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ATHENA: An Intelligent Multi-x Cloud Native
Network Operator

Alireza Mohammadi and Navid Nikaein

Abstract— This paper presents ATHENA, a novel design and
a new generation of MANO/OAM that fully adheres to the
cloud native principles, while fostering innovation and sustainable
deployment for 4G, 5G, and beyond. It elicits an agile and
intelligent, dynamic control over a variety of vendors and
radio stacks (multi-x) coexisting on the same network with
built-in observability and at the scale. With an intent-based,
declarative, and distributed constitution, authentic to the cloud
native pillars of isolation, scalability, and observability, we have
established a scalable and efficient design and implemented
its concrete proof-of-concept platform that is able to simplify
the adaptation of cloud native for telecommunication. ATHENA
automates both the semantics and synthetics of the lifecycle
of telco workloads while attending to the performance and
sustainability requirements. Accompanied by intensive evaluation
on a concrete implementation, we show how several uses cases
including private networking, Open RAN, and green computing
would be facilitated and sustained with a low footprint and green
management and operation. In particular, we improve the agility
by 75% on Day-1 and 60% on Day-2 in comparison to OSM,
while reducing over 93% overhead in Operation, 70% in Man-
agement, and 90% in Orchestration. ATHENA shows less than
2% performance loss for high throughput, with less than 50µs
jitter. It demonstrates 99.9995% availability for immutable Day-2
upgrades and zero down-time for mutable reconfigurations. And
for energy efficiency, we show improvements of maximum 17.4%
per UE and 78.3% per gNB using the proposed decision-making
framework.

Index Terms— Mobile networks, automation, cloud native, ser-
vice management and orchestration, private networking, green.

I. INTRODUCTION

AUTOMATION is proven to be the key for any industry
to grow in the scale and revenue; telecommunication

is no exception, and by early releases of 5G standards,
automation has been considered as a necessity to achieve
the goals foreseen for the technology. Transformation to soft-
ware implementations of Network Functions (NFs) paved the
road to automation by means of Management and Operation,
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where solutions such as Open Source MANO (OSM) and
Open Network Automation Platform (ONAP) were introduced
to automate the lifecycle of NFs based on standards from
European Telecommunications Standards Institute (ETSI) and
Open Network Foundation (ONF) on Network Function
Virtualization (NFV). After the release of OSM [14] and
ONAP [23], the research community turned its emphasis
to the higher level operations such as multi-clustering [20],
service onboarding and management [11], or multi-domain
orchestration [5], ignoring MANO itself with otherwise minor
modifications to support Containerized NFs (CNFs). However,
some works like [1] have recognized that mere inclusion of
Kubernetes (K8s) as a virtual infrastructure manager or naively
re-packaging Virtual Machines (VMs) as containers do not
suffice to achieve the desired and promised functionalities
of the cloud native. Furthermore, dismissing the differences
between the containers and VMs, in terms of lifecycle, runtime
behavior, and management has led to inefficient and ineffective
solutions. On the other hand, owing to the rapid evolution of
technology, research materials on the cloud native and MANO
dating before 2015 (marking approximate date of Kubernetes
becoming popular) are now either irrelevant, inadequate, or
obsolete, yet being referred in the recent works such as [4]
and [7]. By itself, this has formed an inconsistent and inac-
curate terminology and taxonomy where the misconceptions
are escalated in the direction of the cloud native. The further
the research community develops, the inconsistencies are more
pronounced, often by irregular intakes of various generations
of the cloud native principles and technologies, scattered over
the time.

Approaching cloud native telco in 3GPP standardization of
5G Core Network (CN) has mainly led to Helm-based solu-
tions such as OpenAirInterface (OAI) Helm charts1 or Robin
Smart Helm.2 Even though the standard aims for dynamicity,
the resulting designs and implementations are of static nature,
even for simple matters such as IP address assignment and res-
olution. This ignorance impels these setups to rely on human
operators while they continue to flounder at a larger scale.
Such malpractices are often justified as minor engineering
issues, but they are in fact a reflection of carrying over a
common practice from either legacy Physical NFs (PNFs) or
comparably outdated design architectures with little to none
regard to the nature of the cloud native and cloud deployments.

In recent years, several new design principles and archi-
tecture were born alongside 5G or as a part of it, especially
for the Radio Access Network (RAN). Open RAN, private

1https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-fed
2https://robin.io
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networking, network slicing, and sustainable and green net-
working are a few noteworthy examples. Various communities
have been formed around these topics, and O-RAN Alliance
to date remains one of the most prominent ones, with active
participation from major vendors and operators. The O-RAN
Alliance iteration of MANO, revived as Operation and Main-
tenance (OAM) [22], builds upon the same disputable amal-
gamation of ETSI-NFV without addressing any of the issues
discussed in this paper. In fact, all the existing O-RAN stacks
use either OSM or ONAP as their OAM, including but not
limited to the O-RAN Software Community (OSC) version of
the O-RAN SMO. In summary, all the efforts to date towards
cloud native telco share the same flaws and shortcomings,
which, in the authors’ opinion, are mainly due to misinter-
pretation. The core concepts are often renamed and recycled,
proving them to be valid recurring ideas, but they are not man-
ifested properly in the modern context of cloud native telco.

ATHENA bases its foundation upon the Operator
Framework [10] to assist or replace the human in the
loop, approaching an intelligent, ultra-dynamic, and flexible
automation, not just for the CN or edge applications but
also for the RAN and its hardware resources. Since the
management of the RAN is arguably the most challenging
task of the OAM, in this paper we mostly focus on the
examples and evaluations of the RAN. However, it should be
noted that all the examples have the CN and edge components
deployed and managed by ATHENA as well. Operator Pattern,
as the foundation of the Operator Framework, dates back to
2018, when Declarative Operators (DOs) made their way as
opposed to the imperative Event-Driven (ED) MANOs. The
former method focuses on matching the desired and observed
state via idempotent actions without extracting specifications
of the trigger or maintaining a state machine [10], but the
latter adds listeners to specific events and assumes the state is
kept consistent between the operations. In distributed systems,
however, a consistent and highly-available state machine is
not a safe assumption [13], which has forced OSM and its
descendants to use dedicated message brokers [14], whereas
ATHENA solely utilizes K8s APIs to handle communication
between its components asynchronously. When it comes
to deployments with K8s, the former practice not only
involves substantial overhead, but also means the pre-existing
cloud native tools need to be reinvented, especially on
lifecycle management and resource control. O-RAN OAM
has the tendency to follow the same path and use the same
implementations for reference. Despite the admiration for
virtualized and software-defined RANs, the O-RAN OAM
design is more in favor of PNFs [21]. The defined services
and interfaces become less and less relevant and compelling
as one moves from PNFs to VNFs to CNFs and finally cloud
native RANs. This tendecy roots in the formation the O-RAN
from Public RAN operators with unforeseen considerations
for Private5G sector. Proven by demonstration of the use cases
in this paper, ATHENA responds to this cavity by positioning
itself mostly from the perspective of Private5G and its
relevant use cases. This rather specialized focus helped us to
maximize the efficiency of the design and implementation.

