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Abstract— Autonomous driving vehicle (ADV) that is ready
to transform our society and economy, is in desperate need of
precise positioning over itself as well as surrounding environ-
ments. However, it is still a challenging issue for ADV to retrieve
real-time positioning knowledge over road participants and
dynamic surrounding environments, due to unsatisfied perception
accuracy caused by sparse observations and limited perception
range. Cooperative perception, which advocates cooperatively
disseminating perception data among vehicles, has the potential
to overcome the above limitations. To this end, this article
proposes a novel edge-assisted multi-vehicle perception system
to enhance vehicles’ awareness over surrounding environments,
which is termed as EdgeCooper. EdgeCooper first schedules
vehicles to share complementarity-enhanced and redundancy-
minimized raw sensor data with an edge server, using multi-hop
cooperative 5G V2X communications. Then, EdgeCooper merges
vehicles’ individual views to form a holistic view with a higher
resolution, thus enhancing perception robustness and enlarging
perception range. We formulate multi-vehicle multi-hop cooper-
ative data sharing as a minimum cost flow problem with conflict,
and further prove that there exists no polynomial-time approx-
imation algorithm with a constant performance ratio unless P
= NP. Furthermore, a two-dimension graph coloring algorithm
with guaranteed performance is proposed to eliminate conflict.
We evaluate EdgeCooper by building a comprehensive simulation
platform through a joint manipulation of SUMO, CARLA, NS3,
and PyTorch. The experiment results show that, compared to a
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single vehicle’s perception, EdgeCooper performs effective and
efficient in enhancing vehicular awareness, e.g., extending up to
3.6 times detection range and improving perception accuracy
by 20%.

Index Terms— Cooperative communication, collaborative per-
ception, network-aware, edge computing, positioning.

I. INTRODUCTION

UTONOMOUS driving vehicle (ADV) is anticipated to

transform transportation systems by providing better road
safety and traffic efficiency. The deployment of it in our roads
within the next future requires highly accurate positioning
information, i.e., decimeter-level positioning for highway oper-
ation and near-centimeter level for operation on local and
residential streets [1]. Such high-accuracy positioning depends
on a sophisticated manipulation over a combination of posi-
tioning technologies, e.g., global navigation satellite system
(GNSS), cellular positioning, and simultaneous localization
and mapping using onboard sensors such as LiDAR, radar,
and cameras [2]. On top of self-positioning, it is also crucial
for ADVs to real-timely extract the position and orientation of
adjacent vehicles, road participants (e.g., pedestrians, cyclists),
as well as dynamic surrounding environments [3]. Collabora-
tive awareness messages (CAM) [4], which are short messages
exchanged by vehicles for mutual awareness of each other’s
location, have already been standardized by Telecommunica-
tion Standard Institute (ETSI, the standard EN 302 637-2) [5].
However, CAM only provide position information of adjacent
vehicles, and are not able to locate pedestrians without an end
device (smartphone). Furthermore, it is challenging for ADV
to retrieve the extremely dynamic components in surrounding
environments, e.g., congestion, accidents, construction, bikes,
and road surface irregularities (pits, bumps, holes, speed
breakers, etc.) [6].

Perception, which detects and understands the environments
through onboard sensors, can percept neighboring pedestrians
as well as dynamic environments by exploiting advanced com-
puter vision techniques [7]. However, these sensors suffer from
two fundamental limitations [8]. First, they are vulnerable to
occlusion, i.e., these sensors cannot perceive objects occluded
by non-transparent objects. Second, similar to human eyes, the
farther an object is, the fewer details the sensors can capture,
i.e., the observations are very sparse or non-existent for a
farther object [9]. Consequently, even equipped with redundant
and rich sensors, the perception accuracy is still unsatisfactory.
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For example, Tesla’s vehicle failed to recognize the truck in
2016, the highway divider in 2018, and the semitrailer in
2019, all leading to fatalities [10]. A similar fatality happened
in 2018 because Uber’s autonomous driving system failed to
recognize that pedestrians jaywalk [11].

To this end, we advocate exploiting collaborative perception
(CP) [12], [13], [14] to enhance vehicles’ awareness over
adjacent vehicles, road participants, as well as surrounding
environments. Building upon 5G vehicle-to-everything (V2X)
communication [15], [16], CP cooperatively shares local per-
ception data to construct a complete and robust perception of
its environment [17], which is very promising to overcome
the above limitations. CP could not only maximize the line
of sight and field of view but also reduce the uncertainty in
local object detection results and increase perception accuracy,
compensating for sensor/perception deficits, and removing
blind spots [18]. For example, as shown in Fig.1, vehicles at an
intersection cooperatively share their perceived information to
see-through occlusion. Vehicles C and D are occluded, which
can also be illustrated by the point clouds shown in View
C and View D, where the point clouds in the corresponding
areas are empty. Powered with CP, C and D can perceive each
other if vehicle A or B could share its perceived information.
Therefore, CP could enhance perception accuracy and robust-
ness, as well as enlarge perception range [19]. Considering the
advantages of CP, recent years have witnessed standardization
efforts for collaborative perception services from the ETSI
[20].

To fully release the power of CP and vehicular edge com-
puting [21], this paper develops a system called EdgeCooper
where ADVs cooperatively upload their perceived LiDAR
data to the edge using 5G V2X communications, creating
a global and complete view and enhancing vehicles’ aware-
ness over surrounding environments. The edge first exploits
the computing resources to perform object detection over a
merged view and then broadcasts the detection results to
all participants for providing better cooperative awareness.
EdgeCooper advocates cooperative perception by aggregating
ADVs’ sensor data to the edge, which enjoys the following
advantages compared with cooperative perception between
adjacent ADVs: 1) Better detection accuracy. ADV may not
have enough computational resources to process others’ data
at a line rate and may resort to a lightweight model with
sacrificed accuracy [22]. However, the edge can exploit the
abundant computing resources in vehicular edge computing to
run a heavyweight deep learning detection model for improved
detection performance. 2) Reduced bandwidth usage. In Edge-
Cooper, the edge server aggregates point clouds from vehicular
and roadside LiDARs and then performs object detection
over the merge view. EdgeCooper schedules vehicles to share
partial point clouds with the edge server, thereby necessitating
transmission of the point cloud only once for each vehicle.
Consequently, EdgeCooper effectively minimizes bandwidth
utilization. However, if each vehicle retrieves the sensor data
by cooperatively sharing point clouds among adjacent vehicles,
then, each vehicle has to disseminate its point clouds to every
neighbor, consuming massive communication resources. 3) A
wider range of beneficiaries. End users with little computing
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Fig. 1. Collaborative perception for autonomous driving at an intersection,
which could enhance perception accuracy and robustness as well as enlarge
perception range.

resources, e.g., bicyclists, and pedestrians, can benefit from
EdgeCooper since the computation task is performed at the
edge. However, implementing EdgeCooper meets the follow-
ing challenges.

A. Challenges

1) How to Select Complementarity-Enhanced and
Redundancy-Minimized Data for Sharing?: The shared
data could either be raw sensor data or intermediate features.
Several studies advocate sharing of processed data, i.e.,
intermediate features of object detection deep learning model.
However, there will be a loss of information during data
processing, and sharing processed data lacks generality.
In contrast, raw sensor data has a simple, fundamental,
and universal data format to flexibly support a wide range
of CAV applications. As for sharing of raw sensor data,
Arnold et al. [23] directly transmit individual perceived
raw sensor data, which is bandwidth-inefficient since the
sensor data are redundant for containing overlapping areas.
Therefore, Zhang et al. and Aoki et al. [24] adopt a disjoint
spatial partition of the environment and cooperatively transmit
the partitioned sensor data, i.e., select the best view for each
area. However, it would deteriorate the performance since
multiple views are complementary. These methods perform
toward two extremes. Therefore, we should properly select the
shared data that is less redundant and most complementary,
to reduce the transmitted data while minimizing information
loss.

