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Abstract— While semantic communication succeeds in effi-
ciently transmitting due to the strong capability to extract the
essential semantic information, it is still far from the intelligent
or human-like communications. In this paper, we introduce
an essential component, memory, into semantic communications
to mimic human communications. Particularly, we investigate
a deep learning (DL) based semantic communication system
with memory, named Mem-DeepSC, by considering the scenario
question answer task. We exploit the universal Transformer based
transceiver to extract the semantic information and introduce the
memory module to process the context information. Moreover,
we derive the relationship between the length of semantic signal
and the channel noise to validate the possibility of dynamic trans-
mission. Specially, we propose two dynamic transmission methods
to enhance the transmission reliability as well as to reduce the
communication overheads by masking some unessential elements,
which are recognized through training the model with mutual
information. Numerical results show that the proposed Mem-
DeepSC is superior to benchmarks in terms of answer accuracy
and transmission efficiency, i.e., number of transmitted symbols.

Index Terms— Semantic communications, memory task,
dynamic transmission, deep learning.

I. INTRODUCTION

THE seamlessly connected world fosters unique services,
like virtual reality (VR), mobile immersive eXtended

reality (XR), or autonomous driving, and brings new chal-
lenges to communication systems, such as the scarcity of
resources, the congestion of network traffic, and the scal-
able connectivity for edge intelligence [1]. To materialize
the vision, semantic communication [2] is a communication
paradigm by directly delivering the meanings of information,
and extracting and transmitting only important information
relevant to the task at the receiver. In the past couple of years,
semantic communication is attracting extensive attention from
both academia [2] and industry [3], [4]. The latest works
take advantage of deep learning (DL) to design end-to-end
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semantic communication systems for various types of source
reconstruction and specific tasks execution, which has shown
a great potential to increase the reliability in performing intel-
ligent tasks, reducing the network traffic, and thus alleviating
spectrum shortage.

The existing works in semantic communication can be cate-
gorized by the types of source data. For image-based semantic
communication systems, Bourtsoulatze et al. [5] have investi-
gated the deep image transmission semantic communication
systems, in which the semantic and channel coding are
optimized jointly. Kurka and Gunduz [6] extended Bourt-
soulatze’s work with the channel feedback to improve the
quality of image reconstruction. Jankowski et al. [7] have
developed digital and analog deep joint source-channel cod-
ing (JSCC) to perform the person/car re-identification task
directly, which improves the image retrieval accuracy effec-
tively. Lee et al. [8] have considered the image classification
as the communication task, where JSCC is based on the convo-
lutional neural network (CNN). Moreover, Hu et al. [9] have
designed a robust semantic communication system against
semantic noise by employing adversarial training, which
reduces the probability of misleading in classification. In order
to reduce the communication overheads, Yang et al. [10] have
developed bandwidth-limited semantic communication sys-
tem by removing the redundancy of semantic features while
keeping similar classification accuracy. Shao et al. [11] have
proposed a dynamic semantic communication system to adap-
tively adjust the number of the active semantic features under
different signal-to-noise ratios (SNRs) with a graceful classifi-
cation accuracy degradation. Huang et al. [12] have designed
the image semantic coding method by introducing the frame-
work of rate-distortion, which can save the number of bits as
well as keep the good quality of the reconstructed image.

Apart from image based semantic communication sys-
tems, the video based semantic communication systems also
attracted much attention. Tung and Gunduz [13] have designed
the initial deep video semantic communications by accounting
for occlusion/disocclusion and camera movements. Espe-
cially, the authors considered the DL-based frame design
for the video reconstruction. Wang et al. [14] have proposed
the adaptive deep video semantic communication systems by
learning to allocate the limited channel bandwidth within and
among video frames to maximize the overall transmission
performance. Jiang et al. [15] have investigated the applica-
tion of semantic communications in the video conference,
in which the proposed system can maintain high resolution by
transmitting some keypoints to represent motions and keep the
low communication overheads. Similarly, Tandon et al. [16]
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also considered the video conference transmission. Different
from [15], the authors have designed the video semantic com-
munication by converting the video to text at the transmitter
and recovering the video from the text at the receiver.

Meanwhile, there exist works on the speech-based, text-
based, and multimodal semantic communication systems.
Weng et al. [17] have developed the speech recognition-
oriented semantic communication, named DeepSC-SR,
in which the transmitter sends the speech signal and the
receiver restores the text directly. Han et al. [18] have
designed an more energy-efficient speech-to-text system
by introducing the redundancy removal module to lower
the transmitted data size. With the depth exploration in
semantic communications, Xie and Qin [19] have developed
a powerful joint semantic-channel coding, named DeepSC,
to encode text information into various lengths over complex
channels. Moreover, Xie et al. [20] also have proposed an
environment-friendly semantic communication system, named
L-DeepSC, for capacity-limited devices. Zhou et al. [21]
have proposed a Universal Transformer based semantic
communication system for text transmission with lower
complexity. Peng et al. [22] have designed robust semantic
communication systems to prevent the semantic delivery from
the source noise, e.g., typos and syntax errors. By considering
the multi-user scenario for multi-modal data transmission,
Xie et al. [23] have proposed a unified Transformer based
semantic communication framework to support the image
and text transmission and to enable the receiver to perform
various multimodal tasks. These existing works have revealed
the potential of semantic communication in various intelligent
tasks and moved towards the ideal intelligent communication.
However, the proposed semantic communication systems only
consider the current time slot inputs and ignore the previous
time slots inputs. For the next step of task-oriented semantic
communication, we can find some inspiration from human
communication.

