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Influence of Noise in Entanglement-Based
Quantum Networks

Maria Flors Mor-Ruiz and Wolfgang Dür

Abstract— We consider entanglement-based quantum net-
works, where multipartite entangled resource states are dis-
tributed and stored among the nodes and locally manipulated
upon request to establish the desired target configuration. Sep-
arating the generation process from the requests enables a
pre-preparation of resources, hence a reduced network latency.
It also allows for an optimization of the entanglement topology,
which is independent of the underlying network geometry.
We concentrate on establishing Bell pairs or tripartite GHZ
states between arbitrary parties. We study the influence of
noise in this process, where we consider imperfections in state
preparation, memories, and measurements - all of which can
be modeled by local depolarizing noise. We compare different
resource states corresponding to linear chains, trees, or multi-
dimensional rectangular clusters, as well as centralized topologies
using bipartite or tripartite entangled states. We compute the
fidelity of the target states using a recently established efficient
method, the noisy stabilizer formalism, and identify the best
resource states within these classes. This allows us to treat
networks of large size containing millions of nodes. We find that
in large networks, high-dimensional cluster states are favorable
and lead to a significantly higher target state fidelity.

Index Terms— Quantum networks, quantum entanglement,
noisy quantum processes.

I. INTRODUCTION

QUANTUM networks [1], [2], [3], [4] form one of the
pillars of upcoming quantum technologies and allow one

to push promising applications to distributed settings. While
quantum computers and quantum metrology for themselves
already provide exciting and relevant applications [5], [6]
in multiple branches of science and technology, connecting
quantum devices in a network adds additional possibilities
and features [7], [8], [9], [10], [11]. In addition, one of the
key applications of quantum networks is in the context of
cryptography, to establish secret keys in bipartite communi-
cations settings [12], [13], for conference key agreement [14],
[15] or for applications in secret sharing [16], [17] and
secret voting [18], [19]. These applications are based on
entangled quantum states shared among some network nodes.
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Establishing such entangled states over long distances has been
identified as one of the crucial challenges in this context. This
also solves the quantum communication issue, as entanglement
can be used by means of teleportation [20] to transmit arbitrary
quantum information between nodes and form distributed
sensor networks or connect distributed quantum computers.
Quantum repeaters [21], [22], [23] allow for an efficient distri-
bution of entangled states, thereby overcoming the exponential
scaling of resources due to loss and imperfections. Promising
experimental realizations of entanglement distribution, quan-
tum repeaters, and quantum teleportation have already been
performed in different physical platforms [24], [25], [26], [27],
[28], [29], where entanglement was generated over distances
up to 50 km on the surface of the earth and over 4,600 km in
space-to-ground, and memory qubits with intrinsic dephasing
time up to seconds were demonstrated.

Much of the experimental effort is still focused on
establishing the building blocks for quantum repeaters, includ-
ing long-time quantum memories or quantum interfaces
and demonstrating point-to-point communication. However,
in recent years theoretical effort has increased to set the stage
for quantum networks consisting of multiple nodes, going
beyond point-to-point communication [2], [30], [31], [32],
[33], [34], [35], [36], [37]. Most of the approaches [2], [32],
[38], [39], [40], [41], [42], [43] thereby follow a bottom-up
strategy, resembling the ones successfully employed in classi-
cal networks. Entanglement is established among requests, and
entanglement routing, together with protocols to maintain or
improve its quality, are among the key issues. While strategies
to enable long-distance quantum communication are in princi-
ple known and scale efficiently with the distance, still practical
challenges remain and protocols involve a large overhead in
resources in terms of used memory and in particular required
time [22], [23], [41], [44], [45], [46], [47], [48]. The fact that
many of the involved processes, such as photon transmission
or entanglement purification to increase state fidelities, are
probabilistic (or require huge, inaccessible spatial resources
such as multiple parallel channels or large memories), makes
the production of long-distance entanglement costly. This leads
to relatively low rates and hence large latency in the network.
In particular, if in a large network, the process of producing
entanglement between some of the nodes only starts after a
request is received, there is a significant waiting time until the
process can be concluded, and entanglement can be used.

In [31], [49], [50], and [51], an alternative approach towards
quantum networks was put forward, which makes use of the
unique features of quantum entanglement and does not have a
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Fig. 1. Schematic depiction of an entanglement-based quantum network,
where squares represent nodes and snake-like lines represent entanglement
between them. On the left, the distributed resource state is depicted with
fragmented entanglement lines to indicate that the state is noisy. The state is
stored until a request enters the network, for instance, a bipartite connection
between two nodes. This is fulfilled by manipulating the resource state via
local operations, e.g., measurements, as on the right side. Both storage and
manipulation introduce further noise, thus the entanglement lines on the right
are more fragmented.

classical counterpart. Since entanglement is a resource, it can
be established even before a request arrives and the entangled
qubits are stored in quantum memories until needed. Taking
into account all possible requests by storing all kinds of bipar-
tite entangled states is, however, too costly and impractical.
Nevertheless, what one can do, is to establish and store some
multipartite entangled resource states, which are chosen in
such a way that memory requirements are minimized while
full functionality can be guaranteed. The functionality of
a network is thereby defined as the set of desired target
configurations of states, i.e., defining the set of parties that
should share certain entangled states. One natural desired
functionality can be, e.g., to share a maximally entangled Bell
pair between any two parties, where the requests correspond
to the specification of these two parties. The resource states
are therefore manipulated locally, either by some unitary
operations or by measurements, to transform them to the
desired target configuration. In the given example, one may
either store all possible combinations of N(N − 1)/2 Bell
pairs and use the required one, for an N -node network, but
also a single copy of a so-called GHZ state suffices to fulfill the
task [52]. The latter only requires the storage of a single qubit
per node, corresponding to a quadratic reduction in required
memory size. In [52] a method to identify optimized resource
states with minimal storage requirement was put forward,
which provides one with the entanglement topology for a given
desired network functionality. Remarkably, this entanglement
topology is independent and separated from the underlying
network geometry, at least from the perspective of storage and
adaption to the desired target state. Clearly, for generating the
resource state, the geometry is relevant, however, this process
is separated from the adaption of the resource state and can
be done beforehand, i.e., before the request arrives and the
network otherwise lies idle.

In this paper, we concentrate on the influence of noise and
imperfections in such entanglement-based quantum networks
(EBQNs). All involved processes - the generation of entangled
resource states, their storage in a quantum memory, and
the manipulation by means of local unitary operations and
measurements, are noisy in practice, and all these imperfec-
tions crucially influence the quality of the generated target
states, as schematically depicted in Fig. 1. For some specific

states and configurations such as an N -qubit GHZ state [53],
[54], an entanglement switch1 [45], [58], [59], [60], [61],
[62], the six-qubit Butterfly state [63], [64], [65], [66] or for
one-dimensional resource states [67] the entanglement proper-
ties have been studied to some extent, however, the influence
of noise in general EBQNs is largely unexplored. While
previous work concentrated on memory requirements [49],
[52], it is known that different kinds of states suffer differently
under noise [53], [54], [68]. For instance, a GHZ state is
particularly susceptible to noise, and even though it is a
resource with minimal storage requirements, it will provide
a poor performance in the presence of noise, imperfections,
and decoherence for large systems. In particular, one cannot
produce entangled Bell pairs from GHZ states if the noise is
too large, and the threshold becomes more and more stringent
with system size [53].

