
3056 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

Digital Twin-Driven Collaborative Scheduling for
Heterogeneous Task and Edge-End Resource via

Multi-Agent Deep Reinforcement Learning
Chi Xu , Senior Member, IEEE, Zixuan Tang, Haibin Yu , Senior Member, IEEE, Peng Zeng ,

and Linghe Kong , Senior Member, IEEE

Abstract— With the interdisciplinary advances of mobile com-
munication and edge computing, massive heterogeneous tasks
are accessing wireless networks and competing for the edge-
end computing and communication resources. Digital twin (DT),
which establishes the digital models of physical objects for sim-
ulation, analysis and optimization, provides a promising method
for network scheduling and management. This paper proposes a
DT-driven edge-end collaborative scheduling algorithm for het-
erogeneous tasks and heterogeneous computing/communication
resources. Specifically, multiple end devices (EDs) cooperate
with each other to accomplish a complex job, where each ED
can offload individual task to multiple edge servers (ESs) for
parallel computing. By fully considering deadline requirements
of heterogeneous tasks, maximum computing capabilities of
ESs and EDs, computing resource estimation deviations of DT,
maximum transmit powers of EDs and tolerable peak interfer-
ence powers to coexisting EDs, we formulate a job completion
time minimization problem to jointly optimize the edge-end
task division, transmit power control, computing resource type
matching and allocation. To solve this non-convex problem,
we first reformulate it by multi-agent Markov decision pro-
cess, where a compound reward leveraging latency reward and
deadline reward according to the task criticality is designed.
Then, we propose a multi-agent deep reinforcement learning-
based scheduling algorithm, where Actor-Critic framework with

Manuscript received 1 December 2022; revised 19 May 2023; accepted
4 August 2023. Date of publication 30 August 2023; date of current version
26 October 2023. This work was supported in part by the National Key
Research and Development Program of China under Grant 2020YFB1710900;
in part by the National Natural Science Foundation of China under Grant
62173322 and Grant 92267108; in part by the Science and Technol-
ogy Program of Liaoning Province under Grant 2023JH3/10200004 and
Grant 2022JH25/10100005; and in part by the Youth Innovation Promotion
Association, Chinese Academy of Sciences (CAS), under Grant 2019202.
(Corresponding authors: Haibin Yu; Linghe Kong.)

Chi Xu and Peng Zeng are with the State Key Laboratory of Robotics,
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang
110003, China, also with the Key Laboratory of Networked Control Systems,
Chinese Academy of Sciences, Shenyang 110016, China, and also with the
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of
Sciences, Shenyang 110169, China (e-mail: xuchi@sia.cn; zp@sia.cn).

Zixuan Tang and Haibin Yu are with the State Key Laboratory of Robotics,
Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang
110003, China, also with the Key Laboratory of Networked Control Systems,
Chinese Academy of Sciences, Shenyang 110016, China, also with the
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of
Sciences, Shenyang 110169, China, and also with the University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: tangzixuan@sia.cn;
yhb@sia.cn).

Linghe Kong is with the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
linghe.kong@sjtu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2023.3310066.

Digital Object Identifier 10.1109/JSAC.2023.3310066

estimation and target networks is designed for policy and
value iterations. Meanwhile, a step-by-step ϵ-greedy algorithm
is proposed to balance exploration and exploitation, avoiding
local optimal trap. Through offline centralized training by DT
and online distributed execution by EDs, we realize edge-end
collaborative computing for heterogeneous tasks. Experimental
results demonstrate that, comparing with typical benchmark
algorithms, the proposed algorithm converges with the highest
reward and achieves the smallest job completion time, where the
deadlines of heterogeneous tasks can be well satisfied respectively.

Index Terms— Digital twin, collaborative scheduling, edge com-
puting, task offloading, multi-agent deep reinforcement learning.

I. INTRODUCTION

WITH the rapid development of 5G, more and more
devices are accessing the Internet and interconnect-

ing humans, machines, and things with each other, towards
Internet of Everything [1]. Thus, there is an explosion that
massive heterogeneous tasks are delivering over the 5G net-
work. The heterogeneous tasks can be video/media tasks
that require broadband communications, sensing/measuring
tasks that require low-power communications, and industrial
control tasks that require realtime computing and deterministic
communications. To accomplish a complex job, we need
to coordinate these heterogeneous tasks. For example, when
an engineer teleoperates a robot for high precision machin-
ing, the heterogeneous tasks include holographic media and
force-feedback control data for human’s visual-haptic-auditory
perception, and multi-sensor multi-controller data for robot’s
positioning, teaching and learning [2]. When these heteroge-
neous tasks implement high-concurrent access [3], they must
compete for the limited communication resources distributed
in temporal, spatial and frequency domains, such as timeslot,
power, antenna, channel, and subcarrier. This will cause com-
munication conflicts, which certainly decrease the quality of
experience (QoE).

To enhance the QoE, multi-access edge computing (MEC)
is proposed to process tasks nearby the end devices (EDs) and
reduce the task processing latency. For example, by deploying
edge server (ES) at the base station (BS), BS can implement
some network management functions and provide computing
resources for task processing. Thus, MEC-enhanced 5G is
currently regarded as a key enabler for vertical industries.
However, employing MEC will also introduce new problems.
First, task offloading to ESs will consume the heteroge-
neous communication resources, which certainly exacerbates

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7389-5763
https://orcid.org/0000-0002-1663-2956
https://orcid.org/0000-0001-7863-3260
https://orcid.org/0000-0001-9266-3044


XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3057

the communication resource competition problem. Second,
the computing resources distributed at EDs and ESs are
also heterogeneous, wherein the computing resources can be
supplied by CPU, GPU, or others. In this way, the edge-end
computing capabilities for different tasks are also different.
Thus, there remains a challenge that how to schedule the het-
erogeneous computing and communication resources for the
massive heterogeneous tasks to realize edge-end collaboration.

Digital twin (DT), which establishes the digital models
of physical objects for simulation, analysis and optimization,
provides a novel way to address the above challenges. DT is
initially proposed for cyber-physical production systems to
achieve smart manufacturing in Industry 4.0 [4]. Since the
proposal of DT, it arises great interests from both academia
and industries. With the interdisciplinary advances in 5G,
cloud/edge computing, big data, and artificial intelligence, the
capability of DT is continuously enhanced, empowering not
only one-way information mirroring and simulations, but also
round-trip interaction and operations. Thus, DT is quickly
diffusing in numerous different industries, such as smart city,
Internet of vehicles, and 5G. Currently, DT is regarded as a key
technology enabling 6G [5]. In particular, cybertwin [6] and
networked twin [7] are proposed and investigated for network
management and automation. Furthermore, DT network [8],
and DT edge network [9] are formulated.

With DT, the heterogeneous computing and communica-
tion resources can be virtualized and modelled for flexible
scheduling. Motivated by this, we employ DT to collabora-
tively schedule the edge-end heterogeneous computing and
communication resources for the heterogeneous tasks with
different deadline requirements. Specifically, we consider a
multi-ES multi-ED scenario with a synchronous DT deployed
at the cloud server (CS). To accomplish a complex job, EDs
cooperate with each other and offload individual tasks to
multiple ESs for parallel computing via the scheduling of DT,
where different tasks require different types of computing
resources and have different task deadlines. To minimize
the job completion time (JCT), we employ multi-agent deep
reinforcement learning (MADRL) and propose MADRL-based
heterogeneous task and resource collaborative scheduling
(MADRL-HTRCS) algorithm.

The main contributions of this paper are summarized as
follows.

1) We study a general scenario with single-CS, multi-
ES and multi-ED, where the computing resources of
ESs and EDs are heterogeneous and can support dif-
ferent kinds of tasks. We utilize DT to virtualize and
model the heterogeneous computing resources, during
which DT’s estimation deviations between actual and
estimated computing resources for ESs and EDs are
considered. Meanwhile, the tasks are also heterogeneous
and can be totally/partially/none offloaded to multi-
ple ESs for parallel computing. That is to say, each
task is processed by the cooperation between ED and
multiple ESs.