In the human communication [24], people can perform the
both memoryless tasks and memory tasks. Memoryless tasks
are only relevant to the inputs received in the current time
slot, e.g., receiving the image and recognizing its category.
Memory tasks [25] are relevant to inputs received in both the
current and past time slots, e.g., the response in the conver-
sation relying not only on the currently listened sentences but
also on the previous context. While the developed semantic
communication systems only consider the inputs in the current
time slot and neglected those in the previous time slots. With
such a design, semantic communication is incapable of serving
the memory tasks, such as scenario question answer, scenario
visual question task, and scenario conversations.

Note that one of the key modules in human communi-
cations is memory, which can store the context semantic
information and enable people to perform tasks requiring
memory. We are inspired to introduce the memory module
in semantic communications so as to execute tasks with
and without memory. By dosing so, machine to machine
commendations and human to machine communications will
become more intelligent and human-like, which could fully
exploit the advancements of semantic communications. It is

of great interest to design a semantic communication system
that utilizes memory information to facilitate the semantic
information transmission and task execution at the receiver.
To design a semantic communication system with memory,
we are facing the following challenges:
Q1: How to design the semantic-aware transceiver with

memory module?
Q2: How to ensure the effectiveness of transmitting memory

over multiple time slots?
In this paper, we investigate a semantic communication for

memory tasks by taking the scenario question answer task as
an example. Particularly, we develop a DL enabled seman-
tic communication system with memory (Mem-DeepSC) to
address the aforementioned challenges. The main contributions
of this paper are summarized as follows:
• Based on the universal Transformer [26], a transceiver

with a memory module is proposed. In the proposed
Mem-DeepSC, the transmitter can extract the semantic
features at the sentence level effectively and the receiver
can process received semantic features from the previous
time-slots by employing the memory module, which
addresses the aforementioned Q1.

• To make the Mem-DeepSC applicable to dynamic trans-
mission environment, the relationship between the length
of semantic signal and the channel noise is derived. Espe-
cially, two dynamic transmission methods are proposed to
preserve semantic features from distortion and reduce the
communication resources. Two lower bounds of mutual
information are derived to train the dynamic transmission
methods. This addresses the aforementioned Q2.

The rest of this paper is organized as follows. The system
model is introduced in Section II. The semantic communica-
tion system with memory module is proposed in Section III.
Section IV details the proposed dynamic transmission meth-
ods. Numerical results are presented in Section V to show the
performance of the proposed frameworks. Finally, Section VI
concludes this paper.

Notation: Bold-font variables denote matrices or vectors.
Cn×m and Rn×m represent complex and real matrices of size
n×m, respectively. x ∼ CN (µ, σ2) means variable x follows a
circularly-symmetric complex Gaussian distribution with mean
µ and covariance σ2. (·)T and (·)H denote the transpose and
Hermitian, respectively. IM is the M × M is the identity
matrix, IM×1 is the all-one vector with length M , 1i is the
one-hot vector with one in the i-th position. ⊙ and ⊘ are the
element-wise multiplication and division, respectively. x(k)
represents the signal at the k-th time slot. x[k] represents the
k-th element in the vector. X[k] represents the k-th row in the
matrix.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a single-input single-output
(SISO) communication system, which is with one antenna at
the transmitter and one at the receiver. We focus on the text
scenario question answer, therefore, the transmission includes
two phases: i) memory shaping to transmit the context, e.g.,
multiple sentences, images, or speeches, to the receiver via
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Fig. 1. The proposed framework for semantic communication systems with memory module.

multiple time slots; ii) task execution to transmit the question
relevant to the context so as to obtain the answer at the
receiver. In this paper, we consider multiple sentences as the
context.

The transceiver has three modules, a semantic codec to
extract the semantic features of the source and perform the
task, a joint source-channel (JSC) codec to compress and
recover the semantic features, and the memory module to store
the received context in multiple time slots and aid semantic
decoder in performing the task.

A. Memory Shaping

We assume the k-th context, s(k), is transmitted during the
k-th time slot and denote sc and sq as the context sentence and
question sentence, respectively. In the memory shaping phase,
the transmitter sends the context, e.g., multiple sentences,
images, or speeches, to the receiver over multiple time slots.
Subsequently, with the semantic encoder and channel encoder,
the k-th context sentence over the k-th time slot can be
encoded as

xc(k) = C (S (sc(k); α) ;β) , (1)

where xc(k) ∈ CL×1 is the transmitted signals after the
power normalization, S (·; α) and C (·; β) are denoted as the
semantic encoder with parameter α and channel encoder with
parameter β, respectively.