2) How to Design a Network-Aware and Scalable Trans-
mission Strategy?: In CP, each area can be perceived by
multiple ADVs, and a subset of ADVs is scheduled to
transmit the data for each area considering network status.
Considering the bandwidth requirements of CP, multi-hop
cooperative transmission between the device to device and
cellular links is exploited for improved bandwidth perfor-
mance [15]. Therefore, EdgeCooper has to jointly consider
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link scheduling, channel assignment, packet scheduling, and
relay selection to develop a scalable transmission strategy.
Link scheduling selects a subset of links under a predefined
utility, which is usually modeled as a maximum weighted
independent set problem and is known to be NP-Hard [25].
Channel assignment allocates each link with a channel consid-
ering interference and half-duplex constraints, which involves
solving a graph coloring problem and is also a known NP-Hard
problem [26]. On top of these two NP-Hard problems, Edge-
Cooper has to additionally consider packet scheduling and
relay selection, which further complicates and mystifies the
transmission strategy.

3) How to Conduct Co-Simulation to Evaluate Edge-
Cooper?: EdgeCooper involves joint manipulation over
transportation traffic, sensors of ADVs, edge computing and
wireless communications, and deep learning detection models.
Conducting co-simulation among transportation simulators,
autonomous driving simulators, wireless communication sim-
ulators, and artificial intelligence frameworks is a requisite for
evaluating the performance of EdgeCooper.

B. Solutions and Contributions

1) Voxelization-Based Strategy for Selecting
Complementarity-Enhanced  and  Redundancy-Minimized
Data: Instead of cooperatively sharing a disjoint spatial
partition or entire perceived data of the environment,
EdgeCooper adopts a novel voxelization-based sharing
strategy. It is inspired by voxel-based LiDAR detection
model that samples and groups point in voxel. EdgeCooper
schedules sharing of data in each voxel considering the
network situations. The cumulated number of points in each
voxel is urged to provide enough representations for the
objects. Consequently, in each voxel, the edge can retrieve
data from multiple ADVs to enhance complementarity.
Meanwhile, the retrieved total number of points is restricted
to minimize redundancy.

2) Network-Aware and Scalable Transmission Strategy
Based on Maximum Flow Theory: We first formulate a
collaborative transmission strategy involving link scheduling,
channel assignment, packet scheduling, and relay selection as
an integer optimization problem, and prove that it is NP-Hard.
Then, we convert it into a minimum cost flow problem with
conflict, and theoretically prove that there is no polynomial
time approximation algorithm with a constant performance
ratio unless P = NP. After that, we divide it into two subprob-
lems, minimum cost flow, and conflict elimination problem.
A two-dimension graph coloring algorithm with guaranteed
performance is proposed to address the conflict elimination
problem.

3) Co-Simulation Among SUMO, CARLA, NS3, and
PyTorch: We build a comprehensive simulation platform that
is capable of conducting large-scale co-simulation by a joint
manipulation over transportation traffic simulator SUMO [27],
autonomous driving simulator CARLA, communication simu-
lator NS3, and deep-learning framework PyTorch. Exploiting
the co-simulation platform, EdgeCooper is evaluated at
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28 intersections involving up to 50 vehicles as compared
with several baseline methods. Experimental results demon-
strate that EdgeCooper can reconstruct a robust and complete
perception over an enlarged area with a network-aware and
scalable transmission strategy, performing effectively and effi-
ciently in enhancing vehicular awareness.

The object detection can achieve real-time processing at
50 frame per second (FPS) and EdgeCooper has end-to-end
latency of ~ 100 ms. Furthermore, compared to a single
vehicle’s perception, EdgeCooper can extend up to 3.6 times
the detection range and improve perception accuracy by 20%.

The remainder of this paper is organized as follows.
Section II reviews the related works. Section III describes
the preliminaries. Section IV introduces the system model.
We investigate the complexity and the proposed solution in
Section V and Section VI, respectively. Section VII is focused
on the experiments. Finally, Section VIII concludes the paper.

II. RELATED WORKS

EdgeCooper enables multi-agent collaborative perception
[28] through multi-hop cooperative communication, where
interested vehicles upload their individual point clouds to the
edge server to construct a holistic and extended view. This
section reviews the related works.

The multi-agent collaborative perception [29] approaches
mainly include output-based late collaboration, feature-based
intermediate collaboration, and raw-measurement-based early
collaboration [30]. Late collaboration only shares perception
results among multiple agents. Volk et al. [31] implement a
track-to-track fusion of the cooperatively perceived objects to
the local tracks of the ego vehicle, to enhance object track-
ing performance. Arnold et al. [23] apply a post-processing
algorithm non-maximum suppression for box fusion. Liu et al.
[32] adopt a self-adaptive topology merging algorithm based
on a bipartite graph to determine if detected vehicles from two
views are the same, thus creating an accurate merged topology
map. In late collaboration, each individual perception output
could be noisy and incomplete, which may cause unsatisfying
fusion results.

Intermediate collaboration involves sharing neural network
features among agents, which has been investigated in [19],
[33], [34], [35], [36], and [37]. Chen et al. [19] propose a
point cloud feature based cooperative perception framework
for connected autonomous vehicles to achieve better object
detection precision. Guo et al. [33] differentiate weights among
feature maps for a more guided fusion, based on how much
new semantic information is provided by the received feature
maps. It enhances the inconspicuous features corresponding to
far/occluded objects to improve their detection precision. Liu
et al. [34] support multi-agent collaborative perception in a
distributed and bandwidth-efficient manner, by learning how
to construct communication groups as well as decide when to
communicate. Liu et al. [35] propose a multi-stage handshake
communication mechanism where the neural network can
learn to compress relevant information needed for each stage.
Wang et al. [36] propose a vehicle-to-vehicle approach that
transmits compressed intermediate representations, which can
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intelligently aggregate the information received from multiple
nearby vehicles using a spatially aware graph neural network.
Xu et al. [37] build a holistic attention model to effec-
tively fuse information across on-road agents. It includes both
heterogeneous multi-agent self-attention and multi-scale win-
dow self-attention, which can capture inter-agent interaction
and per-agent spatial relationships. Intermediate collaboration
is bandwidth-efficient, since we can squeeze representative
information into compact features. However, there will be
a loss of information during data processing, and sharing
processed data lacks generality. For example, different agents
use heterogeneous neural networks, making it hard to share
intermediate features since they have different latent spaces.

Early collaboration first aggregates sensor data collected by
multi-agent, resulting in a holistic view. Then, object detec-
tion is performed using the holistic view. Early collaboration
can fundamentally solve the occlusion and long-range issues
occurring in the single-agent perception. Furthermore, raw sen-
sor data has a simple, fundamental, and universal data format
to flexibly support a wide range of CAV applications [38].
Aoki et al. [24] propose a cooperative perception scheme with
deep reinforcement learning [39] to select the data to transmit,
which mitigates the network load in vehicular communication
networks and enhances the communication reliability. Zhang
et al. [40] merge vehicle individual views to form a more
complete view with a higher resolution, by transmitting the
raw sensor data to an edge server. Arnold et al. [23] also
combine point clouds from multiple spatially diverse sensing
points of view before detection. To the best of our knowledge,
no one has considered multi-hop cooperative communication
for supporting early collaboration. The raw sensor data are of
large volume, which urgently needs cooperative communica-
tion for higher spectrum efficiency. Yu et al. [41] explores the
performance gap between distributed and centralized C-V2X
scheduling in terms of achievable throughput and communi-
cation efficiency in CP. However, they ignore the sensor data
characteristics and apply dummy perception data for simula-
tion. Furthermore, most existing methods advocate sharing of
all sensor data among vehicles, which is quite inefficient. For
instance, in uncertainty-aware localization, only features that
contribute to object location inference are needed, and features
of objects with high uncertainties among vehicles can be
prioritized for transmission to improve real-time localization
accuracy. To the best of our knowledge, our paper is the first
to catenate communication and perception, which is achieved
by a novel voxelization-based strategy. The proposed strategy
establishes a connection between metrics in communications
(e.g., throughput, efficiency) and metrics in object detection
(e.g., accuracy). Furthermore, a network-aware and scalable
transmission strategy is proposed to cooperatively disseminate
point clouds.

