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Abstract— A crucial step towards the 6th generation (6G)
of networks would be a shift in communication paradigm
beyond the limits of Shannon’s theory. In both classical and
quantum Shannon’s information theory, communication channels
are generally assumed to combine through classical trajectories,
so that the associated network path traversed by the information
carrier is well-defined. Counter-intuitively, quantum mechanics
enables a quantum information carrier to propagate through a
quantum path, i.e., through a path such that the causal order
of the constituting communications channels becomes indefinite.
Quantum paths exhibit astonishing features, such as providing
non-null capacity even when no information can be sent through
any classical path. In this paper, we study the quantum capacity
achievable via a quantum path and establish upper and the
lower bounds for it. Our findings reveal the substantial advantage
achievable with a quantum path over any classical placements
of communications channels in terms of ultimate achievable
communication rates. Furthermore, we identify the region where
a quantum path incontrovertibly outperforms the amount of
transmissible information beyond the limits of conventional
quantum Shannon’s theory, and we quantify this advantage over
classical paths through a conservative estimate.

Index Terms— Quantum capacity, quantum path, quantum
trajectory, quantum switch, entanglement, causal order, classical
path, quantum internet.

I. INTRODUCTION

A. Motivation

DESPITE a significant advancement in communications
after recent introduction of the 5th generation (5G)

networks, the fast-growing needs of exchanging ever bigger
amount of data via more effective new services trigger devel-
opment of the 6th generation (6G) networks. A crucial problem
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Fig. 1. Information carrier traversing channel E after channel D or vice
versa, i.e., through a classical path implementing the well-defined causal order
D → E or E → D, respectively.

Fig. 2. Information carrier traversing channels D and E in a superposition of
the two alternative causal orders D → E and E → D, i.e., through a quantum
path.

is reaching ever higher communication rates, which, however,
are limited by the Shannon’s information theory. Indeed, the
fundamental assumption underlying Shannon’s theory was to
model both the information carriers and the communication
channels as classical entities, obeying the law of classical
physics [1], [2].

During the last five decades, scientists have been working on
extending Shannon’s theory to the quantum domain1 – an area
of study referred to as quantum Shannon’s theory [8], [9] –
by modeling the information carriers as quantum systems and
by exploiting the unconventional phenomena – superposition
and entanglement – arising from such a modeling. The reason
behind such an extension lies in the capability of quantum
mechanics to enable applications in communication networks
with no-counterpart in classical networks, as pointed out
in [10], [11], and [12].

But, in both classical and quantum Shannon’s information
theory, communication channels are generally assumed to

1For a comprehensive overview of quantum communication field, the
interested reader might refer to the following works [1], [3], [4], [5],
[6], [7].
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Fig. 3. Schematic diagram of some of possible architectures of the photonic quantum SWITCH. (a) An implementation via a Mach-Zehnder geometry, where
the target qubit is encoded in polarization of the photon, while the control qubit is mapped into its path degree of freedom using the first beam splitter and
coherently recombining the paths D → E and E → D at the second beam splitter [13], [14], [15], [16], [17]. (b) An implementation via a Sagnac geometry,
where the target qubit is encoded in polarization of the photon (as in (a)), whereas a single beam splitter introduces the path degree of freedom as control
and completes superposition of causal orders of D and E [18]. (c) An implementation via a geometry, where the target qubit is encoded in the path degree
of freedom of the photon, while the role of control qubit is played by its polarization [19], [20].

be placed in a classical setting, such that the associated
network path traversed by the information carrier is well-
defined. As instance, with reference to Fig. 1, when a message
m is intended to propagate from the sender through two
communication channels – say channels D and E – to reach
the receiver, either channel E is crossed after channel D or vice
versa. In both cases, the causal order of the channels traversed
by the message is well-defined, i.e., either D → E or E → D.

In the recent years, a lot of effort has been put to find
communication scenarios allowing one to reach the rates not
only beyond the classical but even the quantum Shannon’s
theory. Counter-intuitively, quantum mechanics allows a sys-
tem to propagate simultaneously among multiple space-time
trajectories [2], [21], [22]. This peculiar property enables sce-
narios, where quantum information carrier propagates through
a quantum path, i.e., through a network path where the consti-
tuting communications channels are combined in a quantum
superposition of different configurations. The aforementioned
channel placement constitutes a genuine quantum setting with
no-counterpart in classical networks [1].