We investigate different classes of entangled states and
analyze their performance in the presence of noise. We model
the influence of imperfect state preparation, imperfect memory,
and noisy measurements using local depolarizing noise acting
on each of the qubits stored in different nodes. Given that each
qubit sees an independent environment, this is an adequate and
sufficiently general error model. We concentrate on network
requests corresponding to the generation of a single Bell
pair or a single three-qubit GHZ state, where the request
corresponds to the specification of the target parties. We use
so-called graph states [69], [70] as resource states, where the
graph topology directly corresponds to its entanglement topol-
ogy. We consider quantum networks of fixed size N based
on resource graph states corresponding to linear chains, trees,
or multi-dimensional rectangular grids or clusters, as well as
collections of bipartite or tripartite entangled states arranged
in a centralized switch topology.

Our main findings can be summarized as follows:
• For all these configurations, we provide formulas to

compute the fidelity of target states in the low noise
regime and analytic formulas for several of these settings
using the recently introduced noisy stabilizer formalism
(NSF) [71]. This allows us to assess the suitability of
different resource states.

• For an entanglement switch configuration with one cen-
tral node, we show that three-qubit GHZ states perform
better than Bell pairs when the two target nodes have
qubits that are part of the same three-qubit GHZ state.

• We compare the achievable fidelities and error thresholds
and identify optimal states among the considered classes.
We find that trees and high-dimensional cluster states are
favorable for large-scale networks. For trees, however, the
entanglement structure is largely destroyed, while this is
not the case in high-dimensional clusters.

We emphasize that we can treat large resource states contain-
ing millions of qubits in an exact way, which is made possible
by using the stabilizer formalism to describe states and their
manipulation, together with the NSF to treat the influence of

1We refer to entanglement switch as a network structure that performs
entanglement swapping. In literature, this is also referred to as a quantum
switch, which, however, also refers to an approach for communication in
indefinite causal orders [55], [56], [57].



MOR-RUIZ AND DÜR: INFLUENCE OF NOISE IN ENTANGLEMENT-BASED QUANTUM NETWORKS 1795

TABLE I
SUMMARY OF USED FUNCTIONS AND ABBREVIATIONS

IN ORDER OF APPEARANCE

noise. For general states, the effort would scale exponentially
with the number of qubits.

The paper is organized as follows. In Sec. II we provide
some background information on EBQNs, graph states, and
their manipulations, as well as the NSF. We describe the prob-
lem setting in Sec. III, where we also discuss the noise model
and the resource and target states we consider. We consider a
single Bell pair as a target in Sec. IV and Sec. V, where we
first compute a general expression for the fidelity and later we
analyze all resource states, which are compared in Sec. VI.
A similar analysis for three-qubit GHZ states is performed in
Sec. VII. We discuss other target states briefly, summarize,
and conclude in Sec. VIII.

II. BACKGROUND

In this section, we give a brief overview of EBQNs, some
basic notations, and results concerning graph states, followed
by a brief description of the NSF, which is used throughout
this paper. Table I compiles the functions and abbreviations
used throughout the text.

A. Entanglement-Based Quantum Networks

In recent years, the study of quantum networks relying on
quantum repeaters has received large attention [2], [32], [38],
[39], [40], [41], [42], where quantum repeaters refresh the
entanglement to counteract the influence of noise and deco-
herence. These works have in common that resources in the
network are generated on demand, and we refer to them as the
bottom-up approach to quantum networks. To establish these
resources, network devices must perform routing tasks [63],
[64], [65], [72], which result in long waiting times for the
users of the network.

In contrast, there is a top-down approach to quantum
networks, the so-called EBQNs [31], [49], [50], [51], [52],
[73], which prevent these waiting times and are the focus of
this paper. In such networks, multipartite states are generated
beforehand and stored until a request arrives. These resource
states are then manipulated by local operations to establish the
desired target state, e.g., a Bell pair shared between two nodes,
without further using quantum communication. Thanks to the
pre-generated entanglement, the time to achieve the target state
only amounts to classical communication between devices.

Thus, these resource states in EBQNs circumvent long waiting
times at the cost of demanding network devices with long-time
quantum memories. However, the users of the network have
minimal functionality in contrast to the bottom-up approach.
EBQNs have two main features that define the network. On the
one hand, there is the network’s entanglement topology, which
is the entanglement structure of the pre-generated resource
state. On the other hand, there is the actual physical structure
of the network, where the nodes and quantum devices are
placed. These two structures do not need to be the same and
this introduces interesting aspects which are not present in
the bottom-up approach. For instance, one can enable a direct
entanglement link between two network devices that are not
connected in the physical setting [74]. In [31] three phases in
EBQNs are identified:

1) Dynamic phase: Entangled (resource) states are first
distributed and established among the network nodes.
In EBQNs, the distribution can be done before requests,
when the network is idle, therefore avoiding the associ-
ated waiting times.

2) Static phase: Once the resource state is established,
the network stores it for future requests. Quantum
memories used for said storage are experimentally chal-
lenging [49], and thus resource states that minimize the
required storage are preferable.

3) Adaptive phase: In this final phase the resource state is
manipulated locally by the nodes. This is triggered by
either the request of the users of the network or by a
failure of devices in a quantum network. This last phase
is the focus of this paper.

Additionally, in [31] a quantum network stack focused on
structures and architectures of EBQNs following the design
of the classical network stack (Open Systems Interconnection
model [75]) is proposed. This allows one to divide the design
and analysis of EBQNs into hierarchical layers. In [52], the
top-down approach to quantum networks is further improved
using the inherent structure’s flexibility. In particular, the
entanglement topology is optimized to the desired functional-
ity of the network, leading to minimal memory requirements
of the resource states. This enhancement is only possible in
this framework because as mentioned earlier, the bottom-up
approach is limited by the underlying physical setting of the
network.

Resource states are generally considered to be graph
states [69], [70], as they consist of a large class of highly
entangled states which can be converted by local operations
and classical communication to other entangled states (see,
e.g., [36], [76], [77]). Moreover, they can generate any state
on a subsystem of reduced size via measurements only [78],
[79]. However, deciding whether a given graph state can be
transformed into a set of Bell pairs using only local operations
and classical communication is NP-complete [80].

B. Stabilizer Formalism and Graph States

1) Stabilizer Formalism and Local Cliffords: The stabilizer
formalism [81] is a compact way to describe quantum states
efficiently, making use of the stabilizer group S. The latter is
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a subgroup of the N -qubit Pauli group, PN = {±1,±i} ×
{1, σx, σy, σz}⊗N , which does not include the element −1.
Each element of the stabilizer group is a stabilizer operator
and one can find the subset of those which are maximally
independent, the so-called stabilizer generators. Such that, any
element of S can be generated by the product of the stabilizer
generators. Finally, a stabilizer state (a quantum state in the
stabilizer formalism), for a given stabilizer group S, can be
defined as a simultaneous eigenstate with eigenvalue +1 of all
the stabilizer generators of S. This description requires only
N generators, in contrast to 2N complex coefficients using a
basis representation of the state vector.

Consider a stabilizer state |ψ⟩, defined by the stabilizer
group S = ⟨{gi}⟩, where gi are the generators. Then a local
Clifford (LC) operation U , which is defined as a unitary
quantum operation that maps stabilizer states to stabilizer
states [82], acting on |ψ⟩ is U |ψ⟩ = Ugi|ψ⟩ = UgiU

†U |ψ⟩ =
g′iU |ψ⟩, such that the state U |ψ⟩ is stabilized by all g′i. Note
that quantum states that can be described using this formalism
are a subset of all quantum states. Nevertheless, stabilizer
states are widely used in the quantum information framework,
as they include many different kinds of entanglement.