Most existing vehicular communication studies focus on
the transmission of CAMs [4], which are short messages
exchanged by vehicles for mutual awareness of each other’s
location in tasks such as collision warning or traffic estima-
tion. The difference between CAMs and CP is that CAMs
contain only metadata about the vehicle itself (location, veloc-
ity, orientation, etc.), while CP contains sensory data or

data representations obtained by the vehicle. Compared with
CAMs, CP makes it possible to detect pedestrians and things
(e.g., holes in the road) that are not equipped with any wireless
communication devices or sensors. Both CAMs and CP need
to be transmitted and received periodically in real-time, but
CP is commonly much more bandwidth-hungry than CAMs.

ITI. PRELIMINARIES
A. Point Clouds and Objection Detection Model PointPillars

This paper is focused on the perception task of
LiDAR-based object detection because the unifying 3D space
naturally allows the aggregation of multiple LiDAR scans
[42]. Each LiDAR N; can periodically generate point cloud
P; = {p},p?, -}, where p] £ [z,y,2,7], (,y, 2) is the 3D
coordinates, and r is the reflectance value.

Inspired by the significant success of voxel-based object
detection models, e.g., PointPillars [43], which divides point
clouds into equally spaced voxels. Specifically, we apply the
state-of-the-art PointPillars [43] for object detection. It is com-
putationally efficient and is adopted by existing industry-level
autonomous driving platforms such as Baidu Apollo and
Autoware. PointPillars advocates point cloud voxelization in
birds-eye view and organizes point clouds in vertical columns
(pillars), i.e., the point clouds are discretized into an evenly
spaced grid in the x-y plane, and each grid represents a
pillar.! Each pillar o contains several data points and can be
represented as (x,y, P?), where z,y denote the pillar center
location, and P; is the set of points located in pillar o,
Pf C Ps.

Definition 1: Sampling strategy in PointPillars. Different
pillars contain different numbers of points. If a pillar o holds
too many points and only P,,., points are kept by random
sampling, ie., |P?| > Ppau Otherwise, zero padding is
applied.

Furthermore, a sampling strategy is applied in PointPillars
for ensuring the same number of points in each pillar, which
is defined in Definition 1. Consequently, the pillars can create
a pseudo-image that is compatible with standard 2D convolu-
tions. In the experiments, P, is set to 32 and the pillar size
is set to 0.4 x 0.4 meters according to [43]. Then, a 2D CNN
backbone network with high computational efficiency can be
applied to extract features, followed by a detection head for
classification and regression.

B. Relationship Between Accuracy and Point Cloud Density

LiDAR point clouds are sparse and have highly variable
point density, due to factors such as non-uniform sampling
of the 3D space, effective range of the sensors, occlusion,
and the relative pose. It is significantly challenging to detect
objects with sparse observations, i.e., areas with low point
cloud density. Therefore, considering the sampling strategy of
PointPillars, the pillar satisfaction degree is defined as:

IPillars are special voxels where there is only one voxel along the height (z)
dimension, which eliminates the need to tune binning of the vertical direction
by hand and achieves faster speed by removing expensive 3D convolutional
layers.
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TABLE I
SUMMARY OF NOTATIONS
Notations i Descriptions
N, M The set of vehicular and roadside LiDARs,
respectively.
@] The set of pillars.
Pi Point cloud observed by N;, P; =
Py The set of points observed by LiDAR N; and
located in pillar o, PY C P;.

Prax The maximum number of points for the sam-
pling strategy.

T,C The set of time slots and subchannels, respec-
tively.

“3:2, . The number of points that participant ¢ uploads
regarding pillar o € O, using the link j — k
at t-th time slot.

mj k.t The maximum number of points can be trans-
mitted on link j — k at ¢-th time slot.

Ti gt Link activation status.

M)kt Channel allocation strategy.

E(o) The aggregated points for pillar o € O from
all participants.

i— g Transmission link from 3 to j.

GP(i— g,k —1) Conflict of primary interference between 7 —
jand k — [.
Gi(i — j,k — 1) || Conflict of secondary interference between
i — jand k — [.
S, T The virtual source and sink node, respectively.
nt Participant 4 in the ¢-th time slot.
B (nk — nj) The set of neighbors to n® — n!f that is
conflict by the primary conflict.
BE(n% — nf) The set of neighbors to n’ — nj that is
conflict by the secondary conflict.

Definition 2: Pillar satisfaction degree. Inspired by the
sampling strategy of PointPillars, the satisfaction degree over
a pillar o is defined as g, = min(Ppaz, |P?]).

IV. SYSTEM MODEL AND FORMULATION
A. Collaborative Perception

We consider an urban intersection covered and serviced by
an edge server, as shown in Fig.2. There exist two kinds of
sensor devices, NN vehicular LiDARs (a subset of vehicles
that is installed with LiDARs and is willing to join the
collaborative perception task), and a set M of M roadside
LiDARs. We denote the edge server together with the set of
vehicular LiDARs as N' = {0,1,---, N}, where 0 stands
for the edge server. All these LiDARSs collaborate to enhance
the perception performance. Powered with high-definition map
[44], infrastructure-based positioning, and vehicle cooperative
positioning, it is possible to achieve high-precision position-
ing at the centimeter, or even millimeter level [45]. Such
positioning accuracy is quite enough to align voxel grids
collected from different participants (note that the pillar size is
0.4 x 0.4 meters according to [43]). Therefore, we reasonably
assume that each agent is provided with an accurate position
and that the perceived measurements are well synchronized.

In the considered urban intersection, EdgeCooper advo-
cates that vehicles cooperatively upload their individual point
clouds to the edge server, releasing the power of collabo-
rative perception. EdgeCooper is divided into the following
three stages for supporting collaborative perception service: 1)
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Fig. 2.  Framework of EdgeCooper: collaborative perception at a complex
intersection assisted with vehicular edge computing.

Upload. Participants (i.e., all interested vehicles and roadside
LiDARs) first cooperatively upload point clouds to the edge
server, through multi-hop wireless communications (including
Sidelink for V2V and V2I communication as well as Uplink
for vehicle to base station communication) or wire-line links
(roadside LiDARs). Therefore, roadside LiDARs can upload
all their point clouds while vehicular LiDARs disseminate
partial raw point clouds rather than the whole sensory data
to reduce the redundancy caused by overlapping perspectives,
improving communication efficiency. 2) Object detection. The
edge server performs object detection based on aggregated
point clouds and provides improved perception results for
better driving decisions. 3) Results broadcast. The edge server
disseminates the perception results to all interested participants
through a broadcast channel, since the detection results are of
small size.

Definition 3: Grid. The covered area of the edge server is
horizontally (x-y plane) partitioned into grids of equal size.

