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Abstract— The regenerative capabilities of next-generation
satellite systems offer a novel approach to design low earth orbit
(LEO) satellite communication systems, enabling full flexibil-
ity in bandwidth and spot beam management, power control,
and onboard data processing. These advancements allow the
implementation of intelligent spatial multiplexing techniques,
addressing the ever-increasing demand for future broadband
data traffic. Existing satellite resource management solutions,
however, do not fully exploit these capabilities. To address this
issue, a novel framework called flexible resource management
algorithm for LEO satellites (FLARE-LEO) is proposed to jointly
design bandwidth, power, and spot beam coverage optimized for
the geographic distribution of users. It incorporates multi-spot
beam multicasting, spatial multiplexing, caching, and handover
(HO). In particular, the spot beam coverage is optimized by
using the unsupervised K-means algorithm applied to the realistic
geographical user demands, followed by a proposed succes-
sive convex approximation (SCA)-based iterative algorithm for
optimizing the radio resources. Furthermore, we propose two
joint transmission architectures during the HO period, which
jointly estimate the downlink channel state information (CSI)
using deep learning and optimize the transmit power of the
LEOs involved in the HO process to improve the overall system
throughput. Simulations demonstrate superior performance in
terms of delivery time reduction of the proposed algorithm over
the existing solutions.

Index Terms— LEO satellite, beamforming, regenerative pay-
load, caching, precoding, multicasting, optimization, handover,
deep learning.

I. INTRODUCTION

IN THE context of satellite constellations, the LEO con-
stellation is considered suitable for broadband services

due to its small round-trip delay compared to other satellite
constellations. Thanks to advanced payload technology, the
LEO satellites are now seen as key enablers for the beyond
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5G (B5G) and sixth-generation (6G) communications systems,
as they can intelligently deliver low-cost, higher-throughput
broadband services to underserved areas [2], [3].

The success of LEO satellites to B5G/6G relies on the
operating and payload architecture. Traditionally, two main
configurations have been prevalent: the wide beam and the
multiple spot beam configurations. The wide-beam configu-
ration is characterized by wide coverage and is mainly used
for broadcasting applications, while the multiple-spot beams
are specifically designed for broadband services [4]. These
configurations excel at providing dedicated services but lack
the flexibility to effectively handle dynamic and complex
situations such as targeted users’ mobility and time-varying
demand. This lack of flexibility is favored in traditional satel-
lite architectures due to the high cost and delays associated
with the payload changes [5]. However, recent advancements
in payload technologies, such as digital transparent payload
(DTP) and active onboard antennas, enable efficient and recon-
figurable hybrid broadcast/broadband modes [6].

Current DTP, however, has limited capabilities such as
flexible channelization and rudimentary power control/sharing
among carriers [7]. Thus, to address the shortcomings of the
DTP, satellite companies are shifting their focus to incorpo-
rating advanced regenerative (fully digital) payload technol-
ogy, which integrates a regenerative processor, electronically
steered phased-array antennas, and optional memory units [8].
This transition allows for the optimization of various function-
alities, including beamforming, spot beam coverage patterns,
signal quality, bandwidth, and power as per the traffic demand
[9], [10]. To minimize overall latency and further enhance the
quality of service (QoS), the regenerative payload’s optional
memory unit can be used for caching in LEO satellites. This
approach is favored over the terrestrial networks because data
cached in terrestrial networks must traverse multiple hops,
which causes frequent handovers (HO) at the gateways (GWs)
unless the requesting user equipment (UEs) are adjacent to
edge nodes [11]. Moreover, the regenerative payload of the
satellite constellation allows for the flexibility of on-demand
multicasting services, potentially enabling the simultaneous
delivery of cached content to different communities of users
spread across different geographic areas [4], [12].

The successful launch of the OneWeb’s LEO satellite,
JoeySat, in May 2023, funded by the European Space Agency
and UK Space Agency, showcases the incorporation of the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0150-0480
https://orcid.org/0000-0002-8374-443X
https://orcid.org/0000-0001-5122-0001


BHANDARI et al.: USER-CENTRIC FLARE-LEO SATELLITES WITH FULLY REGENERATIVE PAYLOAD 1247

flexible software-defined regenerative processor along with
multi-spot beam electronically steered phase array antennas.
This implementation fulfills the demand-based beam tailoring
and steering capability [13]. However, a complete package of
algorithm design is needed to fully leverage the functionality
of fully flexible regenerative payload-enabled satellites.

A. Related Works
Several studies have been conducted to partially exploit the

flexible payload capabilities [5], [10], [14], [15], [16], [17],
[18]. In [10], a bandwidth and power optimization method
is proposed for non-geostationary orbit (NGSO) based on
realistic demands. In [14], a demand-driven geostationary orbit
(GEO) beam steering and beam patterning method using flex-
ible regenerative payload capabilities is proposed. The authors
of [15], [16], and [17] propose a caching policy in LEOs using
flexible onboard regenerative payload capabilities to minimize
content delivery delay and maximize the probability of suc-
cessful delivery based on predefined beam coverage, transmit
power, and operating bandwidth. In [5], the authors aim to
leverage the regenerative payload-enabled capabilities, such
as digital beamforming, caching, and bandwidth optimization,
considering the realistic demands. Inspired by [5], to address
the shortcomings of [15], [16], and [17] to some extent,
considering the flexible regenerative payload enabled LEOs
capabilities, in [18], an optimization problem is formulated at
two different time scales to maximize the utility function in
the integrated satellite-terrestrial network by considering the
joint design of cache placement, multicast-beamforming, base
station and satellite clustering, and transmit power. However,
the optimal use of satellite operating bandwidth and spot beam
coverage was not considered therein.

Since the LEO satellites can only provide uninterrupted
service to the particular area in the earth fixed beam scenario
for about 10 to 15 minutes during one orbital, it is crucial
to consider the HO scenario via inter-satellite link (ISL) [20].
Unfortunately, the existing literature lacks proper algorithm
designs for HO duration involving multiple LEOs. To fulfil
this research gap and address the shortcomings of [15], [16],
[17], and [18], we propose a flexible resource management
algorithm that fully leverages the flexible regenerative payload
capabilities and efficiently utilizes the ISL during the HO
periods.

B. Contributions
In this paper, we propose FLARE-LEO, a collaborative

algorithm that leverages the flexible payload and electronically
steered phased array antennas embedded in LEOs. FLARE-
LEO incorporates various capabilities of LEOs, including
demand-based adaptive beam patterning and steering, multi-
spot beam multicasting, caching, bandwidth and power opti-
mization, as well as ISL-HO. Our contributions can be
summarized as follows:

‚ We formulate a joint design of spot beam coverage,
operating bandwidth, and multi-user precoding vectors
to minimize the average delivery time in LEO-assisted
caching networks, including HO scenarios. Although
flexible bandwidth has been considered in satellite com-
munications, to the best of our knowledge, this is the

first work exploiting spatial multiplexing [20] technique
within each spot beam in LEO-enabled caching systems
thanks to fully flexible regenerative payload and electron-
ically steered phased array antennas capabilities.

‚ We propose to solve the joint optimization problem
via two sub-problems: beam coverage design and radio
resource allocations. Unlike other clustering strategies
[21], our approach guarantees non-overlapping and non-
empty clusters, aligning with our goal of creating distinct
spot beams and optimizing their coverage area. To tackle
the non-convexity of the second sub-problem, we refor-
mulate it using a difference-of-convex (DC) representa-
tion and propose two successive convex approximation
(SCA)-based iterative algorithms for joint optimization
of frequency bandwidth and multi-user precoding vectors,
applied to both optimal and zero-forcing (ZF) precoding
designs. It is worth noting that the solution in [22] is not
applicable in our system since it does not consider the
bandwidth allocation.

‚ We propose novel architectures for joint resources opti-
mization between two LEOs during the HO period,
namely centralized architecture, in which the joint opti-
mization is executed in the GW, and distributed archi-
tecture, in which each LEO optimizes its own radio
resources and exchanges parts of the outputs to the other
via ISL. These architectures differ in their computa-
tional capabilities, packet overhead, and communication
needs between two LEOs. In addition, a deep learning
(DL)-based channel state information (CSI) prediction is
proposed during the HO period to improve the effective
system throughput.

‚ Finally, the advantages of the proposed framework are
demonstrated via numerical results based on the realistic
Movielens dataset [23]. Simulation results indicate that
the adaptive beam scenario outperforms the fixed beam
scenario by at least 1.22 times in terms of effective mean
data rate when the total power of the LEOs is varied
between (25–35) dBW. Additionally, the effective mean
data rate of the proposed design in HO periods is at
least 1.5ˆ higher the conventional method without joint
transmission.

