = 9.

We now show the results for a 10 to 7 distillation pro-
tocol in Fig. 14. For the found 10 to 7 protocol we first
found the (n, k)-graph that achieves the highest fidelity. Then,
we applied random local complementations and edge flips to
find an (n, k)-equivalent (n, k)-graph that would yield a low
number of two-qubit gates and small number of keep-gates.
We show our found representative and corresponding circuit
in Figs. 16 and 17. As before, we find that for significant gate
noise (i.e. pg = pm = 0.05) the black-box method achieves
a higher fidelity. Furthermore, for pg = pm = 0.01 both
approaches perform comparable, with the heuristic optimiza-
tion performing slightly better for lower input fidelities and
worse for high input fidelities. We find in particular that the
black-box algorithm cannot find the optimal protocol in the
case of no noise.

D. Applying a 10 to 7 Protocol to the Teleportation of
Encoded States

We now consider the teleportation of logical states between
two users Alice and Bob. Teleportation ensures that the states
are transmitted unconditionally, and the encoding increases
the resilience against noise. As such, it can form a basis for
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quantum repeater schemes [47]. We emphasize that, unlike
the previous subsection, we consider here only the case of no
noise on the gates in the circuits.

More concretely, Alice first creates a maximally entangled
state, after which she encodes it into 2n′ qubits using an error
correction code (n′, 1, d′) code. Then, she teleports one half
of the state using n′ bipartite states shared with Bob. Finally,
Bob decodes his share of the state. Here, n to k protocols
with k = n′ > 1 could provide a potential benefit over the
k = 1 case, through reducing both the resultant infidelity and
the number of initial states required. We use our tools for the
case of the seven qubit Steane code [53] (i.e. n′ = 7), for
which we have found the n = 10 to k = 7 protocol with
the highest fidelity, i.e. the same one found in the previous
subsection.

We compare this 10 to 7 protocol with two more standard
approaches — seven times the 2 to 1 DEJMPS protocol [3] and
seven undistilled pairs. We compare the resultant (in)fidelities
for several input fidelities in Fig. 15. We find that for input
fidelities greater than ≈ 0.85 the 10 to 7 protocol works best.
Furthermore, taking into account the finite success probabil-
ities of these protocols, we find that the 10 to 7 protocol
requires less states on average than the seven times 2 to 1 pro-
tocol for input fidelities greater than ≈ 0.95, demonstrating the
benefits of distillation protocols with k > 1.

VIII. CONCLUSION

In this work, we used a correspondence between stabilizer
codes and bilocal Clifford protocols to reduce the search
for distillation protocols to one over graphs. Furthermore,
we found a way to map between such graphs and explicit
circuits, allowing us to systematically construct distillation
circuits with a small number of two-qubit gates and depth.

We have found that there is no distillation protocol (for fixed
n and k) that is optimal for a number of relevant quantities at
the same time. That is, dependent on the quantity of interest
and the input fidelity, different distillation protocols turned out
to be optimal, highlighting the benefits of a full enumeration.
Moreover, we have shown that our results compare favorably
with numerical optimization methods that explicitly take into
account noise.

We have primarily focused here on the case of entanglement
distillation. However, due to the correspondence between
distillation and error correction, our enumeration can also be
of interest to finding better quantum error correction protocols.

APPENDIX A
(n, k)-GRAPH AND CORRESPONDING CIRCUIT

FOR THE FOUND 10− 7 PROTOCOL

We show in Fig. 16 the (n, k)-graph found with our tools.
First, we found an (n, k)-graph corresponding to a protocol
that achieves the highest fidelity for 10 to 7 distillation.
Then, we searched through the corresponding equivalence by
applying random local complementations and edge flips to find
an (n, k)-graph that would lead to the same fidelity, but a better
circuit. The corresponding circuit found is shown in Fig. 17.
This circuit has 15 two-qubit gates and depth 6.

Fig. 16. The found (n, k)-graph that yields a distillation protocol with the
highest fidelity for 10 to 7 distillation. The numbering is added to correspond
to the lines in Fig. 17.

APPENDIX B
FINDING TRANSVERSALS USING EXTENSIONS

Here we detail an approach — similar to work from [41]
and [42] — on how to more efficiently find transversals under
the local equivalence relation on (n, k)-graphs. We do so by
using extensions. First, let G be any (n, k)-graph. An output
extension of an (n, k)-graph G is any of the possible (n+ 1, k)
graphs obtained by adjoining an isolated output vertex to G,
and adding at least one of the possible n+ k edges from the
isolated vertex to any of the other n + k vertices. An input
extension of an (n, k)-graph G is any of the possible (n, k + 1)
graphs obtained by adjoining an isolated input vertex to G, and
adding at least one of the possible n edges from the isolated
vertex to any of the n output vertices.

Lemma 2: Let Lk
n be an arbitrary transversal of connected

graphs under the local equivalence relation on (n, k)-graphs.
The set of size

(
2n+k − 1

) ∣∣Lk
n

∣∣ obtained by performing an
output extension on every graph in Lk

n contains a transversal
of graphs under the local equivalence relation on (n+ 1, k)-
graphs. Furthermore, the set of size (2n − 1)

∣∣Lk
n

∣∣ obtained
from performing an input extension on every graph in Lk

n

contains a transversal of graphs under the local equivalence
relation on (n, k + 1)-graphs.