2) Graph States and Transformations: In the framework of
EBQNs, graph states [69], [70] are used to describe resource
states. They are a subclass of multi-qubit highly entangled
states that can be represented as graphs G = (V,E), where V
denotes a finite set containing the vertices and E is a set whose
elements are the edges between two vertices. Graph states are
an instance of stabilizer states, such that the state associated
with this graph G corresponds to the unique +1 eigenstate of
the stabilizers Ka = σ

(a)
x

∏
(a,b)∈E σ

(b)
z for all a ∈ V . Equiv-

alently, graph states can be described by a controlled-Z gate,
CZ = diag(1, 1, 1,−1), acting between any two qubits that
are connected by an edge, i.e, |G⟩ =

∏
(a,b)∈E CZ

(a,b)|+⟩⊗V ,
where |+⟩ = 1√

2
(|0⟩ + |1⟩) is the +1 eigenstate of σx.

Moreover, Bell pairs, two-qubit maximally entangled states,
are local-unitary-equivalent (LU-equivalent) to 2-qubit graph
states, for instance, |B⟩ = 1√

2
(|0⟩|+⟩ + |1⟩|−⟩). The most

natural extension of these maximally entangled states to N -
qubit systems are GHZN states, in the graph state basis they
are defined as |GHZN ⟩ = 1√

2

(
|0⟩|+⟩⊗N−1 + |1⟩|−⟩⊗N−1

)
.

These represent one particular type of graph state where there
is a central or root qubit with N − 1 edges connecting to all
the other qubits, called leaf qubits. We also consider graph
states corresponding to one-, two-, and k-dimensional lattices
as well as trees in this paper.

Graph states can be manipulated and transformed by certain
quantum operations [69], [70] to other graph states. Through-
out the text we make use of the following ones, which are
described in detail in [70] and [71]:

Local complementation: Given some vertex of the graph,
this operation inverts the edges connecting the neighbors of
said vertex. Two graph states are said to be LC-equivalent if
the corresponding graphs are related by a sequence of local
complementations.

Local Pauli Z measurement: A vertex can be removed
by applying a Pauli Z measurement, up to local correction
operations, as depicted in Fig. 3a.

Local Pauli Y measurement: This operation produces a local
complementation and deletion of the measured vertex, up to
local correction operations. It is graphically shown in Fig. 3a.

Local Pauli X measurement: This measurement acts as a
local complementation on a neighboring qubit of the mea-
sured one, then local complementation on the measured qubit,
followed by the deletion of it, and lastly repeating the local
complementation on the neighboring qubit of step one.

Merging operation: Two graph vertices can be merged into
a single one, which has both of their neighborhoods. This
operation is done via an entangling operation and a vertex
deletion.

Full merging operation: Corresponds to a merging operation
in which the remaining qubit is also measured in the Y basis.
It is equivalent to a measurement in the Bell basis.

C. Noisy Stabilizer Formalism

In [71], the NSF was introduced as a method to describe
the manipulation of noisy graph states, which scales linearly
in the number of qubits of the initial state, but exponentially
in the size of the target state. The main idea behind this
formalism is that states and noise operators are updated inde-
pendently, which is in contrast with the usual treatment that
updates the initial mixed state. The individual update is done
using commutation relations between Pauli noise and local
Cliffords describing manipulation operators, these relations are
named update rules. Additionally, the computation of these
rules is simplified using the fact that any Pauli noise map
acting on a graph state can be rewritten as a noise map with
noise operators that only contain products of Z and 1 [53],
due to the stabilizer structure of graph states. Consider a
manipulation operator O acting on a noisy graph state, where
one of the noise operators is N . Then ON |G⟩ is rewritten
as ÑO|G⟩ using the update rules, where Ñ only contains
Z and 1 and denotes the updated noise operator acting on
the noise-less manipulated graph state, O|G⟩. In general,
one has a set of manipulations (e.g., Pauli measurements,
local complementations) acting on a noisy graph state. Con-
sider a state ρ = |G⟩⟨G| subject to l Pauli-diagonal noise
maps, El . . . E1ρ, which is manipulated by k different oper-
ations acting on a set of qubits ({bi}). The final state is
O

(bk)
k · · · O(b1)

1 (El · · · E1ρ)O
†
1

(b1) · · · O†k
(bk)

, which using the
NSF can be rewritten as

Ẽl · · · Ẽ1

(
O

(bk)
k · · · O(b1)

1 ρO†1
(b1) · · · O†k

(bk)
)
, (1)

where O
(bk)
k · · · O(b1)

1 ρO†1
(b1) · · · O†k

(bk)
is the noise-less

manipulated state, and Ẽi are the updated noise maps. These
final noise maps are computed by updating each of their noise
operators using the update rules for each manipulation operator
O

(bi)
i . In Eq. (1) one can see that the updated noise maps act

on the updated graph state or target state, and thus, the size
of their noise operators depends on the size of the target state.
One can then apply the effective noise maps on the target
state of reduced size, thereby avoiding the treatment of large
density matrices as long as the target state is small. Notice
that the NSF allows for an analytic treatment of noise and
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a complete description of noise propagation in graph state
manipulation. The use of this analytic tool is in contrast with
the numeric methods commonly used in the framework of
quantum communication to simulate noise, such as Monte
Carlo simulation [45], [66], [83].

III. SETTING

This work is in the framework of EBQNs, which we have
described in Sec. II-A. Our focus is on the adaptive phase, the
last of three phases. During the two previous ones (dynamic
and static) an N -qubit resource state is distributed and stored
for a certain time in the nodes of the network. Then in
the adaptive phase, this resource state is manipulated locally
(using the quantum operations described in Sec. II-B) to
achieve a certain target state, e.g., a Bell pair or a GHZ3 state,
between some of the parties specified in a network request.
So far, the study of the adaptive phase does not include
the influence of imperfections in the networks arising from
the two previous phases and the execution of resource state
manipulation in the adaptive phase. Hence, in this paper,
we consider a noisy scenario, which is further discussed in this
section together with an introduction and motivation of the sets
of resource states and target states that are used throughout the
paper.

A. Noise Model

To study the influence of noise, decoherence, and imperfec-
tions in the adaptive phase, we investigate the manipulation
of noisy states. We consider that the local preparation of
resource states can be done with high fidelity, and we study
the influence of distributing states through noisy channels,
storing the entangled qubits in quantum memories until they
are needed, and manipulating them using imperfect local oper-
ations. All these processes are modeled by local depolarizing
noise that acts on each of the qubits of the resource state
independently followed by perfect manipulations. The local
depolarizing noise model is defined as

Eaρ = pρ+
1− p

4

3∑
i=0

σ
(a)
i ρσ

(a)
i , (2)

where σ0 = 1, σ1 = σx, σ2 = σy and σ3 = σz ,
ρ = |Ψ⟩⟨Ψ| denotes the noiseless resource state and p is the
probability that the state remains unchanged, while 1 − p is
the probability that qubit a is depolarized, meaning that it
has the completely mixed state 1/2. Thus, the noisy resource
state is E1E2 · · · EN |Ψ⟩⟨Ψ|, and this one is then manipulated
using local measurements or merging processes, such that it
is transformed into a noisy version of the desired target state.

Importantly, the use of a single-qubit channel is justified,
as shown in [84], for the resource state generation via entan-
glement purification. Moreover, it also describes channel noise
when transmitting qubits of a locally prepared resource state to
remote parties through separate channels, and it also accurately
describes decoherence and noise from storage, as qubits are
located at different parties. Finally, this noise model also
includes imperfect local operations as depolarizing noise fol-
lowed by a perfect local operation is an accurate and quite

general error model for noisy local operations. These local
operations include single-qubit measurements and merging
operations, where the latter is always performed between
qubits that are in the same node of the network. Furthermore,
the single-qubit depolarizing noise model can be considered
a worst-case model for single-qubit noise, as shown in [85].
The error propagation during the manipulation process is fully
analyzed, as the impact of the initial local noise on the target
state is analytically studied using the NSF.