In summary, this paper makes the following contributions:

• A multi-vendor, -radio, -runtime, -cluster, or in short
multi-x design as generalization of Open RAN;

• A novel, declarative MANO/OAM design and abstraction
which adheres to cloud native principles, supports multi-
x deployments, and enables micro and macro decision-
making, applicable to the new use cases in 5G and beyond
such as green MANO/OAM, improving automation and
management of Open RAN in Private5G sector;

• An extensible multi-level Operator Plane that enables
End-to-End complex operations such as multi-x cost opti-
mization by separating network custom resources (CRs)
from its deployment composition model and creating
End-to-End logical networks and concepts by (recur-
sively) exposing new set of CRs at each level effectively
abstracting the resulted networks and the related concepts.

II. RELATED WORKS

Before comparing the state-of-the-art with ATHENA, one
should recognize that a MANO/OAM needs to carry out tasks
beyond mere installation or creation of the NFs with a one shot
configuration. In that perspective, K8s and its distributions and
extensions such as OpenShift3 and Rancher4 are not MANO or
OAM, but a container orchestrator and indeed ATHENA could
interact with any of them to orchestrate the pods. Moreover, an
orchestrator is not concerned with the tasks expected from the
MANOs and OAMs, such as optimizations specific to telco,
semantic understanding of the network, or specific lifecycle
management of the NFs. Following the same reasoning, Helm-
based solutions such as OAI or Robin Helm charts are not
proper examples of MANO/OAM but simply packaging of
K8s YAML files. In this context, K8s is analogous to an
Operating System (OS) and Helm is analogous to a package
manager for it; none of them carry on the intended logic for
OAM or MANO. We do not perform further comparisons with
the mentioned as they seem irrelevant and unfair.

A. Workload Types
ATHENA orients itself around supporting CNFs that are

packaged with the particular wireframe of ATHENA to
(a) make it compatible with the cloud native models [16],
(b) improve its lifecycle, and (c) to align itself most-efficiently
with Private5G use cases where CNFs would be the dominant
workload type. By preserving the support for VMs, solutions
like OSM [14] are condemned to lag behind the advanced
CNF capabilities or otherwise make the platform heavy or
over-complicated. On the other hand, O-RAN’s specifications
define inapplicable interfaces and services for CNFs which are
rather useful for PNFs. Examples of such services are those
concerned with changes in the network interfaces. In common
cases, the containers do not have the permissions to modify the
network interfaces, and they are indeed configured externally
via the network plugins in the orchestrator. This example
also shows how based on the workload type, the scope and
the formation of the MANO/OAM evolves. To lower the
complexity of the architecture and to propose a truly cloud-
native solution, ATHENA focuses only on the CNFs and leaves
behind the PNFs and VNFs. This should give the platform

3https://www.redhat.com/en/technologies/cloud-computing/openshift
4https://rancher.com/
5https://www.openstack.org/
6https://jaas.ai/



462 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 2, FEBRUARY 2024

TABLE I
TAXANOMY OF THE GENERATIONS OF MANO/OAM

the desired momentum to skip VMs, which are deemed
superfluous given the superior performance and lower resource
usage of container workloads compared to VMs. Furthermore,
ATHENA could be used by network operators with little or no
infrastructure in place who could benefit from a fully CNF-
based environment without an interim VNF adaption step,
significantly shortening the time to harvest benefits of the
deployment. This pattern is very common in the Private5G
sector due to its infancy.

B. Operation
During our literature study, we have identified four

MANO/OAM generations presented in the Tab. I, grouping
related solutions under a single generation. ATHENA’s concep-
tualization of the Operators differs with the two well-known
Operator patterns, i.e., Redhat Operator Framework7 and
Canonical Charmed Operators.8 The aforementioned patterns
are intended to be generic, allowing for onboarding of any
application. In their design pattern, usually each application
from each vendor is associated with its own Operator. How-
ever, by relying on the standards, rather than encouraging each
application vendor to develop its own Operator, we provide
Operators for logical entities that are formulating concepts
such as network terminals, functions, or slices. In this view, the
NFs could be mix-and-matched which was otherwise impossi-
ble or troublesome to achieve since each vendor was providing
its own (perhaps patched or tweaked version) MANO/OAM.
Solutions like Kube5G [3] lack the same insight, and are
grouped with the Operator Frameworks as another application
Operator. Unlike works such as [18] that are supposed to gain
insights and take semantic decisions considering RAN or CN
for specific scenarios, ATHENA is more generic and concerns
with synthetics and structure of the network rather than what
happens in a particular case. ATHENA delivers a built-in
autonomous observability stack as opposed to the traditional
monitoring systems which required human intervention. The
processing in those systems is done by an ED which would
take centralized and imperative actions. However, ATHENA
takes the approach of intent-based and decentralized decision-
making, utilizing sidecar Managers to realize a declarative
idempotent update on the cluster.

The Operator Framework and inherently ATHENA follow
up the fundamental control logic principles from Kubernetes.9

In short, this class of the control logics for the Operators
relies on level-based designs rather than the edge-triggered
ones that are common with the EDs. On the other hand,
these control systems assume Open World conditions, meaning
they acknowledge the presence of uncertainty, variability, and

7https://operatorframework.io/what
8hthttps://ubuntu.com/engage/collection-of-charmed-operators-whitepaper
9https://github.com/kubernetes/design-proposals-

archive/blob/main/architecture/principles.md

unknown factors that can affect the system’s behavior. The
declarative nature of the Operators in ATHENA are manifesta-
tions of these principles. What in particular ATHENA offers on
top of that is to adaption and porting of the mentioned designs
to the specific field of telco by introducing the concept of the
Operator Plane. This plane allows a structural and semantic
extension of ATHENA for unforseen use cases and scenarios.

C. Management
ATHENA Manager is onboarded in each pod as a side-

car container, following the paradigms of sidecar containers
in K8s [16] and ETSI-NFV Element Manager (EM) [14].
However, the sidecar pattern in K8s [16] is barely used for
management purposes in terms of controlling the lifecycle of
an internal application and ETSI EM [14] performs arbitrary
operations, some of which are out of the scope of our Manager
(e.g., billing), or they are related to VM environments (e.g.,
installation commands). O-RAN OSM has recently adapted
the sidecar pattern for synchronization services [2]. While
they have recognized the values of the pattern, it seems its
application remains limited to the synchronization. ATHENA
Manager performs agile sub-lifecycle operations, observability
proxying, configuration management, and dependency resolu-
tion. It should be noted that unlike network proxy sidecars, the
sidecar model for the Manager in ATHENA is not abolished
by the advent and adaptation of the extended Berkeley Packet
Filter (eBPF) and Xpress Data Plane (XDP) [25] technologies.
However, if the functionalities of the Manager are imple-
mented otherwise, it could be discarded for a particular NF.
ATHENA remains agnostic to the way the Manager function-
alities are provided, and indeed, the Manager is intended to
aid rather traditional and non-cloud native applications to be
aligned with the cloud native paradigms.

III. OVERVIEW

ATHENA is formed around the idea of multi-x as its motiva-
tion, whereby “x” stands for vendor and radio in telco context
and container runtime, OS, or cloud provider in the cloud con-
text. ATHENA embeds support for simultaneous deployment of
workloads from different vendors relying on the different radio
devices (VI-B), while supporting multi-node, multi-cluster (by
BGP networking), multi-tenant (by K8s namespacing,10) and
multi-runtime deployments on top of K8s. We have foreseen
multi-x as the natural generalization of Open RAN which
seeks beyond RAN to CN and MANO/OAM itself. Thus,
we believe ATHENA’s multi-x would enjoy the same positive
expectations of Open RAN as briefed, for example in [9] and
[28]. In the Fig. 1, we have demonstrated the variety of vendors
as the most important dimension of multi-x by different
shapes. What comes next in this paper implicitly assumes
multi-x support by design. This also includes interaction with
external elements, not directly under the control of ATHENA
(marked by the “External” label in Fig. 1).