2) By fully considering the deadline requirements of het-
erogeneous tasks, the maximum computing capabilities
of both EDs and ESs, the computing resource estima-

tion deviations of DT, the maximum transmit powers
of EDs and the peak interference powers to coexist-
ing EDs, we establish a job completion time minimiza-
tion (JCTM) problem to optimize the edge-end task
division, transmit power control, computing resource
type matching and allocation. Due to the non-convexity
of the JCTM problem, we reformulate it by multi-agent
Markov decision process (MDP), where each ED is
modelled as an agent interacting with environment and
other agents independently. Furthermore, we design a
compound reward leveraging latency reward and dead-
line reward according to the task criticality.

3) To approximate an optimal solution, we propose the
MADRL-HTRCS algorithm that supports offline cen-
tralized training by DT and online distributed execu-
tion of EDs. Specifically, we employ the Actor-Critic
(AC) framework and design estimation and target AC
networks for policy and value iterations. Moreover,
a step-by-step ϵ-greedy algorithm is applied to bal-
ance exploration and exploitation. Extensive experiments
validate the effectiveness and superiority of the pro-
posed algorithm by comparing with some benchmark
algorithms.

The rest of this paper is organized as follows. In Section II,
the recent works on task-resource scheduling are reviewed.
In Section III, the DT-based system model is presented. After
that, we establish the JCTM problem and reformulate it
by multi-agent MDP in Section IV. Then, we propose the
MADRL-HTRCS algorithm in Section V, and validate its
effectiveness by extensive experiments in Section VI. Finally,
the whole work is concluded in Section VII.

II. RELATED WORK

Task-resource collaborative scheduling is the basis of
cloud/edge computing and has attracted broad interests during
the past decade. Previous works have comprehensively inves-
tigated different MEC scenarios, employed different theories
or algorithms, and optimized different objectives to achieve
different goals. Specifically, the MEC scenario is related to
the numbers of ESs and EDs, including single-ES multi-ED,
multi-ES single ED, multi-ES multi-ED and so on. Herein,
a task can be divided or not, and offloaded to one ES or
multiple ESs. Typical task offloading schemes include binary
offloading and partial offloading [10]. Meanwhile, the schedul-
ing objectives can be tasks (e.g., offloading ratio), computing
resources (e.g., CPU cycle) and communication resources
(e.g., transmit power, bandwidth, channel, subcarrier). On this
basis, existing works formulate different optimization prob-
lems aiming at minimizing energy, latency or cost, and propose
different algorithms based on convex optimization, machine
learning, etc. In the following, we summarize the most related
works from the perspective of optimization objectives.

A. Energy Consumption Minimization

Energy consumption is always a key indicator for wireless
networks, especially for energy-constrained EDs. The energy



3058 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

consumption mainly includes the communication energy con-
sumption for task offloading and the computing energy con-
sumption for task processing.

For single-CS single-ES multi-ED scenario, [11] employs
deep Q-network (DQN) to study the long-term energy
consumption minimization problem under the constraint of
computing resources and latency. For multi-ES single-ED
scenario, to minimize the overall energy consumption while
satisfying the latency limit, [12] investigates the joint opti-
mization of multi-task offloading, non-orthogonal multiple
access (NOMA) transmission, and computing resource allo-
cation. Similarly, [13] establishes a three-layer offloading
framework and investigates the overall energy consumption
minimization problem subject to latency constraints from EDs.
Moreover, [14] investigates stochastic computation offloading
and resource allocation problem to optimize long-term energy
efficiency using Lyapunov optimization and asynchronous
AC algorithm in DT network. Reference [15] proposes a
deep learning-based user association and resource allocation
algorithm which is trained by DT to minimize the maximum
normalized energy consumption.

B. Latency Minimization

Although MEC can help process complex tasks for
computation-intensive EDs, it may also introduce traffic con-
flicts and increase communication latency. Thus, minimizing
the latency, which consists of communication latency and
computing latency, is also very important, especially for time-
sensitive tasks.

For single-ES multi-ED scenario, [16] investigates the
long-term caching placement and resource allocation problem,
and adopts deep reinforcement learning (DRL) to mini-
mize the content delivery latency. In contrast, [17] studies
multi-ES single-ED scenario and optimizes the NOMA-based
transmission duration and task division to multiple ESs. Fur-
thermore, [18] employs convex optimization and MADRL to
jointly optimize sub-channel assignment, offloading decision,
and computing resource allocation in multi-ES multi-ED sce-
nario. Reference [19] proposes a risk-sensitive DRL algorithm
to minimize the offloading and computing latency of all tasks
constrained by given energy capacity. By modelling the user
mobility and environment dynamics in DT, [20] proposes an
AC-based DRL algorithm to minimize the offloading latency
under the constraint of service migration cost for user mobility.
Moreover, with DT and blockchain, [21] minimizes the latency
for edge association by federated MADRL.

C. Cost Minimization

In addition to optimizing energy consumption and latency
respectively, more recent works focus on minimizing the
system cost, which is usually defined as a weighted sum
of energy consumption and latency. In this way, the system
performance can be optimized according to the requirements
of specific tasks.

For single-ES multi-ED scenario, [22] combines AC and
DQN algorithms to jointly optimize the task offloading policy

and channel allocation for time-varying channels. Refer-
ence [23] considers the case that multiple EDs offload their
tasks via NOMA to multiple ESs, and employs reinforcement
learning and matching game theory to solve the joint task
scheduling and resource allocation problem with respect to
task, power, subcarrier, and computing frequency. Further-
more, [24] exploits MADRL to optimize offloading decisions
and transmit powers for edge-end orchestrated resource allo-
cation of industrial wireless networks. Based on asynchronous
advantage AC and DQN algorithms, [25] optimizes offloading
decisions, node selection, bandwidth and computing resource
allocations for single-CS multi-ES multi-ED scenario, wherein
DT is utilized in the cloud. More recently, [26] considers
multi-ES single-ED scenario based on DT and blockchain, and
proposes a decision tree and double DQN (DDQN) solution for
intelligent task offloading. Moreover, [27] proposes adaptive
DT for vehicular edge network and employs MADRL to
minimize the offloading cost.

Besides the above works, some works also define spe-
cial optimization objectives for task-resource scheduling. For
example, [28] formulates a multi-objective problem to min-
imize latency and energy consumption simultaneously, and
employs MADRL to make an optimal offloading decision for
cloud-edge-end computing. Reference [29] proposes an end-
to-end DRL algorithm to maximize the number of tasks before
their respective deadlines and minimize energy consump-
tion simultaneously. Reference [10] formulates a computing
rate maximization problem subject to the long-term data
queue stability and average power constraints, and employs
Lyapunov and DRL to achieve the optimal computing per-
formance. In addition, by proposing a D3PG-based task
offloading algorithm, [30] tries to maximize QoE with respect
to service latency, energy consumption and task success rate.
Reference [31] employs DQN to maximize average QoE for
DT-empowered Internet of vehicles.

From the aforementioned works, we can observe that exist-
ing studies on task-resource collaborative scheduling by DT
are still on the early stage. More importantly, few existing
works consider the heterogeneous computing resources prob-
lem, where different tasks require different types of computing
resources. This motivates us to investigate the DT-driven
edge-end heterogeneous computing and communication col-
laborative scheduling for heterogeneous tasks.

III. SYSTEM MODEL

In this section, we present the system model, including
the network model, communication model, edge and local
computing models. For ease of reading, we list the key
notations in Table I.

A. Digital Twin-Based Network Model

In this paper, we consider a general single-CS, multi-ES
and multi-ED scenario. As shown in Fig. 1, there are one
DT-embedded CS, N ES-enhanced BSs and M resource-
constrained EDs in the physical space. Specifically, with
full consideration of the strong computing capability and
multi-type computing resources of CS, DT is deployed in CS



XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3059

TABLE I
SUMMARY OF KEY NOTATIONS

Fig. 1. System model.

to mirror and model all physical network elements into the
cyber space. In this way, DT senses the heterogeneous tasks,
measures the heterogeneous computing and communication
resources, trains the following proposed scheduling algorithm
and schedules the heterogeneous tasks and resources.