Transmitting the signals over the channels, the received
signal can be presented as

yc(k) = h(k)⊙ xc(k) + n(k), (2)

where h(k) is the channel coefficients and n is the addi-
tive white Gaussian noise (AWGN), in which n(k) ∼
CN

(
0, σ2

nIL

)
. For the Rayleigh fading channel, the chan-

nel coefficient follows h(k) ∼ CN (0, IL); for the Rician
fading channel, it follows h(k) ∼ CN

(
µhIL×1, σ

2
hIL

)
with

µh =
√

r/(r + 1) and σh =
√

1/(r + 1), where
r is the Rician coefficient. The SNR is defined as
E(∥h(k)⊙ xc(k)∥2)/E(∥n(k)∥2).

With the estimated channel state information (CSI), ĥ(k),
the transmitted signals, x̂(k), can be detected by

x̂c(k) = ĥ
H
(k)⊙ yc(k)⊘

(
ĥ(k)⊙ ĥ

H
(k)

)
. (3)

After signal detection, the semantic features can be recovered
by

ẑc(k) = C−1 (x̂c(k); γ) , (4)

where ẑc(k) ∈ RN×1 and C−1 (·; γ) is denoted as the channel
decoder with parameter γ. Then, the recovered semantic
features will be inputted into the memory module.

Inspired by the short-term memory, we model the memory
module as a queue with length T , which only concerns the
context. The memory queue at the k-th time slot is represented
by

Q(k) = [ẑc(k − T + 1); ẑc(k − T + 2); · · · ; ẑc(k)]. (5)

where Q(k) ∈ RN×T , T is the length of memory. For k < 0,
ẑc(k) is the vector with all zero elements. The memory queue
is updated with the incoming received latest semantic features
and pop the oldest features out of the queue. For example, the
memory queue at the (k + 1)-th time slot is given by

Q(k + 1)=[ẑc(k − T + 2); ẑc(k − T + 3); · · · ; ẑc(k + 1)].
(6)

For scenario communications, it is important to recognize
the sequence of the memory queue. In other words, we need
to know the order of sentences happened earlier or later.
Therefore, we need to add the temporal information before
inputting to the models, which is given by

M(k) = Q(k) + T, (7)

where T = [t1; t2; · · · ; tT ] ∈ RN×T is the temporal informa-
tion matrix, any two elements of which satisfy < tm, tn >=
g(m − n) for some function g(·). We choose the positional
coding employed in Transformer [27] here.

When performing the memory task, the memory shaping
phase will introduce the overheads in terms of time availability
due to occupying multiple time slots. For example, considering
the task offloading scenario, compared to the memoryless tasks
that only use several time slots, the memory shaping will
occupy multiple time slots and may congest the transmission
pipe. This makes the time consumption a little high at the
initial memory shaping phase. However, when the memory
module is shaped, such consumption can be alleviated by
reusing or partly updating the shaped memory module, because
the memory module serves multiple questions. Therefore, the
frequency of carrying memory shaping phase depends on the
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Fig. 2. The proposed network structure of Mem-DeepSC system.

demands of users. When performing the memory task, the user
will decide whether the current context stored in the memory
module can answer the question. If not, the memory needs
to be updated.

B. Task Execution

In the task execution phase, the transmitter sends the ques-
tion sentence, sq , to the receiver to perform the task. Specially,
sq is encoded into xq by (1), transmitted over the air, and
decoded into ẑq by (4). In the scenario question answer task,
the question is not only relevant to only one context sentence
but also multiple context sentences. Therefore, the answer is
predicted with the question and memory together, which is
represented as

â = S−1 ([ẑq,M(k)] ;φ) , (8)

where S−1(·; φ) is the semantic decoder with parameters φ.

III. SEMANTIC COMMUNICATION SYSTEM WITH MEMORY

In this section, we design a semantic communication sys-
tem with memory, named Mem-DeepSC, to perform scenario
question answer task, in which the universal Transformer is
employed for text understanding.

A. Model Description

The proposed Mem-DeepSC is shown in Fig. 2. The seman-
tic encoder consists of universal Transformer encoder layer
with variable steps to extract the semantic feature of each
word. In order to reduce the transmission overheads, the
summation operation is taken here, in which these semantic
features at the word level are merged to get one semantic
feature at the sentence level. The reason that we choose uni-
versal Transformer in the semantic codec can be summarized
as follows:
• The state-of-arts, i.e., BERT [28] and GPT-3 [29], choose

Transformer to deal with textual information, which
shows the powerful extraction capability of text semantic
information.

• The universal Transformer can be trained and tested much
faster than the architectures based on recurrent layers due
to the parallel computation [26].

• Compared with the classic Transformer, the universal
Transformer shares the parameters, which can reduce the
model size.

After the semantic encoder, the JSC encoder employs mul-
tiple dense layers to compress the sentence semantic feature.
The reasons that we mainly use dense layer in the channel
codec can be summarized as follows:
• The JSC codec aims to compress the semantic features

and transmit it effectively over the air. Compared with
the CNN layer to capture the local information, the
dense layer is good at capturing the global information
and preserving the entire attributes, which follows the
target of the JSC codec. This can enhance the system’s
robustness to channel noise.

At the receiver, the JSC decoder correspondingly includes
multiple dense layers to decompress sentence semantic feature
and reduce the distortion from channels. The semantic decoder
also contains the universal Transformer encoder layer with
variable steps to find the relationship between the memory
queue and the query feature to get the answer. Especially,
temporal coding is employed to add temporal information
to the memory queue, in which we adopt the positional
coding [27] as the temporal coding.