In accordance with the multiplayer ecosystem of telco,
we have separated the concerns on the network parameter,
including radio, identity, and slicing with the composition
of the network and how it scales. In this way, the vendors

10https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/
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Fig. 1. ATHENA overview in a nutshell.

and integrators could evolve and upgrade their software,
independent of the network operators. The networks are
declaratively defined as a Network Custom Resource (CR)
in K8s,11 whereas the composition of such networks are
described in Composition Model CRs that abstract the cloud-
related parameters, such as images, resources, and networking
as well as the configuration of the workloads. The Composition
Model CRs also define the observations that need to be
collected from the Workloads as well as the scaling policies
for the NFs. This separation distinguishes between synthetics
and semantics of (multi-x) logical networks. The adaptation of
simple yet extensible Composition Models would enable the
vendors and the service operators to independently innovate on
top of ATHENA. These CRs are defined using CR Definitions
(CRDs) that are registered in the K8s API server. CRDs in
K8s are based on the OpenAPI v3 specification with some
extensions. In that sense, one could imagine defining a CRD
is the next generation of defining a REST API using OpenAPI,
which is the common approach in the O-RAN’s North-Bound
Interfaces (NBIs). In the former case, K8s takes care of a
mature and well-tested implementation of the API, with all
the features expected of a modern API, such as verification,
authentication, and authorization.

According to Fig. 1, scAthena transforms presentations of
the network resources, network functions, and containers from
a traditional K8s resource such as pod or service to a logical
network, through a Base Operator capable of controlling and
abstracting the networks and their elements. The abstracted
format encapsulates the properties of concern for the network
operators, tailored to the telco terminology and use cases,
without the complexity of the underlying infrastructure.

One of the core contributions in ATHENA is the concept
of the Operator Plane where several Operators cooperatively
process logical presentations and entities of the network
in various aspects. The functionalities of ATHENA in the
Operator Plane could be expanded in two levels. Level-1
of the Operators consume logical network CRs to expose a

11https://kubernetes.io/docs/concepts/extend-kubernetes/api-
extension/custom-resources/

Fig. 2. Sidecar manager and agents in ATHENA.

new set of CRs targeting a logical entity such as slice or
network terminal. The level-2 is built on top of those logical
entities, to enable sophisticated and perhaps E2E Operations,
like cost optimization. Through the Operator Plane, concepts
and functionalities are transcended from physical to logical,
abstracting both the network itself and the related concepts.
To illustrate the facility of development and innovation on
top of this novel design model, we have already implemented
the slicing functionalities and network terminal Operators via
the same framework while also providing examples for the
upmost layer of the Operators: Cost Optimizer (VI-A) and
Energy Optimizer (VI-C).

ATHENA Management Plane works as an extension of its
Operator Plane, but in a distributed manner to take local,
short-term decisions rather than global, longer-term ones. The
former supports macro-decisions, whereas the latter defines
micro-decisions, as presented in IV-B. A distinguishing exam-
ple of these oppositions is captured in the green capabilities
of ATHENA, marked with a star in the Fig. 1. The Energy
Optimizer Operator would take decisions concerning day-long
Operations using AI/ML algorithms, whereas the Manager
supports micro-decisions to control a fine-grained, semantic
lifecycle of the NFs for energy savings. The energy saving
capabilities are integrated to the ATHENA’s design, perfectly
fitting in the distinction of the Manager and Operator. In the
definition of the interfaces between the Manager and Operator
or the Manager and the Workloads, we define open interfaces
with simple, yet strict protocols that are less prone to protocol
ossification [12] while being modernized and cloud native,
preferring de facto standards over the post facto practices.

The RAN Intelligent Controller (RIC) platform could par-
ticpate in the Operator Plane to connect the Control Plane
to the Operator Plane. In result the RIC could request and
observe xApps or rApps using the CRs provided by the Base
Operator. Beyond that, the logics of the other Operators could
be influenced and extended jointly by the RIC. For example,
the Energy Optimizer Operator would not only consider the
RAN as a mere CNF, but it could also trigger control loops in
the RIC for fine-grained optimizations. In this situation, from
the RIC perspective, the Energy Optimizer Operator behaves
as an rApp.

ATHENA unifies the device management for telco devices in
a cloud native manner. What makes this device management
particularly outstanding is its level of automation and consec-
utive isolation that it brings to the access network workloads.
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By the mindset of VMs, one might wrongly associate isolation
with lower performance, but we have proven this to be
fallacious using our concrete prototype (V-B). The abstraction
in the device management is based on the device capabilities
to make pools of homogeneous devices that are distinguished
by their geographical locations. Section IV-C digs deeper into
the device management and its implications.

IV. DESIGN AND IMPLEMENTATION

We section ATHENA’s design into four distinct planes that
impact different aspects of the workloads’ lifecycle, namely
the Operator Plane, Orchestration Plane, Management Plane,
and Functional Plane. This concept of plane separation might
be viewed as an extension of the Control and User Plane
Separation (CUPS) utilized in 4G/5G networks [19] into
MANO/OAM. The Functional Plane itself is decomposed into
the Control Plane and the Data Plane, according to the CUPS.

A. Operator Plane

Operator Plane in ATHENA enables customized Operations
on the logical networks or the logical entities within it. Each
Operator is composed of a few CRs and the Custom Con-
trollers (CCs) which upon invocation by the requests from the
orchestrator would reconcile the corresponding CRs. On this
Plane, with a few fundamental Operators in action, one could
build arbitrary control loops that interact with the networks
established by ATHENA.

1) Base Operator: As the first level of abstraction, the
Base Operator transforms K8s objects into expressive logical
presentations of networks and their associations with each
other and the cluster, linked by the provided Composition
Models. This Operator hence could deploy and manage end-to-
end 4G/5G networks that are requested via declarative intents
in the form of CRs. The base Operator includes two CCs:
(1) A Network CC which governs the collection of Elements
forming a logical access, core, or edge network as well as how
slices are associated with them. (2) An Element CC which
controls individual NFs and their related components such as
Kubernetes services, configurations, and pods;

a) Network CC: ATHENA’s Network CC consumes a
Network CR that contains the description of the slices as well
as the list of access, core, and edge networks, possibly multiple
instances of each. In the access networks definition, one also
specifies the radio parameters including the device and signal
features and the cell parameters including the center frequency,
the band number, subcarrier spacing and the bandwidth. Upon
invocation, the CC looks up for the Composition Models
of each network. Based on the obtained information, the
CC builds a topology of the network which later is used
by the Management Plane to resolve the dependencies in a
distributed manner. This topology is scoped and merged with
the any provided custom DNS records to form a localized
view of the network for each NF and supports Multi-Access
Edge Computing (MEC) applications. Finally, the Network
CC issues Element CRs to be later picked up by the Element
CC that works in parallel. For the observability, the Network
CC aggregates the status of all of its wrapping Elements to
indicate the status of the network itself.

b) Element CC: The Element CC builds the corre-
sponding pods and Kubernetes services with the proper
configuration. During this process, connects the pods to the
proper container scheduling parameters that are defined for the
Element. It would also continuously probe the pods for cus-
tom Conditions that are provided by the Composition Models.
These custom Conditions use the Kubernetes Probe interface
and might be used to determine the readiness of the pod, if
marked in the Composition Model. One particular example is
used in the Terminal Operator to associate the readiness of
the pod with its ability to reach the Internet from its radio
interface. The Element CC also records and aggregates the
Conditions exported by the pods for the observability.