A particular kind of quantum path is obtained through
superposition of different orders among the constituting com-
munication channels, as shown in Fig. 2. In such a scenario,
the causal order of the channels becomes, generally speaking,
indefinite, leading to rates that can exceed the limits of the
standard quantum Shannon’s theory [23], [24], [25]. There-
fore, it is crucial to determine the ultimate communication
rates achievable by a point-to-point quantum communication
protocol through noisy quantum channels, when these channels
are combined in a superposition of different orders.

B. Related Work

Quantum paths, incompatible with any definite causal order
of communication channels, have been experimentally realized
through a quantum device called quantum SWITCH [26].
Therein, the causal order of the communication channels is
controlled by a quantum degree of freedom, represented by
a control qubit. Specifically, multiple implementations of the
quantum SWITCH in table-top experiments have been recently

proposed, e.g., photonic setups exploiting path [13], [14], [15],
[16], [17], [18] or polarization [19], [20], [27] of a photon as
the control degree of freedom. Fig. 3 provides2 a schematic
diagram of some of the existing photonic implementations of
the quantum SWITCH.

Successful experimental implementations of the quantum
SWITCH have immediately increased interest in its potential
benefits. Indeed, the adoption of the quantum SWITCH has
been shown to provide significant advantages for a number
of problems in a wide range of fields. In particular, it leads
to a computational advantage over causally ordered quantum
circuits [26], [29], [30], it allows for improved strategies for
quantum metrology [31], [32] and effective discrimination of
unknown quantum channels [33], [34], it reduces communi-
cation complexity [35], [36], and it provides thermodynamic
advantages [37], [38], [39], [40].

While the ultimate communication rates achievable with
classical paths have been deeply investigated [41], [42], [43]
for a large number of quantum channels, communications via
quantum paths combining the communications channels in
a quantum superposition of different orders caught attention
of the community recently. For example, in [44], capacity
of entanglement-assisted communication over classical and
quantum trajectories under quantum superdense coding pro-
tocol has been addressed. Indeed, extensions of quantum
Shannon’s theory to embrace quantum path and analysis of
the achievable ultimate rates are currently one of the hottest
research topics within the communications domain [1], [2],
[15], [19], [20], [23], [24], [25], [44], [45], [46]. These
efforts show that the quantum SWITCH provides advantages
in communication capacity compared with classical paths
for noisy channels. Moreover, the quantum SWITCH can
enable noiseless communications via noisy channels, even if
no information can be sent through either of the component
channels individually [25], [28]. However, in the literature,
analytically only a lower bound for the quantum capacity

2We refer the reader to [2] and [28] for further details.
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TABLE I
ADOPTED NOTATION AND SECTION OF THE MANUSCRIPT WHERE THE NOTATION IS DEFINED OR INTRODUCED

achievable through the quantum SWITCH for simple (bit- and
phase-flip) channel models has been derived so far.

C. Outline and Contribution

In this paper, we address the crucial problem of estimating
the quantum capacity achievable on a quantum path, i.e.,
in presence of the quantum SWITCH. Against this back-
ground, our novel contributions can be summarized as follows:
• for quantum erasure channels, we analytically derive the

quantum capacity achievable on a quantum path and we
identify the region in which the quantum SWITCH incon-
trovertibly boosts the amount of transmissible information
beyond the limits of conventional quantum Shannon’s
theory;

• for arbitrary Pauli channels, we analytically derive both
a lower and an upper bound on the quantum capac-
ity achievable on a quantum path, and we highlight
three different classes of pairs of non-identical Pauli
channels that, when placed in a quantum path, allow a
heralded noiseless quantum transmission; also for these
three classes of Pauli channels, we identify the region in
which the quantum SWITCH outperforms the limits of
conventional quantum Shannon’s theory,

• for a pair of bit- and phase-flip channels, we derive a
tighter lower bound than the one derived in [24], and we
derive, for the first time to the best of our knowledge,

a closed-form expression for the upper bound depending
on a computable single-letter quantity.

The theoretical analysis reveals that the adoption of the
quantum SWITCH offers a substantial advantage in terms
of ultimate achievable rate with respect to any classical path
combining the channels in a well-defined causal order.

The rest of the paper is organized as follows. In Sec. II
we provide some preliminaries about the quantum capacity
and the quantum SWITCH, and establish an upper bound on
quantum capacity of the classical path. Then, in Sec. III we
derive the upper- and the lower bound on the quantum capacity
in presence of the quantum SWITCH. In Sec. IV, we consider
quantum erasure channels and we quantify the advantage of
the quantum path over classical one. In Sec. V we focus on
Pauli channels and we quantify, in terms of achievable rates,
the advantage of adopting the quantum SWITCH over classical
paths. Finally in Sec. VI, we conclude the paper. In Table I,
we summarize the notation used in this paper.