B. Training Details

As shown in Algorithm 1, the training of Mem-DeepSC
includes three steps, which is similar to the training algorithm
proposed in [23]. The first step is to train the semantic codec.
In order to improve the accuracy of answers, we choose the
cross-entropy (CE) as the loss function instead of the answer
accuracy. The cross-entropy is given by

LCE = −p (a) log (p (â)) , (9)

where p (a) is the real probability of answer and p (â) is
the predicted probability. After convergence, the model learns
to extract the semantic features and predict the answers.
The following proposition proven in Appendix A reveals the
relationship between cross-entropy and the answer accuracy.

Proposition 1: Cross entropy loss function is the refined
function of answer accuracy and is more stable during training.

After converged, the model is capable of extracting semantic
features and predicting the answer accurately. Subsequently,
the second step is to ensure the semantic features transmitted
over the air effectively. Thus, the JSC codec is trained to learn
the compression and decompression of the semantic features
as well as to deal with the channel distortion with the mean-
squared error (MSE) loss function,

LMSE = ∥zc(k)− ẑc(k)∥2 , (10)
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Algorithm 1 Mem-DeepSC Training Algorithm

1 Function Train Semantic Codec():
Input: {(sc(1), sc(2), · · · , sc(K)), sq, a} from

dataset.
2 for k = 1 → K do
3 S (sc(k); α) → Wc(k),
4 Take the summation operation,

zc(k) =
∑

j Wc(k)[j],

5 S (sq; α) → Wq , and zq =
∑

j Wq[j],
6 Shape the memory queue Q(K) by (5),
7 Take the temporal coding for M(K) by (7),
8 S−1 ([zq,M(K)] ;φ) → â,
9 Compute CE loss with a and â.

10 Train α, φ → Gradient descent with CE loss.
Return: S (·; α) and S−1 (·; φ).

11 Function Train JSC Codec():
Input: Semantic features zc(k).

12 Transmitter:
13 C (zc(k); β) → xc(k),
14 Power Normalization,
15 Transmit xc(k) over the air.
16 Receiver:
17 Receive yc(k),
18 Signal detection by (3) to get x̂c(k),
19 C−1 (x̂c(k); γ) → ẑc(k),
20 Compute MSE loss with zc(k) and ẑc(k).
21 Train β, γ → Gradient descent with MSE loss.

Return: C (·; β) and C−1 (·; γ).
22 Function Train Whole Network():

Input: {(sc(1), sc(2), · · · , sc(K)), sq, a} from
dataset.

23 Repeat line 2-5, 12-19, and 6-8 to get â,
24 Compute CE loss with â and a.
25 Train α, β, γ, φ → Gradient descent with CE loss.

Return: S (·; α), S−1 (·; φ), C (·; β), and
C−1 (·; γ).

where zc(k) and ẑc(k) are the original semantic features and
the recovered semantic features, respectively.

Finally, the third step is to optimize the entire system jointly
to achieve the global optimization. The semantic codec and
JSC codec are trained jointly with the CE loss function to
reduce the error propagation between each module.

With the Mem-DeepSC, the memory-related tasks can be
performed. However, the context is transmitted via multiple
time slots. If each time slot has different channel conditions,
the damage to the semantic information is inevitable at the
worse channel conditions, which affects the prediction accu-
racy. Therefore, in order to preserve the semantic information
and save the communication overheads over multiple time
slots, we further develop an adaptive rate transmission method.

IV. ADAPTIVE RATE TRANSMISSION

In this section, we firstly derive the relationship between the
length of semantic signal and channel noise, which inspires us

to transmit different length signals according to SNRs. We then
develop two dynamic transmission methods, importance mask
and consecutive mask for saving the communication resources
and preventing the outage for memory transmission to different
SNRs.

A. The Relationship Between the Length of Semantic Signal
and Channel Noise

Adaptive modulation has been developed for conventional
communications [30], where the modulation order and code
rate change according to SNRs. The same spirit can be used
in semantic communications if there exists the relationship
between the length of semantic signal and channel noise
over AWGN. In this situation, we can achieve such adaptive
operation by masking some elements, i.e., masking less at low
SNR regimes to ensure the reliability of performing tasks and
masking more elements at high SNR regimes to achieve a
higher transmission rate.

How many semantic elements should be transmitted? The
existing works [11], [13] employ neural networks to learn
how to determine the number of transmitted semantic ele-
ments dynamically, which lacks of interpretability. Therefore,
we provide a theoretical analysis of the relationship between
the length of semantic signal and the channel noise to guide
us to determine the number of semantic elements at certain
SNR.

The key is to find the relationship between the noise level
and the number of elements that can be transmitted correctly.
Firstly, we model xc(k) into

xc(k) = rc(k) + nmodel, (11)

where rc(k) is the semantic information selected from
the latent semantic codewords, nmodel ∼ CN

(
0, σ2

mI
)

is the
model noise. Inspired by that the generative models, e.g., the
diffusion model and deep hierarchical VAE, model the latent
features with Gaussian distribution. Besides, we generally
initialize the model weights with Gaussian distribution and
apply the batch normalization/layer normalization to normalize
the outputs following N (0, 1) [31]. Therefore, we model the
model noise with Gaussian distribution. In deep learning, the
model noise is caused by the unstable gradients descending,
the training data noise, and so on. The model noise can be
alleviated by the larger dataset, the refined optimizer, and the
re-designed loss function but cannot be removed.