2) Terminal Operator: To handle the network terminals and
achieve an E2E control loop that also contains the UE, we have
introduced a Terminal Operator. It is capable of handling four
particular modes of the UEs: (1) The simulator mode where
deploys a simulated 4G/5G UE to connect to the corresponding
simulated eNB/gNBs, regardless of the level of the simulation
(RF, L2, S1/NG, etc.); (2) The external mode where it is
just a presentation of a handset outside the cluster and no
container would be deployed in this mode; (3) The internal
mode where a container is deployed attached to a physical
UE module on the cluster; (4) The backhaul mode to support
external network formations that shall use this terminal as a
backhaul. The identity of the UE is automatically injected into
the databases of the corresponding core networks, given their
identification.

B. Pod Design and Management Plane
The pod in the proposed sidecar design depicted in the Fig. 2

is composed of up to four containers, two of which are manda-
tory and two are optional. (1) The Workload container that has
the application with some frontend helper scripts that are appli-
cation dependent with a generic API server that implements
the Workload Manager Interface (WMI); (2) The Manager
sidecar; (3) An optional logging agent that is responsible
for collecting the logs from the application and forwarding
processed events to the Observatory in the Manager; (4) An
optional test suite container not shown in the figure that
provides some testing utilities such as ping, traceroute, or iperf.
Bosun is the name of the default implementation of the WMI
server in the Workload container. The Workload and Man-
ager containers share a common volume where the Manager
would place the configuration files for the application to
consume.

ATHENA’s Manager, depicted in the Fig. 2, is the distributed
part of the MANO/OAM with several new interfaces required
to facilitate Day-2 operations and observability. Having such
a sidecar design is important for (1) Decoupling the Man-
agement Plane from the functional plane, which is a common
practice in the cloud native; (2) Accelerate adaptation to cloud
native for the rather traditional NFs; (3) Keeping the workloads
lightweight and portable to any environment by keeping the
cloud-specific interfaces independent of the Functional Plane.
The Manager is chiefly responsible for performing seven
tasks: (1) Dependency resolution through its Management and
Composition Interface (MCI); (2) Generate the configuration
files for the Workload and its applications by calling the right
configurator plugins (PLG); (3) Lifecycle control (init, start,
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status, stop, etc.) for the corresponding application in the
Workload container via the WMI in the form of an infinite
observe-decide-act loop; (4) Consume the events from the
logging agent and Condition plugins (PLG) and expose the
overall and detailed status of the pod for probing via Container
Probing Interface (CPI); (5) Gather, group, and pre-process
metrics defined for the workload and expose them to metric
collectors such as Prometheus12 using Open Metrics Interface
(OMI); (6) Listen for Linux filesystem notifications via Shared
Volume Manager (SVM) and call for reconfiguration and
restart if necessary; (7) Performing micro-decisions including,
but not limited to, short-term green optimizations via WMI.
The Lifecycle Manager is in an infinite observe-decide-act
loop that is responsible for the lifecycle of the application
inside the Workload container. Evident by the results in the
Sec. V-A, this method has the maximum agility for managing
the lifecycle of the application.

1) Dependency Unit: The Dependency Unit is responsible
for the dependency resolution and fault management through
the MCI, which exposes a simple REST API with at least
two endpoints called resolve and depends on managing
the weak and strong dependencies and fault tolerance. This
interface is actively used by the Managers of the different
Elements to solve the dependency and fault tolerance problems
in a distributed and decentralized manner. A weak dependency
is a mere dependence on the IP address or other parameters of
the pod from another element, used to fill in the details in the
configuration. On the other hand, a strong dependency means
the dependant needs the dependee to be on ready state, so the
call is not returned successfully until the managed is running
and healthy. The resolution and dependency endpoints could
optionally be called for a certain interface or service, either
3GPP or non-3GPP (like O-RAN) to form a finer grain depen-
dency. The dependant would regularly call the resolve or
depends endpoints to check if the dependency information
is still valid. A readiness in the MCI context means the
application was running healthy and the conditions were met
for a continuous period of time, T , without any interruptions.
If the period of calls from the dependant to the dependee is
shorter than T , the dependant would always be notified of
a change in the readiness status of the dependee, by having
at least one call to the resolve or depends that returns
unsuccessfully. Hence, the dependee would be also restarted,
and the chain of dependencies would be re-evaluated likewise,
as long as there are no loops in the dependency graph. The
default reaction to a failed dependency might be changed by
a policy defined in the annotations in the Composition Model.

2) Implementation Aspects: We rely on K8s services for
making the communication at the MCI level, hence the
Managers would call each other by their corresponding DNS
names that are already filtered and scoped on the Operator
Plane. In this way, one could enforce various policies on the
communication between the Managers using service meshes
in K8s. However, for data layer connections, the delay of K8s
services is intolerable, managing multiple interfaces with K8s
services is challenging, and even some protocols like SCTP
are not reliable with every K8s networking stack or service
mesh. We call this type of rather placeholder K8s services
a Shadow Service as it is not exactly used like a normal

12https://prometheus.io

K8s service. The Shadow Services are not used for Functional
Plane communication, but only Management and Operations.
K8s services are limited to two-level DNS subdomains, one
for the service name and the other for the namespace name,
which turns out to be insufficient for ATHENA. Therefore,
ATHENA’s Base Operator delivers a basic custom DNS server
that supports meaningful subdomains for telco in the form of
Pod name, Element name and Network name alongside the
namespace name. These records are of the DNS type CNAME
pointing to the Shadow Services. The configurations for the
Manager and the Workload contain the rather meaningful DNS
names that are resolved to the Shadow Services by the Base
Operator’s DNS server, then to the IP addresses of the K8s
services by the K8s DNS server, and finally to the IP addresses
of the corresponding pods by the MCI. We populate the
configurations with the corresponding pod addresses that are
resolved via MCI and bypass the shadow services. Still, for the
sake of consistency, observability, and applying the network
policies properly, the Shadow Services include all the Data
Plane ports too. In case of a failure that would cause a pod
recreation or any event such as eviction and preemption that
results a new pod IP address, the resolve and depends
endpoints would return different addresses compared to their
previous calls. This would trigger a reconfiguration, perhaps
followed by a restart, in the dependant pod(s).

3) Manager Interfaces: The Manager could be extended via
two sets of plugins (PLG). The conditioner plugins implement
probe and metrics function where given the parameters,
they generate a related Condition object (exposed via CPI)
or metrics (exposed via OMI) respectively. These plugins are
used to transform the traditional monitoring information to the
cloud native equivalents. The plugins are fed with the observa-
tion queries that define a source and a drain for the information
with a certain data format. The plugins are responsible for the
data collection and conversion, while the Observatory would
periodically call them to get the latest metrics and conditions
for feeding back to the CPI or OMI. The configurator plugins
implement two functions: (1) configure is called via the
corresponding input files to generate the configuration for
the applications in Day-1; (2) reconfigure is called upon
detection of changes in the input ConfigMaps in Day-2.
It should update the configuration files and report back if it
would be necessary to restart the application via the WMI. The
SVM uses Linux inotify to detect changes introduced in the
filesystem. The reconfigure is the first mile towards the
genuine Service Continuity in 4G/5G networks by enabling
Day-2 actions that require no restarting of the network using
specific plugins developed for each vendor. However, still
restarting the application should take a considerably shorter
time than restarting the container by avoiding the initialization
for the containers (V-A). The plugins could assume that all the
base files for compiling the configuration are already made
available to them by the Configuration Unit in the Manager,
regardless of the source of the files. The Configuration Unit
would call the plugins separately for each configuration index
defined in the Composition Model and passed to the Manager.
The Base Operator makes sure that the Manager has all the
necessary mount points for the Configurations Unit to function
properly. The Manager is shipped with a default set of plugins
that are generic enough to be sufficient for most of the use
cases.
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Fig. 3. Device management in ATHENA.