To accomplish a complex job, multiple EDs cooperate
with each other, where each ED implements individual task,
respectively. The tasks are heterogeneous that have different
data sizes, require different types of computing resources and
should be completed before different deadlines. For m-ED, the
data size and task deadline are denoted as Dm and Tmax,m

(m = 1, . . . ,M ). Due to the limited computing resource,
an ED can divide its task into multiple subtasks and offload
them to different ESs for parallel computing. The task may
be totally offloaded for full edge computing, none offloaded
for full local computing or partially offloaded. Specifically,
m-ED offloads vm,nDm task to n-ES (n = 1, . . . , N ), where
vm,n ∈ [0, 1] is the task division ratio of m-ED for n-ES.
When vm,n = 0, m-ED does not offload any task to n-ES.

On the contrary, m-ED offloads the total task to n-ES when
vm,n = 1.

To guarantee all subtasks are processed for the task of
m-ED, we have the task division constraint as

N∑
n=0

vm,n = 1, (1)

where n = 0 indicates the subtask for local processing.

B. Communication Model

According to the scheduling by DT, m-ED employs the
transmit power pm for task offloading. The transmit power of
m-ED must be constrained by its hardware capability, i.e.,

0 ≤ pm ≤ Pmax, m = 1, . . . M, (2)

where the maximum transmit powers of all EDs are assumed
the same as Pmax.

Meanwhile, the task offloading of EDs on the same wire-
less channel may cause co-channel interference with each
other. Each ED has an interference temperature which is
the peak interference power that an ED can tolerate. For
simplicity, we assume the tolerable peak interference powers
of EDs are the same as Ip. When m-ED performs task
offloading, its transmit power is constrained by all coexisting
EDs, where m∗-ED with the maximum channel power gain
from m-ED imposes the strongest constraint. That is m∗ =
arg max gm,m′ , (m′ = 1, . . . ,M,m′ ̸= m). Then, by fully
considering all possible offloading interferences to m∗-ED,
the transmit power of m-ED is constrained by pmgm,m∗ +∑M

m′=1,m′ ̸=m pm′gm′,m∗ ≤ Ip. That is,

pm ≤
Ip −

M∑
m′=1,m′ ̸=m

pm′gm′,m∗

gm,m∗
, (3)

where gm,m∗ and gm′,m∗ denote the channel power gains
from m-ED and m′-ED to m∗-ED, respectively. Herein, the
channel between any pair of EDs and/or ESs is assumed to be



3060 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

symmetric and the channel state information can be accurately
evaluated by DT for modelling and scheduling. Note that this
assumption can be easily extended to the asymmetric channels
with/without evaluation error.

By transmit power control for wireless communication,
we can calculate the task offloading rate between m-ED and
n-ES as

Rm,n = Wm,n log2

1 +
pmgm,n

M∑
m′=1,m′ ̸=m

pm′gm′,n + σ2
n

 ,

(4)

where Wm,n denotes the bandwidth between m-ED and n-ES
for task offloading, σ2

n denotes the noise at n-ES, gm,n and
gm′,n denote the channel power gains from m-ED and m′-ED
to n-ES, respectively.

According to equation (4), we can further calculate the
communication latency for task offloading.

T Comm
m,n =

vm,nDm

Rm,n
. (5)

It is observed that equations (3) and (4) take into account
the interferences of all possible EDs that offload tasks to ESs.
When the number of EDs is large, the co-channel interferences
become large, which limits the transmit powers of EDs and
certainly reduces their offloading rates. That is to say, when
EDs perform high-concurrent task offloading, there will be sig-
nificant computing and communication resources competitions
among EDs. In this way, an efficient task-resource collabora-
tive scheduling algorithm is critical for job completion.

C. Edge Computing Model

The computing resources of ESs or EDs are single-type
and heterogeneous, e.g., CPU, GPU. For example, an ED pro-
cessing image or media task only equips with GPU, while an
ED processing sensing or control data only equips with CPU.
Obviously, a GPU-type task offloaded to a CPU-equipped ES
will not be processed with high efficiency. Thus, we assume
that an ES with given type of computing resource, can only
process the task offloaded by the ED with the same type of
computing resource.

By mapping the physical computing resources of EDs and
ESs at DT, DT can match the types of heterogeneous comput-
ing resources distributed at ESs and EDs. The heterogeneous
computing resource type matching decision is expressed as

um,n =

{
1, if on ⊗ om = 0,

0, if on ⊗ om = 1,
(6)

where on and om indicate the computing resource types of
n-ES and m-ED, respectively.⊗ is the exclusive OR operation.
um,n = 1 indicates that the computing resource types of m-ED
and n-ES are the same. Otherwise, the computing resource
types are different and n-ES cannot support the task processing
for m-ED.

By matching the heterogeneous computing resources among
ESs and EDs, DT further evaluates the edge-end resources

and schedules tasks for parallel computing. The computing
resource is measured by computing rate fm,n, namely the
number of computing cycles per second. When m-ED offloads
vm,nDm task to n-ES, the edge computing latency estimated
by DT is calculated as

T̃ Comp
m,n =

vm,nDmCm

fm,n
, (7)

where Cm is the required cycles for computing 1 Byte task.
However, DT may have a computing resource estimation

deviation ∆fm,n which may be either positive or negative.
In this way, the actual computing resource of n-ES allocated
to m-ED is calculated as fm,n + ∆fm,n which should satisfy

0 ≤ fm,n + ∆fm,n ≤ Fmax,n, (8)

and
M∑

m=1

um,n(fm,n + ∆fm,n) ⩽ Fmax,n, (9)

where Fmax,n denotes the maximum computing rate of n-ES.
Then, we can calculate the computing latency deviation

between the actual value and the estimated value, i.e.,

∆T Comp
m,n = − vm,nDmCm∆fm,n

fm,n(fm,n + ∆fm,n)
. (10)

For the subtasks offloaded from m-ED, the actual comput-
ing latency by n-ES is calculated as

T Comp
m,n = T̃ Comp

m,n + ∆T Comp
m,n . (11)

Furthermore, the edge computing latency for the subtasks
of m-ED by n-ES is calculated as

T Edge
m,n = T Comm

m,n + T Comp
m,n , (12)

wherein the computing results’ feedback latency from n-ES to
m-ED is ignored since the data size of feedback is generally
very small and can be carried back by the acknowledged
information during communication.

As the task of m-ED is divided into multiple subtasks and
offloaded to multiple ESs for parallel processing, the edge
computing latency for the total task of m-ED is calculated as

T Edge
m = max

n=1,...,N
{um,nT Edge

m,n }. (13)

D. Local Computing Model

Similar to the edge computing model, the local computing
resource of m-ED estimated by DT is denoted as fm. Then,
the local computing latency estimated by DT is calculated as

T̃ Comp
m =

vm,0DmCm

fm
. (14)

There is also estimation deviation ∆fm which can be
obtained by DT in advance [20], [26]. Thus, we have

fm = Fmax,m −∆fm, (15)

where Fmax,m is the maximum computing rate of m-ED
decided by the physical hardware. This is because each ED
should utilize the full computing resource to process the



XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3061

local task for latency reduction. The local computing latency
deviation is calculated as

∆T Comp
m = −vm,0DmCm∆fm

fmFmax,m
. (16)

In this way, the actual local computing latency by m-ED is
calculated as

T Local
m = T̃ Comp

m + ∆T Comp
m . (17)

IV. PROBLEM FORMULATION AND TRANSFORMATION

A. Job Completion Time Minimization Problem

As a task is completed by DT-driven edge-end collaborative
computing, the task processing latency of m-ED is calculated
as the maximum latency for edge computing and local com-
puting, i.e.,

Tm = max
(
T Edge

m , T Local
m

)
, (18)

which includes the cases of none, partial and total offloading.
Then, we can calculate JCT as

∑M
m=1 Tm, where a job is

completed by the sequel completion of all tasks. Furthermore,
with full consideration of heterogeneous tasks’ requirements,
heterogeneous computing and communication resources con-
straints, the JCTM problem is formulated as

JCTM : min
U,V,P,F

M∑
m=1

Tm, (19)

s.t. (1), (2), (3), (6), (8), (9),
Tm ≤ Tmax,m, (20)

where U = {um,n}M×N , V = {vm,n}M×(N+1), P =
{pm}M , and F = {fm,n}M×N are the computing resource
type matching decisions, task division ratios, transmit powers
of EDs, and computing resources of ESs.