In order to merge points from point clouds generated by
different devices, the size and area of pillars generated by each
participant should be unified. Therefore, the covered area is
divided into grids according to Definition 3, as shown in Fig.3.
Here, the grid size can be greater or equivalent to the pillar.
For simplicity, we assume that each grid is exactly a pillar,
and the grid is used interchangeably as the pillar hereafter.
Furthermore, this pillar setting is agreed upon and shared by
all the participants and each participant would process its point
clouds based on Definition 3. Each participant observes the
point clouds based on different coordinate systems since they
have very different perspectives of the world depending on
the location and orientation of its sensors. Therefore, each
participant can exploit perspective transformation based on the
accurate position to unify the coordinate system. For simplic-
ity, the set of grids is denoted as O. Each participant ¢ can
observe a subset of pillars O; C O, and the set of points in pil-
lar 0 € O; is Py . Participants cooperatively disseminate points
to the edge server, for broadening the perception range and
enhancing detection accuracy and robustness. Furthermore,
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Fig. 3. The upload stage of EdgeCooper, where participants cooperatively
share point clouds to the edge server through multi-hop wireless communi-
cation for higher spectrum efficiency.

the dissemination should be complementarity-enhanced and
redundancy-minimized as defined in Definition 4 to consume
less wireless resources and support more users.

Definition 4: Complementarity-enhanced and
redundancy-minimized point cloud sharing. All the
vehicular and roadside LiDARs transmit point clouds to
the edge server in the Upload stage and each pillar may
contain points uploaded by several LiDARs. According to
the sampling strategy in PointPillars, it is redundancy for
the transmission if a pillar holds too many points, i.e.,
|P?| > Puas since only Py, points are kept by random
sampling. It is complementarity if a pillar holds less than or
equal to P,,.,. Otherwise, zero padding is applied, which
would harm the performance.

Collaborative perception can provide better cooperative
awareness, requiring cooperatively sharing of safety messages
(e.g., positions, speed) at a frequency of 10 Hz, which enables
higher road safety and cooperative traffic efficiency. Therefore,
the edge server should update the perception data to vehicles
every 100 ms, and the collaborative perception service should
be executed every 100 ms. In object detection stage, the com-
putation time expends approximately 20 ms since PointPillars
has the detection speed of 50 Hz. The results broadcast stage
usually takes several milliseconds. Consequently, there exists
approximately 75ms for the upload stage, as shown in Fig.2.
We further assume the considered system is time-slotted and
the upload stage contains several time slots, which allows
multihop cooperative dissemination of the partial point clouds
to the edge server. Compared with single-hop transmission,
multi-hop transmission enjoys higher data rates, more efficient
use of the wireless medium, and better energy efficiency.

The goal of the upload stage is to maximize the pillar
satisfaction degree based on optimized multi-hop cooperative
dissemination, i.e., retrieve P,,,, points for each pillar o € O,
as shown in Fig.3. EdgeCooper is periodically executed every
100 ms, and such a short duration makes it possible to ignore
the movement of vehicles.

B. System Model

According to Rel-14 to Rel-17, 5G-V2X use 10 ms sidelink
frames in the time domain divided into 1 ms subframes (the

same as LTE-V2X) [46]. Each subframe is defined as one
transmission time interval. We assume a 20 MHz channel in
this paper as this is the most common bandwidth and it is
supported in both 5G- and LTE-V2X. The 5G-V2X channel
is divided into several equal-width logical subchannels. Each
subchannel consists of 10 resource blocks (RB).> Depending
on payload size, a transmission may require one or more RBs.
Considering the large-volume data transmission, we further
pack an equal number of contiguous RBs within a subchannel
as resource chunks [47]. Each resource chunk spans 7 ms and
is applied to support transmission. Consequently, our system
is slotted based on T and the set available time slots for the
upload stage is denoted as 7 = {Ty,2 * Tp,--- ,T = To}.
We further assume that the 5G-V2X channel is divided into
C' subchannels, and the set of all subchannels is denoted as a
set C, which is shared among the V2X links [47], [48], where
each link can be allocated with only a subchannel. EdgeCooper
applies sidelink as well as uplink for disseminating point
clouds to the edge server through multi-hop communication.
We further assume that the sidelink and uplink share the C'
subchannels. The 5G-V2X works in mode 1, which is similar
to mode 3 in LTE-V2X, where the base station assigns and
manages the wireless resources for V2X communications in a
centralized scheduling manner.

Denote u k + as the number of points that participant ¢
uploads regardmg pillar o € O, using the link 7 — k at ¢-th
time slot. The maximum number of points can be transmitted
on link j — k at t-th time slot is known, which is denoted
as m; ;. Specifically, we assume there exists a self-loop link
1 — ¢ with infinite capacity, i.e., participant ¢ stores the data for
further transmission. The multi-hop cooperative dissemination
strategy has to consider the following constraints:

o Link capacity: The transmitted number of points could
not exceed the link capacity, i.e.,

10 +
0<ujkt<\73»°| uakteN

SN ulh, < myge (1)

ieEN o€

o Flow conservation: The aggregated outgoing link flow
rate at each participant equals the incoming link flow rate

for the relay node.
22D Whea =20 2 uiGe @
iEN 0€0 jEN

1EN 0€0 jEN

o Channel allocation: Each activated link should be allo-
cated with a subchannel and a binary variable x; ;; can
be applied to represent the link activation status, i.e., ; ;¢
is one if activated else zero, which can be denoted as:

Tt = sign( Z Z ugy ), 3)

i€EN 0€O

where sign(-) is Signum function.

We further define n; 1, € {0,1,---,|C|} as the subchan-
nel allocation strategy, where 7, = 0 if link 7 — £
does not apply any subchannel at ¢-th time slot, otherwise,

2RBs are used for the physical sidelink control channel and the physical
sidelink shared channel.
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n;,k,¢ 1S the index of the used subchannel. Each activated
link can be allocated with only a subchannel, which
outputs the following subchannel allocation constraint:

“4)

Considering the wireless communication interferences
between 5G V2X links, there exist the following two
types of interferences.

Nyt = 1if @ =1

1) Primary interference: A participant cannot act as the
transmitter or receiver simultaneously;

2) Secondary interference: If the receiver is within the
interference range of another transmitter, the two
transmitters cannot use the same subchannel.

Note that secondary interference can be removed by
properly allocating subchannel. Therefore, inspired by
[47] and [49], at t € T time slot, we define a conflict
graph G; = (V;, EFEF), in which each node in V; is a
link and each edge in £ U & indicates conflict between
the link pairs, as shown in Fig.4. £ and & represent
the conflicts of the primary and secondary interference,
respectively.
We denote the conflict relationship in terms of primary
and secondary interference as GY(i — j,k — 1) and
Gi(i — j,k — 1), respectively, where it is 1 if link
1 — j conflicts with k& — [ and O otherwise. Therefore,
the following constraint can be applied to avoid conflict
between activated links:
it + Tpe =2 and
Gli—jk—10)=1
if GP(i—j,k—1)=1.

)

With the subchannel allocation strategy 11 = U;en Ujen
Uternjk,e and multi-hop transmission strategy u« =
Usen'Uoco UjeNUkeNUteTU;:Z’t, the edge server can receive
points for each pillar o € O from all participants, which is
denoted as E(o0) and can be denoted as:

E(0) =) > > ujoat ) IPYI

1EN JEN teT iEM

Nijt 7 Mhelots if

Tijt+ T <1,

(6)

Considering the pillar satisfaction degree defined by Defini-
tion 2, the edge server hopes to retrieve at least P,,,, points for
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each pillar. The pillar satisfaction degree over the pillar o € O
is defined as g,(u,n) = min(Pyaz, E(0)). The cumulated
satisfaction degree is defined as:

g(w,m) = go(w,m) = Y min(Praa, E(0).  (7)

ocO 0O

C. Collaborative Perception Scheduling Formulation

By optimizing the subchannel allocation strategy 7 and
multi-hop transmission strategy u, the collaborative perception
scheduling (CPS) task requires maximizing the cumulated
pillar satisfaction degree, which is defined as:

P1: max g(u,n)

u,n

s.t. (1), (2), (3), (4),and (5). ®)

Theorem 1: CPS problem is NP-Hard.

