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Reconfigurable Electromagnetic Environments:
A General Framework

Davide Dardari , Senior Member, IEEE

Abstract— The recent introduction of the smart radio environ-
ments (SREs) paradigm, facilitated by reconfigurable intelligent
surfaces (RISs) and large surface antennas, has highlighted
the need for physically consistent models and design tools in
communication systems that integrate information theory (IT)
and electromagnetic (EM) theory. In this paper, we present
a comprehensive framework for characterizing and designing
programmable EM environments, based on rigorous EM argu-
ments and represented through a linear graph employing matrix
operators. The framework enables the determination of the EM
transfer function of the system and the channel matrix used in IT,
along with their relationship as functions of the programmable
parameters. Considering that the mapping of EM quantities
into IT signals occurs through the presence of ports in antenna
structures, using the framework, we analyze the constraints
imposed by the ports in terms of potential degrees-of-freedom
(DoF) and establish the fundamental limits on the DoF of large
surface antennas. To demonstrate the utility and validity of
the framework, we provide examples specifically related to the
characterization and optimization of RISs.

Index Terms— Smart radio environments, holographic MIMO,
EM transfer function, reconfigurable intelligent surfaces, antenna
degrees of freedom.

I. INTRODUCTION

RECENTLY, the concept of smart radio environments
(SREs) has emerged as one of the new design paradigms

for next-generation networks [1]. With the deployment of
programmable electromagnetic (EM) devices, such as recon-
figurable intelligent surfaces (RISs), in SREs, the environment
becomes an integral part of the design and optimization
process. This advancement is expected to lead to more flexible
wireless networks, offering improved performance in terms of
achievable data rates, interference shaping, coverage extension,
energy efficiency, and complexity reduction.

Extensive research has been dedicated to the study of
communication and localization systems aided by RISs, as evi-
dent from the papers [2], [3], [4], [5]. Simultaneously, the
introduction of extremely electrically large antennas, often
denoted to as large intelligent surfaces (LISs), constructed
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using metasurfaces and designed to operate at high frequencies
(millimeter waves and THz), has enabled the utilization of
radiating near-field characteristics of the radio channel, even
at practical distances [2], [6], [7], [8], [9]. For example,
at 100 GHz, the near-field region of an antenna with an
aperture of 50 cm extends up to 100 m [2].

Despite the wide range of literature available today on the
subject, previous studies have some main shortcomings that
can be summarized as follows. On the one hand, system-level
design and optimization have often relied on oversimplified but
tractable models, which unfortunately incorporate physically
inconsistent assumptions. These models fail to capture impor-
tant peculiarities of the electromagnetic objects (EMOs) that
form the system, such as antennas, RISs, passive scatterers,
and more. One typical example of an often neglected EM
phenomenon exhibited in smart metasurfaces is the presence
of Floquet modes. These modes are the effect of the periodic
impedance of a metasurface and can lead to spurious reflec-
tions, potentially causing interference at undesired angles and
compromising the overall system performance [10]. Moreover,
the pursuit of ultimate theoretical limits requires an accurate
description of the underlying EM phenomena [11], [12],
as well as understanding their relationship with the models
commonly adopted in information theory (IT). On the other
hand, in the EM community, the emphasis has primarily
been on characterizing individual devices, often relying on
extensive EM-level simulations. However, these simulations
are challenging to incorporate into a system-level analysis or
real-time system optimization cycle [10], [13], [14], [15], [16],
[17]. In the past, this dichotomy has been reasonable, as the
EMOs, such as antennas, were perceived as mere “sensors”
or “actuators/transducers” within the IT community. However,
in the near future, with the presence of reconfigurable EM
environments, the primary objective will be to optimize the
system response, even in real-time, by adjusting the parameters
of the EMOs (e.g., the reflection properties of a metasurface-
based RIS). This necessitates a holistic system view that
incorporates physically consistent models and design tools,
seamlessly integrating IT and EM theory [18]. Some recent
works have taken steps in this direction. The investigation
of the DoF of the wireless channel when using LISs has
been conducted in [6], [7], [12], and [2]. These works model
the surface as a continuum of infinitesimal antenna elements.
As for RISs, the work in [19] proposes modeling a RIS as a set
of elementary coupled dipoles and characterizing its response
in terms of impedance matrices. In [20], both continuous and
discrete models for the response of a perfect reflecting RIS
are derived based on EM arguments. However, it is worth
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noting that most discrete-element models are not suitable for
describing all the phenomena (e.g., Floquet modes) that char-
acterize homogeneous metamaterial-based RIS imposing EM
boundary conditions. A recent investigation on the connections
and discrepancies between continuous and discrete models
has been published in [21]. For a comprehensive survey that
includes a critical discussion on RIS modeling, the reader can
refer to [22].

Moving to a system level, the authors in [23] introduce
the concept of the EM transfer function in the wavenumber
domain, similar to the classical transfer function used in
the signal processing community for linear systems in the
frequency domain. This concept has been further developed in
recent papers [3], [24], [25], [26]. In particular, [24] and [25]
extend the concept of EM transfer function to a stochastic
Gaussian propagation environment with rich scattering. The
paper [26] derives the EM transfer function for the case of an
infinite-sized surface with a constant reflection coefficient by
establishing a connection between the well-known image theo-
rem in EM theory and the EM transfer function. Furthermore,
[27] presents a generalized expression of the EM field reflected
by an EM skin in far-field and radiative near-field regimes,
which is subsequently utilized to derive a unified method for
designing anomalous-reflecting and focusing EM skins.

The previously mentioned studies are limited to defining the
EM transfer function as a “black box”, offering no general
methodology to compute it, except for a few oversimplified
scenarios or undersimplified assumptions (e.g., neglecting
polarization, assuming infinite uniform surfaces, point-wise
scatterers, and far-field regime). None of these papers address
the characterization of the EM transfer function for general
reconfigurable EMOs like RISs and LISs. Furthermore, the
relationship between the EM transfer function and the channel
matrix concept, which is typical in IT, has not been thoroughly
investigated. For instance, most of the literature mentioned
above assumes that LIS antennas can realize any current
distribution on their surface. On the other hand, the signals
considered in IT models are associated with electrical quanti-
ties defined at the antenna ports, and the antenna structure
imposes a limitation on the actual DoF of the antenna in
generating the current distribution.

To address this gap, this paper introduces a comprehensive
framework rooted in rigorous EM arguments, applicable in
both far-field and near-field regimes (radiative and reactive).
The aim is to offer an IT and physically consistent inter-
pretation of reconfigurable EM environments. The primary
contributions and the organization of this paper are summa-
rized as follows:

• The problem formulation for describing a reconfigurable
EM system, incorporating multiple EMOs based on a
vector representation of fields to capture the underlying
EM phenomena, reveals that any system with linear
EMOs can be represented as a space-variant feedback
system.

• Acknowledging the inherent complexity of analyzing
and designing space-variant feedback systems, this paper
proposes a linear algebra description of the EM system
(Sec. III). This involves introducing harmonic basis func-
tions (referred to as modes) (Sec. IV) and subsequently

deriving expressions for mode coupling (Sec. V). This
approach provides a graph-based interpretation of the
system, beneficial for designing and characterizing EM
systems, even when reconfigurable EMOs are involved.

• The modeling and characterization of reconfigurable sur-
faces in terms of boundary conditions are discussed in
Sec. VI. It is demonstrated that classical local boundary
conditions limit the structure of the surface’s transfer
function, whereas utilizing global boundary conditions
provides the highest level of flexibility.

• In Sec. VII, we demonstrate that the graph-based inter-
pretation of the system, coupled with the linear algebra
representation, successfully establishes the relationship
between the EM transfer function and the IT channel
matrix by considering the constraints imposed by the
presence of ports in antenna structures. This represen-
tation acts as a “bridge” between the two worlds.

• We further analyze the constraints imposed by the
antenna’s ports in terms of potential DoF. To this end,
a general approach to evaluate the impedance matrix of
antenna structures is presented and subsequently utilized
to determine the theoretical upper bound on the DoF
of any antenna structure as a function of its shape
(Sec. VII-B). To illustrate the utility of the proposed
framework, three examples are provided in Sec. VIII:
(i) Derivation of the EM transfer function of a finite-size
surface with a given impedance, demonstrating that pre-
vious results in the literature can be viewed as particular
cases of our work; (ii) Design of a RIS aiming to
minimize spurious interference caused by the presence of
Floquet modes and/or other EM sources. A comparison is
made between the design using local and global boundary
conditions; (iii) Derivation of a closed-form expression
for the impedance matrix of a LIS antenna and its
theoretical DoF, compared with spherical and discrete-
element antennas.

A. Notation and Definitions
Lowercase bold variables denote vectors in the 3D space,

i.e., r = 𝑟𝑥 x̂+𝑟𝑦 ŷ+𝑟𝑧 ẑ is a vector with Cartesian coordinates
(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧), r̂ is a unit vector denoting its direction, and
𝑟 = |r| denotes its magnitude, where x̂, ŷ, and ẑ represent
the unit vectors in the 𝑥, 𝑦 and 𝑧 directions, respectively.
The cross product between vectors p and r is indicated
with p x r, whereas the scalar product with p · r. 𝛿(𝑥) and
𝛿𝑛 represent, respectively, the Dirac delta pseudo-function
and its discrete counterpart (Kronecker delta). Multi-variable
versions can be defined as well, i.e., 𝛿(r) = 𝛿(𝑥) 𝛿(𝑦) 𝛿(𝑧)
and 𝛿𝑛,𝑚 = 𝛿𝑛−𝑚. Sans serif capital letters (e.g., E(r), J(r))
represent EM vector functions (in the following named fields),
whereas scalar functions are denoted with lowercase letters,
i.e., 𝜙(r). Boldface capital letters are matrices (e.g., A), where
I𝑁 and 0𝑁 are, respectively, the identity and zero matrices
of size 𝑁 , 𝑎𝑛,𝑚 = [A]𝑛,𝑚 represents the (𝑛, 𝑚)th element
of matrix A, ∗ indicates the complex conjugate operator,
whereas AH the conjugate transpose of A. ∇x E(r) is the
curl of the vector function E(r). Surfaces and volumes are
indicated with calligraphic letters S. Any linear transformation
of a field A(r) into a field B(r) can be described using
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a 2-rank tensor matrix that can be expressed according to
vector notation B(r) = D · A(r) and algebra, where D is
called dyadic. Typically, D depends on the position r even
though this is not shown explicitly to lighten the notation.
Often an operation involving a dyadic can be expressed in
matrix form. Define Sinc (𝑥) = sin(𝜋 𝑥)/(𝜋 𝑥) for 𝑥 ≠ 0,
1 for 𝑥 = 0, and Rect (𝑥) = 1 for |𝑥 | < 1/2, zero otherwise.
Furthermore, denote with 𝜇, 𝜖 , and 𝜂 =

√︁
𝜇/𝜖 the free-space

permittivity, permeability, and impedance, respectively, and
𝑐 the speed of light. Finally, we define E {𝑥} the statistical
expectation of the random variable 𝑥 and n ∼ Nc (m,C) a
complex-valued Gaussian random vector with mean m and
covariance matrix C.