C. Organization
The remainder of this paper is organized as follows.

Section II describes the system model and parameters.
Section III presents the problem formulation and proposed
solution. Section IV introduces the HO scenario and DL-based
CSI prediction scheme. Section V presents the different HO
schemes based on computational capability and overhead.
Section VI demonstrates the effectiveness of the proposed
scheme using numerical results. Finally, Section VII concludes
the paper.

Notations: The superscript p.qH stand for the Hermitian
transpose. |.| and ||.|| denote the amplitude and the l2-norm
of a set, respectively. The description of the main notations is
summarized in Table I.

II. SYSTEM MODEL

We consider a LEO constellation providing services in a
given area, in which a LEO satellite is serving the users at
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TABLE I
SUMMARY OF MAIN NOTATIONS

Fig. 1. A downlink multicasting LEO satellite system with a regenerative
payload architecture. (a) Multicasting LEO satellite system. (b) Regenerative
payload architecture.

a given time. HO occurs when the serving LEO satellite is
departing and a new LEO is joining the area. Without loss of
generality, the considered system not in the HO period com-
prises a LEO satellite serving a set U “ t1, 2, . . . , u, . . . , Uu

of U single-antenna UEs within its coverage, a GW, and a
centralized cloud, as shown in Fig. 1. The operation during the
HO period will be presented in Section IV. The LEO satellite
is equipped with a cache-enabled flexible regenerative payload
and electronically steered phased array antennas that can
generate M spot beams of arbitrary shapes [24] to adaptively
serve UEs within its footprint. For ease of analysis, we assume
the shape of spot beam m to be circular and to leverage the
users clustering and spot beam optimization, we assume a
uniform antenna radiation pattern within a spot beam. It is
worth noting that once the spot beams are determined, actual
location-dependent path losses are employed to compute the
received signal power. The spot beam gain Gmpθm, ϕmq can
be computed as [25]:

Gmpθm, ϕmq “
Area of isotropic sphere

Area of spot beam rad. pattn.
“

4D2
m

r2
m

, @m,

(1)

where θm and ϕm are the elevation and azimuth angles in radi-
ans relative to the boresight of the spot beam m, rm is the spot
beam’s radius, and Dm is the slant distance between the LEO
satellite and the m-th spot beam. To efficiently serve the UEs
over a geographical area, the spot beams are designed to be
non-overlapping and adequately spaced, which allows full-
frequency reuse. Thanks to the advanced payload technology,
each LEO satellite can deliver up to N spatial multiplexing
data streams in each spot beam [26].

A. Caching Model
By equipping with the advanced flexible regenerative pay-

load, the LEO satellite is able to process data and has a limited
cache memory of C bits. The U UEs are interested in the
content library of F “ t1, 2, . . . , f, . . . , F u at the centralized
cloud consisting of F files. Due to the non-geostationary
nature, the LEO satellite has a limited service duration of
T for each satellite pass of a considered area. We consider
offline caching policy [27] in which the demand vector L is
obtained in advance, e.g., via historical average or prediction
model [28]. Based on L, the cache placement is executed at the
beginning of each service duration based on generic caching
models, such as most popular caching (MPC), uniform caching
(UC), and random caching (RC). We focus on the transmission
design in the delivery phase.

B. User Grouping
To exploit the flexible multi-beam capability, the users are

served in groups depending on their geographical locations
and requested contents. Denote the set of UEs in each spot
beam m as Um Ď U , which is further divided into Km

groups. The users within the same group request the same
content file. If Km ď N , all user groups can be served
simultaneously using the whole bandwidth B via spatial
multiplexing techniques, i.e., multi-user precoding. Otherwise,
Km groups are divided into Am “ rKm

N s associate user
groups (AUGs). Different AUGs are served via orthogonal
frequency bandwidths, while the users within one AUG are
served simultaneously via multi-user precoding technique. Let
Am “ tam

1 , am
2 , . . . , am

Am
u denote the set of Am AUGs in

spot beam m, and Ka,m denote the set of users belong to the
AUG a of spot beam m.

To illustrate, suppose 8 users tu1, u2, . . . , u8u

within spot beam m requests the corresponding files
tf1, f2, f3, f3, f4, f5, f5, f6u, which includes Km “ 6 distinct
files. If N “ 4, then there are two AUGs, which are:
K1,m “ tu1, u2, u3, u4, u5u and K2,m “ tu6, u7, u8u1.

C. Transmission Model
We focus on the signal transmission during the delivery

phase in which the LEO satellite serves the users’ requested
contents. The service duration is divided into multiple time
slots, whose duration is determined by the channel coherence
time. The satellite-user channels are assumed quasi-static
within one time slot and vary from one time slot to another.
For a particular time slot, the signal received by the UE u in

1This is one of possible AUG partitions. Optimal user grouping is not
considered in this work.
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group k of AUG a (k P Ka,m) in spot beam m not in the HO
time (see Section IV for HO transmission) can be written as:

yu,k,a,m “ hH
u,k,a,mwk,a,msk,a,m ` Ǐm ` Îm ` nu, (2)

where hu,k,a,m P CNˆ1 is the downlink channel coefficient to
UE u of multicast group k of AUG a; wk,a,m P CNˆ1 is the
precoding vector designed for the multicast group k of AUG
a; sk,a,m P C is the data symbol requested by UEs of group
k of AUG a via multicast spot beam m with Er|sk,a,m|2s “

1; and nu „ CN p0, σ2
uq is the additive white gaussian noise

(AWGN). Ǐm is intra-spot beam interference that is caused by
the concurrent transmission to different user groups within the
same AUG a of spot beam m, and Îm represents inter-spot
beam interference caused by power leakage from the adjacent
beams. They are computed as follows:

Ǐm fi
ÿ

k1PKa,m\tku

hH
u,k,a,mwk1,a,msk1,a,m;

Îm fi ηm

Př

m1

B
ba,m,

where ηm is the aggregate of the m-th spot beam inter-spot
beam attenuation factor and the free-space path loss, Př

m1
{B

represents the accumulated interference density caused by the
adjacent spot beams, and ba,m is the frequency bandwidth
allocated to AUG a within spot beam m. The typical value for
the inter-spot beam attenuation factor is around -30 dB. After
the Doppler compensation, we have hu,k,a,m “ guvupφuq,
where gu is the channel gain and vupφuq P CNˆ1 is the
downlink array response vector for UE u, wherein φu is the
angle of departure (AoD) [29].

We assume a Rician fading channel gu “
?

βuĝu, where
βu “ GmGuMλ2{p4πDuq2 is the large-scale fading and
ĝu “ αuphLoS

a

κu{pκu ` 1q ` hNLoS

a

1{pκu ` 1qq denotes
the small-scale fading channel model, with κu represents the
Rician factor, αu “ Et|ĝu|2u, hLoS is the deterministic line-
of-sight (LoS) part, and hNLoS represents the non-LoS (NLoS)
component. Other parameters are given in Table I. The real
and imaginary parts of ĝu are independently and identically
distributed as N p

a

κuαu{2pκu ` 1q, αu{2pκu`1qq. Assuming
perfect CSI at the satellite, the signal-to-interference-plus-
noise ratio (SINR) of UE u of AUG a at spot beam m is
calculated as follows:

γu,k,a,m “
|hH

u,k,a,mwk,a,m|2

ř

k1PKa,m\tku |hH
u,k,a,mwk1,a,m|2 ` Îaggba,m

,

(3)

where Îagg fi pηmpPř

m1
{Bq ` N0q and N0 is the noise

spectral density. The impact of imperfect CSI is studied in
Section VI-F.

The effective transmission rate of a group k within AUG a,
determined by the weakest users in the group, in spot beam
m, is calculated as follows:

Rk,a,m “ Φba,m log2p1 ` minutγu,k,a,muq. (4)

where Φ fi 1 ´
τcsi`τpro

τslot
accounts for the effective trans-

mission time, τslot is the time slot duration, τcsi is the max
channel estimation time, and τpro is the processing time whose
value largely depends upon the beamforming techniques and
the hardware capability of the regenerative payload.

III. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Problem Formulation
In the pursuit of full exploitation of the flexible payload,

we aim to jointly design the spot beam coverage rm, fre-
quency bandwidth allocation, and precoding vectors towards
minimizing the worst-case average delivery latency. The joint
optimization problem is formulated as follows:

P : min
tw,b,r,Ku

tpw, b, r, Kq (5a)

s.t. Rk,a,m ě Rreq, @k, a, m, (5b)
ÿ

kPKa,m

ÿ

aPAm

∥wk,a,m∥2 ď PřpKm{Kq, @m,

(5c)
ÿ

aPAm

ba,m ď B, @m, (5d)
ğ

mPM
πr2

m ě Ař, (5e)

where w fi twk,a,mu@k,a,m, b fi tba,mu@a,m, r fi trmuM
m“1,

and K fi tKmuM
m“1 are the short-hand notations; Rreq is

the minimum QoS requirement; Am is the set of AUGs in
spot beam m; Př is the total transmit power of LEO satellite;
K “

řM
m“1 Km; and Ař is the total service area of the LEO

satellite.
The objective function tpw, b, r, Kq of problem (5) is the

end-to-end transmission latency, assuming the FastForward
capability [30], is computed as follows:

tpw, b, r, Kq “ maxtk,a,mu pmax ppqk{RX ` Dk{cq , Πkqq

(6)

where X fi tk, a, mu is the short-hand indexes, qk is the file
size, Dk “ maxupDuq is the slant distance between LEO
satellite and k-th group, c is the speed of light. In (6), qk

RX
and

Dk

c are the transmission and the propagation delays, respec-
tively, incurred while sending files from the LEO satellite to
UEs of group k; and Πk fi

p1´µkqqk

RBH
` D0

c is the transmission
and propagation delay accured in the backhaul link when
sending the uncached file parts from the centralized cloud to
the LEO satellite, where µk P r0, 1s denotes the fraction of the
k-th file on LEO satellite, RBH is the backhaul transmission
rate, and D0 is the slant distance between the GW and the
LEO satellite.

In problem P , constraint (5b) guarantees the minimum
users’ QoS requirement; constraint (5c) limits the power
allocated to each LEO satellite spot beam; constraint (5d) sets
the total bandwidth at spot beam m not exceeding B. Finally,
constraint (5e) ensures that the non-overlapping union of the
coverage areas of a total number of spot beams covers at least
the total service area of LEO satellite.

Difficulty to solve problem P: The challenge in solving
problem P lies in both the non-convexity of the objective
function and constraints (5b) and (5e), which result in a
non-deterministic polynomial time hard problem. In particular,
the spot beam coverage partition does not only affect the user
grouping but also the antenna radiation patterns and hence the
effective channel gains.

B. Proposed Solution
One might optimize the spot beam coverages jointly with

the bandwidth and precoding vectors for every time slot.
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This method, however, imposes significant computation and
operating costs. Instead, we design the spot beam coverages
for the whole service duration T and decouple the original
problem P2 into two sub-problems: one optimizes the spot
beam coverage area for the long-time scale T and the other
optimizes bandwidth and precoding vectors for the short-time
scale, e.g., on a time slot basis.

1) Minimization of the Spot Beam Coverage Area: Unlike
conventional payload, the full-digital payload offers full flexi-
bility to design spot beam shapes optimized to the geograph-
ical users distribution. Since the effective channel gain is
inversely proportional to the spot beam coverage, we aim to
minimize the total multi-spot beams coverage while guarantee-
ing all the users are within the LEO satellite’s coverage. The
multi-spot beam coverage design is formulated as follows:

P1 : mintrmu

ÿ

mPM
πr2

m (7a)

s.t.
ğ

mPM
πr2

m ě Ař, @m, (7b)

0 ă rm ď rMax, @m, (7c)

where rMax is the maximum spot beam radius.
Intuitively, problem P1 aims at finding the optimal radius

of M non-overlapping spot beams, while ensuring that all
the users are within the coverage of the designed spot
beams, as stated in constraint (7b). To solve the problem P1,
we employ the K-Means++ [31] clustering technique. The
clustering is done based on the position of U UEs that demand
the service, so the spot beam center is likely to point in the
direction where the number of UEs is dominant. Since there
are M spot beams, the U UEs are categorized into M clusters
such that m-th spot beam serves m-th cluster. The problem
P1 can be reformulated in terms of clustering as follows:

P 1
1 : mintUm,cUm ,rmu

ÿ

mPM
πr2

m (8a)

s.t. p7cq;
ğ

mPM
Um ““ U , (8b)

pyu ´ cUm
qpyu ´ cUm

q1 ď r2
m, @u, m,

(8c)

where yu is the 2-D coordinate of user u, Um is the set of UEs
in the m-th cluster and cUm is the 2D centroid of m-th cluster.
Constraint (8b) ensures that all unique UEs lie within the total
service area of LEO satellite; constraint (8c) guarantees that
UEs are clustered based on the Euclidean distance between
yu and cUm , which is bounded by the radius of coverage of
the cluster, i.e., rm.

The procedure to obtain Um, cUm
, and rm is shown in

Algorithm 1. To find the boundaries of the clusters, Voronoi
tessellation technique [32] is used, where the boundaries of
the Voronoi polygons are computed using cUm

. However, for
mathematical tractability, the coverage area of the spot beam
is considered circular. Using the outputs of Algorithm 1, user
grouping is done as shown in Section II-B to get Am, Ka,m,
and Km, which are used in solving the second sub-problem.

2) Minimization of Content Delivery: Once the spot beams
are determined, we are ready to optimize the bandwidth
allocation and precoding vectors to minimize content delivery
latency. We assume that the time slot duration is sufficient

2It is only efficient when the geographical distribution of users and
requested contents changes at a much slower rate than the time slot duration.

for the satellite to serve the current users’ requests, and the
joint bandwidth and precoding vectors design is formulated as
follows:

P2 : mintb,wu tpw, b, r, Kq (9a)
s.t. p5cq; p5dq; ba,mΦ log2p1 ` min

u
tγu,k,a,muq ě

Rreq, @ k, a, m, (9b)

where tpw, b, r, Kq is given in (6).
The problem P2 is non-convex due to the objective function

and the constraint (9b). To tackle this difficulty, we introduce
slack variables zk,a,m, γk,a,m and reformulate P2 into a more
tractable form as follows:

P 1
2 : min

tw,b,γ,zu
max
k,a,m

`

max
` qk

zk,a,m
`

Dk

c
, Πk

˘˘

(10a)

s.t. ba,mΦ log2p1 ` γk,a,mq ě zk,a,m, @k, a, m, (10b)
p|hH

u,k,a,mwk,a,m|2q{p
ÿ

k1PKa,m\k
|hH

u,k,a,mwk1,a,m|2

` Îaggba,mq ě γk,a,m, @u, k, a,m, (10c)
ba,mΦ log2p1 ` γk,a,mq ě Rreq, @k, a, m,

p5cq, p5dq, (10d)

where γ fi tγk,a,mu@k,a,m and z fi tzk,a,mu@k,a,m.
The main challenge in solving problem P 1

2 lies in the first
three constraints, i.e., (10b), (10c), and (10d). We can handle
constraint (10b) by considering the slack variable xk,a,m,
which can be reformulated as:

Φ log2p1 ` γk,a,mq ě xk,a,m, (11)
ba,mxk,a,m ě zk,a,m. (12)

Constraint (11) is convex, and to deal with constraint (12),
we use an equivalent representation as:

p12q ô pba,m ` xk,a,mq2 ě 2zk,a,m ` b2
a,m ` x2

k,a,m, (13)

which has a difference-of-convex (DC) form as both sides are
convex functions. The DC programming in constraint (13)
can be easily tackled using the iterative-based SCA method
by taking the first-order approximation of the left-hand-side
(LHS) of the constraint (13). Let b̄a,m and x̄k,a,m be the
feasible values of the constraint (13) in the current iteration.
In the next iteration, the constraint (13) can be approximated
as a convex constraint as:

2pba,m ` xk,a,mqpb̄a,m ` x̄k,a,m)-(b̄a,m ` x̄k,a,mq2 ě

2zk,a,m ` b2
a,m ` x2

k,a,m. (14)

To tackle the non-convexity of constraint (10c), we represent
it in an equivalent form as:

p|hH
u,k,a,mwk,a,m|2q{γk,a,m ě
ÿ

k1PKa,m\tku
|hH

u,k,a,mwk1,a,m|2 ` Îaggba,m. (15)

Since the constraint (15) is also in DC form, we use the SCA
method to solve it iteratively. Taking w̄k,a,m and γ̄k,a,m as the
feasible value, (15) can be approximated as:

2wH
k,a,mHu,k,a,mw̄k,a,m

γ̄k,a,m
´ γk,a,m

w̄k,a,mHu,k,a,mw̄k,a,m

γ̄2
k,a,m

ě

ÿ

k1PKa,m\k
wH

k1,a,mHu,k,a,mwk1,a,m ` Îaggba,m, (16)

where Hu,k,a,m fi hu,k,a,mhH
u,k,a,m.
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Algorithm 1 Iterative Alg. to Solve (8a)
Input: U , Ař, yu, M
Output: Um, cUm , rm

Init: {cUm
uM
m“1, i “ 1, Imax, dis “ rs, ϵ, err “ 1

1: Based on yu, apply the K-Means++ cluster Alg.
2: while err ą ϵ and i ă Imax do
3: Calculate Um using K-Means++ Alg.
4: Compute c

piq

Um
= mean{yu | u P Um}

5: Compute err “ |c
piq

Um
´ c

pi´1q

Um
|

6: Update c
pi´1q

Um
Ð c

piq

Um
; i Ð i ` 1

7: end while
8: Calculate radius rm of the cluster Um

9: for m “ 1 to M do
10: for j “ 1 to length{Um} do
11: Compute

dispjq “
a

pyu ´ cUm
qpyu ´ cUm

q1

12: end for
13: Compute rm = rpmaxtdisuqs

14: end for

Using p14q and p16q, the problem P 1
2 can be approximated

by a convex optimization problem P2
2 as:

P2
2 pw̄,b̄,x̄,γ̄q : min

tw,b,γ,x,zu
max
k,a,m

ˆ

max
ˆ

qk

zk,a,m
`

Dk

c
, Πk

˙˙

(17a)
s.t. p5cq, p5dq, p11q, p14q, p16q,

Φ log2p1 ` γk,a,mq ě
Rreq

ba,m
@k, a, m, (17b)

where x fi txk,a,mu@k,a,m and (17b) is directly obtained
from (10d).