Assume the length of xc(k) is L. By applying the packing
sphere theory [32], xc(k) can be mapped to the L-dimension
sphere space as shown in Fig. 3(a). In the Fig. 3(a),
the smaller sphere represents the noise sphere with radius√

Lσm and the larger sphere is the signal sphere with radius√
L(µ2

max + σ2
m), where µmax is the maximum value in the

latent semantic codewords. The reason that noise spheres
spread the signal sphere is that the latent semantic codewords
have different constellation points. Communication is reliable
as long as the noise spheres do not overlap. Therefore, there
exists a minimum length of L to prevent the overlap from
the model noise. In other words, the number of semantic
codewords that can be packed with non-overlapping noise
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Fig. 3. An example of the relationship between the length of semantic signal and channel noise over AWGN: (a) the transmitted signal of length L packed
into L dimension sphere; (b) the received signal of length L over AWGN channels packed into L dimension sphere; (c) the received signal of length L1 over
AWGN channels packed into L1 dimension sphere.

sphere over the model noise is

N =

(√
L (µ2

max + σ2
m)

)L

(√
L (σ2

m)
)L

=
(

1 +
µ2

max

σ2
m

)L
2

. (12)

After transmitting xc(k) over the AWGN channels, the
received signals can be represented by submitting (11) into (2),

yc(k) = rc(k) + nmodel + nchannel, (13)

where n in (2) is re-denoted to nchannel. The yc(k) can also be
mapped to the L-dimension sphere space shown in Fig. 3(b).
Because of the channel noise, the radius of noise sphere
increases from

√
L(σ2

m) to
√

L(σ2
n + σ2

m), which makes the
noise spheres overlap.

In order to eliminate the overlapping, one way is to increase
the length of xc(k) from L to L1 (L1 > L) to enlarge the
volume of the signal sphere so that the enlarged noise spheres
do not overlap. Then, the number of semantic codewords that
can be packed with non-overlapping noise sphere over the
model noise and the channel noise is

N =

(√
L1 (µ2

max + σ2
m + σ2

n)
)L1

(√
L1 (σ2

m + σ2
n)

)L1
=

(
1 +

µ2
max

σ2
m + σ2

n

)L1
2

.

(14)

The semantic codewords only describe the semantic infor-
mation of the source and are irrelevant to the channel noise,
which means that the numbers of semantic codewords in (12)
and (14) are the same. Therefore, the relationship between L
and L1 can be derived as shown in proposition 2.

Proposition 2: Given the minimum length, L, to prevent
from model noise, the minimum length for reliable communi-
cation over AWGN channels is

L1 = L×
log

(
1 + µ2

max
σ2

m

)
log

(
1 + µ2

max
σ2

m+σ2
n

) . (15)

With proposition 2, the masked ratio to different SNRs can
be computed theoretically. With (15), the asymptotic analysis
can be derived into four cases listed below.
• Case 1: When σ2

n → 0, then L1 → L. The number of
transmitted symbols will converge to minimum L. In this

case, the semantic communication system can be viewed
as the compressor and decompressor.

• Case 2: When σ2
n →∞, then L1 →∞. The number of

transmitted symbols will lead to infinity. In this case, the
semantic communication system experiences an outage.

• Case 3: When σ2
m → 0, then L → 0. L1 only depends

on the channel noise and can be computed by

L1 =
2 log (N)

log
(
1 + µ2

max
σ2

n

) . (16)

In this situation, L1 is computed by the traditional chan-
nel capacity and the number of semantic codewords.

• Case 4: When σ2
m → ∞, then L → ∞. The semantic

communication system experiences an outage, similar to
case 2.

The key differences between the relationship and traditional
channel capacity can be summarized in the following,
• The relationship indicates how much semantic informa-

tion can be transmitted error-free while the traditional
channel capacity indicates how many bits can be trans-
mitted error-free.

• The length of semantic vectors is affected by three points,
1) the number of semantic codewords, 2) the model noise,
and 3) the channel noise. But the channel capacity only
depends on the channel noise.

• When channel noise disappears, the length of semantic
vectors has the lower bound, L. The traditional channel
capacity does not have such a lower bound.

With the relationship, it is possible to achieve dynamic
transmission. The key to achieving such a dynamic trans-
mission in semantic communication systems is to identify
which elements are more important than the others and mask
the unimportant ones. As shown in Fig. 4, we propose two
mask methods subsequently, importance mask method and
consecutive mask method.

B. Importance Mask

As shown in Fig. 4(a), the importance mask method intro-
duces the importance-aware model to identify the importance
order among the elements of xc(k), which can be expressed
as

pc(k) = F (xc(k); θ) , (17)
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Fig. 4. The proposed two dynamic transmission methods: (a) Importance mask method; (b) Consecutive mask method.

where F (·; θ) is the importance-aware model with learnable
parameter θ, pc(k) is the importance rank of xc(k), in which
the bigger value means that the corresponding element is more
important.