II. RECONFIGURABLE EM SYSTEM

A. Problem Formulation

We consider 𝑀 linear time-invariant EMOs are present in
the system sketched in Fig. 1, and we indicate with S (𝑚) ,
𝑚 = 1, 2, . . . , 𝑀 , the surface that encloses the 𝑚th EMO. Each
surface can represent the physical surface of the EMO or any
arbitrary surface that encloses it. An EMO may identify a RIS,
a conventional transmitting/receiving antenna, a reconfigurable
antenna, such as a dynamic metasurface antenna [28], and
any other object in the environment affecting the propagation
conditions. We work in the frequency domain, where time-
harmonic excitations are assumed with angular frequency 𝜔,
but not shown explicitly. Denote with J(𝑚) (r) and M(𝑚) (r) the
electric and magnetic current densities, respectively, on surface
S (𝑚) . Notice that J(𝑚) (r) and M(𝑚) (r) are zero outside S (𝑚) .
The total electric and magnetic currents present in the system
are given by J(r) = ∑𝑀

𝑚=1 J(𝑚) (r) and M(r) = ∑𝑀
𝑚=1 M(𝑚) (r),

respectively. In general, J(𝑚) (r) and M(𝑚) (r) can be decom-
posed into the sum of the (real or equivalent) impressed(
J(𝑚)

imp (r) ,M
(𝑚)
imp (r)

)
(if any) and induced

(
J(𝑚)

s (r) ,M(𝑚)
s (r)

)
currents, that is, J(𝑚) (r) = J(𝑚)

s (r) + J(𝑚)
imp (r) and M(𝑚) (r) =

M(𝑚)
s (r) +M(𝑚)

imp (r). According to the equivalent principle [29,

Ch. 12], the introduction of (fictitious) induced currents, sat-
isfying the boundary conditions at the corresponding surface,
permits to consider the induced current sources to radiate into
an unbounded space. Therefore, the EM field, i.e., the electric
and magnetic fields, generated by all the currents present in
the system at the generic location r can be computed under
the free-space condition, that is,(

E(r)
H(r)

)
=

(
GEJ GEM
GHJ GHM

)
·
(

J(r)
M(r)

)
= G ·

(
J(r)
M(r)

)
(1)

where the above dyadics are given by [30, Ch. 3]

GEJ · J(r) = 1
𝚥𝜔𝜖

∇x ∇x

∫
S
𝐺0 (r − s) J(s) 𝑑s (2)

GEM · M(r) = −∇x

∫
S
𝐺0 (r − s) M(s) 𝑑s (3)

GHJ · J(r) = ∇x

∫
S
𝐺0 (r − s) J(s) 𝑑s (4)

GHM · M(r) = 1
𝚥𝜔𝜇

∇x ∇x

∫
S
𝐺0 (r − s) M(s) 𝑑s (5)

being S =
⋃𝑀

𝑚=1 S (𝑚) . The function

𝐺0 (r) =
exp(− 𝚥 𝑘0 |r|)

4𝜋 |r| (6)

is the free-space scalar Green’s function, where 𝑘0 = 2𝜋/𝜆
is the wavenumber and 𝜆 = 2𝜋𝑐/𝜔 is the wavelength. It can
be easily noticed from the previous equations that the propa-
gation phenomenon operates as a space-invariant linear filter
because 𝐺0 (r) appears in (2)-(5) as a function of only the
difference r − s.

Define the EM field
(
E(𝑚)

t (r) ,H(𝑚)
t (r)

)
tangent to surface

S (𝑚) of the 𝑚th EMO. For any linear time-invariant EMO,
the induced currents are linear functionals of the EM field
tangent to the surface so that they can be described as follows
(constitutive equation) [7](

J(𝑚)
s (r)

M(𝑚)
s (r)

)
=

(
D (𝑚)

JE D (𝑚)
JH

D (𝑚)
ME D (𝑚)

MH

)
·
(

E(𝑚)
t (r)

H(𝑚)
t (r)

)
= D (𝑚) ·

(
E(𝑚)

t (r)
H(𝑚)

t (r)

)
(7)

where the dyadic D (𝑚)
JE can be expressed in general as

D (𝑚)
JE · E(𝑚)

t (r) =
∫
S (𝑚)

D (𝑚)
JE (r, s) E(𝑚)

t (s) 𝑑s (8)

being D (𝑚)
JE (r, s) the impulse response dyadic describing com-

pletely the relationship between the electric field and the
induced current at the 𝑚th EMO. Similar expressions can be
written for the dyadics D (𝑚)

JH , D (𝑚)
ME , and D (𝑚)

MH . For instance,
in non-magnetic scatterers, the induced magnetic current is
zero, i.e., M(𝑚)

s (r) = 0, then D (𝑚)
ME = D (𝑚)

MH = 0 [31]. The
particular form of D (𝑚) depends on the model adopted for
the EMO and the target level of accuracy. Some examples are
provided in Sec. VI. Looking at the relationship between (1)
and (7), it is interesting to highlight that any EM scenario can
be viewed as a feedback system of which it might of interest
defining the EM transfer function (see Sec. II-D), and in which
the impressed currents represent the inputs, the propagation
phenomenon G is a space-invariant filter and each EMO
can be seen as a space-variant filter (in analogy with time-
variant filters) whose output consists of the induced currents.
The above feedback system involves integral equations whose
solution is, in general, a complex problem typically addressed
numerically. In this paper, we introduce a methodology to
bypass this problem.

B. Antennas as EMOs With Input and Output Ports

In any practical communication system, the EM field is
altered in response to electrical signals carrying information.
The system also “senses” the EM field at various locations to
retrieve this information by processing the electrical signals
obtained from it. Radiating systems (antennas) play a crucial
role in establishing the mapping between the EM field and IT
signals through their input and output ports at which voltages
(currents) are associated with input and output signals in the
IT sense, respectively. To elaborate, consider a generic EMO
representing a transmitting antenna equipped with 𝑃 input
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Fig. 1. General EM scenario with interacting EMOs. As an example, EMOs 1 and 𝑀 represent a transmitting antenna with 𝑃 input ports and a receiving
antenna with 𝑄 output ports, respectively. The 𝑖th EMO can be configured (e.g., RIS).

ports (see Fig. 1). Signals are associated with the voltage
envelopes v = [𝑣1, 𝑣2, . . . , 𝑣𝑃]𝑇 at the 𝑃 ports that are assumed
to be properly matched to the corresponding impedance. Let
i = [𝑖1, 𝑖2, . . . , 𝑖𝑃]𝑇 denote the current envelopes flowing into
the ports. Since they carry information, they must be consid-
ered as random variables. For notation convenience, we have
omitted the explicit time index. The relationship between these
voltage and current envelopes is given by the impedance
matrix ZT, which quantifies the mutual coupling within the
antenna, such that v = ZT · i. In general, according to the
equivalent principle, the radiating structure can be replaced
by an equivalent impressed current density Jimp (r) radiating in
free space, which is linearly dependent on the currents i. That
is, Jimp (r) = T(r; i), where the mapping function T(·) clearly
depends on the antenna structure and material. We assume that
the coupling with nearby objects (within the reactive field of
the antenna) is already accounted for by T(·), allowing us to
set D ≃ 0, and assume T(·) does not depend on the rest of
the system. From a practical standpoint, T(r; i) can be derived
once the electrical field E(r) is known in the far field, and by
inverting (14) with M(r) = 0 and J(r) = Jimp (r). This can
be achieved through measurements of the radiation pattern,
analytical methods, or EM numerical simulations. By invoking
the reciprocity theorem, similar considerations can be drawn
for an EMO representing a receiving antenna with 𝑄 ports
and impedance matrix ZR, where u = ZR · j, and u and j are
the voltage and current vectors at the output of the antenna,
respectively, assumed to be perfectly matched. We will see
in Sec. VII-B that the impedance matrix determines the DoF
of the antenna in generating the impressed current Jimp (r).
Therefore, in the same section, a general method to derive it
will be proposed and used to find the theoretical limits of a
surface antenna.

C. Wavenumber Domain Representation
For what follows, it is convenient to introduce the rep-

resentation of the fields in the wavenumber domain 𝜿 =

𝜅𝑥 x̂+ 𝜅𝑦 ŷ+ 𝜅𝑧 ẑ through the 3D Fourier transform. Specifically,

given a generic field A(r), we can write

Ã(𝜿) = F [A(r)] =
∫
R3

A(r) 𝑒− 𝚥 𝜿 ·r 𝑑r (9)

A(r) = F −1
[
Ã(𝜿)

]
=

1
(2𝜋)3

∫
R3

Ã(𝜿) 𝑒 𝚥 𝜿 ·r 𝑑𝜿 . (10)

When applied to the EM field, the inverse Fourier represen-
tation in (10) expresses the EM field in terms of mathematical
plane waves [32]. By inspection of (10), the plane wave with
wavenumber 𝜿, travels in the positive 𝑤-direction (forward
wave), with 𝑤 ∈ {𝑥, 𝑦, 𝑧}, when its component 𝜿𝑤 < 0,
whereas when 𝜿𝑤 > 0 the wave travels in the negative
𝑤-direction (backward wave). By applying the Fourier trans-
form to the Green’s function (6) we obtain

𝐺0 (𝜿) = F [𝐺0 (r)] =
1

|𝜿 |2 − 𝑘2
0

(11)

and, from (2)-(5), that

Ẽ(𝜿) = F [E(r)] = 𝚥 𝐺0 (𝜿)
𝜔𝜖

𝜿 x 𝜿 x J̃(𝜿) − 𝚥 𝐺0 (𝜿) 𝜿 x M̃(𝜿)

= 𝚥 𝐺0 (𝜿)𝜿 x

[
𝜂

𝑘0
𝜿 x J̃(𝜿) − M̃(𝜿)

]
(12)

H̃(𝜿) = F [H(r)] = 𝚥 𝐺0 (𝜿)
𝜔𝜇

𝜿 x 𝜿 x M̃(𝜿) + 𝚥 𝐺0 (𝜿) 𝜿 x J̃(𝜿)

= 𝚥 𝐺0 (𝜿) 𝜿 x

[
1

𝑘0 𝜂
𝜿 x M̃(𝜿) + J̃(𝜿)

]
(13)

where convolutions become multiplications in the wavenumber
domain, J̃(𝜿) = F [J(r)], M̃(𝜿) = F [M(r)], and we have
considered that F [∇x A] = 𝚥 𝜿 x Ã(𝜿). The spatial filtering
operated by the Green’s operator is evident in (11) which
corresponds to a low-pass filter with a cut-off frequency equal
to 𝑘0. This means that the EM field has a spatial low-pass
characteristic. Incidentally, by defining 𝜿r = 𝑘0 r̂, the EM
field at location r in far-field conditions is proportional to the
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Fourier transform of the sources [29, Ch. 12], that is,

E(r) ≃ 𝚥 𝑘0
𝑒− 𝚥 𝑘0 |r |

4𝜋 |r| r̂ x
[
𝜂 r̂ x J̃(𝜿r) + M̃(𝜿r)

]
H(r) ≃ 𝚥 𝑘0

𝑒− 𝚥 𝑘0 |r |

4𝜋 |r| r̂ x

[
1
𝜂

r̂ x M̃(𝜿r) − J̃(𝜿r)
]
. (14)

By applying the Fourier transform to (7) we obtain

J̃(𝑚)
s (𝜿) = 1

(2𝜋)3

∫
R3

D̃
(𝑚)
JE (𝜿, 𝜿) Ẽt (𝜿) 𝑑𝜿

+ 1
(2𝜋)3

∫
R3

D̃
(𝑚)
JH (𝜿, 𝜿) H̃t (𝜿) 𝑑𝜿 (15)

where D̃
(𝑚)
JE (𝜿, 𝜿) and D̃

(𝑚)
JH (𝜿, 𝜿) take the role of the bi-

frequency system functions, or mapping functions, in analogy
with the bi-frequency system function of time-variant sys-
tems [33]. They give the induced current response of the EMO
at wavenumber 𝜿 when a plane wave with wavenumber 𝜿 is
applied at the input. Similar expressions hold for M̃(𝑚)

s (𝜿),
D̃

(𝑚)
JE (𝜿, 𝜿), D̃

(𝑚)
JH (𝜿, 𝜿), D̃

(𝑚)
ME (𝜿, 𝜿), and D̃

(𝑚)
MH (𝜿, 𝜿), which

depend on EMO’s characteristics and configuration and might
represent the optimization objective in a reconfigurable EM
system, as it will be shown in the sequel. Due to the presence
of feedback, they impose the boundary conditions that are
responsible for the presence of field discontinuity. This aspect
will be discussed in Sec. VI.

D. EM Transfer Function

In analogy with the transfer function of linear filters,
the Fourier representation gives the possibility to define the
(space-variant) EM transfer function H̃ (𝜿, 𝜿) of the system
that relates the impressed currents (input) and the resulting
EM field (output) in the wavenumber domain. Typically,
only the impressed electric currents and the electric field
are considered then, without loss of generality, we focus on
the EM transfer function component H̃EJ (𝜿, 𝜿) that relates
J̃imp (𝜿) =

∑
𝑚 J̃(𝑚)

imp (𝜿) and the electric field Ẽ(𝜿). In general,

being the system space variant, Ẽ(𝜿) can be expressed as

Ẽ(𝜿) = 1
(2𝜋)3

∫
R3

H̃EJ (𝜿, 𝜿) J̃imp (𝜿) 𝑑𝜿. (16)

The EM transfer function H̃EJ (𝜿, 𝜿) indicates what is the
response of the entire system at wavenumber 𝜿 when it is
solicited by an impressed current with wavenumber 𝜿. Specif-
ically, the component H̃ (𝑥𝑥 )

EJ (𝜿, 𝜿) of H̃EJ (𝜿, 𝜿) represents the
response of the system at polarization â𝑥 when solicited by
the harmonic current J̃imp (𝜿) = â𝑥 (2𝜋)3𝛿(𝜿 − 𝜿) generating
a plane wave with wavenumber 𝜿. Similarly for the other
polarization combinations. Note that the harmonic current is
a dual of the infinitesimal source current, and it has only a
mathematical meaning.