In the JCTM problem, we consider the task division con-
straint as (1), the transmit power constraints as (2) and (3),
the computing resource type matching decision as (6), the
computing capability constraints as (8) and (9), and the task
deadline constraint as (20). Obviously, there are both integer
and real variables, which are coupled with each other in
the JCTM problem. Thus, it is a mixed integer non-linear
programming problem, which is NP-hard and cannot be solved
within a polynomial time by common methods such as convex
optimization [32]. Thus, we employ multi-agent MDP to
transform the problem for MADRL solution.

B. Problem Transformation by Multi-Agent MDP

By the estimation and scheduling of DT in cloud, EDs
and ESs cooperate with each other to complete a complex
job. In this way, any action of an ED may influence the
total system state such as co-channel interference, task divi-
sion, and resource scheduling by DT. Meanwhile, the state
transformation is also related with previous state and action.
Thus, we employ multi-agent MDP to reformulate the JCTM
problem. The multi-agent MDP is described by five tuples
⟨M,S,A,Z,R⟩, where M, S, A, Z , and R denote the agent
set, state space, action space, state transition probability, and
reward function, respectively.

1) Agent Set M: Aiming at minimizing JCT, each ED acts
as an agent to learn its computing resource type matching
decision, task division ratio, transmit power, and comput-
ing resource allocation. Thus, M EDs form an agent set
M = {1, . . . ,M}.

2) State Space S: The state space describes the running
status of tasks as well as edge-end computing and com-
munication resources, which can be observed by agent and
evaluated by DT. At each decision epoch t, the state sm(t)
of m-agent is characterized by data size, computing resource
requirement, task deadline, computing resource estimation
deviation, bandwidth and channel power gain, i.e.,

sm(t) = {Dm(t), Cm(t), Tmax,m(t), ∆fm(t),

∆F Edge
m (t), W m(t), Gm(t) }, (21)

where ∆F Edge
m (t) = {∆fm,n(t)}1×N , W m(t) =

{Wm,n(t)}1×N and Gm(t) = {{gm,n(t)}1×N ,
{gm,m′(t)}1×M}. Furthermore, we define the total state space
of all agents at the decision epoch t as s(t) = {sm(t)}M .

3) Action Space A: The action space presents the policies
of all agents. At each decision epoch t, m-agent performs
action am(t) according to the whole state s(t) subject to
the constraints in the JCTM problem. The action describing
the computing resource type matching decision, task division
ratio, transmit power of ED, and computing resource allocation
of ES, is given by

am(t) = {um(t), vm(t), pm(t), fm(t)} , (22)

where um(t) = {um,n(t)}1×N , vm(t) = {vm,n(t)}1×(N+1),
and fm(t) = {fm,n(t)}1×N . Furthermore, we define the
total action space of all agents at the decision epoch t as
a(t) = {am(t)}M .

4) State Transition Probability Z: At each decision
epoch t, the state transition probability zm(t) describes the
probability that sm(t) transfers to sm(t + 1) when m-agent
performs action am(t), namely zm (sm(t + 1); sm(t), am(t)).

5) Reward Function R: The reward presents the award
or penalty for agent when it takes action at a given state.
For multi-agent MDP, M agents interact with environment
and cooperate with each other according to the state and the
policy to obtain individual reward rm(t). Specifically, at each
decision epoch t, m-agent performs action am(t) at state
sm(t), obtains the reward rm(t) and moves to the next state
sm(t + 1).

Fully considering the objective and constraints in the
JCTM problem, we design the reward as the sum of latency
reward and deadline reward. The latency reward is defined as
rLatency
m (t) = −Tm(t), while the deadline reward is defined as

rDDL
m (t) = Tmax,m(t)− Tm(t). In this way, when the latency

exceeds the deadline, there is a negative reward, namely
penalty.

As there are diverse requirements of heterogeneous tasks,
we design the compound reward of m-agent as

rm(t) = rLatency
m (t) + ρmrDDL

m (t), (23)

where ρm is the weight parameter set according to the deadline
requirements of heterogeneous tasks. That is, the larger value
of the weight parameter, the stricter deadline of this task.



3062 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

Fig. 2. Structure of MADRL-HTRCS.

On the above basis, we further define the long-term accu-
mulative reward of m-agent as

Rm(t) =
t∑

t0=0

γt0
mrm(t0), (24)

where t0 denotes the previous time, and γm ∈ [0, 1] denotes
the discounted factor indicating how the past reward impacts
the current reward for m-agent.

By maximizing the long-term accumulative reward of each
agent, DT can obtain an optimal task-resource collaborative
scheduling policy that minimizes JCT.

max Rm(t) = max
t∑

t0=0

γt0
mrm(t0), (25)

V. MADRL-BASED HETEROGENEOUS TASK
AND RESOURCE COLLABORATIVE

SCHEDULING ALGORITHM

Generally, the reformulated MDP problem can be solved by
dynamic programming when the state transition probability
is known. However, it is quite difficult to obtain the state
transition probability since the environment is dynamic and
the agent cannot predict the next state before taking action.
Moreover, there exists the state space explosion problem due
to the complex coupling of optimization values of multi-
ple agents. Thus, we employ the model-free MADRL and
propose the MADRL-HTRCS algorithm to learn an optimal
solution.

A. Algorithm Design

The structure of MADRL-HTRCS algorithm is depicted
in Fig. 2. We employ the Actor-Critic structure as basis, where
the actor is used to generate action for the agent while the
critic is used to guide the actor for generating a better action.
The actor further includes estimation actor network which is

used for training, and target actor network which is used for
action execution of agent. Similarly, the critic also includes
estimation critic network and target critic network which are
used to evaluate the action of actor. Herein, the actor network
employs policy-based deep neural network (DNN) while the
critic network employs value-based DNN.

Fully considering the dynamics of environment, we adopt
the centralized training and distributed execution strategy.
That is, the estimation critic network and target critic network
are trained by DT in a centralized way while estimation actor
network and the target actor network are executed by EDs in
a distributed way.

1) Actor Network: As shown in Fig. 3a, the actor network
consists of an input layer, a fully connected layer and an
output layer, where the fully connected layer includes three
hidden layers and a softmax layer. For the first two hidden
layers, we use the rectified linear unit (ReLU) as the activation
function for nonlinear approximation. For the final hidden
layer, we use tangent (Tanh) as the activation function to
bound actions. In this way, the input state is transformed into
all possible actions with respect to computing resource type
matching decision, task division ratio, transmit power, and
computing resource allocation.

For the estimation actor network of m-agent, the input
is its current state sm(t), indicating data size, computing
resource requirement, computing resource type, estimation
deviation, task deadline, bandwidth and channel power gain.
After the processing of three hidden layers, the outputs are
the probabilities of different actions. With the softmax layer,
the sum of the output probability of each action is 1. Then,
an action is selected as the final output action am(t).

Similarly, for the target actor network of m-agent, the input
is the next state sm(t+1), while the output is the next action
am(t + 1) after the processing of fully connected layer. Note
that although the estimation actor network and the target actor
network employ the same DNN structure, their parameters are
different, which are denoted as θπm

and θ′πm
, respectively.



XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3063

Fig. 3. Structure of actor network and critic network.

2) Critic Network: As shown in Fig. 3b, the critic network
consists of an input layer, a fully connected layer, and an
output layer, where the first two hidden layers of the fully
connected layer are also associated with ReLU.

For the estimation critic network of m-agent, the inputs are
the states and actions of all agents, namely S and A. After the
processing of fully connected layer, the output is the Q-value.
At the decision epoch t, the Q-value of m-agent is defined as

Qm (S,A; θQm) = Eπ [Rm(t); s(t), a(t); θQm ] . (26)

Similarly, for the target critic network of m-agent, the inputs
are the next states and actions of all agents at the decision
epoch t+1, denoted as S ′ and A′. Correspondingly, the output
is the next Q-value Q′m

(
S ′,A′; θ′Qm

)
after the processing

of fully connected layer. The structures of estimation critic
network and target critic network are also the same, but with
parameters θQm

and θ′Qm
, respectively.

B. Algorithm Training

The centralized training of the MADRL-HTRCS algorithm
is implemented by DT, as summarized in Algorithm 1. Specif-
ically, the critic network of each agent is managed by DT
which can obtain the states and actions of all agents and make
them fully observable to each agent. In this way, from the
perspective of one agent, the environment is static no matter
what action is taken by other agents.

During the centralized training, DT first gets a global view
on the states and actions of all agents, and then utilizes
the information to train the estimation critic network for
each agent, with the objective of maximizing the Q-value.

Algorithm 1 MADRL-HTRCS Algorithm Training

Input: M , N , Dm, Cm, Tmax,m, Pmax, Ip, σ2
n, om,

on, ∆fm, ∆fm,n, Wm,n and gm,n for
m = 1, . . . ,M and n = 1, . . . , N ;

Output: θ′πm
for m = 1, . . . ,M ;

1 Compute um,n by (6) for m = 1, . . . ,M and
n = 1, . . . , N ;

2 Initialize discount factor γ, parameter updating rate η;
3 Initialize estimation and target AC networks with the

parameters θπm , θ′πm
, θQm , θ′Qm

for m = 1, . . . ,M ;
4 repeat
5 repeat
6 Initialize sm(t);
7 Input sm(t) to estimation actor network, and

obtain am(t) = πm (sm(t); θπm
);

8 Execute am(t) on sm(t), compute reward
rm(t) and obtain sm(t + 1);

9 Store (sm(t), am(t), rm(t), sm(t + 1)) as an
experience in the memory for replaying;

10 Input S and A to estimation critic network,
and compute Qm (S,A; θQm

);
11 Input S ′ and A′ to target critic network, and

compute Q′m
(
S ′,A′; θ′Qm

)
;

12 Calculate Q-value by (27);
13 Calculate temporal difference error δ and the

loss function L(θQm
);

14 Update parameter θQm
by stochastic gradient

descent as (28);
15 Input sm(t) to estimation actor network, and

obtain am(t) = πm (sm(t); θπm);
16 Input sm(t + 1) to target actor network, and

obtain am(t + 1) = π′m
(
sm(t + 1); θ′πm

)
;

17 Update parameter θπm
by gradient descent as

(29);
18 Update θ′πm

and θ′Qm
by (30) and (31),

respectively;
19 until Agent m = M ;
20 until Episode k = K;

For m-agent, its Q-value Qm (S,A; θQm) is updated accord-
ing to the Bellman criterion [33] as

Qm (S,A; θQm
) = Rm(t) + γm max Q′m

(
S ′,A′; θ′Qm

)
.

(27)

In this way, the temporal difference error is calculated as
δ = Q′m

(
S ′,A′; θ′Qm

)
−Qm (S,A; θQm

) and the loss function
is given by L(θQm

) = E
(
δ2

)
. Then, we update the parameter

θQm by minimizing the loss function, wherein the stochastic
gradient descent algorithm is adopted as follows.

∇θQm
L(θQm

) = E
[
2δ∇θQm

Qm(S,A; θQm
)
]
. (28)

In contrast, the actor network of each agent is deployed in
ED since the actor is locally executable and can take actions
according to its locally observed state. Note that it is also
necessary to train the local observed states by DT which
can periodically synchronize the trained DNN parameters to



3064 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

Algorithm 2 MADRL-HTRCS Algorithm Execution

Input: M , θπ′1
, . . . , θπ′M

;
Output: a1(t), . . . ,aM (t) ;

1 Initialize ϵ0, β, m = 1 ;
2 repeat
3 Input θπ′m

to the target actor network of m-agent ;
4 m-agent observes the state sm(t) ;
5 Compute ϵ according to (33) ;
6 Choose a probability Prm ∈ [0, 1] ;
7 if Prm < ϵm then
8 Randomly select an action am(t) ∈ A as

aExploration
m (t) ;

9 else
10 Compute the value of action by

am(t) = π′m
(
sm(t); θπ′m

)
;

11 Select the action with the maximum Q-value as
aExploitation

m (t) ;

12 until m = M ;

all agents. Herein, the parameter θπm
is updated by gradient

descent as

∇θπm
L(θπm

)≈E
[
∇θπm

log πm(sm(t); θπm
) Qm(S,A; θQm

)
]
,

(29)

where πm (am(t); θπm) indicates the policy by taking action
am(t).

To ensure the stability of training process, we softly update
the parameters of target AC network by the historical param-
eters of the estimation AC network as follows.

θ′Qm
= ηθQm

+ (1− η)θ′Qm
, (30)

θ′πm
= ηθπm + (1− η)θ′πm

, (31)

where η ∈ [0, 1] is the parameter updating rate.

C. Algorithm Execution

After the centralized training by DT, EDs perform dis-
tributed execution as summarized in Algorithm 2. Specifically,
m-agent first downloads the training results by DT and
inputs them into its own target actor network. Then, m-agent
observes the environment and state sm(t), and generates its
action am(t) for the reward rm(t) according to the trained
policy πm.

Initially, the agent takes actions randomly for exploration
since there is not enough knowledge. When the knowledge
is enough, the agent takes actions to maximize its reward.
Thus, there always exists a tradeoff between exploration and
exploitation, where too many explorations will affect the
stability of long-term Q value calculation while too many
exploitations will cause the insufficient exploration of the
action space. The conventional greedy algorithm simply selects
the optimal action for reward maximization, resulting in the
loss of some efficient actions and the corresponding knowl-
edge. Thus, we propose a step-by-step ϵ-greedy algorithm to

balance exploration and exploitation as follows.

am(t) =

{
aExploration

m (t), ϵ

aExploitation
m (t), 1− ϵ,

(32)

with

ϵ = (1− β)K
ϵ0, (33)

where aExploration
m (t) is the exploration action randomly selected

while aExploitation
m (t) is the exploitation action selected from

the explored action space; ϵ0 is a positive value for initial
exploration, β is the decreasing rate of exploration, and K is
the training iterations. Obviously, with the iteration of training,
ϵ decreases and the agent gradually transfers from exploration
to exploitation. In this way, we can balance exploration and
exploitation, and avoid the oscillation caused by setting a
large ϵ for long-time.

D. Algorithm Complexity Analysis

We further analyze the computational complexity of the pro-
posed MADRL-HTRCS algorithm. The computational com-
plexity mainly depends on the structure of neuron network
and its number of parameters. As both actor network and
critic network employ DNN, the computational complexity is
calculated based on that of DNN. Given a DNN employing
L layers with Ol neurons in l-th layer, the computational
complexity is calculated as O(J) = O

(∑L
l=1 OlOl+1

)
[20].

Thus, the computational complexities of actor network and
critic network are calculated asO(Ja) andO(Jc), respectively.

At the centralized training stage, M agents with E expe-
riences are trained for K iterations, and the computational
complexities of actors and critics are Oa(JaKEM ) and
Oc(JcKEM ), respectively. The training process is offline
completed by DT in the CS, which can provide sufficient
computing resources.