II. PRELIMINARIES

A. Quantum Capacity

A fundamental property of a communication channel is its
capacity, which establishes the maximal rate of information
that it can transfer under appropriately chosen encod-
ing/decoding operations. For a quantum channel, different
notions of capacity can be introduced depending on the nature
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of information to be transferred between the communica-
tion parties, i.e., quantum or classical [8], [24], [41], [47],
[48], [49].3

In the following, we restrict our attention to the transmission
of quantum information, and, thus, we adopt the definition of
quantum capacity Q(N ) of a noisy quantum channel N as
in [24], [47], [48], and [49]. Specifically, the quantum capacity
Q(N ) is defined as the number of qubits transmitted per
channel use in the limit of asymptotically many uses [24],
and it coincides with the entanglement-generating capacity
as proved in [48]. In order to define formally the quantum
capacity Q(N ), we provide the necessary notions step by step,
starting with the formal definition of a quantum channel and
ending with coherent information.

Definition 1 (Quantum channel): Let us denote with A and
B the input and output quantum systems of a quantum
communication channel N , which is described mathematically
by the completely-positive linear map [50]:

N : L(HA) → L(HB), (1)

with L(HA) and L(HB) are sets of density operators over
the Hilbert spaces HA and HB of the communication parties
A and B, respectively. When channel N is applied to the
arbitrary input density state ρA ∈ L(HA), the output N (ρA)
is a density state ρB belonging to L(HB):

ρB = N (ρA) ∈ L(HB). (2)
It is often convenient to introduce an additional (reference)
system R and consider A as a part of a larger system RA
described by an extended Hilbert space HRA = HR ⊗HA.
This allows to consider ρA as a reduced state of a pure state
|ψRA⟩ ∈ HRA of the larger system [51]. This is known as
purification of ρA and leads to the following formal definition.

Definition 2 (Purification): A pure state |ψRA⟩ is a purifi-
cation of a state ρA if:

ρA = TrR
[
|ψRA⟩ ⟨ψRA|

]
, (3)

for a certain reference system R, with TrR[·] denoting the
partial trace operator with respect to HR.

In terms of channel N effects – by introducing the purifi-
cation of the state ρA – we can state that the joint system RA
evolves according to the “extended” super-operator (IR⊗N ),
where IR is an identity channel for the reference system
R [51], by producing the output state ρRB :

ρRB = (IR ⊗N )(ρRA). (4)

Definition 3 (Choi matrix): When the Hilbert space HR of
the reference system R has the same dimension d as HA, and
the state |ψRA⟩ of the joint system RA is a bipartite maximally
entangled4 – i.e., |ψRA⟩ = |Φ+⟩ △

= 1√
d

∑
i |i⟩ ⊗ |i⟩–the

3We refer the reader to [1] for a concise introduction to the different notions
of quantum channel capacities.

4We observe that usually the Choi matrix is defined using an unnormalized
entangled state

∑
i |i⟩⊗|i⟩. In this paper we adopted a normalized entangled

state 1√
d

∑
i |i⟩ ⊗ |i⟩ for the sake of simplicity, so that the corresponding

Choi matrix can be regarded as a normalized quantum state.

output state ρRB is known as the Choi matrix ρN of the
channel N [52]:

ρN
△
= ρRB |ρRA=ρΦ+ = (IR ⊗N )(ρΦ+), (5)

with ρΦ+
△
= |Φ+⟩ ⟨Φ+|.

Definition 4 (Choi-stretchable channel): A quantum chan-
nelN is called Choi-stretchable if its action can be reproduced
by local operations and classical communications (LOCC)
T (·) over its Choi matrix ρN [42], i.e.:

N (ρ) = T (ρ⊗ ρN ). (6)

Paradigmatic examples of Choi-stretchable channels are era-
sure and Pauli channels [42], which are analyzed in Section IV
and Section V, respectively.