E. Information Theoretic Channel Matrix

The appeal of IT lies in its agnostic approach towards the
physical interpretation of signals used as input and output
in communication systems. However, to obtain physically
consistent results, it is essential to establish a correct mapping

with EM quantities, which is crucial for deriving fundamental
bounds and for the design process. Let x ∈ C𝑃 and y ∈ C𝑄
be the vectors representing the 𝑃 inputs and 𝑄 outputs of the
multiple-input multiple-output (MIMO) channel adopted in IT
or signal processing frameworks. Typically, their relationship
is modeled as follows:

y = H x + n (17)

where H ∈ C𝑄×𝑃 is the IT channel matrix, n ∈
C𝑄 ∼ Nc

(
01×𝑄, 𝜎2 I𝑄

)
is the additive white Gaussian noise

(AWGN) with 𝜎2 being the thermal noise power. It is
well-known from MIMO theory that one fundamental parame-
ter affecting the capacity of the communication system, given
a constraint on the transmitted power E

{
∥x∥2}, is represented

by the rank of the channel matrix H. The MIMO model
in (17) acquires a physical meaning if a proper isomorphism
is considered between the IT signals, x and y, and the voltages
at the antenna ports v and u, thus making the channel matrix
H physically consistent. This can be achieved, as proposed
in [34], by considering the insertion of a power-matching
network at the transmitter and a noise-matching network at
the receiver, as shown in Fig. 1. Denoting with vT and
vL the voltage vectors, respectively, at the input and output
of the matching networks, the following isomorphism x =

vT/
√

2𝑅 and y = 𝜎 C−1/2
R vL/

√
2𝑅, with 𝑅 being the matching

resistance, leads to

H = (ℜ {ZR})−
1
2 ZC (ℜ {ZT})−

1
2 (18)

where the operator ℜ{𝑥} denotes the real part of 𝑥, ZC
is the transimpedance matrix modeling the mutual coupling
between the receiving and transmitting antennas, and CR is
the covariance matrix of the thermal noise component in vL
which is a function of the impedance matrices ZC and ZR,
as well as of the characteristics of the extrinsic and intrinsic
noise (caused by the background radiation and by the receiver
power amplifiers, respectively), as shown in [34]. In particular,
it is u|j=0 = ZC i, where u|j=0 is the open circuit output
voltage and i the input current. The previous isomorphism
ensures that the noise components of n in (17) are independent,
and E

{
∥x∥2} corresponds effectively to the transmitted power

𝑃T = E
{
∥vT∥2} /2𝑅 = E

{
∥x∥2} that, assuming a lossless

device, is equal to the radiated power 𝑃rad. In the following
sections (Secs. III, IV, V, and VI), we present an approach,
based on linear algebra, to compute efficiently the EM transfer
function and the IT channel matrix in (16) and (18) that
allows to easily incorporate design, analysis, and optimization
problems involving reconfigurable EMOs. The relationship
between the EM transfer function and the IT channel matrix
as well as an approach to compute the coupling matrices and
the antennas DoF will be given in Secs. VII and VIII.

III. LINEAR ALGEBRA FORMULATION

The following approach takes inspiration from the
well-known method of moments or mode matching [35]. For
convenience, we introduce the inner product between vector
functions A(r) and B(r), defined on the generic surface S, as

⟨A(r) ,B(r)⟩ =
∫
S

A(r) · B∗ (r) 𝑑r. (19)
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Suppose
{
𝚽(𝑚)

𝑛 (r)
}𝑁 (𝑚)

𝑛=1
is a complete vector orthonormal

basis set for S (𝑚) . The orthogonality condition implies that〈
𝚽(𝑚)

𝑛 (r) ,𝚽(𝑚)
𝑖

(r)
〉
= 𝛿𝑛,𝑖 . It is worth noticing that 𝚽(𝑚)

𝑛 (r)
is a 3D vector which is tangent to the surface S (𝑚) for all
r ∈ S (𝑚) and zero otherwise. Moreover, all the basis sets refer
to different surfaces so that

〈
𝚽(𝑚)

𝑢 (r),𝚽(𝑖)
𝑛 (r)

〉
= 0, ∀𝑢, 𝑛 and

𝑖 ≠ 𝑚. It follows that any vector function (field) A(r) lying
on surface S (𝑚) can be represented as a linear combination
of the basis functions (modes) composing the basis set1

A(r) =
𝑁 (𝑚)∑︁
𝑛=1

𝑎𝑛 𝚽
(𝑚)
𝑛 (r) (20)

where the complex coefficients {𝑎𝑛} are given by 𝑎𝑛 =〈
A(r),𝚽(𝑚)

𝑛 (r)
〉
, for 𝑛 = 1, 2, . . . , 𝑁 (𝑚) . Accordingly, the

components J(𝑚) (r) and M(𝑚) (r) can be represented in terms
of the series expansions

J(𝑚) (r) =
𝑁 (𝑚)∑︁
𝑛=1

𝑏
(𝑚)
𝐽𝑛

𝚽(𝑚)
𝑛 (r) +

𝑁 (𝑚)∑︁
𝑛=1

𝑎
(𝑚)
𝐽𝑛

𝚽(𝑚)
𝑛 (r) (21)

M(𝑚) (r) =
𝑁 (𝑚)∑︁
𝑛=1

𝑏
(𝑚)
𝑀𝑛

𝚽(𝑚)
𝑛 (r) +

𝑁 (𝑚)∑︁
𝑛=1

𝑎
(𝑚)
𝑀𝑛

𝚽(𝑚)
𝑛 (r) (22)

where 𝑎
(𝑚)
𝐽𝑛

=

〈
J(𝑚)

imp (r) ,𝚽
(𝑚)
𝑛 (r)

〉
, 𝑏

(𝑚)
𝐽𝑛

=〈
J(𝑚)

s (r) ,𝚽(𝑚)
𝑛 (r)

〉
, 𝑎

(𝑚)
𝑀𝑛

=

〈
M(𝑚)

imp (r) ,𝚽
(𝑚)
𝑛 (r)

〉
, and

𝑏
(𝑚)
𝑀𝑛

=

〈
M(𝑚)

s (r) ,𝚽(𝑚)
𝑛 (r)

〉
. Denote with a(𝑚)

𝐽
=

[{
𝑎
(𝑚)
𝐽𝑛

}]
,

b(𝑚)
𝐽

=

[{
𝑏
(𝑚)
𝐽𝑛

}]
, a(𝑚)

𝑀
=

[{
𝑎
(𝑚)
𝑀𝑛

}]
, b(𝑚)

𝑀
=

[{
𝑏
(𝑚)
𝑀𝑛

}]
the column vectors collecting the coefficients in (21)
and (22), respectively. We define also the vectors

a(𝑚) =
[

a(𝑚)
𝐽

𝑇
a(𝑚)
𝑀

𝑇
]𝑇

and b(𝑚) =
[
b(𝑚)
𝐽

𝑇
b(𝑚)
𝑀

𝑇
]𝑇

.

By applying the inner product to both sides of (1) with the
𝑛th basis function 𝚽(𝑚)

𝑛 (r) of the generic 𝑚th EMO, and by
exploiting (21)-(22) as well as the orthogonality condition, we
obtain

𝑒
(𝑚)
𝑛 =

〈
E(r) ,𝚽(𝑚)

𝑛 (r)
〉
=

〈
E(𝑚)

t (r) ,𝚽(𝑚)
𝑛 (r)

〉
=

〈
GEJ · J(r) ,𝚽(𝑚)

𝑛 (r)
〉
+

〈
GEM · M(r) ,𝚽(𝑚)

𝑛 (r)
〉

=

𝑀∑︁
𝑖=1

〈
GEJ · J(𝑖) (r) ,𝚽(𝑚)

𝑛 (r)
〉

+
𝑀∑︁
𝑖=1

〈
GEM · M(𝑖) (r) ,𝚽(𝑚)

𝑛 (r)
〉

=

𝑀∑︁
𝑖=1

𝑁 (𝑖)∑︁
𝑢=1

(
𝑎
(𝑖)
𝐽𝑢

+ 𝑏
(𝑖)
𝐽𝑢

) 〈
GEJ ·𝚽

(𝑖)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

+
𝑀∑︁
𝑖=1

𝑁 (𝑖)∑︁
𝑢=1

(
𝑎
(𝑖)
𝑀𝑢

+ 𝑏
(𝑖)
𝑀𝑢

) 〈
GEM ·𝚽(𝑖)

𝑢 (r) ,𝚽(𝑚)
𝑛 (r)

〉
.

(23)

1In general, 𝑁 (𝑚) could be infinity for the basis set to be complete. In such
a case, 𝑁 (𝑚) can be set to a finite value sufficiently large according to the
desired level of accuracy.

Similarly for the magnetic field component

ℎ
(𝑚)
𝑛 =

〈
H(r) ,𝚽(𝑚)

𝑛 (r)
〉
=

〈
H(𝑚)

t (r) ,𝚽(𝑚)
𝑛 (r)

〉
=

𝑀∑︁
𝑖=1

𝑁 (𝑖)∑︁
𝑢=1

(
𝑎
(𝑖)
𝐽𝑢

+ 𝑏
(𝑖)
𝐽𝑢

) 〈
GHJ ·𝚽

(𝑖)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

+
𝑀∑︁
𝑖=1

𝑁 (𝑖)∑︁
𝑢=1

(
𝑎
(𝑖)
𝑀𝑢

+ 𝑏
(𝑖)
𝑀𝑢

) 〈
GHM ·𝚽(𝑖)

𝑢 (r) ,𝚽(𝑚)
𝑛 (r)

〉
.

(24)

As a consequence, the EM field
(
E(𝑚)

t (r),H(𝑚)
t (r)

)
tangent

to the surface S (𝑚) can be expressed according to the series
expansions

E(𝑚)
t (r) =

𝑁 (𝑚)∑︁
𝑛=1

𝑒
(𝑚)
𝑛 𝚽(𝑚)

𝑛 (r) H(𝑚)
t (r) =

𝑁 (𝑚)∑︁
𝑛=1

ℎ
(𝑚)
𝑛 𝚽(𝑚)

𝑛 (r).