B. Possible Resource and Target States

We consider a certain target state, e.g., a Bell pair, and
we study the noise impact on an average target state, e.g.,
a Bell pair between any two nodes of the network. The
main analyzed target state in this paper is a single Bell
pair, which is useful for different ranges of applications or
demands of a quantum network. In particular, a single Bell
pair can be used as a quantum communication channel or as a
resource for quantum key distribution [86]. We also consider
a GHZ3 state as a target state, which has many applications as
a multiparty entangled state in several protocols in quantum
communication and cryptography, e.g., secret sharing [16],
[17] and the quantum Byzantine agreement [87], and also in
quantum metrology [88], [89], [90], [91].

For the resource states, we consider both sets of small
graph states, i.e., Bell pairs and GHZ3 states, and large graph
states, e.g., one and two-dimensional clusters and GHZN

states. On the one hand, small states as resources are easy
to purify and refresh after a certain storage time. On the
other hand, one needs to store several of these states shared
between different parties, which requires larger memory and
the use of merging operations. Note that merging operations
have a bigger impact on noise than local measurements. Large
cluster states as resource states are the opposite, as they are
harder to prepare, purify, and refresh. However, due to their
entanglement structure, a single qubit per node in the network
is sufficient, minimizing the storage requirements, and merging
operations are not required.

When studying sets of small states we consider a centralized
network geometry where there is a central node and several
external nodes as depicted in Fig. 2 for the case with eight
external nodes. Importantly, this switch-like structure has
several qubits placed in the central node, and usually, merging-
type manipulations are required in this node.

As discussed in Sec. II-A, EBQNs differentiate between
the entanglement topology and the physical structure of the
network. Thus, we can consider k-dimensional cluster states
as the entanglement topology of the resource states. There
are multiple ways to embed these states in a given physical
geometry. This can be optimized with respect to the desired
functionality of the network (possible target states) or the state
generation. However, these two optimizations are distinct and
might lead to contradictory results. In this paper, instead of
optimizing over a certain target state, we consider average
cases, where all possible target configurations are taken into
account. For a single Bell pair as the target state, this means we
consider the average geometrical distance between two nodes
in the network.



1798 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 7, JULY 2024

Fig. 2. Centralized network of eight external nodes (small squares) and a
central node (big square). The circles are qubits and the solid lines represent
entanglement between them. In (a) eight Bell pairs are distributed in the
network and in (b) GHZ3 states are distributed in the network, such that the
leaf qubits are placed in the external nodes.

IV. FIDELITY COMPUTATION

In this section, we describe how to compute the fidelity
of a noisy target Bell pair using the NSF (see Sec. II). Pauli
measurements need to be done in a certain order, as correction
operations depending on the outcome need to be applied on
neighboring qubits. While this is irrelevant in a noiseless
setting, it is crucial when considering noise. Notice that the
noise maps from the target qubits and the manipulated ones
need to be considered as both act on the target [53], [54].

Due to the small size of a Bell pair as a target, the NSF
allows us to derive an exact expression of the target state’s
fidelity regardless of the size of the resource state. This is
possible since the NSF updates the noise maps of all the
involved qubits in the manipulation. The resulting (reduced)
state is of small size (two qubits) and the noise maps are
of the same size, such that they can be applied and the noisy
target state is efficiently computed. The number of noise maps
is the same as in the initial state, i.e., linear in N for the
local noise model we consider, where N is the size of the
resource state. This is in contrast to the standard approach,
where the initial noise is applied to the resource state using
density matrices of the size 2N×2N . Then this (large) quantum
state is manipulated by applying matrices of the same size to it,
which is extremely costly in terms of computational memory
if the resource state is large (more than a few tens of qubits).
Therefore, the manipulation of noisy graph states is in general
a numerically hard problem, which can be efficiently solved
by using the NSF for small target states.

In [71], the case of a Bell pair as a target state where the
resource state is subject to single-qubit depolarizing noise is
presented, which coincides with the scenario considered in this
paper. Importantly, the NSF makes use of the fact that any
Pauli noise acting on a graph state can be written as a product
of Pauli Z operators and 1 [53]. Then the results in [71] state
that the final noise maps of the qubits measured in a Pauli
basis can only take three forms

Mαρ
′ = pρ′ +

1− p

2
(ρ′ + ZaZbρ

′ZaZb) , (3)

Mβρ
′ = pρ′ +

1− p

2
(ρ′ + Zaρ

′Za) , (4)

Mγρ
′ = pρ′ +

1− p

2
(ρ′ + Zbρ

′Zb) , (5)

where a and b are the labels of the target qubits that form the
final Bell pair and ρ′ denotes the noiseless target state, ρ′ =
|B⟩⟨B|. Moreover, the noise maps of both the target qubits,
a and b, and the qubits involved in a full-merging operation
have the following form

Mtargetρ
′ = pρ′ +

1− p

4
(ρ′ + Zaρ

′Za + Zbρ
′Zb

+ ZaZbρ
′ZaZb).

(6)

Thus, the final noisy state is Mα · · ·Mβ · · ·Mγ · · ·Mtargetρ
′,

where each kind of map is applied a certain number of times,
and the total number of maps corresponds to the total number
of qubits involved in the manipulation together with the target
qubits. Note that the form of these maps is such that applying
Mi with parameter p x times is the same as applying it
once with parameter px. Additionally, in [71] the so-called
weight vector is defined, which describes the noise maps of
the qubits measured in a Pauli basis. This vector is defined
as w = (wα, wβ , wγ), where each component corresponds to
the number of times each final noise map Mα, Mβ , or Mγ is
applied. Also, the number of full merging operations is defined
as t. Thus, the number of local measurements required in the
manipulation corresponds to

∑
i wi and 2t is the number of

full-merged qubits.
Furthermore, using these updated noise maps and their

properties an exact expression for the fidelity of the target
Bell pair can be computed [71],

F (p,w, t) =
1
4

1 + p2+2t
∑

i,j∈{α,β,γ}
i̸=j

pwi+wj

 . (7)

So the fidelity of the target state can be directly determined
from w and t, such that it depends mainly on the number of
operations and the order of consecutive measurements.

In the scenarios where the target state is a Bell pair,
we compute the corresponding w and t for an exact fidelity
together with the approximation of the fidelity in the low error
regime (LER), such that 1− p = ϵ for small ϵ. This fidelity is

F (ϵ,w, t) ≃ 1− 1
2
(3 + 3t+ wα + wβ + wγ)ϵ. (8)

Note that to compute the latter one just needs a counting argu-
ment on how many local Pauli measurements and full-merging
operations are required. Moreover, Eq. (8) makes clear that a
full merging procedure has a higher impact on the fidelity than
a single-qubit measurement. In the following, we make use of
the function g(x) = 1−(−1)x

2 to compactly express weight
vectors.

V. RESULTS FOR A SINGLE BELL PAIR
AS A TARGET STATE

In this section, we present the results of achieving a single
Bell pair via the manipulation of different resource states. The
target Bell pair is between two arbitrary qubits a and b and
the fidelity is computed using the results of Sec. IV. There
are two different types of procedures: (i) the manipulation
of small states via full-merging (Sec. V-A and V-B), and
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(ii) the manipulation of a large resource state via single-qubit
measurements (Sec. V-C - V-G), such that t = 0.