Definition 5 (Coherent Information): The coherent infor-
mation5 Ic(ρ,N ) of the channel N with respect to the
arbitrary input state ρ is defined as [48], [49], [51]:

Ic(ρ,N ) = S(ρB)− S(ρRB), (7)

where ρB and ρRB are defined in (2) and (4), respectively,
and S(σ)

△
= −Tr[σ log2 σ] denotes the von Neumann entropy

of the considered system state σ.
Intuitively, the coherent information Ic(ρ,N ) aims at

describing – by subtracting the von Neumann entropy
exchange S(ρRB) between the input state and the channel
from the von Neumann entropy of the output state S(ρB) –
the amount of quantum information preserved after the state
ρ goes through the channel N . Stemming from (7), we can
now define the coherent information of the channel N [24],
[48], [49], [51], [53].

Definition 6 (Channel Coherent Information): The coher-
ent information Ic(N ) of the channel N is defined as:

Ic(N ) = max
|ψ⟩RA

Ic(ρ,N ), (8)

where the maximum is taken with respect to all pure bipartite
states |ψ⟩RA that are purification of the input state ρ.

The channel coherent information – often referred to as one-
shot capacity – plays a crucial role in the definition of the
quantum capacity [48], [49], [51], analogous to the role played
by the (classical) mutual information in classical information
theory. However, the coherent information exhibits some nasty
properties. In fact, the coherent information can be negative
and, in general, it is not additive. Hence, differently from
classical Shannon’s theory, the quantum capacity cannot be
determined by simply evaluating the one-shot capacity,6 but
it generally requires the asymptotic formulation given below,
which holds in the region where the coherent information is
non-negative [48], [49], [51], [53].

Definition 7 (Quantum Channel Capacity): The quantum
channel capacity is given by:

Q(N ) = lim
n→+∞

1
n
Ic(N⊗n), (9)

5The coherent information is often also denoted with the symbol
Ic(A⟩B)ρRB [8].

6Exception is constituted by the class of degradable channels, whose
quantum capacity is exactly equal to the coherent information, i.e., to the
one-shot capacity. We refer the reader to [6] for a technical and historical
survey about quantum capacity formulation.
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where Ic(N ) is defined in (8) and N⊗n denotes n uses of
channel N .

From Definition 7, it is evident that the evaluation of the
quantum capacity is not a trivial task. In fact, the expression
(9) requires to maximize the coherent information over an
unbounded number of channel uses. Nevertheless, in general,
Ic(N ) constitutes a lower bound for the quantum capacity, and
we will exploit this property in Sec. III to derive the capacity
region of a quantum path implemented via the quantum
SWITCH.

Before to proceed further, we provide two more definitions
that we will use to estimate the quantum capacity of a
communication channel.

Definition 8 (Quantum Relative Entropy): Quantum rela-
tive entropy of a state ρ with respect to the state σ is defined
as [8]:

S(ρ||σ)
△
= Tr [ρ (log2 ρ− log2 σ)] . (10)

Definition 9 (Relative Entropy of Entanglement): Relative
entropy of entanglement of a state ρ is defined as its minimal
quantum relative entropy with respect to a separable state [8]:

ER(ρ)
△
= inf

σs

S(ρ||σs), (11)

where σs is an arbitrary separable state.

B. Quantum Capacity Through Classical Paths

In order to highlight the benefits of exploiting quantum
paths for communicating, we question firstly the best perfor-
mance of quantum noisy channels placed into a classical path.
Specifically, we consider the following communication model:
a quantum message to be transmitted at the destination through
a channel NC that is a cascade of noisy quantum channels (for
example, corresponding to wires of different quality). For the
sake of simplicity, we assume that the cascade consists of
two quantum channels, denoted with D and E , respectively.
In such a cascade, as shown in Fig. 1, two possible alternative
configurations can be realized:

- channel E is traversed after channel D, giving rise to the
classical path D → E ;

- or vice versa, giving rise to the classical path E → D.
Since NC(D, E) establishes a classical path, it can either
a-priori realize one of the mentioned configurations or choose
between them randomly. Either way, when the two channels
are traversed in a well-defined order, the bottleneck inequality
holds. This means that the overall quantum capacity Q(NC)
associated with the considered classical path is smaller than
the minimum between the individual capacities Q(D) and
Q(E) [8], [24], [28]. This establishes the upper bound on the
quantum capacity achievable on a classical path:

Q(NC) ≤ min{Q(D),Q(E)}. (12)

III. QUANTUM PATHS VIA QUANTUM SWITCH

Let us assume, without loss of generality, the message being
a qubit |φ⟩ ∈ HA (where HA denotes the associated Hilbert
space) with density matrix ρ

△
= |φ⟩ ⟨φ|. As mentioned in

Section I, the quantum SWITCH is a device that implements

a quantum path by allowing a quantum information carrier –
a qubit |φ⟩ – to experience a set of evolutions in a super-
position of alternative orders [23], [24], [28]. In the quantum
SWITCH, the causal order between the channels is determined
by a quantum degree of freedom, represented by the control
qubit |φc⟩.