At the distributed execution stage, each agent executes
action according to the actor network, and the computational
complexity of actor is calculated as Oa(Ja). The execution
process is online completed by ED independently, and can
guarantee the timeliness.

VI. PERFORMANCE EVALUATION

To evaluate the performance of the proposed MADRL-
HTRCS algorithm, we implement numerical experiments, and
analyze the effectiveness and superiority by comparing with
some benchmark algorithms in this section.

A. Experiment Environment and Setting

1) Learning and Training Environment: The hardware setup
includes Intel i7-13700k CPU and NVIDIA RTX4090-24G
GPU, while the software environment includes TensorFlow-
GPU-1.14.0 and Python-3.7.

The parameters of DNN are set as follows. For Actor, the
numbers of neurons for the first and second hidden layers are
respectively set to 300 and 100, while that for the third hidden
layer is set according to the dimensionality of possible actions.
For Critic, the numbers of neurons for the three hidden layers



XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3065

Fig. 4. Deployments of EDs and BSs with ESs.

are set to 300, 100 and 1, respectively. During training, the
learning rates of Actor and Critic networks are respectively
set to γa = 10−4 and γc = 10−3, the discount factor is set to
γm=0.9, the initial value and decreasing rate for exploration
are set to ϵ0 = 0.9 and β = 10−4, respectively [24].

2) Network Environment and Resource Setup: We consider
a dynamic wireless network environment where the numbers
of ESs and EDs are set to N = 3 ∼ 4 and M = 5 ∼ 35 to
cover a given area. As depicted in Fig. 4, ES-enhanced BSs
are fixed in given positions while EDs are randomly deployed
within the coverage of BSs. By calculating the distances
among EDs and ESs, we can obtain the channel power gains,
where the path loss exponent is set to 3. For simplicity, the
bandwidths for task offloading are equally set to Wm,n =
20 MHz, the maximum transmit powers of EDs are equally
set to Pmax=200 mW, while the noise powers are equally
set to σ2

n = 10−11 mW [20]. To evaluate the influence of
interference constraints, the tolerable peak interference powers
of EDs are equally set to Ip = 10−6 ∼ 106 mW.

Without loss of generality, we assume there are only CPU
and GPU computing resources randomly configured to ESs
during experiments. The maximum computing resources of
ESs are equally set to Fmax,n=100 GHz/s, while those of EDs
are equally set to Fmax,m = 5 GHz/s. The computing resource
estimation deviations of DT for ESs and EDs are randomly set
to [−0.5, 0.5] GHz/s.

3) Heterogeneous Task Setup: We consider three kinds of
tasks, namely control task, sensing task, and multimedia task.
The control tasks have small data size with Dm ∈ [10, 300)
Bytes and strict deadline Tmax,m = 10 ms, the sensing tasks
have medium data size with Dm ∈ [300, 1000) Bytes and
medium deadline Tmax,m = 50 ms, while the multimedia
tasks have big data size with Dm ∈ [1000, 1500) Bytes and
slack deadline Tmax,m = 100 ms. Correspondingly, we set
ρm = 300, 200, 100 for control, sensing and multimedia
tasks, respectively. During experiments, control, sensing and
multimedia tasks are randomly generated and their ratios to

Fig. 5. JCT versus total iteration with different exploration parameters:
N = 3, M = 10, Pmax=200 mw, Ip =1 mW.

the total tasks are around 25%, 25% and 50%, respectively.
The required computational cycles for different types of tasks
are equally set to Cm=0.25 MHz/Byte.

4) Benchmark Algorithms for Comparison: Fully consid-
ering existing works on partial or binary task offloading to
single or multiple ESs by single-agent DRL and MADRL
algorithms, we consider the following benchmark algorithms.
For fair comparison, the DNN structures and parameters are
set the same.
• MADRL-HTRCS: The proposed MADRL-HTRCS

algorithm supporting total, partial and none task
offloading to single and/or multiple ESs.

• MADRL-PSES: A MADRL-based algorithm supporting
Partial task offloading to a Single ES.

• MADRL-BSES: A MADRL-based algorithm supporting
Binary task offloading to a Single ES.

• DDQN-HTRCS: A single-agent DDQN-based algorithm
supporting total, partial and none task offloading to single
and/or multiple ESs.

B. Performance Evaluation

In Fig. 5, we first evaluate the convergence of MADRL-
HTRCS by the step-by-step ϵ-greedy algorithm. Obviously,
JCT by different exploration parameters converges around dif-
ferent values. When the exploration parameter is set to 0 or 1,
JCT oscillates in a certain interval. This is because the
ϵ-greedy algorithm keeps on randomly choosing actions or
exploring state space, respectively. In contrast, when there are
both exploration and exploitation (i.e., ϵ0 ̸= {0, 1} ), JCT
first decreases and then converges. For the same iteration,
the larger exploration value, the smaller JCT. This is because
a good action space can be established by sufficient explo-
ration. To be specific, when the exploration parameters are
0.1 and 0.9, the total iterations required for convergence to
approximate the minimum JCT are around 2000 and 4000,
respectively. Thus, without loss of generality, we set ϵ0 =
0.9 in the following experiments as there is a good balance
between exploration and exploitation.



3066 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

Fig. 6. Normalized reward versus iteration for different scheduling algo-
rithms: N = 3, M = 20, Pmax=200 mw, Ip =1 mW.

Furthermore, Fig. 6 compares the normalized reward of
MADRL-HTRCS with those of MADRL-PSES, MADRL-
BSES and DDQN-HTRCS. With the increase of training
iterations, the normalized rewards of all scheduling algorithms
increase from small values to large values, and maintain at
stable intervals, respectively. That is to say, all scheduling
algorithms can converge, which validates their effectiveness by
DRL. When these scheduling algorithms converge, the three
MADRL-based algorithms obtain higher normalized rewards
than the single-agent DDQN-HTRCS algorithm. This phe-
nomenon validates the superiority of MADRL in distributed
execution, while its complexity for centralized learning is
not higher than that of single-agent DRL. In particular,
MADRL-HTRCS obtains the highest normalized reward. This
is because MADRL-HTRCS can offload partial task to mul-
tiple ESs for parallel computing according to the computing
resource utilization of each ES and the channel states among
EDs and ESs. In contrast, MADRL-PSES can only offload
partial task to a single ES, while MADRL-BSES can only
offload the whole task to a single ES or process the task locally.
In this way, the utilization of computing and communication
resources by MADRL-PSES and MADRL-BSES are not as
sufficient as those by MADRL-HTRCS.

Fig. 7 compares JCT by different scheduling algorithms
for different numbers of EDs. When the number of EDs is
small (e.g., M=5), indicating that the job is not complex, JCT
by any number of ESs and/or by any scheduling algorithms
is almost the same with a small value. This is because the
computing and communication resources are sufficient for
EDs’ tasks. With the number of EDs increasing, JCT of all
algorithms increases. The reason is explained as follows. When
more EDs participate in the job, namely the job becomes
more complex, EDs must compete for the given computing
and communication resources, resulting in the increase of
both computing latency and communication latency. When the
number of EDs becomes large (e.g., M=35), the performance
gaps among different scheduling algorithms become large.
In particular, JCT of DDQN-HTRCS is the largest while
that of MADRL-HTRCS is the smallest. This phenomenon

Fig. 7. JCT versus the number of EDs for different scheduling algorithms:
N = 3, Pmax=200 mw, Ip =1 mW.

Fig. 8. JCT versus the number of EDs for different estimation deviations:
N = 3, Pmax=200 mw, Ip =1 mW.

validates that MADRL-HTRCS is more suitable for massive
heterogeneous tasks collaborations.