By setting the threshold, κ, the mask, mc(k), can be
computed with the pc(k) by

mc(k)[i] =

{
1, pc(k)[i] > κ,

0, pc(k)[i] ≤ κ.
(18)

where κ can be determined by the L1-th element in the sorted
importance rank with the descend order, and L1 is computed
by (15).

Then, the masked transmitted signal can be generated by

x̃c(k) = xc(k)⊙mc(k). (19)

With x̃c(k), the transmitter can send the only non-zero
elements and the position information of zero elements to
reduce the communication overheads.

After transmitting x̃c(k) over the air, the receiver follows
the same processing to perform signal detection, JSC decod-
ing, and semantic decoding.

1) Loss Function Design: In order to train the importance
model, the optimization goal is to keep more information
related the task in the masked signals to prevent performance
degradation. Therefore, the mutual information between x̃c(k)
and the goal a is employed as the loss function,

LMI = −I (x̃c(k); a) . (20)

However, minimizing (20) with gradients descending
algorithm is hard since LMI is undifferentiable and diffi-
cult to compute. There are several methods to alleviate
the problem, e.g., employing the mutual information esti-
mator and the numerical approximation. Even if these
methods solve the undifferentiable problem, it is still
unstable in estimating the mutual information. In order
to achieve stable optimization, an approximate bound-
optimization (or Majorize-Minimize) algorithm is employed.
The bound-optimization aims to construct the desired
majorized/minorized version of the objective function. Fol-
lowing the idea, two propositions are proposed for the
bound-optimization of mutual information, which are proven
in Appendices B and C, respectively.

Algorithm 2 Importance Mask Training Algorithm

1 Function Train Importance Model():
Input: {xc(k), xq, a}. Freeze Mem-DeepSC.

2 Transmitter:
3 F (xc(k); θ) → pc(k),
4 Compute the mask, mc(k), by (18)
5 Compute the mask signal, x̃c(k), by (19),
6 Transmit x̃c(k) and xq over the air,
7 Receiver:
8 Receive signal and perform signal detection,
9 C−1 (x̃c(k); γ) → ẑc(k), and C−1 (x̂q; γ) → ẑq

10 Update the memory queue, Q(k), with ẑc(k),
11 Take the temporal coding for M(k) by (7),
12 S−1 ([ẑq,M(k)] ;φ) → â,
13 Compute CE loss with a and â.
14 Train θ → Gradient descent with CE loss.

Return: F (·; θ).

Proposition 3: For classification tasks, alternately maxi-
mizing the mutual information can be viewed as a bound
optimization of the cross entropy.

Proposition 4: For regression tasks, alternately maximizing
the mutual information can be viewed as a bound optimization
of the mean absolute error.

With Propositions 3 and 4, the mutual information loss
function in (20) can be changed to the cross-entropy loss
function in (9).

2) Training Details: As shown in Algorithm 2, the impor-
tance model is trained by the CE loss function and the frozen
Mem-DeepSC model. The training importance model takes
the backpropagations from the semantic decoder to guide the
importance model, in which the SoftKMax activation function
is employed to bridge the backpropagation from mask to
importance model. In other words, the importance model can
learn which elements have more contributions/importance to
the task performance by minimizing the CE loss function.

C. Consecutive Mask

As shown in Fig. 4(b), the consecutive mask method masks
the last consecutive elements in the xc(k) to zero, so that
the transmitter only sends the non-zero elements and the
receiver pads the received signals with zeros to the same
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length of xc(k). The consecutive mask method does not need
to transmit the additional mask position information but to
re-train the Mem-DeepSC model. Since the importance rank
of the elements of xc(k) is not consecutive, directly mask-
ing these consecutive elements may experience performance
degradation. The Mem-DeepSC needs to be re-trained with
the consecutive mask so that it can learn to re-organize the
elements of xc(k) following the order of descend importance.

The training of the consecutive mask method only includes
one step, which is similar to the Train Whole Network
in Algorithm 1 but with two additional operations, i.e., mask-
ing operation before transmitting and padding operation after
signal detection. The loss function during the training is the
CE loss function.

V. SIMULATION RESULTS

In this section, we compare the proposed semantic com-
munication systems with memory with the traditional source
coding and channel coding method over various channels,
in which the proposed mask methods are compared with
different benchmarks.

A. Implementation Details

1) The Dataset: We choose the bAbI-10k dataset [33],
including 20 different types of scenario tasks. Each example
is composed of a set of facts, a question, the answer, and
the supporting facts that lead to the answer. We split the
10k examples into 8k examples for training, 1k examples for
validation, and 1k examples for testing.

2) Traing Settings: The semantic encoder and decoder
consist of the universal Transformer encoder layer with 3 steps
and with 6 steps, respectively, in which the width of the layer
is 128. The importance model is composed of one Transformer
encoder layer with the width of 64. The other training settings
are listed in Table I.