Specifically, if the control qubit is initialized to the basis
state |φc⟩ = |0⟩, the quantum SWITCH enables the message
|φ⟩ to propagate through the classical path D → E , represent-
ing channel E being traversed after channel D. Similarly, if the
control qubit is initialized to the other basis state |φc⟩ = |1⟩,
the quantum SWITCH enables the message |φ⟩ to propagate
through the alternative classical path E → D, representing
channel E being traversed before channel D.

Differently, if the control qubit is initialized to a state
different from |0⟩ or |1⟩ (hence, to a certain superposition
of them), the message |φ⟩ propagates through a quantum
path. For example, for |φc⟩ = |±⟩ ≡ |0⟩±|1⟩√

2
, the message

experiences an equally balanced superposition of the two
alternative evolutions D → E and E → D as shown in Fig. 2.
The channel placement enabled by the quantum SWITCH is
genuinely quantum and, as shown in the following, provides
a non-trivial resource for the channel capacity activation that
cannot be reproduced through a classical channel placement.7

The behavior of the quantum SWITCH can be mathemati-
cally described by a higher-order operation (supermap) that
sends quantum channels to a quantum channel that is not
necessarily compatible with any well-defined order of their
occurrence [2], [24], [28]. In particular, for two input quantum
channels D and E , the output quantum channel is defined as:

S(D, E , ρc)(ρ) =
∑
i,j

Wij(ρ⊗ ρc)W
†
ij , (13)

where ρ
△
= |φ⟩ ⟨φ| and ρc

△
= |φc⟩ ⟨φc|, and where {Wij}

denotes the set of Kraus operators associated with the quantum
path, given by [2], [24]:

Wij = EjDi ⊗ |0⟩ ⟨0|c +DiEj ⊗ |1⟩ ⟨1|c . (14)

In (14), {Di} and {Ej} are the Kraus operators of the channels
D and E , respectively.

When the control qubit is initialized in the state |φc⟩ = |+⟩,
the quantum SWITCH maps the channels D and E to the
channel given by [25]:

S(D, E , |+⟩ ⟨+|)(ρ)
= p−N |−⟩

QS (ρ)⊗ |−⟩ ⟨−|+ p+N |+⟩
QS (ρ)⊗ |+⟩ ⟨+|

+ χ(ρ)⊗ |−⟩ ⟨+|+ χ†(ρ)⊗ |+⟩ ⟨−| , (15)

7It is important to highlight that, in the described classical and quantum
placements of channels, both channels E and D are used in a certain
combination. This should not be confused with settings utilized for classical
capacity activation where only one of the channels is used at time and a
non-zero capacity of the equivalent channel is achieved by encoding the
information in whether one or the other channel has been used [54].
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Fig. 4. Equivalent channel model of a quantum path implemented by utilizing
the quantum SWITCH, mapping the input density matrix ρ into the output
density matrix NQS(ρ). The control qubit |φc⟩ is initialized to |+⟩, and the
expression of NQS(ρ) depends on the measurement outcome of the control
qubit at the output of the quantum SWITCH.

where

N |∓⟩
QS (ρ) =

1
4p∓

∑
i,j

[Di, Ej ]∓ρ[Di, Ej ]
†
∓, (16)

p± =
1
4

Tr
[∑
i,j

[Di, Ej ]∓ρ[Di, Ej ]
†
∓

]
, (17)

with [Di, Ej ]∓
△
= DiEj∓EjDj denoting the commutator (−)

or anti-commutator (+) of8 Di and Ej , and

χ(ρ) =
∑
i,j

1
4
[Di, Ej ]−ρ[Di, Ej ]

†
+. (18)

Performing a measurement of the control qubit in the
Hadamard basis, one obtains a mixture of the states N |∓⟩

QS (ρ)
with the corresponding probabilities p∓. In this way, it is
convenient to introduce the equivalent channel model of a
quantum path implemented by utilizing the quantum SWITCH,
as depicted in Fig. 4. The input and the output of this equiva-
lent channel are, respectively, the original quantum state ρ and
NQS(ρ), denoting9 the quantum state after the measurement
process on the control qubit at the output of the quantum
SWITCH.