Proof: The CPS problem contains channel allocation,
link scheduling, packet scheduling, and relay selection. The
link scheduling on a conflict graph in a wireless network
has been proven to be NP-Hard in [47], which demonstrates
that the sub-problem of the CPS problem is NP-Hard. Conse-
quently, the CPS problem is NP-Hard. ]

V. MAXIMUM COST FLOW REFORMULATION AND
COMPLEXITY

A. CPS Reformulation

The CPS problem P1 formulated by (8) is converted into
P2, which is denoted as:

P2 max >, D, ) D uis

0€O N jJEN teT

(1. (2),(3). (4),and (5).
PIPIPIL ¥

1EN JEN t€T
> P21, 0).
iEM

(©))

s.t.

S mal‘(Pmaw - (93-)

Theorem 2: Optimization PI1 and P2 lead to the same
cumulated pillar satisfaction degree.
Proof: Please refer to Appendix A. ]
Maximizing the cumulated pillar satisfaction degree has
been formulated as an integer programming, which is of a
large number of variables and is challenging to solve since it is
NP-Hard according to Theorem 1. The formulated problem can
also be converted into a minimum cost flow problem (MCFP)
with conflict constraints by a polynomial algorithm.

B. Minimum Cost Flow Formulation of P2

We first introduce MCFP and minimum cost flow with
conflict constraints (MCFPCC) problem.

Definition 5: MCFP. Consider a graph network F =
(Ny,Er) with a source S and a sink T, where each edge
ei,j € &y is associated with a cost. The MCFP problem is
to find a flow with the least total cost while satisfying the
following constraints:
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Fig. 5. Minimum cost flow formulation of CPS.

o Capacity constraint: the flow of an edge cannot exceed
its capacity;

o Conservation constraint: the sum of the flows entering a
node must equal the sum of the flows exiting that node,
except for the source and the sink.

Definition 6: MCFPCC. Building upon the MCFP problem,
the edge pairs in the networks are in conflict, i.e., only one
of the conflicting pairs can be selected to route flows. The
conflicting relationship can be represented as a conflict graph.

Theorem 3: Optimization P2 can be transformed into MCF-
PCC within polynomial time.

Proof:

We construct a single source and single sink flow network

denoted by F = (Ny, &), as shown in Fig.5, with vertex set:

Ny = {8,T}uOuU U{nf)7n§7~-~,n'}\,},

teT

(10)

where:

e S: a virtual source node.
e T': a virtual sink node.
e 0€ O:apillar 0 € O.
« n!: participant i in the ¢-th time slot.
The edge set, £y, consists of directed edges and is constructed
as follows:
e Step 1: For each o € O, there exists an edge of
mar(Praz — Y ;en |P7]50) capacity from S to o.
« Step 2: For each o € O and participant i € {N — 0} at
the first time slot, there exists an edge of |P?| capacity
from o to n}.

o Step 3: For each pair (nﬁ,nﬁ“), 1,7 € N,i # j, there
exists an edge of m; ;, capacity from n! to nitl

ans
o Step 4: For each pair (nf,n!™), i € N, there exists an

edge of infinite capacity from n! to nﬁ“.

o Step 5: For each participant ¢ € {N — 0} at the last
time slot, there exists an edge of m; o capacity from
nl to T. There exists an edge of infinite capacity from
nd to T.

We then narrate how to map optimization P2 into
MCFPCC on the constructed graph F = (Ny,Ef). (1)
is considered by MCFPCC as the capacity constraint
between the edge (nﬁ,nz*l). (2) is exactly the conservation
constraint. As for (3), (4), and (5), they are mapped
into conflict constraints. (9a) is mapped as the capacity
constraint of edges between S and o € O. The objective
MaXun  Doco Duich 2ojeN 2otet Uy, 1 the minimum
cost flow on F = (Ny,&f) between the source S and the
sink T'. |

We then analyze the complexity of transformation opti-
mization P2 into MCFPCC. The number of iterations for
step 1 to step 5 are |O|, |O||N], N2, |N]?, and |N],
respectively. Therefore, the complexity of the algorithm is
O(T|O|IN|+ TIN?).

C. Hardness of a-Approximate Algorithms

The CPS problem is significantly complex to solve, since it
is NP-Hard. Furthermore, we prove that even a polynomial
time approximation algorithm with a constant performance
ratio (o« > 1) does not exist unless P=NP. Based on the
constructed graph F = (Ny,Ey), we have Theorem 4.

Theorem 4: There is no polynomial time approximation
algorithm for the CPS problem with a constant performance
ratio unless P = NP.

Proof: Please refer to Appendix B. ]

VI. SOLUTIONS

According to Theorem 4, it is impossible to obtain a
polynomial time approximation algorithm for the CPS problem
with a constant performance ratio unless P = NP. Therefore,
this section is concentrated on a heuristic algorithm. We divide
optimization P2 into a minimum cost flow problem and a
graph coloring problem, which are formulated as P3 and P4,
respectively.

P3: w = argmax Z Z Z Zu}%t

0€O ieEN jJEN teT

s.t. (1),(2),and (9a). an
P4: max Z Z Z Zu;gt

wewn 0€O0ieN jeN teT
s.t. (3),(4),and (5). (12)

Optimization P3 ignores the conflict relationship between
links, which purely computes the minimum cost flow from
the source S to the sink 7'. Therefore, P3 can be converted
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into a linear programming problem as follows:

H:argmax ZZZZ%M (13)
ocOieN jeN teT
s.t.0<u?2t< P2, (14)

DD U <M (15)
iEN 0€O
DD D k=20 e (16)
i€EN 0€0 jEN iEN 0€0 jEN
Z Z ZuJOt < max(P’max - Z ‘,PZO|,O)
iEN JEN teT iEM

A7)

Exploiting linear programming (13) results &, we can obtain
the set of scheduled links V; at t € 7 time slot, i.e.,

Vo= {0} —nf| > 3w, > 0.

ocQ ieN

(18)

We then selected a partial of links considering the subchannel
allocation constraints at each time step. A two-dimensional
graph coloring algorithm (TDGC) is proposed to address this
problem.

At each time step, the weight of a link is defined as the
number of points transmitted on the link, i.e.,
=22 W

ocOieN

W( n —>nk (19)

Then, considering the primary and secondary interference,
we select a subset of non-conflict links. Based on V,, the
corresponding conflict graph is G; = (V4, EF, EF), where each
vertex in V; is assigned with a weight. At first, we have an
empty set w;, and the node with the highest weight n§ —
nk = argmaz;sey, W (9) is selected and added into ;. Then,
delete all its neighbors 37 (n} — nj) that are conflict by the
primary conflict. As for the set of neighbors 37 (n}; — nj,) that
is conflict by the secondary conflict, delete the neighbors with
the smallest weight until only C' — 1 neighbors are left. After
that, loop over the above steps until V; is empty. Finally, for
each path from S to 7, if an edge in this path is deleted, then,
this path should be deleted, i.e., if link n — nl is deleted,
40 ,=0,Yie N,YoeO.

The TDGC algorithm sequentially selects the non-conflict
links for each time step.