Fig. 4. Comparison of observe-detect-act cycles in ATHENA and vanilla
kubernetes.

4) Manager Extensions: As opposed to the global, longer
term decisions of the Operators, ATHENA Manager enables
execution of micro-decisions. A micro-decision represents a
decision that is concluded and intended for a short period of
lifecycle and could be invalidated and overwritten by another
decision in a short time. These micro-decisions could be used
to perform short-time optimizations, in particular significant
in green computing [24], [26]. To elaborate on an example of
micro-decisions, we have considered an extension to the WMI
with two new API calls. A freeze endpoint in the WMI
intends to freeze the corresponding workload. By default,
it is pointing to the stop endpoint internally, though each
vendor could provide customized actions that would not
necessarily stop the instance, but just put it in the sleep
or freeze mode. Likewise, the thaw endpoint implements
the awakening action and by default is pointing to start.
Applications of these endpoints are explored in the Sec. VI-C.

C. Orchestration Extensions

ATHENA relies on K8s Control Plane as its Orchestration
Plane, while introducing specific extensions to fully automate
the network lifecycle operations. This also includes automatic
device detection and management for a wide class of telco-
related devices such as the radio modules, accelerators, and
network terminals (essential for the E2E automation).

1) Device Management: ATHENA defines addressable and
assignable resources in a form of device resources such as
radio devices (whether hot-plug, or network-based, or PCI-
based) or accelerators (e.g., GPU, FPGA). These resources are
exposed as Kubernetes node resources via a device plugin and
could be allocated to any of the pods upon request. Defining
a device plugin improves the isolation and the security of the
containers by following the Kubernetes security structure, and
on the other hand opens up a whole spectrum of possibilities
for the logics to be implemented in the Operator Plane.

Implementation Details: Automated device management in
ATHENA relies on systemd and K8s device plugins, see Fig. 3.
Systemd is the most-commonly used init daemon across all the
Linux distributions which comes with a device management
mechanism called udev. Given specific rules to udev, we gov-
ern the naming, management, and initialization of the devices

on the nodes to achieve a harmonized representation of the
resources. Later the ATHENA device plugin automatically and
dynamically detects the devices and advertises them as node
resources in K8s.

The physical devices in ATHENA are transformed to logical
software devices by Linux systemd and udev in the smallest
operational units for each device. These units are categorized
by their capabilities into homogeneous sets of devices. The
compatability of the devices with the NFs is left for the
vendors to decide via the Composition Models. Similar to
the NUMA topology, we define neighborhood metadata for
the devices that are used in the container scheduling. The
neighborhoods could refer to the physical connections between
the devices, such as belonging to the same physical device,
sharing the same PCI bus, and having the same RF ports and
antennas. They could also refer to the geographical proximity
or synchronization.

2) Probing and Observability: In telco workloads, readi-
ness is a multistage event which might not necessarily be
expressible as a binary readiness status. The readiness could
rely on various internal state changes that are reacted by the
other elements as a dependency. For example, in the O-RAN
context, the RAN needs some basic discovery of the RIC
before finishing its initialization, wihtout the need for the RIC
to be fully operational. Exposing different readiness levels not
only improves the observability but helps the Management
Plane to handle complicated, multistage dependency matrices.
To implement this we have overloaded the ReadinessGate fea-
ture of K8s [8] with relevant custom probes that complements
the CPI interface defined in Sec. IV-B.

D. FCAPS in Athena
In ATHENA we have refactored cloud native principles in

the design of FCAPS.
1) Fault Management: The faults in ATHENA are grouped

into the direct and indirect faults. Direct faults are when the
application itself crashes or fails to start. The direct faults are
detected and resolved using the WMI and MCI as discussed
in Sec. IV-B. Probes and CPI would ascend the visibility
of the faults to the Operator Plane. If the fault is rooted
in the Managers themselves, the Operator Plane takes the
responsibility to resolve the fault, and if none of the methods
are effective, the container orchestrator would aggressively
restart the corresponding pods. The time to detect and resolve
the direct faults are studied in the Sec. V-A. The indirect faults
are the cause for service degradation and disruption. They
appear in the logs or the metrics of the workloads and are left
for the Operators in the Operator Plane to handle. ATHENA
does not directly react to the indirect faults, but it provides the
means for the other Operators in the Operator Plane to do so
via its observability stack.

2) Configuration Management: The configurations in
ATHENA emerge from the CRs in the Operator Plane and are
then transported using the Orchestration Plane to the Manage-
ment Plane where the plugins do the last mile configuration.
ATHENA focuses on a unified NBI for the configuration rather
than enforcing the workloads to implement a specific interface.
The proposed unified NBI is neutral in the sense that it allows
to support customized or standardized configuration interfaces
such as O-RAN O1. However, having a sidecar with a shared
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volume annihilates the requirements for a remote configuration
interface such as O1, while remaining generic and flexible.
Also, by definition, the configurator plugins tie the lifecycle
of the Workloads to the reconfiguration at Day-2.

3) Accounting, Performance, and Security Management:
Accounting, Performance, and Security Management in
ATHENA are built upon its observability stack. The metrics
in ATHENA are grouped into the outbox and inbox metrics.
The inbox metrics are collected from inside the boundaries of
the application and differ from one NF to another. Example
of inbox metrics are those that are mainly collected and
processed by the controllers such as RICs. The outbox metrics
are collected from outside the boundaries of the application
and are common for all the applications, such as the CPU
and memory usage. Some of the outbox metrics like energy
or cost are composite, second-order metrics that could be
derived from several other inbox or outbox metrics. Methods
of performance or accounting management that like O-RAN
O1-PM fully or partially delegate the task of the measurement
to the NFs themselves are potentially biased, inaccurate, and
prone to the side effects of the measurement itself. Moreover,
operating legacy NETCONF-based interfaces at scale becomes
inefficient and challenging in the medium to large scale cloud-
native applications, due to limitations of its transport protocol
and improper data models. ATHENA does not directly involve
itself in key management, authentication, or authorization.
For most cases, the orchestration plane, K8S in this con-
text, provides the means to handle these issues. However,
ATHENA’s device management and secured, isolated, and
rootless containers are the cornerstones of a secure network.
Otherwise, any security barriers could be breached by a faulty
or malicious workload.

E. Day-2 Operations
ATHENA supports a variety of Day-2 Operations including

auto-healing, reconfiguration, and upgrade. We address each
of them in a separate subsection.

1) Auto-Healing and Idempotency: The declarative design
of ATHENA avails the Base Operator of auto-healing proper-
ties, i.e., whenever an Element or pod is deleted or evicted,
it would reconsider the topology and adjust the associated
parameters. The healing in action is merely repeating the
deployment, since the control loops of ATHENA are designed
to be idempotent. Thus, the effect of applying them repeatedly
or under failure should result in the exact desired state.