Indeed, since the measurement process is characterized by
two distinct outcomes, |−⟩ and |+⟩ occurring with probability
p− and p+, and in light of the aforementioned equivalent
channel model, we can associate N |+⟩

QS (ρ) with the channel
output when the measurement process on the control qubit
|φc⟩ returns |+⟩. Conversely, we associate N |−⟩

QS (ρ) with the
channel output when the measurement process on the control
qubit |φc⟩ returns |−⟩. By accounting for this equivalent
model, it is possible to write the input-output relationship for
the equivalent channel NQS(·) as:

NQS(ρ) =

{
N |−⟩

QS (ρ) with prob. p−,
N |+⟩

QS (ρ) with prob. p+.
(19)

Therefore, the quantum capacity of the equivalent quan-
tum SWITCH is an average quantum capacity over the
channels heralded with measurement outcomes |−⟩ and |+⟩,
respectively:

Q(NQS) = p−Q(N |−⟩
QS ) + p+Q(N |+⟩

QS ). (20)

8We observe that usually the anti-commutator of A and B is denoted with
the symbol {A, B}. In this paper we adopted a different notation for the sake
of conciseness, by avoiding to specialize equations (16) and (17) twice.

9We omit the dependence of NQS(·) on D and E for the sake of notation
simplicity.

This allows one to estimate the lower bound of quantum
capacity of a quantum path implemented via the quantum
SWITCH when it cannot be calculated explicitly, as stated
with the following proposition.

Proposition 1: The quantum capacity Q(NQS) of the equiv-
alent quantum SWITCH channel NQS(·) is lower-bounded as
follows:

Q(NQS) ≥ max{0, p−Ic(N |−⟩
QS )}

+ max{0, p+Ic(N |+⟩
QS )}. (21)

Proof: See Appendix A
On the other hand, the equivalent quantum SWITCH chan-

nel (19) can be represented by its Choi matrix ρNQS that is
given by:

ρNQS =

 ρN |−⟩QS
with prob. p−,

ρN |+⟩QS
with prob. p+,

(22)

where ρN |∓⟩QS
denotes the Choi matrix of the components

N |∓⟩
QS (·) of the equivalent quantum SWITCH channel (19)

when the measurement outcomes are |−⟩ and |+⟩, respectively.
If N |∓⟩

QS (·) are Choi-stretchable, their representation through
Choi matrices ρN |∓⟩QS

allows one to estimate the upper bound
of quantum capacity of a quantum path implemented via the
quantum SWITCH, as stated with the following proposition.

Proposition 2: If both N |∓⟩
QS are Choi-stretchable, the quan-

tum capacity Q(NQS) of the equivalent quantum SWITCH
channel NQS(·) is upper-bounded as follows:

Q(NQS) ≤ p−ER(ρN |−⟩QS
) + p+ER(ρN |+⟩QS

). (23)

Proof: See Appendix B

IV. ERASURE CHANNELS

We start by considering quantum erasure channels, which
represent one of the simplest yet useful models of noisy
quantum communication. On the one hand, it is one of a
few communication channels whose quantum capacity can
be computed exactly [41]. On the other hand, it captures
erasure errors which cannot be modelled by Pauli channels
considered in Section V, namely, loss of information carrier
or information leakage to other states [55]. At a practical level,
quantum erasure channel model is widely adopted in quantum
satellite communications [56], [57].

Technically, a quantum erasure channel Ep either transmits
the input qubit ρ ∈ L(HA) faithfully or it replaces it with a
probability p by the erasure flag |e⟩, that is orthogonal to HA:

Ep(ρ) = (1− p)ρ+ p |e⟩ ⟨e| . (24)

The quantum capacity of Ep is non-zero for any 0 ≤ p < 1
2 ,

and it is given by [41]:

Q(Ep) = max{0, 1− 2p}. (25)
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A. Classical Path

Now we focus on a cascade of two quantum erasure
channels D = Ep and E = Eq characterized by not necessarily
equal erasure probabilities p and q, respectively. Any classical
path through these two channels establishes the same overall
channel given by:

NC(Ep, Eq)(ρ) = (1− p)(1− q)ρ+(p+q−pq) |e⟩ ⟨e| , (26)

which, in turn, denotes a quantum erasure channel with
(increased) erasure probability p + q − pq. Therefore, its
quantum capacity is given by:

Q(NC) = max{0, 1− 2(p+ q − pq)}. (27)

B. Quantum Path

When the application of quantum erasure channels is con-
trolled via the quantum SWITCH, the following equivalent
channel arises:

S(Ep, Eq, |+⟩ ⟨+|)(ρ)

=
pq

2
|e⟩ ⟨e| ⊗ |−⟩ ⟨−|

+

(
(1− p)(1− q)ρ+

(
p+ q − 3pq

2

)
|e⟩ ⟨e|

)
⊗ |+⟩ ⟨+|.