(25)

Note that the above series expansion is valid only for the
EM field tangent to the surface. Define the vector f (𝑚) =[
e(𝑚)𝑇 h(𝑚)𝑇

]𝑇
of dimension 2𝑁 (𝑚) , with e(𝑚) =

[{
𝑒
(𝑚)
𝑛

}]
and h(𝑚) =

[{
ℎ
(𝑚)
𝑛

}]
being the column vectors collecting the

coefficients in (25). By considering (23) and (24), f (𝑚) can be
written in matrix form as

f (𝑚) =
𝑀∑︁
𝑖=1

G(𝑚,𝑖)
[
b(𝑖) + a(𝑖)

]
(26)

where

G(𝑚,𝑖) =

[
G(𝑚,𝑖)

EJ G(𝑚,𝑖)
EM

G(𝑚,𝑖)
HJ G(𝑚,𝑖)

HM

]
(27)

is the coupling matrix of dimension 2𝑁 (𝑚) × 2𝑁 (𝑖) , whose
elements are given by[

G(𝑚,𝑖)
EJ

]
𝑢,𝑛

=

〈
GEJ𝚽

(𝑖)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

(28)

=
1
𝚥𝜔𝜖

∫
S (𝑚)

(
𝚽(𝑚)

𝑛 (r)
)∗

(29)

· ∇x ∇x

∫
S (𝑖)

𝐺0 (r − s)𝚽(𝑖)
𝑢 (s) 𝑑s 𝑑r (30)[

G(𝑚,𝑖)
EM

]
𝑢,𝑛

=

〈
GEM𝚽(𝑖)

𝑢 (r) ,𝚽(𝑚)
𝑛 (r)

〉
(31)

= −
∫
S (𝑚)

(
𝚽(𝑚)

𝑛 (r)
)∗

· ∇x

∫
S (𝑖)

𝐺0 (r − s)𝚽(𝑖)
𝑢 (s) 𝑑s 𝑑r (32)[

G(𝑚,𝑖)
HJ

]
𝑢,𝑛

=

〈
GHJ𝚽

(𝑖)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉
= −

[
G(𝑚,𝑖)

EM

]
𝑢,𝑛

(33)[
G(𝑚,𝑖)

HM

]
𝑢,𝑛

=

〈
GHM𝚽(𝑖)

𝑢 (r) ,𝚽(𝑚)
𝑛 (r)

〉
=

𝜖

𝜇

[
G(𝑚,𝑖)

EJ

]
𝑢,𝑛

(34)

for 𝑛 = 1, 2, . . . , 𝑁 (𝑚) , 𝑢 = 1, 2, . . . , 𝑁 (𝑖) . It is worth
noticing that the coupling matrices above depend only on
the reciprocal geometry between EMOs 𝑖 and 𝑚, i.e., their
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Fig. 2. EM scenario as a fully connected graph.

relative position and orientation. When 𝑖 = 𝑚 (self-coupling),
they depend neither on the position nor on the orientation.
When the coupling between EMOs 𝑚 and 𝑖 is negligible,
G(𝑚,𝑖)

EJ ,G(𝑚,𝑖)
EM ,G(𝑚,𝑖)

HM ,G(𝑚,𝑖)
HJ ≈ 02𝑁 (𝑚)×2𝑁 (𝑖) . Following a

similar approach, also the constitutive equation (7) can be put
in matrix form

b(𝑚) = D(𝑚) f (𝑚) where D(𝑚) =

[
D(𝑚)

JE D(𝑚)
JH

D(𝑚)
ME D(𝑚)

MH

]
(35)

and [
D(𝑚)

JE

]
𝑢,𝑛

=

〈
D (𝑚)

JE ·𝚽(𝑚)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

(36)[
D(𝑚)

JH

]
𝑢,𝑛

=

〈
D (𝑚)

JH ·𝚽(𝑚)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

(37)[
D(𝑚)

ME

]
𝑢,𝑛

=

〈
D (𝑚)

ME ·𝚽(𝑚)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

(38)[
D(𝑚)

MH

]
𝑢,𝑛

=

〈
D (𝑚)

MH ·𝚽(𝑚)
𝑢 (r) ,𝚽(𝑚)

𝑛 (r)
〉

(39)

with 𝑢, 𝑛 = 1, 2, . . . 𝑁 (𝑚) . Matrix D(𝑚) , of dimension 2𝑁 (𝑚) ×
2𝑁 (𝑚) , describes completely the linear transformation oper-
ated by the 𝑚th EMO, polarization effects included, under the
limit of the series expansion approximation.

For instance, if we are interested in finding the EM field tan-
gent to the surface S (𝑚) of the 𝑚th EMO, by combining (26)
and (35), it is

f (𝑚) =
(
I − G(𝑚,𝑚)D(𝑚)

)−1

·
(

𝑀∑︁
𝑖=1,𝑖≠𝑚

G(𝑚,𝑖)D(𝑖) f (𝑖) +
𝑀∑︁
𝑖=1

G(𝑚,𝑖)a(𝑖)

)
. (40)

Once such coefficients have been derived, the corresponding
field can be obtained using (25).

The matrix relationships above can be graphically repre-
sented as a connected graph sketched in Fig. 2. Graph theory
tools, such as the Mason’s gain formula [36], can be exploited
to solve (40) or any other set of equations depending on
the structure of the system. Significant simplifications can
be operated if the coupling between some EMOs is weak
and/or the induced currents at any EMO are negligible. Matrix
representation is useful in optimization problems where the
best configuration of one or more EMOs, i.e., their matrix D,
must be found to achieve a given result on the EM field. Some
examples will be provided in Sec. VIII.

IV. BASIS SETS AND SOURCES

A crucial aspect of the linear algebra formulation illustrated
in the previous section is the choice of the basis functions and

Fig. 3. Line source (left) and thin surface models (right).

their number that affect the trade-off between accuracy and
computational complexity [29], [31]. We choose the harmonic
basis functions, which allow for an efficient representation and
the possibility to exploit the properties of the Fourier analysis.
Without loss of generality, we consider EMOs oriented accord-
ing to the plane 𝑧 = 0 and centered at the origin (canonical
position and orientation). How to deal with differently oriented
and positioned EMOs will be explained at the end of the
section. In the following, we illustrate possible basis sets for
some geometries of interest.

A. Infinitesimal Vertically Polarized Current Source
Considering a canonical vertical polarization, the only pos-

sible base function is 𝚽1 (r) = ŷ 𝛿(𝑥) 𝛿(𝑦) 𝛿(𝑧) so that 𝚽̃1 (𝜿) =
F [𝚽1 (r)] = ŷ. The infinitesimal source is typically used
to model the small dipole of infinitesimal length Δ𝐿 and
current 𝐼0 whose current density can be written as J(r) =

ŷ𝐼0 Δ𝐿𝚽1 (r) and J̃(𝜿) = 𝐼0 Δ𝐿 𝚽̃1 (𝜿) (Hertzian dipole)
[29, Ch. 4].

B. Line Source of Length 𝐿

An example of a line source, shown in Fig. 3, is given by
the conducting wire of length 𝐿. In this case we have J(r) =
ŷ 𝐼 (𝑦) 𝛿(𝑥) 𝛿(𝑧), with current distribution 𝐼 (𝑦) different from
zero in |𝑦 | < 𝐿/2. The basis functions are 𝚽𝑛 (r) = ŷ 𝜙𝑛 (r),
where 𝜙𝑛 (r) are scalar basis functions for 𝑛 = 1, 2, . . . , 𝑁𝑦 (𝑁𝑦

odd number). For convenience and with some abuse of nota-
tion, consider also the following alternative indexing 𝚽𝑛𝑦

(r),
where 𝑛𝑦 is related to 𝑛 according to the mapping 𝑛𝑦 =

𝑛−(𝑁𝑦−1)/2−1, for 𝑛𝑦 = −(𝑁𝑦−1)/2, . . . ,−1, 0, 1, . . . , (𝑁𝑦−
1)/2. A complete basis set for a vertical line of length 𝐿, with
𝑦 ∈ [𝐿/2, 𝐿/2], is given by 𝜙𝑛𝑦

(r) = 𝐼𝑛𝑦
(𝑦; 𝐿) 𝛿(𝑥) 𝛿(𝑧), hav-

ing defined 𝐼𝑛𝑦
(𝑦; 𝐿) = 1√

𝐿
Rect

( 𝑦
𝐿

)
exp

(
𝚥

2𝜋𝑛𝑦 𝑦

𝐿

)
, where the

coefficient ensures that the basis functions have unitary energy.
In the frequency domain, we have 𝚽̃𝑛𝑦

(𝜿) = ŷ 𝜙𝑛𝑦
(𝜿; 𝐿), with

𝜙𝑛𝑦
(𝜿; 𝐿) = 𝜙𝑛𝑦

(𝑘𝑦; 𝐿) = 𝑆𝑛𝑦
(𝑘𝑦; 𝐿), where

𝑆𝑛 (𝑘; 𝐿) =
√
𝐿 Sinc

(
𝑘 𝐿

2𝜋
− 𝑛

)
. (41)

C. Thin Surface of Size 𝐿𝑥 × 𝐿𝑦

A thin RIS that is electrically large and made of
sub-wavelength reconfigurable scattering elements, is
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homogenizable and can be modeled as a continuous surface
sheet characterized by suitable surface functions (in general
dyadic tensors) such as impedances or admittances (impedance
sheet) [22]. Therefore, it is of interest to define a basis set to
express any surface function. By applying the basis functions
in (41) to each dimension of the surface, any scalar surface
function can be represented as a linear combination of the
following scalar basis functions

𝜙𝑛𝑥 ,𝑛𝑦
(r) = 𝐼𝑛𝑥

(𝑥; 𝐿𝑥) 𝐼𝑛𝑦
(𝑦; 𝐿𝑦) 𝛿(𝑧) (42)

𝜙𝑛𝑥 ,𝑛𝑦
(𝜿) = F

[
𝜙𝑛𝑥 ,𝑛𝑦

(r)
]
= 𝑆𝑛𝑥

(𝑘𝑥 ; 𝐿𝑥) 𝑆𝑛𝑦
(𝑘𝑦; 𝐿𝑦) (43)

respectively, in the spatial and wavenumber domains, with
𝑛𝑥 = −(𝑁𝑥 − 1)/2, . . . ,−1, 0, 1, . . . , (𝑁𝑥 − 1)/2, 𝑛𝑦 = −(𝑁𝑦 −
1)/2, . . . ,−1, 0, 1, . . . , (𝑁𝑦 − 1)/2.

The currents induced by the incident EM field introduce
a discontinuity in the EM fields on the two sides of the
surface. Therefore, we model it with two separate faces (sides)
at infinitesimal distance Δ at 𝑧 = −Δ/2 and 𝑧 = Δ/2,
where Δ ≪ 𝜆 is the thickness of the surface, as shown in
Fig. 3. To condense the notation, with introduce the alternative
indexing 𝑛 = 𝑛𝑥+(𝑁𝑥−1)/2+1+𝑁𝑥 (𝑛𝑦+(𝑁𝑦−1)/2)+𝑛p𝑁𝑥𝑁𝑦+
𝑛s2𝑁𝑥𝑁𝑦 , where 𝑛p = 0 if horizontally polarized and 𝑛p = 1 if
vertically polarized, 𝑛s = 0 if right-side face, and 𝑛s = 1 if
left-side face. In this manner, the complete basis set sufficient
to represent any EM field on the two sides of the surface is

𝚽𝑛 (r) = 𝚽𝑛𝑥 ,𝑛𝑦 ,𝑛p ,𝑛s (r)
= â𝑛p 𝜙𝑛𝑥 ,𝑛𝑦

(r + (0.5 − 𝑛s) Δ ẑ) (44)
𝚽̃𝑛𝑥 ,𝑛𝑦 ,𝑛p ,𝑛s (𝜿) = â𝑛p 𝜙𝑛𝑥 ,𝑛𝑦

(𝜿) 𝑒 𝚥 𝜅𝑧 (0.5−𝑛s ) Δ (45)
where â𝑛p = x̂, when 𝑛p = 0, and â𝑛p = ŷ, when 𝑛p = 1.
Therefore, the total number of basis functions is 𝑁 = 4𝑁𝑥𝑁𝑦 .
Currents are supposed to lay at 𝑧 = 0, i.e., in the middle of
the two sides, to avoid singularities, and hence 2𝑁𝑥𝑁𝑦 basis
functions are sufficient to represent them.

D. Basis Functions for Plane Waves and Elementary
Harmonic Currents

To create a “bridge” between the linear algebra character-
ization in Sec. III and the EM transfer function in (16), it is
convenient to define a virtual EMO consisting of a generic
plane wave with wavenumber 𝜿 = (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑧) and polarization
â(𝜿). As it will be clearer later, thanks to this virtual EMO,
it is possible to determine how the system is coupled with
the EM field at the generic wavenumber 𝜿. In other words,
it can be used to “observe” the EM field without any influence
on it. Any plane wave can be fully represented as a linear
combination of two basis functions 𝚽𝑛 (r; 𝜿) = â𝑛 (𝜿) 𝑒 𝚥𝜿 ·r,
where the vectors â1 (𝜿) and â2 (𝜿) are, respectively, transversal
and longitudinal with respect to the direction of propagation
𝜿 since it should be 𝜿 · â(𝜿) = 0 [32]. Taking the Fourier
transform, it is

𝚽̃𝑛 (𝜿; 𝜿) = (2𝜋)3â𝑛 (𝜿) 𝛿(𝜿 − 𝜿). (46)
It is also of utility the definition of the plane wave observed

on the 𝑥− 𝑦 plane at 𝑧 = 𝑧o, that is, 𝚽𝑛 (r; 𝜿, 𝑧o) = â𝑛 (𝜿) 𝛿(𝑧−
𝑧o) 𝑒 𝚥𝜿 ·r, with â1 (𝜿) = x̂ and â2 (𝜿) = ŷ, whose 2D Fourier
transform, for 𝑛 = 1, 2, is

𝚽̃𝑛 (𝜅𝑥 , 𝜅𝑦; 𝜿, 𝑧o) = (2𝜋)2â𝑛 (𝜿) 𝛿(𝜅𝑥 − 𝜅𝑥) 𝛿(𝜅𝑦 − 𝜅𝑦) 𝑒− 𝚥𝜅𝑧 𝑧o.