A. Resource: Several Bell Pairs

We assume a centralized network structure that has a central
node and N external nodes [45], [55], [58], [59], [60], [61],
[62]. Then, N Bell pairs are distributed such that each pair is
established between an external node and the central node,
requiring 2N qubits. This switch structure is depicted in
Fig. 2a. The performed manipulation to achieve a single Bell
pair between any two external nodes is a full merging between
the two qubits in the central node. Such that w = (0, 0, 0) and
t = 1, thus, the resulting fidelity in the LER is F (ϵ) ≃ 1−3ϵ.

B. Resource: Several Three-Qubit GHZ States

We consider several GHZ3 states in the centralized network
structure. The states are distributed such that the root qubits
are placed in the central node and each leaf is in an external
node, as shown in Fig. 2b. There are N/2 GHZ3 states that
require 3N/2 qubits, for even N .

There are two possible scenarios to achieve a single Bell
pair between any two external nodes. On the one hand, the two
target qubits correspond to the same GHZ state. Therefore, the
final fidelity is the same as the case of N = 3 in Sec. V-C,
F (ϵ,N) ≃ 1− 2ϵ, i.e., larger than the fidelity obtained when
fully merging two Bell pairs. On the other hand, the target
qubits can correspond to leaves of different GHZ3 states.
In this case, one needs to Z-measure the extra leaves in the
two GHZ3 states and then fully merge the two remaining pairs.
Such that w = (0, 1, 1) and t = 1, thus, the fidelity in the LER
is F (ϵ) ≃ 1− 4ϵ.

C. Resource: N-Qubit GHZ State

Consider a centralized structure with N − 1 external nodes.
An GHZN state is distributed such that the root qubit is placed
in the central node and the leaves in the external ones, which
requires a total of N qubits. The performed manipulation to
achieve a single Bell pair between any two leaf qubits is the
Z-measurement of all the other leaf qubits, followed by the
Y -measurement of the root qubit. Such that w = (N−2, 0, 0)
and t = 0, thus, the fidelity in the LER is F (ϵ,N) ≃ 1− 1

2 (N+
1)ϵ. Note that the fidelity decreases as the size of the GHZ
state increases. Thus, a GHZ3 state leads to a Bell pair with
the highest fidelity.

D. Resource: 1D Cluster

Consider an N -qubit 1D cluster with periodic boundary
conditions (PBCs). Each cluster qubit is placed in a node of
the network, each with two neighbors.

In the manipulation to achieve a Bell pair between two
arbitrary qubits, there are two kinds of qubits that are of
importance. On the one hand, there are the qubits between
the pair, which define the shortest path, we refer to these
as inner neighbors. On the other hand, there are the neigh-
boring qubits surrounding the path, which we refer to as
outer neighbors. The number of inner neighbors is n1D, such

that 0 ≤ n1D ≤ [N − g(N)]/2− 1, where g(x) is defined in
Table I, and the number of outer neighbors is m1D = 2.
The manipulation performed is a Y measurement of inner
neighbors and a Z measurement of outer neighbors, as shown
in Fig. 3b.

The noise that affects the final Bell pair is the one from
the target qubits and the inner and outer neighbors, as stated
in [53] and [54]. Furthermore, as seen in [71], the order in
which the inner neighbors are measured is relevant. Here we
restrict to a strategy where qubits are measured sequentially
along the path, called side-to-side in [71]. The different
strategies vary slightly in the achievable fidelity, with a relative
difference of up to 2.5% in the regime where the fidelity of the
resulting state is F > 1/2, i.e., is still entangled. Following
the same calculation as outlined in [71], but taking PBCs and
hence two extra outer neighbors into account, one can compute
the resulting fidelity. The weight vector is given by

w1D =
(
n1D + g(n1D)

2
, 1,

n1D − g(n1D)
2

+ 1
)
, (9)

which results in a LER fidelity of F (ϵ, n1D) ≃ 1− 1
2 (n1D+5)ϵ.

E. Resource: 2D Cluster

Consider an N -qubit 2D cluster with PBCs. Each cluster
qubit is placed in a node of the network, each with four
neighbors. We analyze two methods to achieve the target pair:

1) Y Method: This method consists in deciding the shortest
path between the two target qubits followed by a Z measure-
ment of the outer neighbors and a Y measurement of the inner
neighbors, as shown in Fig. 3c. Note that the shortest path
is not unique, one can choose a stairway-like path, which
consists of several lines connected by corners, two straight
lines connected by a corner, or in some cases a single straight
line. Importantly, a corner in the path reduces the number
of outer neighbors by one. Thus, fewer measurements need
to be performed and fewer noise maps affect the final Bell
pair, leading to higher fidelity overall. However, analyzing
the noise of a path that has one or several corners is highly
dependent on the position of the targets and the corners. Thus,
a general result for a path that includes corners is rather hard.
Despite that, if a particular geometrical situation is given, one
can find the corresponding weight vector and thus, the exact
fidelity. Here, we give counting arguments for the most general
case, where the path has one corner, and the case where the
path is a stairway. Moreover, we focus on the lower-bound
approximation that any two qubits in a 2D cluster can be
connected via a straight line, as a straight-line path has more
outer neighbors, thus leading to a lower fidelity of the final
Bell pair.

We can use the results presented in Sec. V-D to compute the
fidelity for a straight path. Consider n2D inner neighbors, such
that 0 ≤ n2D ≤

√
N − 1− g(N), and m2D = 2n2D + 6 outer

neighbors, as each inner neighbor has two outer neighbors
and the target qubits have three each. Using the NSF, one
can see that the noise maps of the outer neighbors of the
inner qubits will have the same form as the noise maps of the
corresponding inner qubit. Therefore, we can use the results
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Fig. 3. The dark circles are qubits, the solid lines represent the entanglement between qubits and the dotted lines represent the extension of the cluster
following the presented structure. Thus, only part of a large cluster is explicitly drawn in (b) and (c). (a) is the graphical representation of the local Pauli Y
and Z measurements in graph states. (b) is the graphical representation of the manipulation of a 1D cluster with PBCs into a Bell pair. (c) is the graphical
representation of the manipulation of a 2D cluster with PBCs into a Bell pair using the Y method. At the top of (b) and (c), the initial situation is depicted,
where the target qubits have been chosen and the corresponding manipulation is established. At the bottom of (b) and (c), the manipulation has been performed
and the resulting Bell pair and the remaining graph state are presented.

presented in Sec. V-D and generalize the weight vector for
a 2D cluster, such that for this resource state the new weight
vector is w

(Y )
2D = 3w1D, where w1D corresponds to the weight

vector for the 1D cluster (for any order of measurements) using
n2D instead of n1D. Note that the values that n2D and n1D can
take are different, in particular on average n2D is much smaller
than n1D, as n2D ∝

√
N while n1D ∝ N . The fidelity in the

LER is F (ϵ, n2D) ≃ 1 − 1
2 (3n2D + 9)ϵ. Each corner in the

path reduces the number of outer neighbors by one, such that
a stairway path has the minimum number of outer neighbors.
The fidelity in the LER hence reduces to F (ϵ, n2D) ≃ 1 −
1
2 (3n2D + 8)ϵ for one corner, and

F (ϵ, n2D) ≃ 1− 1
2
(2n2D + 9)ϵ (10)

for the stairway, which has n2D inner neighbors and n2D +
6 outer neighbors. Note that only for specific configurations
of target nodes a stairway connection is possible.