(28)

Therefore, the components of the quantum SWITCH equiva-
lent channel NQS(·) read:

N |−⟩
QS (ρ) = |e⟩ ⟨e| , (29)

N |+⟩
QS (ρ) =

1
p+

(
(1− p)(1− q)ρ

+
(
p+ q − 3pq

2

)
|e⟩ ⟨e|

)
, (30)

with probabilities p− = pq
2 and p+ = 1 − pq

2 , respectively.
It is easy to recognize that both components of the equivalent
channel are in turn quantum erasure channels.

Interestingly, the channel associated with the outcome |−⟩
of the control qubit measurement has the erasure probability
1, i.e., transmits no information. On the other hand, the
channel associated with the outcome |+⟩ exhibits an erasure
probability smaller than one of the classical path NC. In this
way, in the quantum path, a part of the erasure probability of
the cascade of erasure channels is “separated”.

Since the component N |−⟩
QS transmits no information, the

quantum capacity of the equivalent channel‘NQS(·) is com-
pletely determined by the component N |+⟩

QS :

Q(NQS) = p+Q(N |+⟩
QS )

= max
{

0, 1− 2
(
p+ q − 3pq

2

)}
, (31)

which extends the known result on capacity of quantum path
for erasure channels with p = q [2]. Quantum capacities of
classical and quantum paths (27) and (31) are plotted on Fig. 5,
whereas the difference Q(NQS)−Q(NC) is plotted on Fig. 6
and its maximum 1

4 (3−2
√

2) can be achieved for two identical
quantum erasure channels with p = q = 1−

√
2

2 .

Fig. 5. Three-dimensional plot of the quantum capacity of classical (blue
surface) and quantum (orange surface) paths as a function of the error
probabilities p and q of the quantum erasure channels D = Ep and E = Eq .

Fig. 6. Density plot of the difference between the quantum SWITCH capacity
and the classical path capacity as a function of the error probabilities p and
q of the quantum erasure channels D = Ep and E = Eq . The rationale for
the null difference in the upper right part of the graph becomes evident by
noting in Fig. 5 that both the capacities fall to zero in the considered region.

Remark 1: It is worthwhile to note that there exist quantum
erasure channels for which a quantum path exhibits non-
zero quantum capacity, whereas any classical path exhibits
null capacity. This means that a quantum path activates the
transmission of quantum information through quantum erasure
channels, whose any classical configuration does not transmit
it at all. The erasure probabilities of such pairs of erasure
channels must satisfy the following condition:

0 <
1− 2q

2(1− q)
< p <

1− 2q
2− 3q

<
1
2
. (32)

V. PAULI CHANNELS

Pauli channels constitute paradigmatic models in quantum
communications, since they are able to capture bit-flip errors,
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as well as uniquely quantum features of noise such as phase-
flip errors and its combination with bit-flip errors. These
are the basic errors that can occur in practice [42] in noisy
transmissions of qubits. Indeed, the ubiquitous presence of
quantum noise that can be modelled with Pauli channels has
been validated in a number of works, e.g., [4], [42], and
[44], including Google’s one about quantum supremacy [58].
Therein, the action of noise is modelled as follows:

P(ρ) = p0ρ+ pXXρX + pY Y ρY + pZZρZ, (33)

with X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
denoting

the Pauli gates [52].
Overall, a Pauli channel P is characterized by the corre-

sponding probability vector (p0, pX , pY , pZ), the components
whereof sum up to unity. Therefore, for the sake of simplicity,
we characterize a Pauli channel P by its probability vector P̃ ,

P̃ = (p0, pX , pY , pZ). (34)

A. Arbitrary Pauli Channels

We consider two not necessarily identical Pauli channels
D and E with probability vectors D̃ = (pD0 , p

D
X , p

D
Y , p

D
Z ) and

Ẽ = (pE0 , p
E
X , p

E
Y , p

E
Z), respectively. A quantum path leads to

the equivalent quantum SWITCH channel characterized by the
following probability vectors:

Ñ |−⟩
QS =

1
p−

(
0, ηY Z , ηXZ , ηXY

)
, (35)

Ñ |+⟩
QS =

1
p+

(∑
α

ηαα, η0X , η0Y , η0Z

)
, (36)

where α ∈ {0, X, Y, Z} are defined by summing the com-
ponents of the corresponding probability vectors, and ηαβ =
pDα p

E
β + pDβ p

E
α. The measurement outcome probabilities read

p− = ηY Z+ηXZ+ηXY and p+ =
∑
α ηαα+η0X+η0Y +η0Z .