(47)

Analogously, we can define the elementary harmonic electric
current with polarization â and wavenumber 𝜿 flowing on the
𝑥 − 𝑦 plane at 𝑧 = 𝑧s having the 2D Fourier transform

𝚽̃(𝜅𝑥 , 𝜅𝑦; 𝜿, 𝑧s) = (2𝜋)2â 𝛿(𝜅𝑥 − 𝜅𝑥) 𝛿(𝜅𝑦 − 𝜅𝑦) 𝑒− 𝚥𝜅𝑧 𝑧s .

(48)

E. EMOs in Non-Canonical Position and Orientation
The basis functions in the wavenumber domain for EMOs

with generic position p and orientation can be easily obtained
by exploiting the Fourier transform property 𝚽̃(𝜿) = R ·
𝚽̆ (R · 𝜿) 𝑒− 𝚥p·𝜿 , where 𝚽̆(𝜿) is the basis function in the
wavenumber domain of the EMO in the canonical position
and orientation, R is the rotation matrix transformation [37],
and R is the corresponding polarization rotation dyadic.

V. MODES COUPLING

The last ingredient necessary to implement the method
based on linear algebra is the derivation of the coupling
coefficients between modes composing the matrices G(𝑚,𝑖) .
Since the coupling between basis functions belonging to the
𝑖th and 𝑚 EMOs depends only on their relative position and
orientation, it is convenient to consider 𝚽̃(𝑖)

𝑢 (𝜿) = 𝚽̆(𝑖)
𝑢 (𝜿)

located at the origin (canonical position and orientation), and
𝚽̃(𝑚)

𝑛 (𝜿) at the relative position and orientation p = p(𝑚,𝑖) =
p(𝑚) − p(𝑖) and R(𝑚,𝑖) , respectively, such that the two EMOs
do not intersect along the 𝑧 axis. By applying the Parseval’s
theorem to (28)-(34), it is[
G(𝑚,𝑖)

EJ

]
𝑢,𝑛

=
𝚥

𝜔𝜖 (2𝜋)3

∫
R3
𝐺0 (𝜿)

(
𝚽̃(𝑚)

𝑛 (𝜿)
)∗
·

(
𝜿 x 𝜿 x 𝚽̃(𝑖)

𝑢 (𝜿)
)
𝑑𝜿

=
𝚥

𝜔𝜖 (2𝜋)3

∫
R3

𝐺0 (𝜿) 𝑒 𝚥p
(𝑚,𝑖) ·𝜿

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿

))∗
·

(
𝜿 x 𝜿 x 𝚽̆(𝑖)

𝑢 (𝜿)
)
𝑑𝜿 (49)[

G(𝑚,𝑖)
EM

]
𝑢,𝑛

= − 𝚥

(2𝜋)3

∫
R3
𝐺0 (𝜿)

(
𝚽̃(𝑚)

𝑛 (𝜿)
)∗
·

(
𝜿 x 𝚽̃(𝑖)

𝑢 (𝜿)
)
𝑑𝜿

= − 𝚥

(2𝜋)3

∫
R3

𝐺0 (𝜿) 𝑒 𝚥p
(𝑚,𝑖) ·𝜿

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿

))∗
·

(
𝜿 x 𝚽̆(𝑖)

𝑢 (𝜿)
)
𝑑𝜿. (50)

Using the equality (83) in the Appendix, alternative expres-
sions for (49) and (50) can be obtained, respectively,[

G(𝑚,𝑖)
EJ

]
𝑢,𝑛

=
𝜋

𝜔𝜖 (2𝜋)3

∫
R2

𝑒 𝚥p
(𝑚,𝑖) ·𝜿±

𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿±

))∗
·

(
𝜿± x 𝜿± x 𝚽̆(𝑖)

𝑢 (𝜿±)
)
𝑑𝜅𝑥𝑑𝜅𝑦 (51)[

G(𝑚,𝑖)
EM

]
𝑢,𝑛

= − 𝜋

(2𝜋)3

∫
R2

𝑒 𝚥p
(𝑚,𝑖) ·𝜿±

𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿±

))∗
·

(
𝜿± x 𝚽̆(𝑖)

𝑢 (𝜿±)
)
𝑑𝜅𝑥𝑑𝜅𝑦 (52)
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where 𝑘𝑧 = 𝑘𝑧
(
𝜅𝑥 , 𝜅𝑦

)
and 𝜿± are defined in (84) and (85),

respectively, with 𝑟𝑧 = 𝑝𝑧 and 𝑧max = 𝑧min = 0. These alternate
expressions are useful because they reduce the evaluation of
the coupling coefficient to a 2D Fourier-type integral which
can be numerically solved using efficient FFT tools. In the
following, we derive further simplifications and closed-form
expressions of the coupling coefficients for particular cases of
interest.

A. Coupling Between Any EMOs in Far Field

When two EMOs are located in their respective far-field
region, i.e., 𝐿2/|p| ≪ 𝜆, where 𝐿 is the dimension of the
largest EMO and p = p(𝑚.𝑖) , the approximation (86) in the
Appendix can be applied to (51) and (52) thus obtaining[

G(𝑚,𝑖)
EJ

]
𝑢,𝑛

≃ 𝚥 𝑘0 𝜂
𝑒 𝚥 𝑘0 |p |

4𝜋 |p|

(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) 𝜿p

))∗
·

(
p̂± x p̂± x 𝚽̆(𝑖)

𝑢 (𝜿p)
)

(53)[
G(𝑚,𝑖)

EM

]
𝑢,𝑛

≃ − 𝚥 𝑘0
𝑒 𝚥 𝑘0 |p |

4𝜋 |p|

(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) 𝜿p

))∗
·

(
p̂± x 𝚽̆(𝑖)

𝑢 (𝜿p)
)

(54)

being 𝜿p = 𝑘0 p̂±, where p̂± = (𝑝𝑥 , 𝑝𝑦 , |𝑝𝑧 |)/|p|. Since
|p̂± | = 1, it is evident that only plane waves with

(
𝜅𝑥 , 𝜅𝑦

)
∈ P

contribute to the propagation in the far field of the EM wave.

B. Coupling With Plane Waves

When the 𝑚th EMO is a plane wave with wavenumber 𝜿
and polarization â𝑛 (𝜿), the coupling coefficients between the
plane wave and the 𝑖th EMO can be obtained in closed form
by substituting (46) in (49) and (50). Of more interest is the
coupling with the wave plane in (47) at the observation plane
𝑧 = 𝑧o that can be easily obtained in closed form[

G(𝑚,𝑖)
EJ

]
𝑢,𝑛

=

[
G(𝑚,𝑖)

EJ

]
𝑢,𝑛

(𝜿)

=
𝑒 𝚥p

(𝑚,𝑖) ·𝜿±

2𝜔𝜖 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)
â𝑛 (𝜿±) ·

(
𝜿± x 𝜿± x 𝚽̆(𝑖)

𝑢 (𝜿±)
)

(55)[
G(𝑚,𝑖)

EM

]
𝑢,𝑛

=

[
G(𝑚,𝑖)

EM

]
𝑢,𝑛

(𝜿)

= − 𝑒 𝚥p
(𝑚,𝑖) ·𝜿±

2 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)
â𝑛 (𝜿±) ·

(
𝜿± x 𝚽̃(𝑖)

𝑢 (𝜿±)
)

(56)

for 𝑛 = 1, 2, and 𝑢 = 1, 2, . . . , 𝑁 (𝑖) , where p(𝑚,𝑖) =(
−𝑝 (𝑖)

𝑥 ,−𝑝 (𝑖)
𝑦 , 𝑧o − 𝑝

(𝑖)
𝑧

)
, and 𝜿± is defined in (85), with 𝑟𝑧 =

𝑧o − 𝑝
(𝑖)
𝑧 and 𝑧max = 𝑧min = 0. It is worth noticing that the

coefficients in (55) and (56) are functions of 𝜿.

C. Coupling Between an EMO and a Harmonic Current

Similarly, closed-form expressions for the coupling coeffi-
cients can be obtained when the generic 𝑚th EMO is coupled

with the harmonic current in (48), that is,[
G(𝑚,𝑖)

EJ

]
𝑢,𝑛

(𝜿)

=
𝑒 𝚥p

(𝑚,𝑖) ·𝜿±

2𝜔𝜖 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿±

))∗
·
(
𝜿± x 𝜿± x â

)
(57)[

G(𝑚,𝑖)
EM

]
𝑢,𝑛

(𝜿)

= − 𝑒 𝚥p
(𝑚,𝑖) ·𝜿±

2 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
R(𝑚,𝑖) · 𝚽̆(𝑚)

𝑛

(
R(𝑚,𝑖) · 𝜿±

))∗
·
(
𝜿± x â

)
(58)

for 𝑢 = 1, where p(𝑚,𝑖) =
(
𝑝
(𝑚)
𝑥 , 𝑝

(𝑚)
𝑦 , 𝑝

(𝑚)
𝑧 − 𝑧s

)
, and 𝜿± is

defined in (85), with 𝑟𝑧 = 𝑝
(𝑚)
𝑧 − 𝑧s and 𝑧max = 𝑧min = 0. Also

in this case the coefficients are functions of 𝜿.

D. Self-Coupling in Surfaces

In this case, R (𝑚,𝑚) = I3 and p = p(𝑚,𝑚) = (0, 0, 𝑝𝑧), with
𝑝𝑧 = (1−2𝑛s) Δ/2 depending whether side 𝑛s = 0 or 𝑛s = 1 is
considered. The basis functions associated with currents are
located at 𝑧 = 0. As a consequence, (51) and (52) read[

G(𝑚,𝑚)
EJ

]
𝑢,𝑛

=
𝜋

𝜔𝜖 (2𝜋)3

∫
R2

𝑘𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) 𝑒 𝚥𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )Δ/2

𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
𝜙
(𝑚)
𝑛 (𝜿)

)∗
·
(
𝜙
(𝑚)
𝑢 (𝜿)

)
𝑑𝜅𝑥 𝑑𝜅𝑦 (59)[

G(𝑚,𝑚)
EM

]
𝑢,𝑛

= − 𝜋

(2𝜋)3

∫
R2

𝑘★𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) 𝑒 𝚥𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )Δ/2

𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

·
(
𝜙
(𝑚)
𝑛 (𝜿)

)∗
·
(
𝜙
(𝑚)
𝑢 (𝜿)

)
𝑑𝜅𝑥 𝑑𝜅𝑦 (60)

where index 𝑛 refers to the 𝑛th current basis function (at 𝑧 = 0),
and index 𝑢 refers to the 𝑢th basis function of the EM field
on both sides of the surfaces at 𝑝𝑧 = (1 − 2𝑛s) Δ/2 depend-
ing on 𝑛s. In addition, 𝑘𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = −𝜅2

𝑦 − 𝑘2
𝑧 (𝜅𝑥 , 𝜅𝑦),

𝑘★𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = 0 when â𝑛 = â𝑢 = x̂, 𝑘𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = −𝜅2
𝑥 −

𝑘2
𝑧 , 𝑘★𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = 0 when â𝑛 = â𝑢 = ŷ, 𝑘𝑢,𝑛 = 𝜅𝑥 𝜅𝑦 ,

𝑘★𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦) (𝑛p−𝑢p) (1−2𝑛s) when â𝑛 ≠ â𝑢, with
â𝑛 ∈ {x̂, ŷ} and â𝑢 ∈ {x̂, ŷ} being the polarization of 𝚽̆(𝑚)

𝑛 (𝜿)
and 𝚽̆(𝑚)

𝑢 (𝜿), respectively. When the polarizations are equal
(i.e., 𝑛p = 𝑢p), 𝑘★𝑢,𝑛 (𝜅𝑥 , 𝜅𝑦) = 0 and hence

[
G(𝑚,𝑚)