2) Reconfiguration, Upgrade, and Immutability: Each CR
has mutable and immutable constructs. Changes in the struc-
ture of the containers, such as their image or resources as well
as changes in the radio device or identity of the networks,
would result to recreation to preserve the immutability of the
setup. Keeping the building blocks immutable is crucial to
make scaled instances consistent and predictable [6]. We call
such actions an upgrade, and ATHENA minimizes the down-
time of the NFs during an upgrade as proven by example
in VI-B. The agility of ATHENA and containers combined is
the key to achieving the low down-time. However, a recon-
figuration action, triggered by changes in mutable constructs,
is handled by the distributed processing of the Management
Plane with zero down-time. An example of changing the
network topology and its effect on the service quality is given

in VI-B. Reconfiguration in day-2 is of paramount importance
in telco to achieve service continuity and flexibility at the same
time.

V. EVALUATIONS

We have completely implemented the mentioned design of
ATHENA at all layers. The code is mostly written in Golang
with over 10k lines of code for the Operators in total, 3k lines
of code for the Manager and its plugins, and another 3k for
the extensions to orchestrator. For the evaluation of ATHENA,
we have used this implementation and onboarded Amarisoft
(AMR), OAI, and Software Radio Systems (SRS) already
as vendors. The cluster under the test contains 9 machines
with Redhat Enterprise Linux 8, CentOS 8, Ubuntu 20.04,
or Ubuntu 18.04 installed on them. The radio devices sup-
ported on the cluster are USRP B210, USRP N300, AW2S
RRH, AMR SDR50, and AMR SDR100.

A. Lifecycle Improvements and Agility
To simulate the effects of a failure and analyze how the

observe-decide-act loop of the Manager would behave, we
have onboarded OAI gNB workload on ATHENA then per-
formed the following experiments: (1) Stop the RAN process
inside the container to simulate a workload failure where
in ATHENA, the Manager would detect the issue and act
accordingly by restarting the application process; (2) Stop the
main process of the container to simulate a full-scale container
failure where Kubernetes intervenes to detect the error and
then goes through crash loop back-off that takes considerable
amount of time for recovery; (3) Finally we stop the pod’s
sandbox container to simulate an overall pod failure that causes
all the containers in the pod to restart. As reflected in the
Fig. 4, ATHENA’s approach is considerably faster on each
part. Besides, the main process of the container is chosen
carefully to be the stable Bosun API server for WMI (Fig. 2)
that exhibits a very low chance of failure, hence no transition
to the longer recovery cycles of K8s. It should be noted that
time for observation is composed of the minimum number of
probings with the standard period of one seconds each to reach
the conclusion about the failure. Killing a container causes a
faster detection since it would be triggered with one failed
probe, but for the pod the minimum failed probe becomes
two. Decisions or acting on the containers takes longer than
pods since K8s categorizes the container failures as application
failure and goes into crash loop backoff, but a pod failure is
counted as of K8s and is recovered faster.

To reflect on the agility of the deployments in ATHENA,
we have done a concise analysis of the lifecycle of an E2E
deployment of CNFs on both ATHENA and ETSI-OSM [14]
release 11. This data is gathered in the Tab. II, where one could
observe ATHENA is far more agile than the OSM. The data
is averaged over several deployment scenarios with the same
Kubernetes version (v1.24). The two clusters have the same
machines running Ubuntu 18.04.1 (kernel 5.4.0-107-generic)
over 8 virtual CPU cores of Intel Core i7-8550U, at 1.80 GHz
baseline, scalable up to 4 GHz and with RAM size of 32 GBs.
The data is collected by the timestamp of the corresponding
objects or logs. Since Kubernetes does not record timestamps
of shorter than one second, for some actions in ATHENA,
we could just give the upper bound of 1 second.
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TABLE II
ATHENA AND OSM TIMELINE

TABLE III
OVERHEAD COMPARISON

Fig. 5. Comparison of the throughput between bare metal, snap, and K8s
deployments of ATHENA.

We have performed the comparison with Charmed deploy-
ment of OSM and for onboarding a Charmed unit to have
a similar structure of MANO. On deletion phase, OSM uses
long graceful shutdown timeouts by default (30 seconds), but
in ATHENA the API server gracefully terminates the process
internally by detecting the terminate signal from K8s; hence
it does not need to wait for the timeouts. Note that, for
the numerous iterations of a deployment, the ratio is more
important than the difference, because in large number of
sequential deployments the small differences grow to a lot.

B. Performance and Overhead
To form a conclusive image of our platform, we demonstrate

the E2E 5G network throughput UDP and TCP throughput
achievable in ATHENA, compared to a fully PNF deployment
on bare metal and a deployment with Snaps,13 shown in the
Fig. 5 for OAI on B210 (SISO), AMR on SDR50 (MIMO
2 × 2), and AMR on SDR100 (MIMO 2 × 1). All the
tests are performed on the same machine, running RedHat
Enterprise Linux 8 with 12 cores of CPU of type Intel Core
i9-10920X at 3.50GHz base frequency and 64GB of RAM.
The configuration of the RAN is the same over all the setups:
5G-SA FR1, 106 PRBs, 40 MHz bandwidth, TDD band
78 with the pattern of 7DL:2UL slots and 6DL:4UL symbols.
For the FR2 setup we used 5G-NSA where the LTE cell is
configured with 20 MHz bandwidth in FDD band 66, and
the NR cell is configured with 100 MHz bandwidth, 120 kHz
subcarrier spacing, and TDD band 261 with the pattern of
3DL:1UL for the slots 10DL:2UL for the symbols. In this case,

13https://snapcraft.io

Fig. 6. CPU and RAM usage of option 1 in Tab. IV.

the results show the aggregated throughput of the two cells that
are running with MIMO 2 × 1. The data shows negligible
difference between the throughput on different setups, and
the slight variation could only be caused by minor aerial
differences.

Gathered in the Tab. III, one finds a comparison between
Charmed OSM and ATHENA in terms of the computing
resources, as well as the corresponding total image sizes.
Unfortunately, OSM does not define limits for its resource
usage, so we relied on K8s top command. To make a
fair comparison, we have grouped the components of both
Charmed OSM and ATHENA into the three layers defined
earlier in Sec. IV. For the OSM, we have considered the
Model and Charmed Operators, LCM, PLA, and POL as
the necessary parts of the Operator Plane, while taking into
account an average for Charmed Operators for workloads
as replacement for the Management Plane, whereas the RO,
databases, messaging system (Kafka and ZooKeeper), and
authentication management (Keystone) are counted as part of
the Orchestration Plane. We have not counted in the extra
overhead of having Juju, LXD, and MicroStack installed as
underlying parts of the Charmed OSM setup, but ATHENA
needs nothing more than a minimal Kubernetes stack to
Operate on top of it.

VI. USE CASES

Though ATHENA’s design model encompasses the support
for numerous use cases in 4G, 5G, and beyond; we emphasize
on three use cases foreseen in 5G and beyond, which are in
particular attention of ATHENA too.