The problem P2
2 is a convex problem and it can be

solved directly using the interior point method [33]. Since
the solutions of problem P2

2 should satisfy all the constraints
of problem P2, the solution provided by problem P2

2 is
sub-optimal for problem P2 and also depends largely on the
initialization of the parameters w̄, b̄, x̄, and γ̄. Therefore,
we propose Algorithm 2 to solve (9).

Algorithm 2 Iterative Alg. to Solve (9a)
Input: Am, Ka,m, Km, hu,k,a,m, µk, Dk, c, RBH , ηm,

Př

m1
{B

Output: w˚
k,a,m, b˚

a,m, x˚
k,a,m, γ˚

k,a,m, z˚
k,a,m

Init:w̄k,a,m, b̄a,m, x̄k,a,m, γ̄k,a,m, z̄k,a,m, i “ 1, Imax, ϵ,
err “ 1

1: while err ą ϵ and i ă Imax do
2: Solve (17a) to get w˚

k,a,m, b˚
a,m, x˚

k,a,m, γ˚
k,a,m, z˚

k,a,m

3: Compute tpiq

4: Compute err “ |tpiq ´ tpi´1q|

5: Update w̄k,a,m Ð w˚
k,a,m; b̄a,m Ð b˚

a,m; x̄k,a,m Ð

x˚
k,a,m; γ̄k,a,m Ð γ˚

k,a,m; tpi´1q Ð tpiq; i Ð i ` 1
6: end while

C. Complexity of the Proposed Algorithm
The computational complexity of Algorithm 1 is

Op2MUImax `MKmq [34]. Assuming that the interior point

Fig. 2. Handover scenario in a downlink multicasting LEO satellite system.

method is used to solve the convex problem p6q, in the worst
case the complexity is equal to the cube of the number of
real variables [33]. Since there are rKm{N s N2 ` rKm{N s N
real variables in the problem p6q, the complexity for solving
p6q is O

`

MImax

`

rKm{N s N2 ` rKm{N s N
˘3 ˘

.

IV. HANDOVER SCENARIO AND CHANNEL PREDICTION

Due to the short service duration of each LEO satellite pass,
HO is important in LEO satellite constellations to guarantee
a smooth service. To ensure proper HO in LEO satellite
networks, the satellites involved in the HO process must have
sufficient time to communicate with each other via an ISL,
provided that they are capable of providing service to the
same target area [18]. Additionally, at the beginning of the HO
period, the first (departing) LEO satellite informs the second
(approaching) LEO satellite about the allocation of spot beams.

A. Joint Transmission During the Handover Period
To improve the service performance during the HO period,

we propose a joint transmission scheme, in which two satellites
are jointly sending data to the same UEs for spatial diversity,
assuming that the LEOs involved in the HO process are
perfectly synchronized, as depicted in Fig. 2. Denote X fi

tk, a, mu, the signal received by UE u can be written as:

yHO
u,X “ phH

1,u,Xw1,X ` hH
2,u,Xw2,XqsX ` ǏHO

m ` ÎHO
m ` nu,

(18)

where hi,u,X and wi,X are the downlink channel coefficient
and precoding vectors from LEO satellite i “ 1, 2 to the target
UE, and ǏHO

m and ÎHO
m are the intra-spot beam interference

and inter-spot beam interference, respectively. ǏHO
m and ÎHO

m

are defined as follows:

ǏHO
m fi

ÿ

k1PKa,m\k

´

hH
1,u,Xw1,X1 ` hH

2,u,Xw2,X1

¯

sX1 , (19)

ÎHO
m fi

`

η1,mP1,
ř

m1
{B ` η2,mP2,

ř

m1
{B ` N0

˘

bHO
a,m,

(20)

where X1 fi tk1, a,mu, η1,m and η2,m represent the aggregated
inter-spot beam attenuation factor and the free-space path loss
radiated by LEO satellite 1 and 2, respectively. Similarly,
pP1,

ř

m1
{Bq and pP2,

ř

m1
{Bq represent the accumulated inter-

ference density caused by the adjacent spot beams radiated by
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Fig. 3. DL-based 2D-CNN model for downlink CSI prediction.

LEO satellite’s 1 and 2, respectively, and bHO
a,m is the bandwidth

of AUG a within spot beam m during the HO period.
The SINR during the HO period can be written as γHO

u,X “

|hH
1,u,Xw2,X ` hH

2,u,Xw2,X|2

ř

k1PKa,m\tku |hH
1,u,Xw1,X1 ` hH

2,u,Xw2,X1 |2 ` ÎHO
agg bHO

a,m

,

(21)

where ÎHO
agg fi

`

η1,mpP1,
ř

m1
{Bq ` η2,mpP2,

ř

m1
{Bq ` N0

˘

.
The minimum effective transmission rate during the HO

period can be expressed as:

RHO
X “ bHO

a,mΦ log2

´

1 ` min
u

␣

γHO
u,X

(

¯

. (22)

It is worth noting that the achievable rate in (22) can be
only realized if the precoding vectors are properly designed,
which requires the CSI from both LEO satellites. Due to the
difference in operating frequencies between the uplink and
downlink in satellite communications, the UEs must provide
feedback on the downlink CSI to the LEO satellite to design
the precoding vectors.

During the HO process, LEO satellite 1, located at position
pos1, sends pilot signals to single-antenna UEs to estimate
downlink CSI and maintain active links. The UEs provide the
estimated CSI to LEO satellite 1, which then applies precoding
and initiates data transmission. The estimated downlink CSI is
assumed to be perfect and remains unchanged when received
by LEO satellite 1. Meanwhile, LEO satellite 2 at position
pos2 uses a DL-based model to determine the downlink
channel, which allows synchronized transmission of the same
data symbols as LEO satellite 1. In Section V, we explore
various HO techniques to achieve this synchronization.

B. DL-Based Downlink CSI Prediction
The conventional communication protocol is not designed to

facilitate joint transmission between two LEO satellites, where
the channel estimation period is designated to estimate CSI
from one LEO satellite at a time. With a single antenna, the
UEs cannot estimate the CSI from both LEO satellites without
having the communication protocol modified, e.g., a change in
the frame structures. To avoid such modification and minimize
the CSI estimation time, we propose a DL-based channel
prediction scheme applied to LEO 2 (the departing satellite)
during the HO period, and apply channel estimation to LEO 1

(the entering satellite), as shown in Fig. 3. Since the departing
satellite has already served the UEs in the current serving
period, we can utilize the historical CSI estimates to predict
the CSI during the HO time. On the other hand, the entering
satellite does not possess any historic CSI measurements.
Hence, its CSI can only be estimated through conventional
pilot-assisted CSI estimation.

In particular, a DL-based 2D-CNN model [28] is employed
to predict the downlink CSI for LEO satellite 2 at position
pos2. The downlink CSI, i.e., hu depends on the downlink
channel gain, i.e., gu and array response vector, i.e., vupφuq.
Taking into account that the UEs position is static, vupφuq

can be pre-determined based on the position of the LEO
satellite and the position of the UE. Thus, to predict ĝu of
U UEs for HO duration, i.e., pt˝ ` T ´ τq at once, the gu

of U UEs during time t are vertically stacked to form Gt

P CUˆ1 matrix. The historical data of the G is taken as
image input data with two channels, then processed by the
lc convolution layers sequentially, which is three in our case,
then flattened and processed by the single fully connected
neural network (FCNN), and finally reshaped to get Ĝt˝`T ´τ .
The u-th row of Ĝt˝`T ´τ corresponds to ĝu,t˝`T ´τ . Thus,
ĥu,t˝`T ´τ “ Ĝt˝`T ´τ pu, :q¨ vu,t˝`T ´τ . To meet the oper-
ational requirements of the neural network, we introduce the
operator ξ to map the G from the complex domain to the real
domain, i.e., ξ ˝G “ tRpGq, IpGqu. The real part RpGq and
imaginary part IpGq can be considered as the first channel and
second channel, respectively. In addition, the inverse mapping
of the operator ξ is ξ´1.