2) X Method: In [65] an alternative method to get a Bell
pair is presented. We refer to the alternative method as X
method because as a first instance, one decides on the shortest
path between two qubits and X-measures the inner neighbors
consecutively. Next, in the resulting state, all the neighboring
qubits of the target qubits are Z-measured.

The X method applied in a 2D cluster is optimal if the cho-
sen path has many corners, as proved in [76]. Moreover, that
requires fewer measurements than the Y method. In particular,
if an outer neighbor is neighboring two inner neighbors, after
the X measurements, that qubit is no longer connected to the
target qubits. For a stairway path of n2D inner neighbors, the
number of qubits that have to be Z-measured is fixed to six,
as shown in Appendix A. The associated weight vector of a
Bell pair achieved via the X method is

w
(X)
2D =

(
0,
n2D − g(n2D)

2
+ 3,

n2D + g(n2D)
2

+ 3
)
. (11)

Then, the fidelity in the LER is

F (ϵ, n2D) ≃ 1− 1
2
(n2D + 9)ϵ. (12)

F. Resource: kD Cluster

Consider an N -qubit k-dimensional cluster with PBCs.
Each cluster qubit is placed in a node of the network, each
with 2k neighbors. In each direction, the size of the cluster is
k
√
N .
The performed manipulation follows the Y method, pre-

sented in Sec. V-E. The number of inner neighbors, nkD,
is such that 0 ≤ nkD ≤ k[ k

√
N−g(N)]/2−1, and the number
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of outer neighbors is mkD = 2(k − 1)nkD + 2(2k − 1) when
considering the lower-bound approximation that the shortest
path is a straight line, as in Sec. V-E. Moreover, following the
2D case, we can further generalize the weight vector, such that
wkD = (2k − 1)w1D, where w1D corresponds to the weight
vector for the 1D cluster (for any order of measurements) using
nkD. Note that the values of nkD are different for each k and
in average nkD decreases as k increases. The fidelity in the
LER is F (ϵ, k, nkD) ≃ 1− 1

2 [(nkD + 2)(2k − 1) + 3]ϵ.

G. Resource: Tree Cluster

A tree cluster is a graph state that can be characterized by a
branching vector, b = (b1, b2, . . . , bd) and d denotes the depth
of the tree cluster. In particular, we study a binary tree, which
means that bi = 2, ∀i, such that the total number of qubits is
N = 2d+1 − 1. Each qubit of the cluster is placed in a node
of the network. The performed manipulation to achieve a Bell
pair follows the Y method. Note that how much of the tree
state is measured out depends on the target qubits. We consider
the worst case, the one that destroys most of the tree, which
is when the two target qubits are in different branches of the
tree. Moreover, we assume that the two target qubits are not at
the bottom of the tree and that the path between them has ntree
inner neighbors, such that ntree ∝ log2N . There are mtree =
ntree + 3 outer neighbors, as each inner neighbor has an outer
neighbor but the root qubit of the tree, which has no outer
neighbor and each of the target qubits has two outer neighbors.
If we take the lower-bound approximation that the root qubit
has an outer neighbor, then the corresponding weight vector
is wtree = 2w1D, where w1D corresponds to the weight vector
for the 1D cluster (for any order of measurements) using ntree.
The fidelity in the LER is F (ϵ, ntree) ≃ 1− (ntree + 4)ϵ.

1) Increasing the Width of the Tree: We are now interested
in structures such that b1 > 2. Consider b = (3, 2, . . . , 2), then
N = 3×2d−2. We again assume that the two target qubits are
not at the bottom of the tree and that the path between them
has ntree inner neighbors. Each inner neighbor has an outer
neighbor and the target qubits have two each, thus, mtree =
ntree + 4. The weight vector is wtree = 2w1D, as the lower-
bound of the binary tree. In general, as we increase the width
of a binary tree the number of outer neighbors of the root
qubit increases. Such that mtree = ntree + b1 + 1, for a certain
ntree, considering the worst-case scenario.

VI. COMPARISON OF RESOURCES

In Table II we give the fidelity in the LER for all the studied
resource states.

A. Sets of Small Graph States

Here we compare the results of using several Bell pairs and
several GHZ3 states as resources in a switch-type structure,
presented in Sec. V-A and Sec. V-B. There are three cases:
(i) several Bell pairs, (ii) several GHZ3 when the two target
qubits correspond to the same GHZ state, and (iii) several
GHZ3 states when the two target qubits do not correspond
to the same GHZ state. Overall, (ii) is optimal as it has
the highest fidelity. This is followed by (i) and last (iii).

TABLE II
FIDELITY IN THE LER FOR A BELL PAIR BETWEEN ANY TWO NODES

IN A NETWORK OF N NODES DEPENDING ON THE RESOURCE STATE
(DERIVED IN SEC. V)

Therefore, we can say that a GHZ3 state is a more robust
resource than two Bell pairs. Additionally, we also consider
the requirement of the number of qubits for a fixed size of the
network, N external nodes. Distributing Bell pairs requires 2N
qubits whereas GHZ3 states require 3N/2. Thus, considering
multiparty entangled states, i.e., GHZ3 states, is better in terms
of memory.

B. Y Method Vs. X Method

In Sec. V-E, we have analyzed two methods to achieve
a single Bell pair, the Y method and the X method. Both
methods are optimal for a stairway path, and thus, we are
going to compare these cases. In terms of measurements,
for a fixed number of inner neighbors n2D, the X method
requires n2D+6 measurements, whereas the Y method requires
2n2D+6. This directly affects the fidelity, as FX−FY = n2Dϵ,
where FY and FX correspond to Eqs. (10) and (12). Thus the
X method has a higher fidelity for any n2D.

C. Optimal Dimension of Cluster

We consider networks of size N , which implies that for
k-dimensional clusters, the length in each dimension nkD ∝
k
√
N . Hence the (average) distance between any two nodes

in the network decreases significantly with k, while the num-
ber of outer neighbors among the path increases (linearly).
As shown in Sec. V-F, this leads to a different number of
required measurements, and thus different fidelities. Our aim
is to minimize the number of measurements, which is directly
linked to the dimension and the size of the cluster. The
average number of inner qubits of the path is n̄kD(k,N) =
k
4 [ k
√
N − g(N)]− 1

2 , where we use that the average distance
among each dimension is k

√
N/4 (the worst case would just by

larger by a factor of 2 due to PBCs). This leads to a required
averaged number of measurements for the manipulation

n̄kD + m̄kD =
2k − 1

2

[
k

2

(
k
√
N − g(N)

)
+ 3

]
. (13)

Importantly, as the dimension of the cluster increases the
connectivity of each qubit increases, whereas the average
distance of the path decreases. Thus, for a fixed size of the
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Fig. 4. (a) Log plot of the average number of measurements required to
achieve a Bell pair from a k-dimensional cluster, in terms of the dimension
of the cluster. For very large systems (N ∼ 105), the value for k = 1 is not
included in the plot as it is too large. (b) Log-log plot of the average number
of measurements in terms of the size of the size N of the network. The
different series correspond to different resource states. For N = 3× 2d − 2,
the width-three binary cluster and the optimal dimension cluster marked with
triangles are presented. For N = 2d+1− 1, the width-two binary cluster and
the optimal dimension cluster marked with inverted triangles are presented.
Note that the values in (a) and the values of the two optimal cluster series in
(b) are determined using Eq. (13) and ignoring the boundary effects due to
the restriction to integer values of k

√
N .

cluster N , the average optimal dimension for a minimum
number of measurements, k′, can be found. In Fig. 4a, the
required averaged number of measurements is shown in terms
of the dimension of an N -qubit cluster. From the results
of Fig. 4a we can see that the minimum number of mea-
surements corresponds to a certain dimension of the cluster
which increases as the size (N ) increases. For example, take
N = 102, then the optimal dimension is k′ = 2, such that
n̄kD = 5 and m̄kD = 15 are minimal. Notice the moderate
increase in the required number of measurements with the
total size of the network N .