3) Benchmarks and Performance Metrics: We adopt the
typical source and channel coding method as the benchmark
of the proposed Mem-DeepSC, and the random mask method
as the counterpart of the proposed two mask methods.
• Separate Mem-DeepSC: The semantic codec and channel

codec are trained with (9) and (10), respectively.
• Conventional methods: To perform the source and chan-

nel coding separately, we use the following technologies,
respectively:

– 8-bit unicode transformation format (UTF-8) encod-
ing for text source coding, a commonly used method
in text compression;

– Turbo coding for text channel coding, popular chan-
nel coding for a small size file;

– 16-quadrature amplitude modulation as the modula-
tion.

• Random Mask: Mask the elements in the transmitted
signal randomly.

In the simulation, the coding rate is 1/3 and the block length
is 256 for the Turbo codes. The coherent time is set as the
transmission time for each context in the simulation. We set

Fig. 5. Answer accuracy comparison between Mem-DeepSC and
UTF-8-Turbo with 16-QAM over different channels.

r = 2 for the Rician channels and h = 1 for the AWGN
channels. In order to compute the required length of semantic
vectors, we train multiple Mem-DeepSC with different sizes to
find the values of µmax and σ2

m. For Mem-DeepSC, µmax =
1 and σ2

m = 1.44. Answer accuracy is used as the metric to
compute the ratio between the number of correct answers and
that of all generated answers.

B. Memory Semantic Communication Systems

Fig. 5 compares the answer accuracies over different
channels, in which the Mem-DeepSC and the UTF-8-Turbo
transmit 32 symbols per sentence and 190 symbols per
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TABLE I
THE TRAINING SETTINGS

sentence, respectively. The proposed Mem-DeepSC with mem-
ory outperforms all the benchmarks at the answer accuracy
in all SNR regimes by the margin of 0.8. Compared the
Mem-DeepSC with memory and without memory, the mem-
ory module can significantly improve the answer accuracy,
which validates the effectiveness of the memory module
in memory-related transmission tasks. Besides, the Mem-
DeepSC outperforms the separate Mem-DeepSC in low SNR
regimes, which means that the three stage training algorithm
can help improve the robustness to channel noise. From the
AWGN channels to the Rician channels, the proposed Mem-
DeepSC with memory experiences slight answer accuracy
degradation in the low SNR regimes but the UTF-8-Turbo
has an obvious performance loss in all SNR regimes. The
inaccurate CSI deteriorates the answer accuracy for both
methods, however, the proposed Mem-DeepSC can keep a
similar answer accuracy in high SNR regimes, which shows
the robustness of the proposed Mem-DeepSC.

C. The Proposed Mask Methods

Table II compares the number of transmitted symbols for
different methods. Compared to the UTF-8-Turbo with the
adaptive modulation and channel coding (AMC), the proposed
Mem-DeepSC decreases the number of the transmitted sym-
bols significantly with only 4%-16.8% symbols. The reason is
that the Mem-DeepSC transmits the semantic information at
the sentence level instead of at the letter/word level. Besides,
applying the dynamic methods can further reduce the number
of transmitted symbols from 32 symbols to 16 symbols per
sentence as the SNR increases, especially saving an additional
50% symbols in the high SNR regimes. Then, the effectiveness
of (15) is validated by the following simulation in Fig. 6.

Fig. 6 verifies the effectiveness of the proposed mask strat-
egy. For Mem-DeepSC with no mask, we provided two cases
with 16 symbols and 32 symbols per sentence, respectively.
Utilizing adaptive modulation and channel coding (AMC) on
UTF-8-Turbo can yield comparable answer accuracy to that of
Mem-DeepSC over AWGN channels. However, this comes at
the expense of a reduced transmission rate. Then comprising
the no mask cases with different number of symbols per
sentence, increasing the number of symbols per sentence leads
to higher answer accuracy in low SNR regimes but the gain
disappears as the SNR increases. This suggested that the
semantic communication systems can employ more symbols
in low SNR to improve the robustness and transmit fewer
symbols in the high SNR regimes to improve the transmission

Fig. 6. Answer accuracy comparison between Mem-DeepSC with different
number of transmitted symbols over different channels.

efficiency. The proposed importance mask and consecutive
mask keep the similar answer accuracy as the Mem-DeepSC
with 32 symbols per sentence in all SNR regimes over the
AWGN and the Rician channels.

However, the random mask experiences significant answer
accuracy loss in the high SNR regimes as the number of
masked elements increases because some important elements
are masked randomly to reduce the answer accuracy. This
validates the effectiveness of both proposed mask methods.
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TABLE II
THE NUMBER OF TRANSMITTED SYMBOLS COMPARISON BETWEEN DIFFERENT METHODS

VI. CONCLUSION

In this paper, we have proposed a memory-aided semantic
communication system, named Mem-DeepSC. The scenario
question answer task is taken as the example. The Mem-
DeepSC can extract the semantic information at the sentence
level to reduce the number of the transmitted symbols and deal
with the context information at the receiver by introducing the
memory queue. Moreover, with the memory module, the Mem-
DeepSC can deal with the memory-related tasks compared to
that without the memory module, which is closer to human-
like communication. Besides, the relationship between the
length of semantic signal and the channel noise over AWGN
is derived to decide how many symbols are required to be
transmitted at different SNRs. Two dynamic transmission
methods are proposed to mask the unimportant elements in
the transmitted signals, which can employ more symbols in
the low SNR to improve the robustness and transmit fewer
symbols in the high SNR regimes to improve the transmission
efficiency. In particular, the dynamic transmission methods can
save an additional 50% transmitted symbols. Therefore, the
semantic communication system with memory is an attractive
alternative to intelligent communication systems.