In Fig. 3, the CNN-based downlink CSI (CNN-CSI) pre-
diction model utilizes convolutional layers to extract spatial
features from the channel gain. The number of filters in the
convolutional layers is set to nf , nf {2, and nf {4 respectively.
The first convolutional layer takes a 2D input of size U ˆ2 and
uses nf filters of size 3ˆ3 with a stride of 1ˆ1. The output is
then passed through a downsampling layer using max-pooling
with a pool size of 2ˆ2, along with batch normalization (BN)
and dropout techniques [35], [36]. The resulting downsampled
data is fed into the second convolutional layer, which further
reduces the number of filters. The process is repeated in
the third convolutional layer, resulting in feature maps of
size ppU ´ 1q ˆ 1 ˆ nf q{p2 ˆ 4q. These features are flattened
and passed to a fully-connected neural network (FCNN) for
regression. Each convolutional layer utilizes a rectified linear
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unit (ReLU) activation function to introduce non-linearity.
The FCNN layer uses the hyperbolic tangent (tanh) activation
function to produce outputs in the range of [-1, 1] [37]. Finally,
the results of the FCNN layer are reshaped into the real and
imaginary part of the channel gain matrix to get the predicted
output tRpĜt˝`T ´τ q, IpĜt˝`T ´τ qu of size U ˆ 2. Then, the
future downlink CSI can be obtained, i.e., ĥupt˝ ` T ´ τq “

pξ´1˝tRpĜt˝`T ´τ pu, :q, IpĜt˝`T ´τ pu, :qquq¨vupt˝ `T ´τq.
Our regression problem utilizes the mean square error

(MSE) [38] method for training, and the Adam optimizer [39]
is employed for weight and learning rate updates. The train-
ing of the CNN-CSI model follows the mini-batch gradient
descent approach, where the dataset of size D is divided into
D batches of size one. Consequently, the loss function based
on the data points (pixel)-based MSE [40], for each batch d
(d P D) is computed as follows:

Ld pΘq“
}RpGd q´RpĜd q}2`}IpGd q´IpĜd q}2

d ˆ U ˆ 2
, (23)

where d in the denominator represents the mini-batch size, and
U ˆ 2 represents the total number of data points that make up
G (including both real and imaginary parts).

The CNN-CSI model weights (Θ) are updated after each
batch by minimizing the loss function Ld pΘq. To reduce train-
ing time and propagation delay in the live network, transfer
learning is employed. Initially, the CNN-CSI model is trained
at the GW. Then, a new CNN model is created by freezing
the first two layers of the previous model (Fig. 3). This new
model is trained again on the computationally constrained
LEO satellite 2, transferring more general features learned by
the initial layers just before the HO period.

1) Complexity of the Proposed Algorithm: The computa-
tional complexity to train the CNN-CSI model with lc layers is
given by OpEmaxD

řlc
l“1 nf,l´1s

2
f,lnf,l2Uq [41], where nf,l

is the number of filters in the l-th layer, sf,l is the spatial size
of the filters in the l-th layer, D is the total number of batches,
and Emax is the maximum number of training epochs required
to train the model.

V. JOINT PRECODING VECTORS DESIGN DURING
THE HANDOVER PERIOD

In this section, we present the joint design of the precoding
vectors at the two LEO satellites during the HO time, given
the predicted CSI from the previous section. Perfect synchro-
nization is assumed between the two LEO satellites during the
HO. We propose two collaboration schemes for computing the
precoding vectors: i) centralized collaboration (CC), in which
the precoding vectors are computed centrally [22], [42], [43]
at the GW and ii) distributed collaboration (DC), in which
two LEO satellites jointly compute the precoding vectors via
ISL link without using the GW.

A. Centralized Collaboration
In this collaboration mode, all the computation is performed

centrally at the GW which requires CSI feedback from the
LEO satellites. From the system point of view, two LEO satel-
lites are considered as parts of the compound antenna arrays
of size 2N . Denote hjnt,u,k,a,m “ rhH

1,u,k,a,m, ĥ
H

2,u,k,a,msH P

C2Nˆ1 as the aggregated channel gains from two LEO satel-
lites to the UE. We aim to design the optimal precoding vector

wjnt,k,a,m P C2Nˆ1 for user group k applied to both LEO
satellites.

The effective achievable rate of group k of associated group
a of spot beam m during the CC-based HO (CC-HO) period,
using optimal-based precoding design can be given as:

RCC,opt
k,a,m “ bopt

a,mΦ log2p1 ` min
u

tγCC,opt
u,k,a,muq (24)

where γCC,opt
u,k,a,m fi

|hH
jnt,u,k,a,mwjnt,k,a,m|

2

ř

k1PKa,m\tku |hH
jnt,u,k,a,mwjnt,k1,a,m|2`ÎHO

agg bopt
a,m

,

wherein bopt
a,m and wjnt,k,a,m are the bandwidth allocation

and joint precoding vectors, respectively.
Although each LEO satellite is seen as parts of the com-

pound antenna array of dimension 2N ˆ 1, there are specific
restrictions in designing the precoding vectors wjnt,k,a,m

in meeting the per-LEO satellite transmit power constraints.
Because the first N rows of wjnt,k,a,m will be applied to
the LEO satellite 1 and the last N rows are applied to
the LEO satellite 2, we introduce binary diagonal selection
matrices J1 “ diagpr1N ,0N sq P t0, 1u2Nˆ2N and J2 “

diagpr0N ,1N sq P t0, 1u2Nˆ2N . Then, the joint bandwidth and
precoding vectors design can be formulated as follows:

PCC,opt : min
tw,bu

max
k,a,m

˜

max

˜

qk

RCC,opt
X

`
Dk

c
, Πk

¸¸

(25a)

s.t. RCC,opt
X ě Rreq, @k, a, m, (25b)
ÿ

kPKa,m

ÿ

aPAm

∥J1wjnt,X∥2 ď
PřKm

K
, @m,

(25c)
ÿ

kPKa,m

ÿ

aPAm

∥J2wjnt,X∥2 ď
PřKm

K
, @m,

(25d)
ÿ

aPAm

bopt
a,m ď B, @m, (25e)

where X fi tk, a, mu, w fi twjnt,Xu@k,a,m, and b fi

tbopt
a,mu@a,m are the short-hand notations for indexes, precoding

vectors and bandwidth allocation, respectively.
We observe that problem (25) is similar to problem (9)

except constraints (25c) and (25d). Fortunately, these con-
straints are convex, thus we can adopt the similar technique
developed in Section III-B.2. Upon obtaining the optimal
precoding vectors wjnt,k,a,m, the GW sends the corresponding
precoding coefficients to the two LEO satellites for data
transmission.

B. Distributed Collaboration

Although the centralized collaboration scheme offers the
optimal precoding vectors, it requires excessive signalling
overhead, which motivates us to propose the distributed pre-
coding design scheme. In this scheme, each LEO satellite
compute the bandwidth allocation and precoding vectors based
only on its local CSI and limited exchanged information from
the other LEO satellite. Assuming a high-capacity ISL, the two
LEO satellites iteratively improve its solutions via iterations. It
is noted that the LEO satellites in the distributed collaboration
only exchange their power scaling factors, while the bandwidth
resource per user group is optimized locally.
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To minimize the exchanged overhead and computation load,
we consider ZF-based joint bandwidth and power allocation
in this scenario. Let W i,a,m “ HH

i,a,mpHi,a,mHH
i,a,mq´1

denote the ZF-beamforming matrix for AUG a of spot beam m
of LEO satellite i, i “ 1, 2, where Hi,a,m is the corresponding
aggregated channel matrix. Under the ZF design, the precoding
vector designed at LEO satellite i P t1, 2u for the group
X fi tk, a, mu is given as wZF

i,X “
?

pi,Xw̃i,X, where w̃i,X

is the k-th column of the ZF precoding matrix, and pi,X is
the power scaling factor. By definition, hH

i,u,k,a,mw̃i,k1,a,m “

δk,k1 , @i, u, a, m assuming the accurate CSI estimation and
prediction. As a result, the achievable effective rate during
the DC-based HO (DC-HO) period is computed as:

RDC,ZF
X

“ bZF
a,mΦ log2

´

1 ` min
u

!´

|hH
1,u,Xw

ZF
1,X` hH

2,u,Xw
ZF
2,X |2

¯

{
´

ÿ

k1PKa,m\tku

|hH
1,u,Xw

ZF
1,X1 ` hH

2,u,Xw
ZF
2,X1 |

2` ÎHO
agg bZF

a,m

¯)¯

“ bZF
a,mΦ log2

´

1`
p
?

p1,X `
?

p2,Xq2

ÎHO
agg bZF

a,m

¯

, @k, a, m. (26)

Denote α1,X fi }w̃1,X}2 and α2,X fi }w̃2,X}2, the short-term
delivery period minimization during DC-HO period under the
ZF design can be formulated as:

PDC,ZF : min
tp1,p2,bu

max
tk,a,mu

˜

max

˜

qk

RDC,ZF
X

`
Dk

c
, Πk

¸¸

(27a)

s.t. RDC,ZF
X ě Rreq, @k, a, m, (27b)
ÿ

kPKa,m

ÿ

aPAm

α1,Xp1,X ď
PřKm

K
, @m,

(27c)
ÿ

kPKa,m

ÿ

aPAm

α2,Xp2,X ď
PřKm

K
, @m,

(27d)
ÿ

aPAm

bZF
a,m ď B, @m, (27e)

where p1 fi tp1,Xu@k,a,m, p2 fi tp2,Xu@k,a,m and b are the
short-hand notations.

The problem PDC,ZF is non-convex due to the objective
function p27aq and p27bq, respectively. From the implemen-
tation perspective, the computation of the precoding vectors,
as well as the bandwidth allocations, have to be executed
at each LEO satellite separately. Furthermore, the bandwidth
allocation b must be synchronized such that they allocate
the same bandwidth to the requesting UEs. To achieve this
goal, we propose an iterative algorithm in which two LEO
satellites consecutively optimize their power factors and the
bandwidth allocation, assuming the output of the other LEO
satellite is shared. In the initialization, the problem PDC,ZF

is solved in the LEO 1 considering arbitrary feasible power
value

?
p̄2,k,a,m at LEO 2. The resulting joint optimization

problem can be written as:

PDC,ZF
LEO1 pp̄2q : min

tp1,b1u
max

tk,a,mu

´

max
´ qk

RDC,ZF
1,X

`
Dk

c
, Πk

¯̄

(28a)

s.t. b1,a,mΦ log2

´

1 ` p
?

p1,X `
a

p̄2,Xq2{pÎHO
agg b1,a,mq

¯

ě Rreq, @k, a, m; p27cq, p27eq, (28b)

where RDC,ZF
1,X fi b1,a,mΦ log2

`

1 `
p
?

p1,X`
?

p̄2,Xq
2

pÎHO
agg b1,a,mq

˘

.

The main challenge in solving problem PDC,ZF
LEO1 lies in

the objective function and the first constraint p28bq. We can
handle the constraint p28bq by considering the slack variables
x1,k,a,m, which can be reformulated as:

b1,a,mΦ log2

´

1 `
x1,k,a,m

Îaggb1,a,m

¯

ě Rreq, @k, a, m, (29)

?
p1,k,a,m `

a

p̄2,k,a,m ě
?

x1,k,a,m. (30)

Proposition 1: The rate function under the ZF design in
p29q is jointly concave in b1,a,m and x1,k,a,m.
The proof of Proposition 1 is shown in Appendix. The con-
straint p30q is a DC form as both sides are convex functions.
Thus, it can be efficiently solved using the iterative-based SCA
method by taking the first-order approximation of the RHS of
the constraint p30q. Let x̄1,k,a,m be a feasible value of the
constraint p30q in the current iteration. In the next iteration,
the constraint p30q can be approximated as a convex constraint
as:

?
p1,k,a,m `

a

p̄2,k,a,m ě
x1,k,a,m

2
?

x̄1,k,a,m
`

?
x̄1,k,a,m

2
. (31)

Now, the problem PDC,ZF
LEO1 can be approximated by a

convex optimization problem PDC,ZF 1

LEO1 pp̄2, x̄1q:

min
tp1,b1,x1u

max
tk,a,mu

`

max
` qk

RDC,ZF
1,X

1 `
Dk

c
, Πk

˘˘

s.t. p29q, p31q, p27cq, p27eq, (32a)

where x1 fi tx1,k,a,mu@k,a,m and x̄1 fi tx̄1,k,a,mu@k,a,m are
the short-hand notations.

Let p˚
1,X be the solution of problem (32). This value will be

communicated to the LEO 2 to compute its optimal transmit
power, i.e., p2,X. It is worth noting that there is no need
to exchange the bandwidth allocation b1,a,m to perform the
optimization in LEO satellite 2, but only for checking the
termination criteria. The optimization problem in LEO 2 can
be formulated similarly as in (28) with the satellite subscript
1 switched with 2. Following the same method, the problem
PDC,ZF

LEO2 can be solved by using the SCA approach of its
approximated convex problem PDC,ZF 1

LEO2 pp̄1, x̄2q:

min
tp2,b2,x2u

max
tk,a,mu

´

max
´ qk

RDC,ZF
2,X

1 `
Dk

c
, Πk

¯¯

s.t. b2,a,mΦ log2

`

1 ` x2,X{pÎHO
agg b2,a,mq

˘

ě Rreq, @k, a, m,

a

p̄1,X̀
?

p2,X ě
x2,X

?
x̄2,X

`

?
x̄2,X

2
, @k, a, m; p27dq, p27eq,

(33a)

where RDC,ZF 1

2,X fi Φa,mb2,a,m log2

`

1 ` x2,X{pÎHO
agg b2,a,mq

˘

.
The optimal output powers p˚

2,x of PDC,ZF 1

LEO2 will be for-
warded to LEO satellite 1 to execute the next iteration of opti-
mization. The iterations will continue until the convergence
of the optimal transmit powers and bandwidth allocation.
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Algorithm 3 Iter. Alg. to Solve (27a)
Input: Am, Ka,m, Km, h1,u,k,a,m, w1,k,a,m, µk, Dk, c,

RBH , η1,m, P1,
ř

m1
{B

Output: p˚
1,k,a,m, b˚

1,a,m, x˚
1,k,a,m

Initialization: p̄1,k,a,m, x̄1,k,a,m, b̄1,a,m “ 1, b̄2,a,m “ 5,
i “ 1, Imax, ϵ, err “ 1

1: while pb̄1,a,m ! “b̄2,a,mq do
2: Solve p32q at LEO 1
3: while err ą ϵ and i ă Imax do
4: Solve (32) to get p˚

1,k,a,m, b˚
1,a,m, x˚

1,k,a,m

5: Compute t
DC,ZF piq

LEO1 & err “

|t
DC,ZF piq

LEO1 ´ t
DC,ZF pi´1q

LEO1 |

6: Update x̄1,k,a,m Ð x˚
1,k,a,m; t

DC,ZF pi´1q

LEO1 Ð

t
DC,ZF piq

LEO1 ; i Ð i ` 1
7: end while
8: Update p̄1,k,a,m Ð p˚

1,k,a,m, b̄1,a,m Ð b˚
1,a,m

9: Send/Receive via ISL
10: end while

The detailed steps of the proposed algorithms are presented
in Algorithms 3 and 4.

p̄1,k,a,m

b̄1,a,m

p̄2,k,a,m

b̄2,a,m

Algorithm 4 Iter. Alg. to Solve (27a)

Input: Am, Ka,m, Km, ĥ2,u,k,a,m, ŵ2,k,a,m, µk,
Dk, c, RBH , η2,m, P2,

ř

m1 {B
Output: p˚

2,k,a,m, b˚
2,a,m, x˚

2,k,a,m

Initialization: p̄2,k,a,m, x̄2,k,a,m,
b̄1,a,m “ 1, b̄2,a,m “ 5, i “ 1, Imax, ϵ, err “ 1

1: while pb̄1,a,m ! “b̄2,a,mq do
2: Solve p33q at LEO satellite 2
3: while err ą ϵ and i ă Imax do
4: Solve (33) to get p˚

2,k,a,m, b˚
2,a,m, x˚

2,k,a,m

5: Compute t
DC,ZF piq

LEO2

& err “ |t
DC,ZF piq

LEO2 ´ t
DC,ZF pi´1q

LEO2 |

6: Update x̄2,k,a,m Ð x˚
2,k,a,m;

t
DC,ZF pi´1q

LEO2 Ð t
DC,ZF piq

LEO2 ; i Ð i ` 1
7: end while
8: Update p̄2,k,a,m Ð p˚

2,k,a,m, b̄2,a,m Ð b˚
2,a,m

9: Send/Receive via ISL
10: end while

C. Major Technical Challenges & Their Solutions
For the signals emitted by the LEO satellites involved in

the HO process introduced in Sections V-A and V-B, such
that the signals add constructively to increase the total signal
strength. Some of the major technical challenges that could be
encountered when implementing our proposed HO approach in
a real system, along with possible directions to address them,
are provided below:

‚ ISL-based bandwidth synchronization: When two satel-
lites are widely separated, pointing, tracking, and acqui-
sition required to establish ISL connection between
them requires onboard special hardware embedded in
them [44].