D. Tree Cluster Vs. Optimal Dimension Cluster

To compare tree graphs and optimal-dimensional clusters,
we focus on the required number of measurements in the

manipulation, as we have seen above the number of measure-
ments directly impacts the fidelity of the final Bell pair. For
the binary tree, 2ntree − 1 measurements are required, which
in average it is 2 log2(N + 1) − 3. Note that if the width
of the tree is increased and N is fixed, the overall required
measurements are the same, but the average is smaller, the
latter being 2 log2((N + 2)/3) − 1. This is a lower average
than the pure binary tree, as one can see in Fig. 4b. Moreover,
the optimal-dimensional cluster requires more measurements
than a tree cluster, as shown in Fig. 4b. However, when manip-
ulating a tree cluster, we destroy most of the entanglement,
leaving a lot of disconnected small clusters. Whereas, after the
manipulation of an optimal-dimensional cluster, most of the
state remains entangled and can be further used to establish
more connections. Therefore, we can say that a tree cluster
is a better resource state for a one-shot scenario than the
optimal-dimensional cluster in terms of achievable fidelity.

E. Thresholds for the Error Probability

For the large resource states, the fidelity of a resulting
Bell pair depends on the size of the cluster, such that if N
is too large the fidelity drops below 0.5 and the resulting
pair is no longer entangled. In Fig. 5, the threshold for the
noise probability (1 − pth) for which the fidelity of the Bell
pair is lower than 0.5 is presented as a function of N , the
size of the resource cluster. To compute the results presented
in this section we use the exact expressions of the fidelity,
which can be computed using the weight vectors and Eq. (7),
to get a more accurate result than using the fidelity in the
LER. In contrast to the previous subsection, we consider a
worst-case scenario here, i.e., the maximum possible distance
between any two nodes, which implies that above the error
threshold, one can produce an entangled Bell pair between any
two nodes. The results in Fig. 5 imply that large-scale GHZ
states and 1D clusters are not suitable resources in an EBQN
when taking noise and imperfections into account. However,
2D, 3D, and binary tree clusters have a good tolerance to noise
in large-scale systems. Importantly, 1− pth for these resource
states does not go below 10−3 even for large (∼ 105) clusters.
Notice that for large enough N , the 3D cluster is better than
the 2D one, which is in agreement with the results of the
optimal dimension cluster. Moreover, we see that the binary
tree cluster has a better tolerance to noise than the 2D and 3D
clusters, a behavior that we have already seen in the previous
results.

VII. EXTENSION TO A THREE-QUBIT GHZ
STATE AS A TARGET STATE

We now generalize our results to a single GHZ3 state as
the target, where the state is shared between three arbitrary
qubits a, b, and c. Then, one just needs to connect two of the
qubits to the third one. Thus, from the three possible paths
(a to b, b to c, c to a) one chooses the two shortest ones and
establishes the target state. Assume that the two shortest paths
are a to b and b to c, then a and c denote the leaf qubits
of the target state and b the root of the target state. If the
two leaf qubits and their paths to the root qubit do not have
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Fig. 5. Log-log plot of the threshold value for the single-qubit noise
probability for producing an entangled Bell pair, as a function of the total size
N of the network. Different curves correspond to different resource states,
e.g., 1D, 2D, 3D and tree clusters and GHZ states. The worst-case scenario,
i.e., the maximum possible distance between target nodes, is considered.

joined neighbors, then the results derived for the Bell pair in
Sec. V can be easily generalized for this case. To understand
this, one can think of this GHZ3 state as two Bell pairs that
share one qubit, which results in being the root qubit. Then,
under the consideration that the two leaf qubits and their paths
to the root qubit do not have joined neighbors, these two
pairs are essentially independent of each other. In Appendix B,
we show that we can extend the weight vector formalism for
this case and we derive an exact expression of the fidelity for
the noisy GHZ3 state. Moreover, we give the results for large
cluster states manipulated by single-qubit measurements into
a GHZ3 state. The analysis of optimal-dimensional clusters
is analogous to the one derived for the Bell pair as a target,
taking into account that now there are two paths, one from
a to b and another from b to c. We remark that the scenario
of transforming a 1D cluster into GHZ states has also been
studied in [67] for a system of up to a few tens of qubits.

VIII. CONCLUSION AND OUTLOOK

In this article, we have investigated the influence of noise
and imperfections in EBQNs. We found that there exist classes
of resource states that allow one to produce Bell pairs and
few-qubit GHZ states with moderate overhead, leading to
high-fidelity entangled output states. In this case, it resulted
that high-dimensional cluster states or tree graphs are favorable
in terms of the required number of measurements, and hence in
the achievable fidelity. Additionally, regarding storage require-
ments, these resource states are optimal as a single qubit
per node is sufficient. Nevertheless, we have also considered
resource states formed by a set of small states, i.e., Bell
pairs or few-qubits GHZ states, which have higher storage
requirements. These are beneficial because their entanglement
can be entirely or partly easily refreshed. We conclude that a
GHZ3 state is a more robust resource than two Bell pairs.

However, in a real network one is typically not interested
in single requests, but there might be another request after the
first one was fulfilled. More generally, multiple requests that
should be fulfilled in parallel are conceivable (see, e.g., [92]).

In these cases, not only the achievable fidelity is relevant,
but also the structure of the remaining entanglement in the
resource state. GHZ states, 1D cluster states, and tree graphs
are not favorable in this respect as most of the entanglement is
destroyed during the preparation process of the Bell pair, and
the remaining resource cannot be used directly to fulfill further
requests. We remark that this is not true for higher dimensional
clusters with k ≥ 2, where multiple Bell pairs can be generated
in parallel. Cutting 1D lines out of a multi-dimensional cluster
leaves one with a connected cluster, and crossings can be
avoided by using the third dimension. But even a 2D structure
suffices, as an embedded butterfly state [63], [64] can be used
to achieve crossings.

Another interesting issue is concerned with the generation
of multipartite target states from small elementary structures,
e.g., the preparation of 1D or 2D cluster states from elementary
Bell pairs or GHZ3 states. An analysis of these processes can
be performed; however, a direct assessment of the final state
fidelity cannot be done using the NSF. While there exists an
efficient description of resulting states and noise processes
after merging in terms of stabilizers and noise operators acting
on states, computation of fidelity involves an exponential
overhead. One can however provide an indirect assessment
of the quality of the resulting resource by computing average
fidelities of Bell pairs produced from the cluster state. We note
that recently a method to approximately determine the fidelity
of cluster states efficiently has been proposed in [93]. It is an
open problem if this can be adapted to approximate the fidelity
from the noisy stabilizer description.

Finally, we point out that the methods and manipulations
presented in this paper in a real network scenario require a
classical protocol to synchronize and coordinate the network
nodes and their actions. Depending on the nature of this
classical layer, different classical waiting times arise. Those
lead to different required memory times and hence asymmetric
noise configurations.

APPENDIX A
BELL PAIR VIA THE X METHOD FROM A 2D CLUSTER

Our goal here is to compute the required measurements
using the X method in a 2D grid taking a stairway path.
We show that for any length of the stairway path, the required
measurements are the corresponding X measurements of the
inner neighbors and six Z measurements.