Theorem 5: TDGC algorithm outputs a subset of links at

W(o0)
least of SEEE -

max |85 (60)|, is the maximum number of neighbor that have
0
primary and secondary interfere, respectively. We assume C' <

s + L.
Proof: Please refer to Appendix C. (]

, Where v, = rr};aXWf((so)\, Vs =
0

VII. IMPLEMENTATION AND EXPERIMENT

In this section, we implement and evaluate EdgeCooper by
conducting large-scale co-simulation exploiting deep-learning
framework PyTorch, autonomous driving simulator CARLA
[50], transportation traffic simulator SUMO and communica-
tion simulator NS3 [51].
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Fig. 6. Evaluation of collaborative perception in vehicular edge computing

using co-simulation among CARLA, SUMO, NS3, and PyTorch.

A. Dataset and Simulation Architecture

Our data are collected from eight default town provided
by CARLA, and consists of 28 scenes, where each scene
contains traffic flow at a certain intersection, originating from
OpenV2V [52]. As shown in Fig.6, in each scene, SUMO
is firstly used to produce numerically-realistic traffic flow,
for its capability of handling large-scale and realistic traffic
flows. Then, CARLA is employed to get realistic 64-channel
LiDAR streams, from multiple vehicles located in the same
geographical area. The simulated LiDAR is streamed at 20 Hz
and recorded at 10 Hz. The LiDAR points are coped within
the region of [—70,70] x [—40,40] x [—3, 1] meters defined
in the ego-vehicle XYZ coordinate. We set the width/length
(X/Y) of each pillar as 0.4 meter, and the height (Z) as 4 meter
following [43]; After that, NS3 is applied to simulate vehicular
communications, implementing the CPS via the NS3 applica-
tions module. We implement the CPS scheduling algorithm
based on NS3 simulations, i.e., the edge server collects points
data from all participants. The maximum number of points
in each grid P4, is 32 according to [43]. Finally, the
edge server adopts the PyTorch framework for implementing
PointPillar and conducts object detection based on aggregated
point clouds. We further adopt Average Precision (AP) at
different Intersection-over-Union (IoU) thresholds to assess
different models.

The real-time 3D detection adopts PointPillars, a state-of-
the-art open-source 3D object detection framework. We adopt
the same training and testing parameters of PointPillars as in
[43]. The experiments are conducted on a server equipped with
an Intel(R) Xeon(R) CPU E5-2698 v4 at 2.20GHz, an NVIDIA
Tesla V100 GPU, and 512GB of DDR4 RAM. The object
detection can achieve real-time processing at 50 FPS and
Edgecooper achieves end-to-end latency of 100 ms.

B. Object Detection Model of EdgeCooper

EdgeCooper eliminates the expensive 3D convolutions in
[53] and advocates 2D convolutional architecture for higher
speed and better computational efficiency, as shown in Fig.7.
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Therefore, we first convert the point cloud to a pseudo-image.
In the upload stage, a network-aware and scalable transmis-
sion strategy based on maximum flow theory is proposed
to advocate the cooperative sharing of point clouds among
participants. This stage gives rise to aggregated point clouds at
the edge server. The aggregated point clouds consist of pillars
and a pillar is a voxel with unlimited spatial extent in the
z direction and hence there is no need for a hyperparameter
to control the binning in the z dimension. If a pillar holds
too much data, e.g., larger than P,,,,, the data is randomly
sampled. Conversely, if a pillar has too few point clouds, zero
padding is applied. The points in each pillar are then decorated
(augmented) to a tensor with 9 dimensional according to [43].

For each point, a linear layer is applied followed by
BatchNorm and ReLU to process each point, resulting in a
(SdimensionaSpillarsypmam) sized tensor, where Sdimension
is the new dimension of each point, and Spqrs is the
number of pillars. This tensor is followed by a max oper-
ation over the channels to create an output tensor of size
(Sdimension, Spillars). Note that the linear layer can be for-
mulated as a 1 x 1 convolution across the tensor resulting in
very efficient computations. Once encoded, the tensor of size
(Sdimension, Spitlars) are scattered back to the original pillar
locations to create a pseudo-image of size (Sqimension, H, W)
where H and W indicate the height and width of the interested
areas. The pseudo-image is followed by a 2D convolutional
network backbone network for extracting efficient features.
After that, a detection head is applied for classification and
regression, as shown in Fig.7.

C. Communication Settings

In each scene, there exist 7 — 50 vehicles, in which only a
small part of vehicles (with high-level autonomous driving)
are installed with LiDARs, and the rest vehicles (without
high-level autonomous driving while having communication
capability) cannot percept the environment but are willing to
join the collaboration perception services, i.e., relay the point
cloud data. The reason behind it is that all vehicles could
benefit from this service for cooperative safety. All vehicles
are within the coverage of the base station. The upload stage
has a duration of 75ms. We set up the simulation following
the evaluation methodology defined in 3GPP TR36.885 [2],
which describes the detailed channel models for V2X links.
Vehicular communications are simulated according to the
PHY and MAC layers of the 5G C-V2X protocols: NR-V2X,

r pooling
[N layer
~

Classification

Average

-if

Regression

Convolutional
laayer

Backbone (2D CNN)

Detection head

TABLE II
SUMMARY OF SIMULATION PARAMETERS
Parameter i Value
Frequency band 5.9 GHz
Bandwidth 20 MHz
Number of subchannels C' 10
Transmission power 23 dbm
Number of vehicles 7-50
Travel velocity 0 - 40 km/h
To 5 ms, 15 ms, 25 ms
Path loss model 128.1 + 37.6log10(d)
Shadowing distribution Log-normal
Shadowing standard deviation 8 dB
Fast fading Rayleigh fading
Noise power -114 dbm

based on 3GPP Rel-16/17 [46]. Our simulation scenarios are
designed to represent a 20 MHz 5G V2X system, with 5.9 GHz
carrier frequency. Following [46], 5G V2X channel is divided
into ten 2 MHz subchannels. The major network simulation
parameters are listed in Tab.IL.

D. Comparison Algorithms

In the experiments, we compare EdgeCooper with the fol-
lowing algorithms: 1) Edge-assisted multi-vehicle perception
(EMP) [40]. EMP exploits a disjoint spatial partition of the
environment and transmits the partitioned sensor data to the
edge, thus creating a global view and achieving a balance
between bandwidth consumption and data quality. 2) Maxi-
mum capacity induced transmission (MC). In each time step,
the feasible link with maximum link capacity is scheduled for
transmission. 3) Without relay (WR). Each participant trans-
mits data into the edge directly without multi-hop cooperative
communication.

E. Qualitative Evaluation

To understand how EdgeCooper can enhance perception
accuracy and robustness, as well as enlarge perception range,
we visualize a complex intersection in a city with 10 vehi-
cles equipped with LiDARs, 2 roadside LiDARs, and other
50 vehicles, as shown in Fig.8. Fig.8(a) shows the complex
intersection in a city, where the red box means vehicle
installed with LiDARSs. In such an intersection, the roadside
LiDARs have limited detection range and are not able to
detect areas with occlusion (occluded by trees, and trucks).
Therefore, it depends on EdgeCooper for seeking a larger
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perception range and see-through perception, which results
in higher cooperative awareness for related participants. The
edge computing node could aggregate the point clouds of both
roadside LiDARs as well as vehicular LiDARs, which is shown
in Fig.8(b). The point clouds perceived by roadside LiDARs
and vehicular LiDARs are shown in green and yellow colors,
respectively. The red and blue box means the vehicle detected
by EdgeCooper and Non-Cooper algorithms, respectively.