A. Private Networking and Optimization
To demonstrate the capabilities of a platform for private

networking use cases, one should consider at least the follow-
ing three substantial domains: (1) Network Customization,
possibly involving sharing network components; (2) Cost
and Energy Optimization across variations of deployment
decisions, constrained by the desired Key Performance Indica-
tors (KPIs); (3) E2E capabilities including observability and
automation with the UEs in the loop, since in many cases,
the UEs would be deployed and controlled by the owner of
the private network. Consider the scenario of an event in a
museum to exhibit recently found relics for a short period
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of 10 days in a town. The network operator wishes a short-
lived private network to serve some augmented media to the
visitors, demanding 80 Mbps DL UDP payloads inside the
venue. The goal is to optimize the cost of the deployment
while trying to respect the regulations imposed by the city hall
for the energy efficiency with 50 Watts power budget per base
station. Peeking the data from Tab. II, and III, it can be seen
that ATHENA’s overhead and agility are suitable for short-lived
networking including network leasing and temporary service
boosts following the user demands.

ATHENA Cost Optimizer Operator is an optional Operator
on the Operator Plane which given a Service-Level Agreement
(SLA) object as well as cost constraints, it would iterate
on various options in the network deployment to find the
minimum cost deployment that still satisfies the SLAs. The
Composition Models are incorporated with metadata that is
particularly useful for pricing and cost optimization. The cost
of a network is calculated by simple summation over the cost
of each Composition Model used. These would be computed
to the Capital Expenditure (CapEx) while the Operational
Expenditure (OpEx) is estimated by the resource consumption
over a period of time. Given the scenario, Cost Optimizer
Operator sweeps the four options with a tolerable range of
[0, 100] Watts for the power usage (twice the regulation, but
still fair penalty) and [0, 2%] for maximum packet loss to
improve the QoS.

Using its observability capabilities on top of Prometheus
over the OMI, ATHENA gets the computing resource con-
sumption of the deployed scenarios in real time. A set of
pre-defined, static measurements would not be helpful more
than giving some approximate intuitions in general, so Cost
Optimizer Operator runs the optimization following the SLA
description and on-demand for the scenario. The Fig. 6 shows
resource consumption of option 1 in the Tab. IV, where the
CPU consumption is summed over the 10 CPU cores of type
Intel Core i9-10920X at 3.50GHz, and averaged for intervals
of 10 seconds for smoother plotting. Then the overall cost
of the scenario would be calculated via an integral over a
standard interval of 5 minutes, where the last 3 minutes have
a single UE deployed transmitting on 80Mbps downlink via
iperf3, placed in a Faraday cage. The integral would include
the pricing model specified to the Cost Optimizer Operator
as possibly non-linear function. However, for the sake of
simplicity and proper reference, we have used Google Cloud
Platform (GCP) pricing policy as an example reference in the
Tab. IV. The average OpEx reflects the average cost per hour
for the entire 5-minute duration, whereas the peak OpEx only
considers the portion of the iteration where the UE is active.
In the Tab. IV, the power measurements are collected by the
Cost Optimizer Operator from a digital Watt-meter deployed
on the machines and connected to their power supplier, and it
factors out the idle usage of the machine. It should be noted
that radio devices consume power even on standby; hence the
idle power is measured with no cards or devices connected to
the motherboard.

The total cost (C) after n days could be calculated via the
formula C = CapEx+n×24×OpEx, where 24 is the number
of hours per day, and the units are taken from the Tab. IV.

ATHENA Cost Optimizer Operator closes its loop by involv-
ing ATHENA Terminal Operator through the Operator Plane

TABLE IV
EXAMPLE OF 4 ITERATIONS FOR COST OPTIMIZATION

Fig. 7. Phase changes for cost optimization; maximum packet loss is
measured per 1000 packets.

via injection of a Terminal object, which also provides the
required live testing utilities. Reacting to the corresponding
event that Terminal Operator would issue after successful
attachment and setup of the UE to the network, the Cost
Optimizer Operator starts measuring the KPIs of the E2E
deployment. In result, we have the Fig. 7, where the best
choices are indicated by their numbers in the Tab. IV. On the
Fig. 7a, the plot presents the variation of best option based on
the cost of average usage (60% of time in the peak) depending
on the period of deployment and power consumption con-
straints. The temporal dimension is important in this graph
since it helps to flatten the CapEx over OpEx in the long
term. On the right, we considered the packet loss reported on
the iperf3 measurements with the cost of deployment on peak
usage. Due to the given time period and SLAs of our scenario,
the best choice for a single node setup is to have option 1
which could guarantee less than 1% packet loss. It has to
be noted that the conditions and scenario are relaxed for the
sake of simplicity, but the procedure is valid for any arbitrary
scenario.

It is worth noting that ATHENA is reproducible and con-
sistent by design, hence the whole process of each iteration
could be completely automated. Otherwise, the results of the
experiments could not be trusted. Besides, the agility of the
platform (Tab. II) is crucial since the deployment time would
determine the time for each individual iteration, yet still the
reconfiguration capabilities of ATHENA could be exploited to
reduce deployment time from two highly correlated network
deployment options.

B. Open RAN and Emerging Networks

Open RAN is an initiative led by operators to break from
vendor lock-ins and mix-and-match components of the net-
work, even beyond the 3GPP specifications through the newly
defined open interfaces. We have built the idea of multi-x as
the extension to the same doctrine mixed with the fundamental
goals of cloud native, which goes beyond the RAN itself to the
MANO/OAM. ATHENA defines open interfaces in between its
components, which allow them to be replaced at any time with
any customized implementation of the same API. ATHENA
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Fig. 8. Resource usage scaling of open RAN.

is agnostic to the cloud provider, K8s distribution, container
runtime, or OS.

Aligned with the Open RAN, as a cloud-native O-RAN
OAM, ATHENA supports concurrent deployment of Open
RAN components as well as dynamic transition between any
of the options for deploying the RAN with minimal down-time
and human intervention. To illustrate this, we have composed a
scenario in which ATHENA progressively deploys a complex
network of varying vendors and splits in multiple requests
to resemble a growing network of an operator. The Fig. 8
shows how the CPU usage of the whole cluster as an example
of computation resources changes during the growth of the
network and its correlation with the scale of new workloads
introduced. Based on the number of Elements and networks
deployed in each phase, we have done an extrapolation of
the resource consumption. The results have higher correlation
score with Elements, due to the fact of variations in the
network compositions and vendors used in the setup. This
means to predict and provision resources for an Open RAN
deployment; one should rely on the number of Elements to be
deployed rather than the number of networks. For the Fig. 8c,
we have used OAI RAN in RF simulator mode, and in intervals
of 5 minutes, one 5G SA RAN and UE simulators have been
introduced. The prediction has been made based on the number
of elements which indicates higher non-linearity, despite the
larger sample size. We hypothesize in the Open RAN scenario
of the Fig. 8a, the variations offered by different deployment
models and vendors have absorbed some uncertainty caused
by the distribution of nodes in the cluster. However, in a more
homogenous scenario of the Fig. 8c, other factors become
more dominant. On the other hand, in the Fig. 8d, we have
adjusted the pod scheduling via ATHENA Mobility Control
Operator to place the simulated UEs on the same machine with
the simulated gNB. This has drastically changed the regime of
resource usage into a highly linear but significant CPU time.
The RTT experienced by the user also drops from an abnormal
amount of 88 ms to 17 ms on average, showing the effect of
placement on the QoS. In conclusion, a multi-x platform is
the key enabler to unlock the Open RAN potential not only

Fig. 9. Day-2 operations.

for deployment of tailored networks, but also for performing
valid and reliable measurements.