‚ Difference of slant distance between satellites involved in
HO and a reference location [45]: To address this timing
offset before transmission is required, which becomes
more challenging when both the transmitter and receiver
are in motion.

‚ CSI prediction accuracy: In the DC-HO scheme, pre-
dicting the CSI for the leaving LEO satellite relies
on historical CSI information, the spatial and temporal
correlation between data points, and the specific machine
learning techniques used for prediction.

VI. PERFORMANCE EVALUATION ON REALISTIC
SYSTEM PARAMETERS

In this section, we eveluate the performance of the proposed
framework based on realistic LEO satellite parameters and
Movielens dataset.

A. LEO Satellite Footprint
The Starlink LEO satellite 4798 is assumed to be in orbit

just above New York (NY) [46]. The LEO satellite is at
an altitude (Hs) of 550 km just above Earth’s surface. The
elevation angle (ϵ˝) of the satellite with the Earth’s center
is assumed to be 40˝. Based on Hs and ϵ˝, Ař is about
1.05 million km2 with NY as the beam center and a coverage
radius (RLEO) of « 578 km [47]. The footprint of the LEO
satellite is shown in Fig. 4(a).

B. Content Popularity Based on the Movielens Dataset
The content popularity is generated from the location-based

Movielens dataset, in which 1M movie ratings are provided.
The dataset contains UE IDs, UE locations (ZIP code), movie
IDs, movie genres, and rating time, from which we can
calculate the distribution of requests in any given time period.
We use the ZIP code information to accurately determine the
geographic distribution of requests by mapping the ZIP codes
with the corresponding latitude and longitude. Since the 1M
dataset covers the entire U.S., only UEs falls under the LEO’s
coverage of the upper part of the U.S. East Coast are considred,
shown in Fig. 4(b). After calculating the content popularity L
within the covered region, only top 200 movie ID’s are taken
into account. The most popular movie is indexed as 1, while
the least popular is indexed as 200. The popularity of the
top 200 movies within LEO satellite beam coverage region is
shown in Fig. 4(c). For each t duration, both the location and
the content requested by UEs are randomly changed based on
the historical probability distribution.

C. Earth Fixed Beam Duration of LEO Satellite
In this sub-section, we calculate the elevation angle (ϵu)

of UEs located within the footprint of the Starlink LEO
satellite 4798 (see Fig. 5) for a total connection time of 11 to
12 minutes during one orbital period, taking into account
the earth fixed beam scenario. We compute ϵu based on the
inner product of the LEO satellite’s position vector in its orbit
and the position vector of the UE, using the earth-centered-
earth-fixed coordinate system. Specifically, we use the formula
ϵu “ sin´1

´

yu¨pys´yuq

||yu||||ys´yu||

¯

[48], where ys and yu are the
position vectors of the satellite and UE, respectively.

Fig. 6 presents the effective mean data rate for optimal and
ZF-based precoding designs over time. The figure reveals a
noticeable pumping effect in the data rate when the com-
munication time between UEs and LEO satellite reaches its
midpoint. This effect occurs because the latched UEs are
positioned at an elevation of around 90˝ with respect to the
LEO satellite during that period.
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Fig. 4. LEO satellite beam coverage and location-based UE traffic. (a) Footprint. (b) Traffic. (c) Content demand vector.

Fig. 5. LEO satellite spot beam at time t. (a) Fixed beam. (b) Adaptive
beam.

D. Environment Setup for the CNN-CSI Model

The training and testing dataset required for the CNN-
CSI model is generated by assuming that U “ 45 UEs are
randomly located within the footprint of LEO satellite as
shown in Fig. 5(b). The channels are time-varying and we
apply the Jakes model [49] to generate the channel matrix.
For data generation, we assume that the channel coefficient
changes every second. Considering the earth fixed beam sce-
nario, LEO satellite can provide service to all the requesting
UEs within its footprint for around 11 minutes as shown in
Fig. 6. Thus, the dataset of size D “ 60 ˆ 11 was generated

Fig. 6. Effective mean data rate of the UEs as a function of time (elevation
angle).

to train, validate, and test the CNN-CSI model. The temporal
correlation model used is Gt “

?
ρGt´1 `

?
1 ´ ρEt, where

ρ P r0, 1s represents the correlation coefficient, and Et is a
time-independent random matrix. A correlation coefficient of
1 indicates complete channel correlation, while a coefficient of
0 indicates channel independence across different time slots.

As to the CNN-CSI model, we employ lc “ 3 layers where
the number of filters and the filter size of corresponding layers
are t16, 8, 4u and t3 ˆ 3, 3 ˆ 3, 3 ˆ 3u, respectively. Other
parameters are summarized in Table II. Fig. 7 illustrates the
accuracy of the CNN-CSI model in terms of mean square
error (MSE) for different training epochs. The training and test
datasets were generated with different correlation coefficient
values, denoted ρ. As shown in Table II, the total number
of training, validation, and test dataset are 528, 130, and 1,
respectively.

Since we are interested in predicting the channel coefficients
of LEO satellite 2 during the handover time slot, only one
test dataset is required. This means that, after the CNN-CSI
model is well-trained, the data from the 659th time slot is used
as input to predict the next time slot’s channel coefficient for
LEO satellite 2. Specifically, we considered ρ values of 1, 0.9,
and 0, for which the corresponding MSE values for training
the model were 0.000385, 0.00185, and 0.0105, respectively.
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Fig. 7. MSE vs. training epochs for CNN-CSI model.

Fig. 8. Convergence of the DC-HO algorithm.

As from these results, it can be concluded that the prediction
accuracy of the model CNN-CSI is higher when the temporal
correlation of the channel coefficient is high and vice-versa.
Additionally, the test error is slightly lower than the training
error for a smaller number of training epochs, primarily due
to the significantly smaller size of the test dataset and the
model being inadequately trained during these early epochs.
However, as the number of training epochs increases, both
the training and test errors converge, and the MSE decreases,
demonstrating that our CNN-CSI model is well-trained for
datasets with different ρ values.

E. Performance Evaluations
In this part, we conduct the numerical results considering

a scenario where LEO satellite has a total of 8 spot beams
serving 45 UEs. The UEs are randomly distributed in the
coverage area as shown in Fig. 5. It is assumed that each spot
beam is capable of transmitting N “ 4 parallel data streams.
The coverage area and the number of UEs within each spot
beam is calculated using Algorithm 1. The spot beam with the
lowest number of UEs is marked as 1, while the spot beam
with the highest number of UEs is marked as 8. Fig. 5(a)
displays a fixed-spot beam, while Fig. 5(b) demonstrates a
steerable adaptive spot beam. We adopt the LTE specifications
[50], where one c.u. lasts one symbol duration, which is equal

TABLE II
CNN-CSI TRAINING PARAMETERS

TABLE III
SYSTEM AND CHANNEL PARAMETERS

to 66.7 µs, and one block duration comprises 300 c.u. The
LEO satellite is assumed to spend 1 c.u. to solve one convex
optimization problem, resulting in M c.u. for solving each
proposed algorithm [51]. The system and channel parameters
used in the simulations are summarized in Table III. The
simulation results are averaged over the 100 random channel
realizations. We compare the proposed framework with the
following references:

‚ Baseline 1: The precoding vectors are designed based on
the ZF-based approach.

‚ Baseline 2: The optimal approach is used to calculate the
precoding vectors for the combined channel coefficients
of the participating LEO satellites in the CC-HO method.
In this approach, both satellites estimate the CSI via pilot
transmission. As a result, the portion of time responsible
for data transmission changes to p1 ´

2τcsi`τpro

τslot
q.

‚ Baseline 3: The channel estimation is similar in Base-
line 2, except that the precoding vectors are design based
on the ZF method.

The comparison with the terrestrial multicasting solution is
not considered as satellite systems is design to complement
the terrestrial networks.

1) Convergence of the Proposed Iterative Algorithm: To
demonstrate the convergence of our proposed algorithms,
Fig. 8 presents the objective function of the iterative algo-
rithms for baseline 2 with a focus on min rate maximization
(maximum content delivery delay minimization). The total
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Fig. 9. Effective mean data rate and the outage probability versus the LEO
satellite array antenna element spacing (dant).

Fig. 10. Effective mean data rate and the outage probability versus the Rician
factor (κu).