We draw special attention to marked areas. In area A in
Fig.8(b), the roadside LiDARs have extremely sparse obser-
vation, since it has a few point clouds. Therefore, depending
on the ability of roadside LiDARs alone is hard to perform
accurate perceptions over this area. In area B in Fig.8(b), the
roadside LiDARSs cannot percept it at all, since it does not have
any point cloud. Therefore, depending on the ability of the
roadside LiDARSs alone could not perceive this area. However,
powered with EdgeCooper, the edge server can successfully
percept both area A and area B by cooperatively uploading
individual point clouds to the edge to build a complete and
holistic view. The detection results are shown in Fig.8(b). The
results illustrate that EdgeCooper can see-through occlusion
(area A in Fig.8(b)), as well as enhance perception accuracy
and robustness(area B in Fig.8(b)).

F. Quantitative Evaluation

EdgeCooper is able to provide real-time enhanced per-
ception under various processing workloads and network
conditions. We first evaluate the pillar satisfaction degree
under different time slots and a different number of vehi-
cles. Then, we evaluate the extended perception range of
EdgeCooper under a different number of vehicles. Finally,
the detection performance with different time slot duration is
evaluated.

can be detected by Non-Cooper and EdgeCooper, respectively.

Visualization of EdgeCooper in enhancing perception accuracy and robustness, as well as enlarging perception range.

Fig.9 shows the normalized satisfaction rate, which is the
cumulated satisfaction degree of a certain algorithm divided
by the optimized value of (9). Fig.9(a) shows the normalized
satisfaction rate of the four schemes when there exist 2 —
6 vehicles with LiDARs. The results demonstrate that more
vehicles lead to a higher satisfaction rate. The reasons behind
this are 1) each pillar can be perceived by more vehicles and
therefore, each pillar can have a higher satisfaction degree;
2) more vehicles participate in relaying the data and could
upload more data into the edge. Meanwhile, EdgeCooper
achieves the higher satisfaction rate and EMP achieves the
lowest. EMP shares non-overlapping data to the edge server,
which is the least redundant while destroying complementarity.
Specifically, each vehicle N; can observe set of points P}
for pillar 0 and |P?| < Pp4z. In EMP, the vehicle with the
largest |P?| is scheduled to transmit. However, it would not
fully satisfy the perception requirements. As in EdgeCooper,
each vehicle is scheduled to share partial data, and therefore,
the total transmitted data can exceed P,,,,. Therefore, EMP
achieves the lowest satisfaction rate. Comparing EdgeCooper
with WR, the satisfaction rate gain comes from the multi-hop
cooperative communications, which could potentially bring
about higher data rates, and more efficient use of the wireless
medium. Comparing EdgeCooper with MC, the satisfaction
rate gain comes from minimum cost flow and our proposed
TDGC algorithm. Since in MC, the scheduling results in
different time slots are absent of coordination, and a good
scheduling strategy might become poor in the sequential time
slot.

Fig.9(b) shows the normalized satisfaction rate at different
time slots. In the beginning, EdgeCooper has the lowest rate,
however, it has the highest growth rate at the end. EdgeCooper
schedules multi-hop cooperative transmission, which means
that data might be relayed to other nodes and therefore leads
to a lower satisfaction rate in the beginning. Fig.9(c) shows
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TABLE III

DETECTION ACCURACY OF EDGECOOPER AS COMPARED
WITH EMP AND NON-COOPER

Metrics IoU=0.3 IoU=0.5 IoU=0.7
Non-Cooper 0.74 0.69 0.56
EMP 0.80 0.74 0.60
EdgeCooper 0.89 0.84 0.69

the normalized satisfaction rate at different time slot duration.
Note that the duration for the upload stage is 75 ms and
therefore, a larger time slot duration means less number of
slots. The results show that a smaller time slot duration leads
to a higher satisfaction rate. The reason is that a small time slot
duration means more sophisticated exploitation of available
bandwidth.

To measure the detection accuracy, we calculate IoU
between the detection results (locations and dimensions of
detected object bounding boxes) and the ground truth. Detec-
tion accuracy at different IoU thresholds is adopted to evaluate
the performance. Tab.III shows the detection accuracy of Edge-
Cooper as compared with EMP and Non-Cooper (perform
detection using the roadside LiDARs without any vehicles’
LiDARs). The results show that EMP performs better than
Non-Cooper, i.e., EMP achieves a 0.6 improvement than
Non-Cooper in terms of IoU=0.3, and 0.4 improvement in
terms of IoU=0.7. Compared with Non-Cooper, EdgeCooper
improves (0.89 —0.74)/0.74 = 20.27%, (0.84—0.69)/0.69 =
21.74%, and (0.69 — 0.56)/0.56 = 23.32% in terms of
IoU=0.3, IoU=0.5, and IoU=0.7, respectively.

EdgeCooper could not only enhance perception accuracy
and robustness but also enlarge perception range. The per-
ception range is defined using the furthest object that can be
detected. Fig.10(a) shows the detection range of EdgeCooper
when there exists a different number of vehicles equipped
with LiDARs. The results show that more vehicles would lead
to a larger detection range, e.g., the communication range
is extended to 250 m when there exist 6 vehicles that are
equipped with LiDARs, which is nearly 250/70 = 3.57 times
of single vehicle’s perception range. However, the objects
located at different distance enjoys a distinct detection accu-
racy, as shown in Fig.10(b), i.e., an object at a near distance
can be detected at a higher accuracy.

Tab.IV provides a thorough comparison between the pro-
posed EdgeCooper and the existing approaches, e.g., Cooper
[54] and DiscoNet [42], specifically focusing on the trade-off
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Fig. 10. EdgeCooper performance.
TABLE IV

DETECTION ACCURACY OF EDGECOOPER AS COMPARED
WITH EMP AND NON-COOPER

Bandwidth (Mb/s)  Accuracy
Cooper [24]: Complete raw sensor 76.8 0.69
DiscoNet [43]: Intermediate features 11.2 0.60
EdgeCooper: Partial sensor data 6.7 0.69

between detection performance and communication band-
width. Cooper advocates for the sharing of complete raw
sensor data, whereas DiscoNet prefers the sharing of inter-
mediate features extracted using a backbone network. The
comparison reveals the following insights: i) Cooper consumes
the highest bandwidth due to the large volume of raw sensor
data, resulting in the highest detection accuracy; ii) DiscoNet,
utilizing a 16-times feature compression by autoencoder,
achieves a significant reduction in communication volume.
However, this reduction in bandwidth comes at the cost of
lower accuracy, as the intermediate features lose information,
leading to reduced performance; and iii) Our proposed Edge-
Cooper transmits partial raw sensor data, employing a strategy
that enhances complementarity and minimizes redundancy in
the shared point clouds. Consequently, EdgeCooper achieves
the smallest communication volume while maintaining higher
accuracy compared to DiscoNet. These results clearly demon-
strate that EdgeCooper effectively utilizes fewer communica-
tion resources while achieving superior detection accuracy.

VIII. CONCLUSION

This paper proposed EdgeCooper, a novel edge-assisted
multi-vehicle perception system based on vehicular communi-
cations and vehicular edge computing, enabling collaborative
perception and enhancing vehicles’ awareness over surround-
ing environments. EdgeCooper advocates a novel voxelization-
based strategy, which establishes a connection between
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metrics in communications (e.g., throughput, efficiency) and
metrics in object detection (e.g., accuracy). It efficiently
schedules the sharing of complementarity-enhanced and
redundancy-minimized raw sensor data with an edge server,
using multi-hop cooperative communications. EdgeCooper is
demonstrated to enhance perception accuracy and robustness,
as well as enlarge perception range, enabling or boosting a
wide range of cooperative sensing applications. By conducting
a joint simulation of SUMO, CARLA, NS3, and PyTorch,
results have demonstrated that, compared to a single vehicle’s
perception, EdgeCooper can extend up to 3.6 times detection
range and improve perception accuracy by 20%.