More specifically, Fig. 8 evaluates how the estimation
deviation of DT influences JCT by MADRL-HTRCS, where
∆f ≜ ∆fn = ∆fm,n = {−0.5,−0.2, 0, 0.2, 0.5} are selected
to make the figure clear. With the increase of estimation
deviation, JCT decreases correspondingly. Specifically, when
the estimation deviation is positive, JCT is smaller than that
without estimation deviation (i.e., ∆f = 0). This is mainly
because the required computing resources are over estimated,
and more computing resources are allocated for actual com-
puting, which certainly reduces the computing latency and
the corresponding JCT. On the contrary, when the estimation
deviation is negative, the computing resources actually allo-
cated are less than the required computing resources, which
increases JCT.

Fig. 9 further presents how the number of ESs influences
JCT. Obviously, for given number of EDs, JCT decreases with
the increase of ESs. This is because the computing resources
are enhanced with more ESs deployed, and the computing



XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3067

Fig. 9. JCT versus the number of EDs for different numbers of ESs:
Pmax=200 mw, Ip =1 mW.

Fig. 10. JCT versus the maximum transmit power of EDs for different
numbers of EDs: N = 3, Ip =1 mW.

latency is reduced accordingly. Meanwhile, MADRL-HTRCS
always obtains a smaller JCT than DDQN-HTRCS.

Fig. 10 demonstrates how the maximum transmit power
of EDs influences JCT for different numbers of EDs. When
the maximum transmit power of EDs is 0 mw, EDs do not
offload any tasks to ESs for edge computing, and process tasks
totally based on local computing resources. Thus, for the same
number of EDs, JCT by MADRL-HTRCS and DDQN-HTRCS
is the same but very large. With the maximum transmit power
of EDs increasing, JCT decreases. This is because EDs can
offload tasks to ESs under the peak interference power con-
straints. However, when the maximum transmit power of EDs
achieves certain values, JCT no longer decreases. This is due to
the fact that the transmit powers of EDs achieve the tolerable
peak interference power, and cannot be further enhanced in
order to protect other EDs. In addition, for given maximum
transmit power of EDs, JCT increases with the numbers of EDs
increasing due to the same reason as Fig. 7. Also, MADRL-
HTRCS obtains better performance than DDQN-HTRCS.

Fig. 11 comprehensively investigates the impacts of the
maximum transmit power and the peak interference power

Fig. 11. JCT versus the tolerable peak interference power of EDs for different
maximum transmit powers of EDs: N = 3, M = 10.

Fig. 12. Task processing latency versus the number of EDs under given
deadline constraints: N = 3, Pmax=200 mw, Ip =1 mW.

of EDs on JCT. When the peak interference power of EDs
is very small (e.g., Ip = 10−6 mw), JCT is almost equally
large, regardless of the maximum transmit power of EDs.
This is because the transmit powers of EDs are too small
to approach 0 mw since they are strictly constrained by the
peak interference power of coexisting EDs. With the increase
of peak interference power of EDs, namely relaxing the
interference constraint, JCT decreases since EDs can employ
suitable transmit powers to offload tasks to ESs. When the
peak interference power achieves certain values, JCT doesn’t
decrease accordingly since the transmit powers of EDs are no
longer constrained by the peak interference power but con-
strained by the maximum transmit power. Specifically, when
the peak interference power is around Ip = 10−2 mw, JCT
for Pmax = 50 mW first doesn’t decrease since the transmit
powers of EDs achieve their maximum values. In contrast,
JCT for Pmax = 100 mW and Pmax = 200 mW can further
decrease but successively converge later.

In detail, Fig. 12 further presents the average processing
latencies of heterogeneous tasks by MADRL-HTRCS. We can
observe that the task processing latency of each type also
increases with the number of EDs, and can well satisfy the



3068 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 10, OCTOBER 2023

Fig. 13. Task division radios of EDs and computing resource allocations of
ESs: N = 3, M = 5, Pmax=200 mw, Ip =1 mW.

differentiated deadline requirements even for M = 30. Herein,
the task processing latency of control task is the smallest, while
that of multimedia task is the largest. These observations val-
idate that DT employing MADRL-HTRCS can well schedule
the heterogeneous computing and communication resources
according to the requirements of heterogeneous tasks. When
the number of EDs further increases (e.g., M = 35), the
latencies of sensing and control tasks no longer satisfy their
required deadlines. This is mainly because their resources
requirements cannot be well satisfied when massive EDs com-
pete for the given computing resources of ESs. For this case,
if we want to guarantee the requirements of heterogeneous
tasks, more resources should be deployed, such as deploying
more ESs with more computing resources.

Correspondingly, Fig. 13 depicts the status of tasks divi-
sion ratios of EDs and computing resource allocations of
ESs by MADRL-HTRCS. We can observe that the com-
puting resources allocation of each ES in Fig. 13(b) is
generally proportional to the task division radio of each ED
in Fig. 13(a). This is due to the task-oriented and on-demand
resource scheduling by MADRL-HTRCS, which can divide
task, control transmit power, match computing resource type
and allocate computing resources according to the deadline
requirements, offloading interferences and channel states.

VII. CONCLUSION

In this paper, we proposed a DT-driven edge-end col-
laborative scheduling algorithm for heterogeneous tasks and
resources based on MADRL. With full consideration of
deadline requirements of heterogeneous tasks, heterogeneous
computing resource types and capabilities of EDs and ESs,
computing resource estimation deviation of DT, maximum
transmit power and tolerable peak interference power of EDs,
we formulated the JCTM problem to divide tasks for parallel
computing, match the type of edge-end computing resource,
allocate computing resources of ESs, and control transmit
powers of EDs. Due to the non-convexity of the JCTM
problem, we transferred it into a multi-agent MDP problem,
where a compound reward consisting of latency reward and
deadline reward was designed. Then, we employed MADRL
to deal with the explosive state space and proposed the
MADRL-HTRCS algorithm to approximate the optimal solu-
tion. With extensive experiments, we minimized JCT through
offline centralized training by DT and online distributed exe-
cution by EDs. The results showed that, MADRL-HTRCS can
satisfy the deadlines of heterogeneous tasks and achieve the
smallest JCT comparing with typical benchmark algorithms.

REFERENCES

[1] X. Kong, Y. Wu, H. Wang, and F. Xia, “Edge computing for Internet
of everything: A survey,” IEEE Internet Things J., vol. 9, no. 23,
pp. 23472–23485, Dec. 2022.

[2] C. Xu, H. Yu, P. Zeng, and Y. Li, “Towards critical industrial wire-
less control: Prototype implementation and experimental evaluation
on URLLC,” IEEE Commun. Mag., early access, Feb. 7, 2023, doi:
10.1109/MCOM.009.2200648.

[3] X. Liu, C. Xu, H. Yu, and P. Zeng, “Deep reinforcement learning-
based multichannel access for industrial wireless networks with dynamic
multiuser priority,” IEEE Trans. Ind. Informat., vol. 18, no. 10,
pp. 7048–7058, Oct. 2022.

[4] M. Grieves, “Digital twin: Manufacturing excellence through virtual
factory replication,” White paper, 2014, pp. 1–7. [Online]. Available:
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/
PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf

[5] L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-
enabled 6G: Vision, architectural trends, and future directions,” IEEE
Commun. Mag., vol. 60, no. 1, pp. 74–80, Jan. 2022.

[6] Q. Yu, J. Ren, Y. Fu, Y. Li, and W. Zhang, “Cybertwin: An origin of
next generation network architecture,” IEEE Wireless Commun., vol. 26,
no. 6, pp. 111–117, Dec. 2019.

[7] H. Ahmadi, A. Nag, Z. Khar, K. Sayrafian, and S. Rahardja, “Networked
twins and twins of networks: An overview on the relationship between
digital twins and 6G,” IEEE Commun. Standards Mag., vol. 5, no. 4,
pp. 154–160, Dec. 2021.

[8] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,”
IEEE Internet Things J., vol. 8, no. 18, pp. 13789–13804, Sep. 2021.

[9] F. Tang, X. Chen, T. K. Rodrigues, M. Zhao, and N. Kato, “Survey
on digital twin edge networks (DITEN) toward 6G,” IEEE Open
J. Commun. Soc., vol. 3, pp. 1360–1381, 2022.