We label the qubits in the path as vj with j = 1, . . . , l,
where l−1 is the length of the path, such that the target qubits
are v1 and vl. Following the X method, qubits v2, . . . , vl−1

have to be X-measured. Next, the resulting neighbors of
v1 and vl have to be Z-measured. Let us define t as the X
measurement of qubit vt+1 and N

(t)
vj is the neighborhood of

vj after the tth X measurement. In total, this method requires
(l− 2) measurements in the X basis and |N (l−2)

1 ∪N (l−2)
l | −

2 measurements in the Z basis.
From [65], we use Eqs. (13)-(17) from the supplementary

information. Moreover, we also make use that for a stairway
path |N (0)

vj ∩ N (0)
vk | = 2 if k = j + 2, j − 2, and any other

intersection between Nvj
and Nvk

is empty. Note that the
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TABLE III
NEIGHBORHOODS OF THE QUBITS IN A STAIRWAY PATH OF LENGTH 5 AT

THE DIFFERENT STEPS OF THE X METHOD

non-empty intersections are unique. We look at the case for
l = 5 and using all of these equations we compute the
final neighborhoods of v1 and v5. In Table III, the initial
neighborhoods are shown in the t = 0 column, such that
the outer neighbors of the path are labeled by {a, b, . . . , i}.
Moreover, the neighborhoods of the qubits in the path at each
step of the manipulation are shown.

From the last column in Table III, we see that qubits
a, d, e, f, h, i have to be Z-measured to achieve a pair between
v1 and v5. These qubits are the neighboring qubits of the
path that only belong to one neighborhood of the qubits in
the path in t = 0. Note that the presented example has
other cases for smaller l included in it, e.g., the first step
t = 1 is an example for l = 3. Thus, these results can be
generalized for an arbitrary length of the stairway path, such
that the following hold for any l − 2 = n where n ≥ 0
(can be proven via induction): |N (n)

v1 | = 4− g(n), |N (n)
vn+2 | =

4 + g(n), |N (n)
v1 ∩N (n)

vn+2 | = 0, |N (n−1)
v1 ∩N (n−1)

vn+2 | = 2. Thus,
|N (n)

v1 ∪ N (n)
vn+2 | − 2 = 6, such that using the X method in a

stairway path only requires six Z measurements.

APPENDIX B
THREE-QUBIT GHZ STATE AS A TARGET STATE

In this section, we describe the fidelity computation of a
noisy GHZ3 state and we give the generalized results for the
same resource states as in Sec. V-C - V-G. In Table IV we
give an overview of the fidelity in the LER for all the studied
resource states.

A. Fidelity Computation

Assume that the target state is between qubits a, b, and c,
where a and c are the leaf qubits and b is the root. Then,
the set of noise maps that the measured qubits can take has
7 components, which are of the form

Mαβγρ
′ = pρ′ +

1− p

2

(
ρ′ + Zα

a Z
β
b Z

γ
c ρ
′Zα

a Z
β
b Z

γ
c

)
(14)

where α, β, γ = 0, 1 and ρ′ = |GHZ3⟩⟨GHZ3| is the noiseless
target state, andM000 is not in the set. We define a new weight
vector, w = (w001, w010, w011, w100, w101, w110, w111). Using
the fact that any Mαβγ applied wαβγ times with probability
p is the same as applying it once with probability pwαβγ , the
expression for the fidelity of a GHZ3 state is

F (p,w) =
1
4
(1 + p2+w001+w011+w100+w110

+ p3+w001+w010+w100+w111

+ p3+w010+w011+w110+w111). (15)

This is valid for any resource state that has been manipulated
via local Pauli measurements into a GHZ3 state. The gen-
eral case including full-merging operations can be computed
following the Bell pair case. The fidelity in the LER, where
1− p = ϵ for small ϵ is

F (ϵ,w) ≃ 1− 1
2

4 +
1∑

α,β,γ=0

wαβγ − w000 − w101

 ϵ.

(16)

Given that the sum of the elements of w corresponds to the
number of performed local Pauli measurements, Eq. (16) can
be computed with a counting argument as long as w101 = 0,
which corresponds to the case where the leaf qubits do not
share neighbors, and are thus, independent of each other.

B. Resource: N-Qubit GHZ State

Assume that the root of the target state is the same as the
root of the resource state. Thus, only the non-target leaves
have to be Z-measured, such that w = (0, N −3, 0, 0, 0, 0, 0).

C. Resource: 1D Cluster

We connect the root qubit with each of the leaves using the
shortest path, such that the two paths have n(ab)

1D and n(bc)
1D inner

neighbors each, and the total is n(abc)
1D = n

(ab)
1D +n

(bc)
1D . We use

the Y method and consider that the two leaf qubits do not share
outer neighbors such that their noise is not correlated, leading
to w101 = w111 = 0. We consider an outwards side-to-side
strategy, such that the qubits in the two paths are measured in
the direction towards the leaf qubit. Note that the weight vector
for any other strategy can be easily computed. The weight
vector is

w001 = 1 +
1
2

[
n

(bc)
1D − g

(
n

(bc)
1D

)]
,

w010 = 0,

w011 =
1
2

[
n

(bc)
1D + g

(
n

(bc)
1D

)]
,

w100 = 1 +
1
2

[
n

(ab)
1D − g

(
n

(ab)
1D

)]
,

w110 =
1
2

[
n

(ab)
1D + g

(
n

(ab)
1D

)]
.

(17)

D. Resource: 2D Cluster

We use the same assumptions as for the 1D case with now
two paths of n(ab)

2D and n(bc)
2D inner neighbors correspondingly,

and a total of n(abc)
2D = n

(ab)
2D +n(bc)

2D . Additionally, we consider
the lower-bound approximation that the shortest paths are
straight lines, as in Sec. V-E. The corresponding weight vector
is w2D = 3w1D + (0, 2, 0, 0, 0, 0, 0), where w1D corresponds
to the weight vector for the 1D cluster (for any order of
measurements) using n(ab)

2D and n(bc)
2D .

E. Resource: kD Cluster

We use the same assumptions as for the 2D case with now
two paths of n(ab)

kD and n(bc)
kD inner neighbors correspondingly,
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TABLE IV
FIDELITY IN THE LER FOR A GHZ3 STATE BETWEEN ANY THREE NODES

IN A NETWORK OF N NODES DEPENDING ON THE RESOURCE STATE

and a total of n(abc)
kD = n

(ab)
kD +n(bc)

kD . The corresponding weight
vector is wkD = (2k−1)w1D +(0, 2k−2, 0, 0, 0, 0, 0), where
w1D corresponds to the weight vector for the 1D cluster (for
any order of measurements) using n(ab)

kD and n(bc)
kD .

F. Resource: Binary Tree Cluster

The three target qubits are in arbitrary positions in the binary
tree cluster. Before reaching a GHZ3 state, we need to reach
a four-qubit GHZ state, where all the target qubits are leaves.
This first step can be achieved by following the Y method
for the 3 paths that are there. Each of these paths goes from
one of the target qubits (a, b, and c) to the root qubit of this
intermediate state, which we label as r. These paths have nar,
nbr and ncr inner neighbors each, such that the total number of
inner neighbors is n(abc)

tree = nar +nbr +ncr. Now, to reach the
final GHZ3 state, qubit r is X-measured, where b is chosen
as the special neighbor to achieve the structure where b is
the root. Considering that the Y method in the first step has
been performed following the outward side-to-side strategy,
the resulting weight vector is

w001 = nar − g(nar) + 2, w011 = ncr + g(ncr),
w010 = nbr − g(nbr) + 3, w110 = nar + g(nar),
w100 = ncr − g(ncr) + 2, w110 = nbr + g(nbr),
w101 = 0. (18)
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