To reflect on the day-2 operations of ATHENA, we present
two operations in the Fig. 9: (1) A zero down-time recon-
figuration of AMR RAN in response to topology change and
addition of a new core network; (2) An upgrade procedure,
where the AMR CN that was connected to an AMR RAN
instance gets upgraded to a newer version, and in response to
the UE performs a connection reestablishement procedure. For
the first trial, the Fig. 9a, shows the E2E RTT of the UE, which
without a down-time, experiences only 3 seconds of service
degradation. The second trial in the Fig. 9b, plots the SNR
values observed in the RAN for one particular UE. Since the
bearer between the RAN and the CN gets lost, the UE tries a
service connectivity request. The request is rejected due to the
context loss in the CN, but the UE tries again by establishing
a new NAS session over a new RRC. The NAS request fails
because the UE tries SUCI instead of SUPI, but the CN is
unable to reveal the concealed identity of the UE. Finally,
a second reestablishment is successful, and after 12 seconds
of lack of E2E service, the UE is back on again. For upgrades
of the service once each month, 12 seconds of service outage
is equivalent to 99.9995% service reliability. Thus, ATHENA
is one of the few platforms able to continuously deliver (CD)
with the required service reliability of five nines or six nines.

C. Green MANO/OAM
Sustainability and energy efficiency have been listed already

in the requirements for 6G [15], [27], while the foundations
to achieve them are already established by the lean-design,
fine-grained controlling, and variety of optimizations in 5G.
ATHENA’s design is solicitous to sustainability and green
computing, by providing built-in features in its observability
and control mechanisms. To realize a green MANO/OAM
one should consider two factors: (1) The extra overhead
introduced by the MANO/OAM specifically in terms of com-
putation resources should be minimal (see Sec. V-B); (2)
MANO/OAM should provide means by which algorithms on
energy optimizations could be applied. The flexibility and
Day-2 operation offered through macro-decisions and micro-
decisions in ATHENA are the key to resolve over-provisioning
and achieve a sustainable deployment. These decisions span
over the whole spatio-temporal dimension as demonstrated in
the following examples.

The Fig. 10 demonstrates a tradeoff between QoS and
energy saving in general; the solid black lines are the
optimizations made by ATHENA and the doubly white lines
are the baseline. The area in between the graphs is the power
saved. The decisions, either micro or macro, would affect user
performance, either in terms of service outage or QoS drops.
Either way, one could encapsulate this as a Quality Reduction
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Fig. 10. Power saving in ATHENA.

Metric (QRM). The former metric should be normalized by
the number of affected users to form a more accurate picture
of the impact. The Power Saving Score (PSS) shows the ratio
of average normalized power consumption where the baseline
power is deducted from the average values to show only the
difference. The operator defines these two metrics based on the
observed raw data as well as his desired balance between them.
The Energy Optimizer Operator configures its decision as well
as Manager’s parameters to resolve the tradeoff accordingly.
The metrics are ratios and have no dimensional units, hence
mathematically comparable. Both the following experiments
on power consumption are done with OAI gNB over USRP
B210.

To demonstrate an example of a micro-decision in ATHENA
specifically for green MANO/OAM, we provide a scenario in
which the tradeoff between availability and energy-efficiency
stands out. Imagine a UE that is moving around a facility to
collect and upload some data. A few gNB nodes are deployed
along the path, but since the data collection is frequent yet
geographically scattered, the energy optimization becomes
important. The required UL throughput is 5 Mbps, and any
value below it counts as violation of SLA. When the UE’s
uplink channel gets worse enough to toss the balance between
the mentioned metrics, the UE is dropped from the RAN side;
otherwise the bad uplink would require heavy computation
to provide a weak service. This decision, as shown in the
Fig. 10a, saves on average 1.74 W (17.4% PSS) per UE
with 61.54% QRM. Also, an unused RAN instance would be
temporarily set to standby and remain in sleep mode for the
duration on which there is no apparent activity from the UEs.
The RAN is awakened at the moment that a UE is activated
in its vicinity on a proximate node, and the whole process of
detection and activation of the dormant instance all together
takes less than 1 second, but it allows us to have on average
7.83 W (78.3% PSS) power saving per gNB. In this case, QRM
could be considered almost zero for an agile MANO/OAM.

Moreover, ATHENA exposes some Workload-dependent
statistics via its OMI interface in Manager where later could be
processed by an Energy Optimizer Operator on the Operator
Plane to take decisive actions with respect to energy saving
and green computation for longer cycles, like day and night
shifts, exploiting patterns discovered by AI/ML [17], [18].
For example, in the Fig. 10b, we have shown a saving of
on average 2.24 W (22.4% PSS) per gNB for lowering the
bandwidth from 40 MHz to 10 MHz, during the second half
of the trial period due to the pattern enforced by the Energy
Optimizer Operator, causing 77.36% QRM during the night-

time. If we consider 20% active users during the nighttime,
normalized QRM becomes 15.47%. Of course, AI/ML could
be handy in processing this information and adjusting the
Energy Optimizer Operator’s parameters, to make sure the
decision is desirable. Weighting the QRM and PSS the same
makes this particular decision favorable.

The micro- and macro-decisions may be combined to max-
imize the energy efficiency. The Energy Optimizer Operator
considers a green budget per user as part of its SLA, indicating
the maximum tolerable QRM over PSS value. This budget
would be first spent on macro-decisions and then for micro-
decisions. Since the Manager observes RAN state directly and
the QoS in real-time, it could by itself decipher the remaining
budget from the tradeoff parameters and monitoring the RAN.
Because of their timescale, the micro-decisions could adapt
very fast to the side effects of the macro-decisions.

During our experiments in the Fig. 10, we noticed common
tools like powertop are incapable of capturing true power
usage of the RAN, because their scope is limited only to
the ACPI interface of the CPU, even though the RAN could
include RF devices and accelerators that are not reported via
the same interface. Thus, we used a battery-powered machine
that provides power readings from the battery. The setup is
done via USRP B210, which takes all the power from the
USB port of the machine. These metrics are exposed to the
manager container via SysFS by the device manager for micro-
decisions, and another node agent reads the coarser data, with
higher periods, exposing them to the Prometheus for the usage
in the Operator Plane.

VII. CONCLUSION

In this paper, we presented ATHENA, the fourth generation
of MANO/OAM with innate support of various use cases in 5G
and beyond, demonstrating intelligent, light-weight (Tab. III),
agile (Tab. II), and green (Fig. 10) automation of CNFs in
multi-x environment (Fig. 8a). The design is conclusively
cloud native with several abstractions on its Operator Plane
which transform K8s resources to multi-x logical networks and
further up as logical network entities. The platform is highly
extensible with several built-in Operators to support Open
RAN, private networking, green MANO/OAM, and slicing.
The Operators in this Plane could perform optimizations on
cost or energy to facilitate design and deployment of private
and sustainable networks. ATHENA preserves the performance
while keeping the tight isolation through specialized device
control and utmost declarative automation and observability,
debunking the established beliefs around cloud native imma-
turity for telco use cases (Fig. 5). ATHENA is designed to
Operate networks of any scale with minimal overhead and
footprint, without compromising agility. The Managers in
ATHENA form a distributed plane capable of performing zero
down-time Day-2 Operations, rapid lifecycle management, and
micro-decisions. We expect ATHENA to become the foundation
of numerous novelties in research and development studies on
5G and 6G, since it is demonstrably capable of providing all
the features demanded from a next generation MANO/OAM .
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