EdgeCooper endeavor sits at the confluence of three trans-
formational technologies, intelligent transportation, wireless
communications, and artificial intelligence. In the future,
EdgeCooper is expected to expand its support for a wider
range of vehicular sensors, including cameras, further aug-
menting its perception capabilities. This integration of cameras
into the EdgeCooper system will enable vehicles to cap-
ture visual information, fostering a more comprehensive
and detailed understanding of the surrounding environment.
Additionally, EdgeCooper will take into account factors like
mobility over topology and address the challenges posed by
link interference. EdgeCooper will employ advanced algo-
rithms and protocols to ensure uninterrupted communication
and robust connectivity.

APPENDIX A
PROOF OF Theorem 2

Proof: We first show constraint (9a) for any pillar
o € O would not deteriorate the optimal objective value
of P1. Suppose u is the optimal solution to P1. If there
exists a pillar o € O whose E(o) is greater than Py,
i.e., Zie./\/' Zje/\/ ZtE’T U;:at + ZieM |Pf| > Pma.m then7
there alway exists another solution 4 that satisfies 1) the
difference between @ and @ only lies in 4jj ,; and 2)
DieN Zje/\/ dteT u;",g}t + Xiem [Pl = .Pma-%' ﬂ;:z,t can
be easily computed by gradually decreasing 12;‘,’”, i.e., strategy
u transmits only a subset data of strategy w. Meanwhile, &
also satisfies (1), (2), (3), (4), and (5). In this case, both w and
4 achieves the same objective value, i.e., g(u,n) = g(u,n).
Therefore, if 35:cn D sen 2rer o + 2iem [PY <
Pqx for any pillar o € O, there exists a solution to achieve
the optimum, which produces the following inequality:

OSZZZU;ZgytSPma;E— Z ‘,P10|

iEN jJEN teT ieEM

(20)

Therefore, we can derive >, D icn Doter u;-:‘(’)’t <
max(Praz = e pq [P71,0), which is exactly constraint (9a).

If ZieN Zje/\/ ZtET u;»’fé,t + ZieM |7)zo| < Prag, the
objective of P1 can also be denoted as:

max Z min(Ppaq, F(0)) = max Z E(o) 21
wn wn
=220 D waet > D IPEL 22)

0€0ieN jEN teT 0€0 ;eM

219

Note that P¢, % € M is a constant since the edge server could
retrieve all points generated by roadside LiDARs. Therefore,

g

s o
the objective becomes >, D icn Djen 2oteT Ujo -

APPENDIX B
PROOF OF Theorem 4

Proof: CPS problem can be converted into a MCF-
PCC within polynomial time and vice versa. Therefore, this
theorem holds if there is no polynomial time approximation
algorithm for MCFPCC with a constant performance ratio
unless P = NP. We achieve it by prove that a-approximated
MCFPCC algorithm is equivalent to path avoiding forbidden
pairs (PAFP), which is a known NP-complete problem [55].

Definition 7: Path avoiding forbidden pairs (PAFP). Given
a graph F = (N g, Ex) with two fixed vertices S, T € N and
a set of pairs of vertices E. C (Ng X Ng),E. C Ex, PAFP
aims to find a path from S to T that contains at most one
vertex from each pair in E., or to recognize that such path
does not exist. The pairs in the set £, are called forbidden
pairs.

A formal definition to PAFP is introduced in Definition 7.
PAFP is a NP-complete problem [55]. The proof of Theorem
4 is achieved by reduction from the arc variant of PWFP.
An instance of MCFPCC can be constructed from any instance
of PAFP such that a yes/no answer to the question of whether
the directed graph F has a directed .S, T-path that contains at
most one arc from each pair in &, can be obtained from any
conflict-free flow on the constructed MCFPCC instance, whose
total flow cost is within a times of the minimum conflict-free
total flow cost.

We then introduce how to construct an instance of MCFPCC
from any instance of PAFP. Given PAFP instance F =
(Nz,Ex), with S, T, and forbidden pairs &., we construct
a complete network H = (N3¢, Ex). The constructed graph H
has the same vertex set, i.e., Ny = Nz. Furthermore, each
vertex n; € Ny has the supply or demand values as:

].7 if n; = S,
b(n;) = -1, ifn; =T, (23)
0, otherwise.

Each edge e, ; € £y has unit capacity. The cost C(e; ;) of
each edge e; ; is defined as:

1,
Clesa) = { E41(1 4 0),

A conflict graph can be applied to represent conflicting (for-
bidden) edge pairs in &,.

In the constructed complete network H = (N7, Ex), each
edge has integer capacity since each edge has unit capacity.
Therefore, according to the Integrality Theorem in network
flow theory [56], the feasible flow of any local optimal solution
should be integer, since network flow problem posed with
integer capacities on edges always has a maximum flow in
which the flow on every edge is an integer. Furthermore, both
the source node and the sink has unit supplying/demand value,
the feasible flow should be 1, which forms the S, T-path in H.

if €i,j € 55,

. (24)
if €i,j € 57-{ —&..



220 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 1, JANUARY 2024

PAFP aims to find a path from S to 7' that contains at
most one vertex from each pair in &, and such path could
also be treated as the conflict-free flow in H = (N3, Ex).
On the other hand, in the constructed complete network H =
(N3¢, Ex), a a-approximated MCFPCC algorithm aims to find
a S, T-path without any conflicts, i.e., the pairs in the set &,
are not selected simultaneously. However, such path could be
consisted of edges in &y — &..

We assume that there exists a a-approximated MCFPCC
algorithm. We could use it to compute a conflict-free feasible
flow f* in the constructed complete network H = (N3, Ex).
The total cost C'(f*) of the computed feasible flow is at most «
times of the optimal value (minimum cost). If C'(f*) is larger
than or equal to |€£|(1+4«), this implies that the optimal value
is at least:

IEF|(1 + ) |5]~"
«

=|€r[+—=
It implies that the minimum cost conﬂlct-free flow is a S, T-
path in H with at least one edge not in £r. Therefore,
it implies F does not have a conflict-free directed S, T-path.
On the other hand, if C'(f*) is less than |Ex|(1 + «), the
conflict-free directed S, T-path f* is a subgraph of F =
(Nx, Ex). This case occurs for sure when the approximation

algorithm guarantees an a-approximate feasible flow.
d

APPENDIX C
PROOF OF Theorem 5
Proof: Considering the conflict graph G, = (Vy, EF, &F),
if a node §p € V; with maximum weight is selected, all its
neighbors (37 (dg) that is conflict by primary interference is
deleted, therefore,

W (do) > (25)

( > W(6).

516@ (60)

As for the neighbors 3 (do) that is conflict by secondary
interference, C' — 1 neighbors are kept. Denote the set of
deleted neighbors as 8;~ (do). Therefore, we have

1
W (80) > ol > W(). (26)
t 51€6; 7 (80)
PIRUCOEDS (W do)+ Y. W)
S0 €V, So€wy 61€87 (d0)
+ Z W(51))
51€8;™ (o)
< > (W(B0) + W (d) - 187 (60)
SoEwy
+ W (d0) - 18 (60)])
< > W() +max|ﬁt o) - > W(do)+
doEwy dpEwg
I%ax\ﬂt Z W (o)

doEwy

< (1-+ max |57 (50)|

+max| 3 (30)]) >

doEwy

=@2-C+ max EAEN]

) > W(d).

doEwot

W (do)

+ max 165 (o)) 27
Here ~, = max I8 (80)|, and s = max |8 (0)] is the maxi-

0 0
mum number of neighbor while have primary and secondary
interfere, respectively. Furthermore,

max B¢ (00)| = max 18 (00)| +C — 1, (28)
] 0
Therefore, (29) can be rewritten as
S W) < @-CHyt+v) Y W(d). (29
S0EV: o€t
|
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