Fig. 11. Effective data rate and the outage probability versus the total transmit
power of the LEO satellite.

transmit power of LEO satellite 1 and LEO satellite 2 is
considered 25 dBW each. It is evident from the plot that
the iterative algorithms exhibit rapid convergence to the sub-
optimal values, requiring fewer than 5 iterations and 3 ISL
communications for the DC-HO scenario.

2) Without Handover Scenario: Fig. 9 portrays the
mean/min data rate and outage probability between the

Fig. 12. Content delivery delay versus the portion of normalized cache size
for different generic caching scenarios.

proposed optimal design and baseline 1 for various values
of LEO satellite antenna element spacing, i.e., dant. The
optimal design consistently achieves higher mean/min data
rates than baseline 1. At a lower dant of 0.1λ, the optimal
design achieves about 3.35 times the mean/min data rate of
baseline 1. In contrast, at an dant of 0.75λ, the optimal
design achieves a mean/min data rate about 1.02 times that
of baseline 1. Baseline 1 performs poorly at lower dant due
to more sidelobes and lower spot beam directivity, leading to
significant outage scenarios caused by channel correlation. In
contrast, the optimal design experiences no outages. The figure
reveals that increasing the dant results in higher data rates for
both designs. However, increasing dant beyond 0.5λ raises the
risk of grating lobes, making dant of 0.5λ desirable. At this
spacing, the mean data rate for the optimal design reaches
around 267 Mbps, while baseline 1 achieves approximately
257 Mbps.

Fig. 10 depicts the mean/min data rate and outage proba-
bility as a function of κu for both the optimal and baseline 1
approaches considering the adaptive beam scenario. For this
result, dant is considered to be 0.5λ and Př to be 35 dBW.
The κu is varied between 1.0233 (0.1 dB) and 100 (20 dB).
From the figure, it can be seen that the data rate (mean/min)
increases as the value of κu increases and that the data rate
obtained with the optimal precoding design is higher than that
of baseline 1 regardless of the κu value. When κu is 0.1 dB,
the outage probability due to baseline 1 is about 17% and
when κu is 100, the outage probability due to the baseline 1
design is 12%, while there is no outage scenario due to the
optimal precoding design for the given Rreq. Since the rates
and outage probability are not significantly different between
κu of 10 (10 dB) and 100 (20 dB), κu of 10 dB is considered,
which is a realistic assumption.

Fig. 11 demonstrates the mean/min data rate and outage
probability as a function of Př, with dant “ 0.5λ, κu “

10dB. The figure demonstrates that the mean/min data rate
achieved by the adaptive beam scenario is at least 1.22 times
higher than that of the fixed beam scenario, regardless of the
precoding approaches. In the fixed beam scenario, all the spot
beams have equal radius of 200 km, whereas the spot beam’s
radius in the adaptive beam scenario varies between 25 km
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Fig. 13. Effective mean data rate versus the total transmit power of the LEO
satellites for the HO scenario.

and 200 km. The adaptive beam scenario, benefiting from
improved beam directivity, outperforms the fixed-beam scenar-
ios in terms of both data rate and outage probability. Moreover,
optimal precoding achieves a significantly higher mean/min
data rate than baseline 1 because it effectively eliminates
intra-spot beam interference. There is no outage scenario in the
optimal precoding-based design, while there are high outage
probability in the baseline approach. When Př is increased,
the outage probability decreases, and therefore the data rate
improves comparatively more in the baseline approach than in
the optimal approach. However, the increase in data rate tends
to saturate when the power increase exceeds a certain limit
because the inter-spot beam interference increases due to the
power leakage from the neighboring beams.

Fig. 12 illustrates the delay as a function of normalized
cache capacity for the caching models such as MPC (µk P

t0, 1u), UC (µk P r0, 1s), and RC (µk P t0, 1u). From the
figure, it can be seen that the delivery time is lower in the
MPC approach compared to the UC and RC methods for small
normalized cache sizes, and RC almost approaches the UC
method due to the averaging of a large number of channel
realizations. When the normalized cache size increases, both
UC and RC approach the performance of the MPC. It can also
be seen from the figure that RBH also significantly affects the
delivery latency for the different cache size values.

3) Handover Scenario: Fig. 13 shows the relationship
between the transmit power and the effective mean data rate
during the HO process. The figure reveals that regardless of the
precoding scheme used, the effective mean data rate during HO
is consistently 1.5 times higher than the without HO period.
Comparing the proposed approaches with the baselines, the
ZF precoding design-based CC-HO approach outperforms
baseline 3, and the optimal precoding design-based CC-HO
approach outperforms baseline 2. This is because the proposed
CC-HO approach estimates the CSI using a prediction model,
while baseline 2 and baseline 3 estimate the CSI via pilot
transmission. Despite utilizing ZF-based precoding design in
the CC-HO scenario, it outperforms other approaches due to
the combined consideration of downlink channel coefficients

Fig. 14. Effective mean data rate versus error variance (σ2
e ) on the imperfect

CSI for non-HO scenario for a multi-spot beam multicasting LEO satellite
system (Př “ 35 dBW).

and evaluation of the precoding vectors based on the combined
channel coefficients, which enhances spatial diversity. The ZF-
based CC-HO outperforms ZF-based DC-HO, even though
both employ ZF-based precoding. This is because the former
allows for full control in the design of the precoding vector
and bandwidth allocation. In contrast, the latter requires syn-
chronization of resources between the LEO satellites involved
in the HO, which might not always be guaranteed.

F. Impact of Imperfect CSI

In previous sections, the proposed framework assumes per-
fect CSI at the satellite. In realistic conditions, the satellite
operates based on the imperfect channel estimation ĥu,k,a,m “

hu,k,a,m ` e, where hu,k,a,m is the true channel and e is the
estimation error that is independent from the true channel and
follows CN p0, Iσ2

eq. Since the precoding vectors are designed
based on the estimated channels, the SINR in this case equals
to:

|hH
u,k,a,mwk,a,m|

2

ř

k1‰k

|hH
u,k,a,mwk1,a,m|2`

ř

@k1
σ2

e}wk1,a,m}2`Îaggba,m
, where the

summation of k1 in the denominator is over Ka,m. Optimal
bandwidth allocation and precoding vectors design under
imperfect CSI can be obtained similarly in Section III-B.2,
with one modification of adding

ř

@k1 σ2
e}wk1,a,m}2 to the

RHS of (16).
Fig. 14 presents the impact of imperfect CSI on the pro-

posed optimal precoding design. The robustness of our design
is demonstrated via a close performance to the perfect CSI case
for estimation error up to 10´3. When the estimation error is
large, the achievable rate dramatically degrades as expected.

VII. CONCLUSION

In this paper, we have proposed a FLARE-LEO frame-
work that effectively exploits the fully flexible regenerative
payload capability of LEO satellites via joint design of spot
beam coverage, adaptive beamforming, caching, multiuser
precoding and dynamic bandwidth allocation using realistic
system parameters. In addition, we proposed innovative han-
dover architectures that consider computational capability and
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overhead requirements. Using numerical results, we demon-
strated that our adaptive beamforming design outperforms the
fixed beam design in terms of both data rate and outage
probability. We also showed that collaboration between two
LEO satellites during the HO period significantly boosts the
system performance. In general, the optimal precoding design
outperforms the ZF-based precoding design, resulting in both
an improvement in data rate and a reduction in the content
delivery latency. Furthermore, we have shown that the MPC-
based caching method performs better than caching strategies
based on RC and UC and significantly improves the average
content delivery latency for content delivery compared to a
scenario without caching.

From the outcomes of this work, a promising topic is to
consider a network of LEO satellites in which the beams’
coverage management should be jointly designed between
multiple LEO satellites, taking into account imperfect CSI
conditions. Another interesting topic is to study the handover
in LEO satellties when the UEs are equipped with multiple
antennas. In this case, the UEs can establish connection with
multiple LEO satellites to improve the effective data rate.

APPENDIX
PROOF OF PROPOSITION 1

Consider a function gpu, vq in R2
`. The Hessian of gpu, vq “

u logp1 ` v{uq is given as follow:

Hg “

»

—

–

´v2

upu ` vq2

v

pu ` vq2
v

pu ` vq2
´

u

pu ` vq2

fi

ffi

fl

(34)

For arbitrary vector x “ rp qsT , we can calculate xTHgx “

´
ppv´quq

2

u2pu`vq2
, which is always non-positive. This implies that

the function u logp1 ` v{uq is concave in its supports. From
p29q, we can write RDC,ZF

1,k,a,m “ ΦgpÎHO
agg b1,a,m, x1,k,a,mq{ÎHO

agg ,
which completes the proof of Proposition 1.
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