APPENDIX A

PROOF OF PROPOSITION 1

Given the mini-batch, B, the question-answer accuracy can
be computed by

Acc =
1
|B|

∑
B

⟨1i,1j⟩, (21)

where |B| is the batch size, and 1i is the one-hot vector with
one in the i-th position, 1i is the real answer with label i,
and 1j represents the predicted answer with predicted label j,
which is computed by

1j = onehot(arg max(l))), (22)

where l is the output logits before softmax activation.
Since softmax function is the soft function of

onehot(arg max(·))), the lj can be approximated by

1j ≈ p = softmax(l) (23)

where p is the predicted probabilities.

Submitting the (23) to (21), the answer accuracy can be
approximated as

Acc ≈ 1
|B|

∑
B

⟨1i, p⟩ =
1
|B|

∑
B

p(a)p(â). (24)

where p(a) is the real probability for label i and p(â) is the
i-th predicted probability at p.

Based on (24), the loss function of answer accuracy can be
designed as

LAcc = −E [p(a)p(â)] . (25)

The derivation of LAcc for the parameters φ is

∇φLAcc = p(â) (1− p(â))∇φl. (26)

From (26), there exist two optimization directions when
∇φLAcc → 0, i.e., p(â) → 0 and p(â) → 1. However,
p(â) → 0 causes worse prediction results and should avoid.
In order to make the optimization stable, the LAcc should be
refined. One refined loss function is the cross-entropy loss
function given by

LCE = −E [p(a) log (p(â))] . (27)

The derivation of LCE for the parameters φ is

∇φLAcc = (1− p(â))∇φl. (28)

Compared (26) and (28), the derivation of LCE only has one
correct optimization direction p(â) → 1, which is more stable
during training. Therefore, the proposition 1 is derived.

APPENDIX B

PROOF OF PROPOSITION 2

For the classification task, the mutual information,
I (x̃c(k); a), can be expressed as

I (x̃c(k); a) = H(a)−H(a|x̃c(k)). (29)

where H(a) is the entropy of the real label, H(a|x̃c(k)) is
the conditional entropy.

The cross-entropy between the real label and the predicted
label given x̃c(k) is

H(a; â|x̃c(k)) = H(a|x̃c(k)) + D KL (a||â|x̃c(k)) , (30)
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where DKL (·||·) is the Kullback-Leibler divergence and
is always non-negative. Therefore, we have the following
inequality

H(a; â|x̃c(k)) ⩾ H(a|x̃c(k)), (31)

Submitting (31) into (29), the lower bound of I (x̃c(k); a)
can be obtained

I (x̃c(k); a) ⩾ H(a)−H(a; â|x̃c(k)). (32)

From (32), since H(a) is constant, maximizing the
I (x̃c(k); a) can be approximated to minimizing the
H(a; â|x̃c(k)). The lower bound will be closer to I (x̃c(k); a)
when the model is trained. Therefore, the proposition 3 is
derived.

APPENDIX C

PROOF OF PROPOSITION 3

For the regression task, the mutual information,
I (x̃c(k); a), can be expressed as (29).

Lemma 1: The conditional differential entropy yields a
lower bound on the expected squared error of an estimator,
for any random variable X , observation Y , and estimator X̂ ,
the following holds

E
[(

X − X̂ (Y )
)2

]
⩾

1
2πe

e2H(X|Y ). (33)

Applying the Lemma 1, the upper bound of conditional
entropy, H(a|x̃c(k)), can be expressed as

H(a|x̃c(k)) < E [ln |a− â(x̃c(k))|] (34)

where â(x̃c(k)) means the model outputs â with the x̃c(k).
Submitting (34) into (29), the lower bound of I (x̃c(k); a)

can be obtained

I (x̃c(k); a) > H(a)− E [ln |a− â|] . (35)

From (35), since H(a) is constant, maximizing the
I (x̃c(k); a) can be approximated to minimizing the
E [ln |a− â|]. However, directly minimizing the E [ln |a− â|]
may cause the gradient explosion.

Given the derivation of ln |a− â| for the parameters φ,

∇φ ln |a− â| = 1
|a− â|

∇φâ. (36)

From (36), when â → a, ∇φ ln |a− â| → ∞. In order to alle-
viate the gradient explosion, the approximation of ln |a− â|
is derived by applying the Taylor series expansion

ln (|a− â| − 1 + 1) ≈ |a− â| − 1. (37)

The derivation of (37) for the parameters φ is

∇φ |a− â| = ∇φâ. (38)

Compared (38) and (36), the item, 1
|a−â| , is removed,

therefore, the gradient explosion is eliminated. Then, the lower
bound of I (x̃c(k); a) can be expressed as

I (x̃c(k); a) > H(a)− E [|a− â|] . (39)

From (39), maximizing the I (x̃c(k); a) can be approximated
to minimizing the E [|a− â|]. The lower bound will be closer
to I (x̃c(k); a) when the model is trained. Therefore, the
proposition 4 is derived.
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