[10] S. Bi, L. Huang, H. Wang, and Y. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 11, pp. 7519–7537, Nov. 2021.

[11] I. Khan, X. Tao, G. M. S. Rahman, W. U. Rehman, and T. Salam,
“Advanced energy-efficient computation offloading using deep rein-
forcement learning in MTC edge computing,” IEEE Access, vol. 8,
pp. 82867–82875, 2020.

[12] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, and B. Lin, “NOMA assisted
multi-task multi-access mobile edge computing via deep reinforcement
learning for industrial Internet of Things,” IEEE Trans. Ind. Informat.,
vol. 17, no. 8, pp. 5688–5698, Aug. 2021.

http://dx.doi.org/10.1109/MCOM.009.2200648


XU et al.: DT-DRIVEN COLLABORATIVE SCHEDULING FOR HETEROGENEOUS TASK AND EDGE-END RESOURCE 3069

[13] Z. Ning et al., “Deep reinforcement learning for intelligent Internet of
Vehicles: An energy-efficient computational offloading scheme,” IEEE
Trans. Cognit. Commun. Netw., vol. 5, no. 4, pp. 1060–1072, Dec. 2019.

[14] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement
learning for stochastic computation offloading in digital twin networks,”
IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4968–4977, Jul. 2021.

[15] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning
for hybrid 5G services in mobile edge computing systems: Learn
from a digital twin,” IEEE Trans. Wireless Commun., vol. 18, no. 10,
pp. 4692–4707, Oct. 2019.

[16] T. Zhang, Z. Wang, Y. Liu, W. Xu, and A. Nallanathan, “Caching
placement and resource allocation for cache-enabling UAV NOMA
networks,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12897–12911,
Nov. 2020.

[17] B. Zhu, K. Chi, J. Liu, K. Yu, and S. Mumtaz, “Efficient offloading
for minimizing task computation delay of NOMA-based multiaccess
edge computing,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3186–3203,
May 2022.

[18] V. D. Tuong, W. Noh, and S. Cho, “Delay minimization for NOMA-
enabled mobile edge computing in industrial Internet of Things,” IEEE
Trans. Ind. Informat., vol. 18, no. 10, pp. 7321–7331, Oct. 2022.

[19] C. Zhou et al., “Deep reinforcement learning for delay-oriented IoT task
scheduling in SAGIN,” IEEE Trans. Wireless Commun., vol. 20, no. 2,
pp. 911–925, Feb. 2021.

[20] W. Sun, H. Zhang, R. Wang, and Y. Zhang, “Reducing offloading latency
for digital twin edge networks in 6G,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, pp. 12240–12251, Oct. 2020.

[21] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 5098–5107, Jul. 2021.

[22] V. D. Tuong, T. P. Truong, T.-V. Nguyen, W. Noh, and S. Cho, “Par-
tial computation offloading in NOMA-assisted mobile-edge computing
systems using deep reinforcement learning,” IEEE Internet Things J.,
vol. 8, no. 17, pp. 13196–13208, Sep. 2021.

[23] K. Wang, Y. Zhou, Z. Liu, Z. Shao, X. Luo, and Y. Yang, “Online
task scheduling and resource allocation for intelligent NOMA-based
industrial Internet of Things,” IEEE J. Sel. Areas Commun., vol. 38,
no. 5, pp. 803–815, May 2020.

[24] X. Liu, C. Xu, H. Yu, and P. Zeng, “Multi-agent deep reinforcement
learning for end—Edge orchestrated resource allocation in industrial
wireless networks,” Frontiers Inf. Technol. Electron. Eng., vol. 23, no. 1,
pp. 47–60, Jan. 2022.

[25] S. Chen, J. Chen, Y. Miao, Q. Wang, and C. Zhao, “Deep reinforcement
learning-based cloud-edge collaborative mobile computation offloading
in industrial networks,” IEEE Trans. Signal Inf. Process. over Netw.,
vol. 8, pp. 364–375, 2022.

[26] T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, “Digital-twin-
assisted task offloading based on edge collaboration in the digital twin
edge network,” IEEE Internet Things J., vol. 9, no. 2, pp. 1427–1444,
Jan. 2022.

[27] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and multi-
agent deep reinforcement learning for vehicular edge computing and
networks,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1405–1413,
Feb. 2022.

[28] J. Cai, H. Fu, and Y. Liu, “Multitask multiobjective deep reinforcement
learning-based computation offloading method for industrial Internet
of Things,” IEEE Internet Things J., vol. 10, no. 2, pp. 1848–1859,
Jan. 2023.

[29] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware and
energy-efficient computation offloading in mobile-edge computing using
deep reinforcement learning,” IEEE Trans. Cognit. Commun. Netw.,
vol. 7, no. 3, pp. 881–892, Sep. 2021.

[30] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for Internet
of Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9255–9265,
Oct. 2020.

[31] X. Xu et al., “Service offloading with deep Q-network for digital
twinning-empowered Internet of Vehicles in edge computing,” IEEE
Trans. Ind. Informat., vol. 18, no. 2, pp. 1414–1423, Feb. 2022.

[32] R. Kannan and C. L. Monma, “On the computational complexity
of integer programming problems,” in Optimization and Operations
Research. Berlin, Germany: Springer, 1978.

[33] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

Chi Xu (Senior Member, IEEE) received the Ph.D.
degree from the University of Chinese Academy of
Sciences, Beijing, China, in 2017. He is currently a
Professor with the Shenyang Institute of Automa-
tion, Chinese Academy of Sciences, Shenyang,
China. His research interests include industrial
wireless networks, 5G URLLC, edge computing,
and tactile internet. He is a Voting Member of
IEEE 1918.1 working group for tactile internet
and a member of IEEE 1932.1 working group
for licensed/unlicensed spectrum interoperability in

wireless mobile networks. He also serves as a standardization delegate for
3GPP TSG RAN.

Zixuan Tang received the B.E. degree from the
Shengyang University of Technology, Shenyang,
China, in 2021. She is currently pursuing the mas-
ter’s degree with the University of Chinese Academy
of Sciences, Beijing, China. Her research interests
include industrial wireless networks and artificial
intelligence.

Haibin Yu (Senior Member, IEEE) received
the Ph.D. degree from Northeastern University,
Shenyang, China, in 1997. He has been a Professor
with the Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, since 1997. He has
published three books, authored or coauthored more
than 200 papers, and held more than 50 patents.
He and his research team have proposed the WIA-PA
and WIA-FA standards which are specified as IEC
62601 and IEC 62948, respectively. His research
interests include industrial communication and net-

worked control, industrial automation, and intelligent manufacturing. He was
elected as a fellow of ISA for his contributions in Fieldbus technologies in
2011. He serves as the Chair for China National Technical Committee for
Industrial Process Measurement Control and Automation Standardization and
the Vice-Chair of Chinese Association of Automation.

Peng Zeng received the Ph.D. degree from
the Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, China, in 2005.
He has been a Professor with the Shenyang Institute
of Automation, Chinese Academy of Sciences, since
2007. He is currently an Expert Member of the
IEC/TC65/WG16, a member of the Standards Com-
mittee of SP100, and a member of the Wireless WG
of FieldBus Foundation. He also serves as the Chair
for Edge Computing Technical Committee, Chinese
Association of Automation. His research interests

include wireless sensor networks and industrial wireless communications.

Linghe Kong (Senior Member, IEEE) received the
B.S. degree from Xidian University in 2005, the
M.S. degree from Telecom SudParis in 2007, and
the Ph.D. degree from Shanghai Jiao Tong Uni-
versity in 2013. He is currently a Professor with
the Department of Computer Science and Engi-
neering, Shanghai Jiao Tong University. He was a
Post-Doctoral Researcher with Columbia University,
McGill University, and the Singapore University
of Technology and Design. His research interests
include the Internet of Things, wireless networks,
big data, and mobile computing.