EM

]
𝑢,𝑛

= 0.
When 𝑛p ≠ 𝑢p, 𝑛𝑥 = 𝑢𝑥 and 𝑛𝑢 = 𝑢𝑦 we have[

G(𝑚,𝑚)
EM

]
𝑢,𝑛

= −
𝜋 (𝑛p − 𝑢p) (1 − 2𝑛s) 𝛿𝑢𝑥−𝑛𝑥 , 𝑢𝑦−𝑛𝑦

(2𝜋)3

·
∫
R2

𝑒 𝚥𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )Δ/2
(
𝜙
(𝑚)
𝑛 (𝜿)

)∗
·
(
𝜙
(𝑚)
𝑢 (𝜿)

)
𝑑𝜅𝑥 𝑑𝜅𝑦 . (61)

E. Self-Coupling in Large Surfaces

When 𝐿𝑥 , 𝐿𝑦 ≫ 𝜆, the unitary energy functions 𝑆𝑛 (𝑘; 𝐿)
in (41) composing 𝜙

(𝑚)
𝑛 (𝜿) tend to zero very quickly around

their maximum value compared to the speed of variations of
the other terms of the integrating function, therefore, the latter
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can be approximated as constant and the integrals (59) and (60)
solved, thus obtaining[

G(𝑚,𝑚)
EJ

]
𝑢,𝑛

≃
𝛿𝑢𝑥−𝑛𝑥 , 𝑢𝑦−𝑛𝑦

2𝜔𝜖
𝑘
(𝑛)
𝑢,𝑛

𝑘
(𝑛)
𝑧

𝑒 𝚥𝑘
(𝑛)
𝑧 Δ/2 (62)[

G(𝑚,𝑚)
EM

]
𝑢,𝑛

≃ −
(𝑛p − 𝑢p) (1 − 2𝑛s) 𝛿𝑢𝑥−𝑛𝑥 , 𝑢𝑦−𝑛𝑦

2
𝑒 𝚥𝑘

(𝑛)
𝑧 Δ/2

(63)

with 𝑘
(𝑛)
𝑥 =

2𝜋𝑛𝑥

𝐿𝑥
, 𝑘

(𝑛)
𝑦 =

2𝜋𝑛𝑦

𝐿𝑦
, 𝑘

(𝑛)
𝑧 = 𝑘𝑧

(
𝑘
(𝑛)
𝑥 , 𝑘

(𝑛)
𝑦

)
, and

𝑘
(𝑛)
𝑢,𝑛 = 𝑘𝑢,𝑛

(
𝑘
(𝑛)
𝑥 , 𝑘

(𝑛)
𝑦

)
. When 𝐿𝑥 , 𝐿𝑦 → ∞ (62) converges

to −𝛿𝑢𝑥−𝑛𝑥 , 𝑢𝑦−𝑛𝑦
𝜂 𝑒 𝚥𝑘0Δ/2/2. It is worth noticing that in large

surfaces, the self-coupling between different modes (𝑢 ≠

𝑛) is approximately equal to zero, i.e., the orthogonality is
preserved. Therefore, the only way to couple different modes
is through the constitutive equations in (7).

VI. CONSTITUTIVE EQUATIONS FOR LARGE SURFACES

In this section, we show some derivation examples of matrix
D in (35), associated with the constitutive equations in (7),
for a large surface EMO. Consider the generic 𝑚th EMO with
surface S (𝑚) . In the following, we omit the superscript 𝑚 to
lighten the notation. To simplify the examples, we consider
the isotropic case, then dyadic Dw is of multiplicative type as
Dw = 𝑋w (r), with w ∈ {JE, JH,ME,MH} and r ∈ S [14].
As for current sources and EM fields, function 𝑋w (r) can be
expressed in terms of series expansion

𝑋w (r) =
𝑁𝑥 𝑁𝑦∑︁
𝑗=1

𝑋w 𝑗
𝜙 𝑗 (r) 𝑒− 𝚥𝑘0 Δ/2 (64)

where 𝑋w 𝑗
=

〈
𝑋w (r), 𝜙 𝑗 (r)

〉
and

{
𝜙 𝑗 (r)

}
is a (scalar) basis

set for S. The exponential term in (64) accounts for the fact
that we consider the currents located at 𝑧 = 0, whereas the
EM fields are observed on the right/left sides of the surface
at 𝑧 = ±Δ/2, according to the model described in Sec. IV-C.
It follows that matrix Dw in (35) can be written as Dw =

diag (Xw,Xw,Xw,Xw), where Xw is a 𝑁𝑥 × 𝑁𝑦 matrix whose
generic element is given by

[Xw]𝑢,𝑛 =
〈
Dw ·𝚽𝑢 (r) ,𝚽𝑛 (r)

〉
=

𝑁𝑥 𝑁𝑦∑︁
𝑗=1

𝑋w 𝑗

〈
𝜙 𝑗 (r) · 𝜙𝑢 (r) , 𝜙𝑛 (r)

〉
(65)

for 𝑛, 𝑢 = 1, 2, . . . , 𝑁𝑥 𝑁𝑦 . In a more compact form, we can
write

Xw =

𝑁𝑥 𝑁𝑦∑︁
𝑗=1

𝑋w 𝑗
H 𝑗 (66)

where
[
H 𝑗

]
𝑛,𝑢

=
〈
𝜙 𝑗 (r) 𝜙𝑢 (r) , 𝜙𝑛 (r)

〉
. In case the basis

functions in Sec. IV-C are used, it is[
H 𝑗

]
𝑛,𝑢

=
1√︁

𝐿𝑥 𝐿𝑦

𝛿 𝑗𝑥+𝑢𝑥−𝑛𝑥
𝛿 𝑗𝑦+𝑢𝑦−𝑛𝑦

𝑒− 𝚥𝑘0 Δ/2. (67)

It is evident from (67) that the effect produced by a surface
on induced currents as a function of the EM field corresponds
to a coupling between different modes depending on the values
of coefficients 𝑋w 𝑗

which characterize the behavior of the
surface.

A. Modeling the Equivalent Homogenized Boundary
Conditions

We here illustrate how the equivalent homogenized bound-
ary conditions typically used to model metasurfaces can be
accounted for in our framework. Specifically, we model the
surface as an inhomogeneous sheet of polarizable particles
characterized by an electric surface impedance and magnetic
surface admittance. This constitutes the homogenized model
of the surface where the average electric and magnetic fields
induce electric and magnetic currents generating a discontinu-
ity of the EM field between the two sides of the surface [14],
[17], [22]. The corresponding boundary conditions are referred
to as generalized sheet transition conditions. We consider the
case in which the surface imposes an equivalent homogenized
boundary condition of the type [16], [22](

Js (r)
Ms (r)

)
=

1
2

(
YJE (r) YJH (r)
YME (r) YMH (r)

)
·
(

E+
t (r) + E−

t (r)
H+

t (r) + H−
t (r)

)
=

1
2

(
YJE (r) YJH (r)
YME (r) YMH (r)

)
·
(

1 1 0 0
0 0 1 1

) ©­­­«
E+

t (r)
E−

t (r)
H+

t (r)
H−

t (r)

ª®®®¬
(68)

where E+
t (r), H+

t (r), E−
t (r), H−

t (r) are the electric and mag-
netic tangent fields, respectively, at the right (+) and left (-)
sides of the surface, being YJE (r) and YMH (r) the electric
sheet admittance and magnetic sheet impedance, respectively.
It follows that 𝑋w (r) = Yw (r) with w ∈ {JE, JH,ME,MH}.
In terms of linear algebra formulation, the previous equivalent
homogenized boundary conditions read

b =
1
2

©­­­«
XJE 0𝑁 XJH 0𝑁

0𝑁 XJE 0𝑁 XJH
XME 0𝑁 XMH 0𝑁

0𝑁 XME 0𝑁 XMH

ª®®®¬
(

I2𝑁 I2𝑁 02𝑁 02𝑁
02𝑁 02𝑁 I2𝑁 I2𝑁

)

×
©­­­«

e+
e−
h+

h−

ª®®®¬
= D · f (69)

with 𝑁 = 𝑁𝑥 𝑁𝑦 , where e+ and e− represent, respectively,
the first and the second group of 2𝑁 elements of vector e
associated with the two sides of the surface. The same meaning
holds for h+ and h− .

B. Impedance Sheet
For a metasurface backed by a ground plane, the boundary

conditions can be expressed in terms of an impenetrable
equivalent impedance or admittance which relates the average
tangent electric and magnetic fields on top of the surface
as Et (r) = Z(r) ẑ × Ht (r) = Z(r) Js (r) [18]. In this case,
Js (r) = YJE (r) Et (r), Ms (r) = 0, with YJE (r) = Z−1 (r). As a
consequence, matrix D in (69) simplifies into

D =

©­­­«
XJE 0𝑁 0𝑁 0𝑁

0𝑁 XJE 0𝑁 0𝑁

0𝑁 0𝑁 0𝑁 0𝑁

0𝑁 0𝑁 0𝑁 0𝑁

ª®®®¬
(

I2𝑁 02𝑁 02𝑁 02𝑁
02𝑁 02𝑁 02𝑁 02𝑁

)
. (70)



DARDARI: RECONFIGURABLE ELECTROMAGNETIC ENVIRONMENTS: A GENERAL FRAMEWORK 1489

VII. EM TRANSFER FUNCTION AND IT
CHANNEL MATRIX

A. EM Transfer Function
We are now in the position of deriving the relationship

between the linear algebra method illustrated in Sec. III
and the system EM transfer function defined in Sec. II-D.
It is customary in the literature to define the EM sys-
tem transfer function or channel transfer function, namely
H̃ (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 𝑧s , 𝑧o), with reference to a source in the 𝑥−𝑦
plane at 𝑧 = 𝑧s, where the impressed (real or equivalent)
currents Jimp (𝑥, 𝑦; 𝑧s) are supposed to lay, and an 𝑥 − 𝑦 obser-
vation plane at 𝑧 = 𝑧o where the electric field Ẽ(𝜅𝑥 , 𝜅𝑦; 𝑧o) is
observed [23], [24], [25], [26]. For example, this could be the
plane where a receiving antenna array or a surface is located.
It follows that

Ẽ(𝜅𝑥 , 𝜅𝑦; 𝑧o) =
1

2𝜋

∫
Ẽ(𝜿) 𝑒 𝚥𝜅𝑧 𝑧o 𝑑𝜅𝑧

=

∫
R2

H̃ (𝜅𝑥 , 𝜅𝑦 , 𝑘𝑥 , 𝑘𝑦; 𝑧s , 𝑧o)

J̃imp (𝑘𝑥 , 𝑘𝑦; 𝑧s) 𝑑𝑘𝑥 𝑑𝑘𝑦 (71)

where

H̃ (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 𝑧s , 𝑧o) =
1

(2𝜋)2

∫
R2

H̃EJ (𝜿, 𝜿)

· 𝑒− 𝚥𝜅𝑧 𝑧s𝑒 𝚥𝜅𝑧 𝑧o𝑑𝜅𝑧 𝜅𝑧 . (72)

The component H̃ (𝑥𝑥 ) (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 𝑧s , 𝑧o) of (72) gives the
system response observed on the plane 𝑧 = 𝑧o at the 2D
wavenumber (𝜅𝑥 , 𝜅𝑦) and polarization â𝑥 when solicited by
the harmonic current J̃imp (𝜿) = â𝑥 (2𝜋)2𝛿(𝜅𝑥 − 𝜅𝑥) 𝛿(𝜅𝑦 −
𝜅𝑦) 𝑒− 𝚥𝜅𝑧 𝑧s located on the plane 𝑧 = 𝑧s. Note that (72) is a
vector transfer function, whereas the treatment in [23], [24],
and [25] considers scalar fields.

Now, suppose one is interested in finding, for example,
the 𝑥𝑥 component H̃ (𝑥𝑥 ) (·) of the EM transfer function
in (72). To this purpose, we add in the system two virtual
EMOs whose indexes are, respectively, 1 and 𝑀 , with D(1) =
D(𝑀 ) = 0. The first EMO is responsible for the impinging
elementary harmonic electric current in (48) with wavenumber
𝜿, whereas the 𝑀th EMO is the virtual plane-wave EMO,
with wavenumber 𝜿, given by (46). Therefore, the number of
physical EMOs is 𝑀 − 2 and they may have any arbitrary
position and orientation. The general problem is to find the
algebraic relationship between f (𝑀 ) and a(1) in (40), where
the coefficients in matrices G(𝑀,𝑖) , for 𝑖 = 2, 3, . . . , 𝑀 −1, are
given by (55) and (56), whereas the coefficients of G(𝑚,1) ,
for 𝑚 = 2, 3, . . . , 𝑀 , are given by (57) and (58). Considering
only the first component of e(𝑀 ) in f (𝑀 ) (that related to the
𝑥 polarization), it is

H̃ (𝑥𝑥 ) (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 𝑧s , 𝑧o) =
[
e(𝑀 ) (𝜿, 𝜿)

]
1,1

(73)

where vector e(𝑀 ) (𝜿, 𝜿) is derived by setting a(1) = 1, and
we made explicit the dependence of e(𝑀 ) on the wavenum-
bers 𝜿 and 𝜿 of the impinging elementary harmonic electric
current and the observed wavenumber, respectively. A sim-
ilar approach can be applied to the other polarizations.
In Sec. VIII, we will illustrate some explicit examples of
calculation of the EM transfer function (73).