Proof: The proof follows the same logic as that in [41]
and [42]. First, let Lk

n+1 be an arbitrary transversal of the
local equivalence relation on (n+ 1, k)-graphs, and choose an
arbitrary (n+ 1, k)-graph G. From the n+1+k vertices of G,
choose an arbitrary subset V ′ that excludes exactly one of the
output vertices. Since the induced subgraph G[V ′] is an (n, k)-
graph, it is possible to perform local complementations on the
vertices in V ′, together with edge flips on the k input vertices
such that G[V ′] is equivalent up to an (n, k)-permutation to
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Fig. 17. Corresponding circuit constructed from the (n, k)-graph in Fig. 16. This circuit has depth 6 (where each time-step is demarcated by the dashed
lines) and 15 two-qubit gates.

Fig. 18. Left) An (n, k) = (4, 2) graph on n+k = 4+2 vertices. Middle)
an extension of the first graph. Right) An input extension of the first graph.
Possible edges are indicated by dashed lines. Input vertices are indicated by
diamond nodes.

some representative G′ ∈ Lk
n. But then G is equivalent up to an

(n, k)-permutation to an extension of G′. A similar argument
holds for input extensions, but now an arbitrary (n, k + 1)-
graph G is chosen and V ′ is a subset that excludes one input
qubit. An input extension of the induced subgraph G[V ′] is
then equivalent up to (n, k)-permutations and edge flips to G.

□

APPENDIX C
MACHINE LEARNING APPROACH

The main body of this work deals with first-principles,
analytical, efficient enumeration of good purification protocols.
However, this approach does not automatically provide the best
circuit implementing a given protocol, neither does it consider
the detrimental effects of imperfect local gates. We used
alternative tools in order to study how effective our approach
is when considering the aforementioned additional constraints.
Namely, we employed a known black box optimizer for the
generation of good noisy purification circuits [5], albeit with-
out optimality guarantees. This black box optimizer consists
of two parts: a noisy entanglement simulator and a genetic
optimization algorithm.

Fig. 19. The circuits found through the heuristic optimization for n = 4 to
n = 6.

The simulator works by restricting the representation of
the Bell pairs to only states that can be expressed as density
matrices diagonal in the Bell basis. Gates in the purification
protocols are simply permutations of the Bell basis and mea-
surements are simply deletion of half of the basis states, thus
providing for very efficient simulation (faster than Clifford
circuit simulation). Our particular simulator is exponentially
costly in the number of Bell pairs due to purely classical
reasons: we track all possible correlations between Bell-
diagonal states. However if that becomes a practical problem,
a standard classical Monte Carlo approach would be enough to
speed up the simulation at a fairly modest cost to the precision
of the simulation results [10].

The genetic algorithm employed for the simulation is fairly
conventional: we represent circuits as a sequence of gates.
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Fig. 20. The circuits found through the heuristic optimization for n = 7 to
n = 9.

That sequence forms the “genome” of the circuit. Each circuit
is an “individual” in a large “population” of circuits. At each
iteration of the optimization algorithm we generate “offspring”
circuits by randomly mixing up the genome of “parent”
circuits. At each iteration we also generate “mutant” circuits
by randomly perturbing existing circuits. Random perturbation
can be anything from swapping the order of a pair of gates,
to changing the parameters of a gate (e.g. a CNOT becomes a
CPHASE). This new “generation” of circuits is evaluated and
the worst performers are culled. The procedure is repeated
until we converge on good circuits, which usually takes a
hundred generations and less than an hour on commodity
hardware for registers of width under 8 qubits.

The only gates permitted in the genome are gates that map
“good” Bell pairs to the same Bell pair, but permute the other
possible basis states arbitrarily.

APPENDIX D
DETAILS NOISY CIRCUIT COMPARISON

In Sec. VII-C and Fig. 13 of the main text, we compare
protocols found with our heuristic method to protocols found
with the genetic tools of [5] in situations with gate and
measurement noise. Here, we will provide details on how the
data of Fig. 13 is generated.

Because we wanted to compare our results to the circuits
generated with [5] for specific Bell state numbers n, we had to
slightly adjust the code of [5]. In creating the new generation
of circuits, we introduced a check that made sure if the number
of ‘raw’ (i.e., input) Bell pairs used for the specific individual
circuit did not exceed n. This adjustment is very similar to the
already existing check in the code that made sure the number
of total operations does not exceed a preset number.

To generate the results, we set the number of register qubits
of the circuits to n. Strictly speaking, one could also generate
circuits for a certain number of input Bell states n with a
smaller register, as the circuits re-use measured-out qubits.
However, to make sure we would not exclude distillation
circuits, we decided to use the maximum register size. For
each of the initial individuals of the population, we selected
n+2 random operations. During evolution, we let the number
of gates and measurements grow or shrink without restrictions.
We made use of a population size of 300 circuits. When
creating children, we used 20 random pairs of this population,
and generated 100 children for each pair. During mutation,
per individual of the population, we generated 2 mutants
for each of the 4 different mutant types included in the
code.

We let the software generate a maximum of 100 gener-
ations, but also, for each data point of Fig. 13, cut-off the
creation of new generations after 12 hours. If all of the
100 generations were generated before the 12 hour mark,
or if the population converged with a smaller number of
generations before the 12 hour mark, we started a new iteration
of the software with a new random starting population and a
different seed. At the end, we selected the best result from all
iterations.

APPENDIX E
SELECTION OF FOUND CIRCUITS

We present here some of the circuits found with our
optimization. For each n, we selected the circuits based on
the output fidelity of the final state at input state fidelity
Fin = 0.9 and operation noise pg = pm = 0.03.
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