B. IT Channel Matrix and Antenna DoF
In Sec. II-E, we have seen that the IT channel matrix

depends on the antenna’s impedance matrix ZT and the
trasnimpedance matrix ZC. We want to find the relationship
with the previous framework and use it to investigate the
fundamental limits of antennas from the IT perspective.

1) Antenna Impedance and IT Channel Matrix: Let us
consider an EMO representing a generic 𝑃-port transmitting
antenna, where we drop the index 𝑚 for convenience. As men-
tioned in Sec. II-E, we can replace the antenna structure with
an equivalent impressed current J(r) = ∑

𝑛 𝑎𝐽 𝑛𝚽𝑛 (r) defined
on the antenna’s surface S, which radiates in free space and
can be decomposed using the basis set {𝚽𝑛 (r)}𝑁𝑛=1 defined on
S. Since J(r) is a linear function of the currents i at the ports
(defined in Sec. II-E), we can write a𝐽 = T·i, where the matrix
T has elements [T]𝑛,𝑖 = ⟨T (r ; z𝑖) ,𝚽𝑛 (r)⟩. Here, z𝑖 is a zero
vector except for the 𝑖th element, which is equal to one, for
𝑛 = 1, 2, . . . , 𝑁 , and 𝑖 = 1, 2, . . . , 𝑃. The power radiated by the
antenna can be computed by solving the following expression
[38, eqn. (8)]

𝑃rad = −1
2
E

{∫
V
ℜ{E(r) · J∗ (r)} 𝑑r

}
= −1

2
E {ℜ {⟨Et (r) , J(r)⟩}}

= −1
2
E

{
ℜ

{〈
GEJ J(r) , J(r)

〉}}
(74)

where V is the volume in which the current flows. In our
case, being the equivalent current J(r) defined on the EMO’s
surface S, then V = S. Denote with 𝐶𝑛,𝑢 twice the component
of (74) obtained by setting 𝚽𝑛 (r) and 𝚽𝑢 (s) as current terms
of the right-hand side inner product in (74). Using (59), 𝐶𝑛,𝑢

is given by

𝐶𝑛,𝑢 = −ℜ
{〈

GEJ 𝚽𝑛 (r) ,𝚽𝑢 (r)
〉}

= −ℜ
{
[GEJ]𝑢,𝑛

}
. (75)

As a consequence, by defining the coupling matrix [CT]𝑛,𝑢 =

𝐶𝑛,𝑢, for 𝑛, 𝑢 = 1, 2, . . . , 𝑁 , (74) can be rewritten as 𝑃rad =
1
2E

{
a𝐽

HCT a𝐽

}
, which is formally equivalent to the expression

of the transmitted power 𝑃T = 1
2E

{
iHℜ{ZT} i

}
computed at

the input ports. Because of the law of conservation of the
energy, 𝑃T = 𝑃rad and hence it is ℜ{ZT} = THCTT, which
indicates that (75) is a general approach to compute the real
part of the impedance matrix ZT which impacts the IT channel
matrix H in (18).

Regarding the transimpedance matrix ZC, supposing for
simplicity that the EMO with 𝑚 = 1 represents the transmitting
antenna and the EMO with 𝑚 = 𝑀 the receiving antenna,
it follows that ZC corresponds to the matrix that relates the
component e(𝑀 ) of f (𝑀 ) and a(1) = [a𝐽 , 0𝑁 ]𝑇 . Depending on
the scenario, such a relation can be found solving the matrix
equations in (40), in a similar way followed to derive the EM
transfer function in Sec. VII-A.

2) DoF of an Antenna: The capacity of the IT channel
depends on the rank of matrix H in (18), which in turn
is limited by min(𝑟T, 𝑟C, 𝑟R), where 𝑟T = rank (ℜ {ZT}),
𝑟C = rank (ZC), and 𝑟R = rank (ℜ {ZR}). While 𝑟C depends
on the overall propagation environment, 𝑟T and 𝑟R are limited
by the antennas’ geometry and the number of ports that,
in certain scenarios (e.g., multi-user systems), might represent
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the bottleneck of the system capacity. Therefore, it is of
interest to understand what are the fundamental limits on 𝑟T,
i.e., the DoF of the antenna.

While the previous result depends on the specific structure
of the antenna accounted for by matrix T, the same approach
above can be used to abstract from the specific implementation
of the antenna and the actual number of ports 𝑃 and used
to identify the theoretical limits of the antenna starting from
the geometry of its surface S. To elaborate, imagine now the
antenna is driven by the currents i and voltages v at the 𝑁

imaginary ports pulled out from a box that represents the
inside of the antenna, each of them associated with each of the
𝑁 modes in which J(r) can be decomposed using the basis
set {𝚽𝑛 (r)}. In this case it is T = T(th) = diag (q), where
𝑞𝑛 =

√︁
𝐿𝑥/𝐿𝑦 , for 𝑛p = 0 (𝑥 polarization), and 𝑞𝑛 =

√︁
𝐿𝑦/𝐿𝑥 ,

for 𝑛p = 1 (𝑦 polarization), to properly map currents to
current densities of a surface. Denote with Z(th)

T the impedance

matrix of the 𝑁 ports so that v = Z(th)
T i, where ℜ

{
Z(th)

T

}
=(

Tth)𝑇 CTT(th), with CT given by (75). Note that Z(th)
T depends

only on the geometry of the surface S and accounts for modes
coupling (e.g., between different polarizations). It is worth
noticing that now 𝑟T = rank

(
ℜ

{
Z(th)

T

})
= rank (CT), which

represents the number of virtual ports necessary to achieve
the maximum flexibility in current generation for a given
antenna shape S. Specifically, it can be seen as a theoretical
upper bound on the actual number 𝑃 of ports constituting the
antenna, whose number is technology-dependent. If 𝑃 ≤ 𝑟T,
then 𝑃 might become the bottleneck of the system capacity
through matrix T (technology bottleneck). On the other hand,
considering 𝑃 > 𝑟T would not bring any advantage in terms
of flexibility. An example of how such limits can be derived
for a LIS will be given in Sec. VIII-C.

VIII. EXAMPLES

In this section, we propose two examples of the derivation
of the EM transfer function of a reflecting surface and the
optimization of a RIS, and one example showing the appli-
cation of the proposed framework to derive the fundamental
limits on the DoF of a large surface antenna.

A. Transfer Function of a Finite Surface With Constant
Impedance

Suppose we want to find the transfer function of a generic
EMO, numbered with index 2, characterized by a given
constitutive matrix D(2) . Here it is 𝑀 = 3. The observation
and source planes are placed at 𝑧o = 𝑧s = 0 and the surface
at position p = (0, 0, 𝑝𝑧) with 𝑝𝑧 > 0. By combining (40) for
𝑚 = 2 and 𝑚 = 𝑀 = 3, it is

f (𝑀 ) (𝜿, 𝜿) =f (3) (𝜿, 𝜿)

=G(3,2) (𝜿) D(2)
(
I − G(2,2) D(2)

)−1
G(2,1) (𝜿) a(1) .

(76)

As an example, let the surface of the EMO be charac-
terized by a constant admittance across the surface S (2)

of size 𝐿x × 𝐿y, i.e., Y(r) = 𝑌 = 1/𝑍 , for r ∈ S (2) ,
being 𝑍 the surface’s impedance. From (65), it follows that

𝑋JE 𝑗
=

〈
Y(r) , 𝜙 𝑗 (r)

〉
= 𝑌

√︁
𝐿x 𝐿y 𝛿 𝑗−𝑛0 , where 𝑛0 = (𝑁𝑥 −

1)/2 + 𝑁𝑥 (𝑁𝑦 − 1)/2 + 1 is the coefficient of the series
expansion (64) corresponding to the basis function for 𝑛𝑥 =

𝑛𝑦 = 0 (continuous component). Therefore, only one term
in (64) is different from zero and matrix XJE is given by
XJE = 𝑌

√︁
𝐿x 𝐿yH𝑛0 . By letting Δ → 0, it holds

D(2) = 𝑌

©­­­«
I𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁

0𝑁 I𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁

0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁

0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁 0𝑁

ª®®®¬ . (77)

After a few tedious but straightforward matrix computations,
it results

H̃ (𝑥𝑥 ) (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 0, 0)

=

[
e(𝑀 ) (𝜿, 𝜿)

]
1

=
𝜂2 𝐿x 𝐿y 𝑒

𝚥 𝑝𝑧 (𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )+𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 ) )

4

·
𝑁𝑥∑︁
𝑛𝑥=1

𝑁𝑦∑︁
𝑛𝑦=1

𝑅𝑛 Sinc
(
𝜅𝑥𝐿x

2𝜋
− 𝑛𝑥

)
Sinc

(
𝜅𝑦𝐿y

2𝜋
− 𝑛𝑦

)
· Sinc

(
𝜅𝑥𝐿x

2𝜋
− 𝑛𝑥

)
Sinc

(
𝜅𝑦𝐿y

2𝜋
− 𝑛𝑦

)
(78)

where 𝑅𝑛 = 𝑌/
(
1 + 𝑌 𝜂 𝑘

(𝑛)
𝑧

2 𝑘0 𝑘
(𝑛)
𝑛,𝑛

)
, 𝜂 = 𝑘0/(𝜔 𝜖), and we have

exploited the following relationship x̂ · (𝜿 x 𝜿 x x̂) = 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦).
From (78), it can be evinced that each mode is, in general,
subjected to a different reflecting coefficient 𝑅𝑛.

It is interesting to investigate the particular case where
𝑍 = 0, for which 𝑅𝑛 = 2/𝜂. Letting 𝑁𝑥 , 𝑁𝑦 → ∞ and consid-
ering that

∑
𝑛 Sinc (𝐴 − 𝑛) Sinc (𝐵 − 𝑛) = Sinc (𝐴 − 𝐵), (78)

simplifies into

H̃ (𝑥𝑥 ) (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 0, 0)

=
𝜂 𝐿x 𝐿y 𝑒

𝚥 𝑝𝑧 (𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )+𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 ) )

2

· Sinc
(
𝐿x (𝜅𝑥 − 𝜅𝑥)

2𝜋

)
Sinc

(
𝐿y (𝜅𝑦 − 𝜅𝑦)

2𝜋

)
. (79)

It is worth noticing that (79) is proportional to the result found
in [20] related to the evaluation of the response of a finite-size
rectangular perfect electric conductor. By letting 𝐿x, 𝐿y → +∞
and considering that lim𝑥→+∞ 𝑥 Sinc (𝑎 𝑥) = 𝛿(𝑎), we obtain

H̃ (𝑥𝑥 ) (𝜅𝑥 , 𝜅𝑦 , 𝜅𝑥 , 𝜅𝑦; 0, 0)

=
𝜂𝛿(𝜅𝑥 − 𝜅𝑥)𝛿(𝜅𝑦 − 𝜅𝑦)𝑒 𝚥2 𝑝𝑧𝑘𝑧 (𝜅𝑥 ,𝜅𝑦 )

2
(80)

that is, the transfer function of an infinite size surface, recently
derived in [26], which represents a particular case of our
more general formula (78). Specifically, (80) indicates that
the reflected field can be obtained equivalently by considering
a virtual source at a distance 2 𝑝𝑧 . This is nothing else than
the image theorem saying that the reflection operated by a
(large) perfect conductor is equivalent to a mirror image of the
source [29].
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B. RIS Optimization
In the next example, we consider a RIS made of an

inhomogeneous sheet of polarizable particles characterized by
an electric surface impedance and magnetic surface admittance
according to the equivalent homogenized boundary condition
in (68). Suppose that the RIS has dimension 𝐿x = 1.06 m, 𝐿y =

1.06 m, and whose purpose is to reflect, with a reflection angle
𝜃r = 22◦ along the 𝑥−𝑧 plane

(
i.e., 𝜅 (r)𝑥 = 𝑘0 sin(𝜃r) , 𝜅 (r)𝑦 = 0

)
,

an impinging EM field with wavelength 𝜆 = 10 cm and
incident angle 𝜃i = 0

(
𝜅
(i)
𝑥 = 𝜅

(i)
𝑦 = 0

)
. Three different

RIS design methods are considered: Method 1) Conventional
approach where the surface is characterized by a periodic
admittance YJE (r) =

𝚥

𝜂
sin

(
𝜅
(r)
𝑥 𝑟𝑥

)
,YMH (r) = 𝜂2 YJE (r), and

YME (r) = YJH (r) = 0 [16]. Matrix D is designed as conse-
quence using (64), (66), (67), and (69); Method 2) Matrix D is
obtained as a numerical solution of the following constrained
nonlinear optimization problem:

max
D

���H̃ (𝑥𝑥 )
(
𝜅
(r)
𝑥 , 𝜅

(r)
𝑦 , 𝜅

(i)
𝑥 , 𝜅

(i)
𝑦 ; 0, 0

)��� s.t. 𝑃rad = constant

(81)

with H̃ (𝑥𝑥 )
(
𝜅
(r)
𝑥 , 𝜅

(r)
𝑦 , 𝜅

(i)
𝑥 , 𝜅

(i)
𝑦 ; 0, 0

)
computed using (73)

and (76); Method 3) Matrix D is evaluated analytically
by solving the following equation extracted from (76)
D(2) (

I − G(2,2) D(2) )−1
= Rd, from which D(2) =(

I + Rd G(2,2) )−1 Rd, where Rd is the desired response of the
RIS, i.e., how received modes should be mapped into reflected
modes. In particular, Rd is a zero matrix with only one element
different from zero in the position where the input mode,
corresponding to the impinging wave 𝜅

(i)
𝑥 = 0, is mapped to

the output mode corresponding (or close) to 𝜅
(r)
𝑥 . Since we

consider only the reflection along the 𝑥−𝑧 plane, the following
numerical results were obtained by setting 𝑁𝑥 = 25 and
𝑁𝑦 = 1.

In Fig. 4(a), the amplitude of the RIS transfer func-
tion H̃ (𝑥𝑥 ) (𝜅𝑥 , 0, 𝜅𝑥 , ; 0, 0) for a RIS designed according to
Method 1 is reported. The wavenumbers are normalized with
respect to 𝑘0. As expected, the transfer function provides
some gain at 𝜅𝑥 = 0 and 𝜅𝑥 = 𝜅

(r)
𝑥

(
𝜅
(r)
𝑥 /𝑘0 = 0.38

)
, which

means that the incident wave is correctly reflected towards
𝜃r. However, as it can be noticed, the periodic nature of the
surface generates parasitic reflections in unwanted directions,
as predicted by Floquet’s theory whose evaluation typically
requires EM-level simulations [10], [15]. When the RIS is used
in a multi-user wireless system, such parasitic reflections may
generate interference to users located at different angles with
respect to that of the target user. To reduce the interference,
Method 2 can be adopted within our framework to strengthen
the signal reflected in the right direction, thus reducing the
intensity of the Floquet modes, as it can be noticed in Fig. 4(b)
obtained using Method 2. In any case, even if the Floquet
modes are mitigated, the obtained EM transfer function might
still generate significant interference. In fact, the off-diagonal
behavior of the plot indicates that any other EM wave arriving
with a different incident angle, i.e., with 𝜅𝑥 ≠ 0, would be
reflected as well as that with 𝜅𝑥 = 0. In other words, the RIS
acts as an anomalous mirror for all the signal sources present
in the environment by generating additional interference in

Fig. 4. Amplitude of the RIS’ transfer function H̃ (𝑥𝑥) (𝜅𝑥 , 0, 𝜅𝑥 ; 0, 0) .

uncontrolled directions. This aspect has been often overlooked
in the literature. Although the optimization problem in (81)
aims to eliminate any spurious reflection, the specific structure
of matrix D, being a linear combination of off-diagonal-
like matrices H 𝑗 in (67), introduces constraints on its design
flexibility. This limitation in the structure of matrix D arises
as a consequence of the local boundary conditions (68) and
might hinder the achievement of the desired outcome. Such
a constraint is not intrinsically present when using Method 3
according to which D can take any form depending on the
desired modes conversion behavior Rd. The corresponding EM
transfer function, depicted in Fig. 4(c), clearly reflects towards
𝜃r only those waves arriving with an incident angle 𝜃i = 0,
whereas any other wave with different angle is not reflected,
thus avoiding the generation of interference caused by Floquet
modes and/or other EM sources. From the practical point of
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view, an unconstrained matrix D requires more complex EM
structures imposing linear constraints at the global surface
level [39]. Such structures, i.e., linear EMOs, act as universal
mode converters [7].

C. Fundamental Limits on the DoF of a LIS
Starting from the approach proposed in Sec. VII-B, here we

compute the theoretical limits on the DoF of a large planar
thin surface antenna through the computation of the coupling
matrix CT in (75). For large surfaces, the coefficient [GEJ]𝑢,𝑛
in (75) can be well approximated using (62) with Δ = 0.
Therefore, the elements of the coupling matrix CT are

𝐶𝑛,𝑢 ≃ 𝜂

2
𝛿𝑢𝑥−𝑛𝑥 , 𝑢𝑦−𝑛𝑦

·
𝛿𝑛p−𝑢p

(
1 − 𝜆2 𝑛2

𝑥

𝐿2
𝑥
𝛿𝑛p −

𝜆2 𝑛2
𝑦

𝐿2
𝑦
𝛿𝑛p−1

)
− 𝜆2 𝑛𝑥 𝑛𝑦

𝐿𝑥 𝐿𝑦
𝛿𝑛p+𝑢p−1√︂

1 − 𝜆2 𝑛2
𝑥

𝐿2
𝑥

− 𝜆2 𝑛2
𝑦

𝐿2
𝑦

(82)

when the condition C1 :
{
𝜆2 𝑛2

𝑥

𝐿2
𝑥

+ 𝜆2 𝑛2
𝑦

𝐿2
𝑦

< 1
}

is satisfied and

zero otherwise. For notation convenience, we made use of the
mapping introduced in Sec. IV between 𝑛, 𝑛𝑥 , 𝑛𝑦 and 𝑛p.

From the analysis of the coupling matrix CT = [𝐶𝑛,𝑢]
in (82) interesting considerations can be derived. To ease the
discussion, let us consider a square surface of size 𝐿𝑥 =

𝐿𝑦 = 𝐿. The rank 𝑟T = rank (CT) is bounded by twice
(2 polarizations) the number of combinations of 𝑛𝑥 and 𝑛𝑦 that
satisfy condition C1, approximately 𝑟T ≤ 2𝜋 𝐿2

𝜆2 . Interestingly,
a conventional planar array with 𝜆/2 spaced elements of the
same size has (2𝐿/𝜆)2 ports per polarization, then 𝑃 = 8 𝐿2

𝜆2

ports. Since 𝑟T represents the theoretical upper bound on the
DoF, this means that the actual DoF of an 𝑃-port planar array
is not equal to 𝑃 but it cannot be larger than 𝜋𝑃/4, i.e., 0.78 𝑃.
Compared with the DoF of a spherical array of diameter 𝐿

given by 2𝜋2 𝐿2

𝜆2 [23], the loss in terms of DoF using a planar
surface with respect to a spherical array is equal to 𝜋.

IX. CONCLUSION

In this paper, we have presented a comprehensive and phys-
ically consistent framework for characterizing and designing
programmable EM environments as a linear graph described
by matrix operators. This framework permits the determination
of both the EM transfer function of the system and the
channel matrix used in IT accounting for the constraints posed
by the antenna ports. This description can be used both in
theoretical analysis or integrated into system-level simulators
without necessitating EM-level simulations that are typically
challenging to incorporate into system-level or ray-tracing
tools. Various examples have been provided, showcasing its
application to the characterization and optimization of RISs.
Additionally, the framework has been employed to establish
the fundamental limits of the DoF available in LISs antennas.
In future works, we aim to extend this framework to include
stochastic modeling, enabling a more comprehensive and
versatile approach to address varying scenarios and real-world
conditions.

APPENDIX

Consider a source A(r), whose Fourier transform Ã(𝜿) does
not exhibit singularities, enclosed within the finite domain
D such that A(r) = 0, ∀r = (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) ∉ D. Denote with
𝑧min = min

(
𝑟𝑧 : (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) ∈ D,∀𝑟𝑥 , 𝑟𝑦

)
and with 𝑧max =

max
(
𝑟𝑧 : (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) ∈ D, ∀𝑟𝑥 , 𝑟𝑦

)
. Suppose the purpose is

to compute the inverse Fourier transform of 𝐺0 (𝜿) Ã(𝜿) at
location r, with 𝑟𝑧 > 𝑧max or 𝑟𝑧 < 𝑧min. Unfortunately,
𝐺0 (𝜿) in (11) presents a singularity when |𝜿 | = 𝑘0, i.e., the
condition an EM plane wave must satisfy. If we consider the
integration over 𝜅𝑧 to be a contour integration with the contour
completed at infinity, then the Cauchy’s integral theorem has
the effect of enforcing the condition |𝜿 | = 𝑘0 and hence
the well-known more convenient representation of the inverse
Fourier transform can be found [32, Ch. 3]∫
R3

𝐺0 (𝜿) Ã(𝜿) 𝑒 𝚥 𝜿 ·r 𝑑3𝜿 =− 𝚥 𝜋

∫
R2

Ã(𝜿±)
𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

𝑒 𝚥 𝜿
± ·r 𝑑𝜅𝑥𝑑𝜅𝑦

(83)

where

𝑘𝑧 = 𝑘𝑧 (𝜅𝑥 , 𝜅𝑦) =


√︃
𝑘2

0 − 𝜅2
𝑥 − 𝜅2

𝑦

(
𝜅𝑥 , 𝜅𝑦

)
∈ P

𝚥

√︃
𝜅2
𝑥 + 𝜅2

𝑦 − 𝑘2
0

(
𝜅𝑥 , 𝜅𝑦

)
∉ P

(84)

𝜿± =

{
(𝜅𝑥 , 𝜅𝑦 , 𝑘𝑧) 𝑟𝑧 > 𝑧max
(𝜅𝑥 , 𝜅𝑦 ,−𝑘𝑧) 𝑟𝑧 < 𝑧min

. (85)

and P =
{(
𝜅𝑥 , 𝜅𝑦

)
∈ R2 : 𝜅2

𝑥 + 𝜅2
𝑦 ≤ 𝑘2

0
}
. When

(
𝜅𝑥 , 𝜅𝑦

)
∈ P,

𝑘𝑧 is real and propagation happens. Instead, when
(
𝜅𝑥 , 𝜅𝑦

)
∉

P, 𝑘𝑧 is purely imaginary and the plane waves are evanescent.
Eqn. (83) indicates that 3D Fourier-like integrals can be
evaluated through 2D Fourier integrals, thus revealing that
the EM field representation in the 3D space has two DoF.
This is due to the Helmholtz’s equation the field has to satisfy
accounted for by 𝐺0 (𝜿) in (11). Moreover, it is worth noticing
that for each condition in (85), the 2D integral includes only
those plane waves propagating into the half-space that does
not contain the source, as well as the evanescent waves.
If |r| ≫ 𝜆 and Ã(𝜿) in (83) is slow varying around the
value 𝜿r = 𝑘0 r̂, through the method of stationary phase, the
following approximation holds [29, Ch. 12]∫
R2

Ã(𝜿)
𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)

𝑒− 𝚥 𝜿 ·r 𝑑𝜅𝑥 𝑑𝜅𝑦 ≃ Ã(𝜿r)
∫
R2

𝑒− 𝚥 𝜿 ·r

𝑘𝑧 (𝜅𝑥 , 𝜅𝑦)
𝑑𝜅𝑥 𝑑𝜅𝑦

= 𝚥2𝜋Ã(𝜿r)
𝑒− 𝚥 𝑘0 |r |

|r| (86)

where the last equality is known as Weyl’s identity [32, Ch.1].
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