Stemming from Propositions 1 and 2, and denoting η =
ηXY + ηY Z + ηXZ , p̃α = p̃Eα + p̃Dα − 2p̃Eαp̃

D
α for any α ∈

{X,Y, Z}, and p̃ = p̃X + p̃Y + p̃Z , we obtain the following
lower and upper bounds of the quantum capacity achievable
with a quantum path.

Proposition 3: The quantum capacity Q(NQS) of the equiv-
alent quantum SWITCH channel NQS(·) for arbitrary Pauli
channels is lower-bounded by QLB

QS as follows:

Q(NQS) ≥ max
{

0, η(1− log2 η) + ηXY log2 ηXY

+ ηY Z log2 ηY Z + ηXZ log2 ηXZ

}
+ max

{
0, (1− η)(1− log2(1− η))

+ (1− p̃+ η) log2(1− p̃+ η)
+ (p̃X − ηXY − ηXZ) log2(p̃X − ηXY − ηXZ)
+ (p̃Y − ηXY − ηY Z) log2(p̃Y − ηXY − ηY Z)

+ (p̃Z − ηXZ − ηY Z) log2(p̃Z − ηXZ − ηY Z)
}

△
= QLB

QS, (37)

Proof: See Appendix C.

Proposition 4: The quantum capacity Q(NQS) of the equiv-
alent quantum SWITCH channel NQS(·) for arbitrary Pauli
channels is upper-bounded by QUB

QS as follows:

Q(NQS) ≤ 1 + ηY Z log2 ηY Z + ηXZ log2 ηXZ

− (ηY Z + ηXZ) log2(ηY Z + ηXZ)
+ (1− p̃+ η) log2(1− p̃+ η)
− (1− p̃X − p̃Y + ηXY )
· log2(1− p̃X − p̃Y + ηXY )
− (p̃X + p̃Y − ηXY − η)
· log2(p̃X + p̃Y − ηXY − η)
+ (p̃X − ηXY − ηXZ) log2(p̃X − ηXY − ηXZ)
+ (p̃Y − ηXY − ηY Z) log2(p̃Y − ηXY − ηY Z)
+ (p̃Z − ηXZ − ηY Z) log2(p̃Z − ηXZ − ηY Z)

△
= QUB

QS . (38)

Proof: See Appendix D.
Since Pauli channels are commutative, any classical path

through these two channels has the same output, which can
be characterized through the probability vector given by:

ÑC =
(∑

α

ηαα, η0X + ηY Z , η0Y + ηXZ , η0Z + ηXY

)
. (39)

Since the classical path of Pauli channels (39) outputs again
a Pauli channel and, therefore, is Choi-stretchable, we can
establish an upper bound for its capacity in a similar way as
done for the quantum path in Proposition 2 when it cannot be
found as a closed expression via the bottleneck inequality (12).
It can be written in the following form,

Q(NC) ≤ 1 +H2(p̃X + p̃Y − 2ηXY )
+ (1− p̃+ η) log2(1− p̃+ η)
+ (p̃X − η + 2ηY Z) log2(p̃X − η + 2ηY Z)
+ (p̃Y − η + 2ηXZ) log2(p̃Y − η + 2ηXZ)
+ (p̃Z − η + 2ηXY ) log2(p̃Z − η + 2ηXY )

△
= QUB

C , (40)

where H2(·) denotes the binary Shannon entropy. However,
it should be noted that this upper bound is, generally speaking,
weaker than the upper bound arising from the bottleneck
inequality (12).

Remark 2: Although the results derived in Propositions 3
and 4 bound the capacity of arbitrary Pauli channels through
a lower and upper bound in (37) and (38) respectively, these
bounds depend on several parameters, preventing us from
easily assessing the region in which the quantum SWITCH
outperforms the limits of conventional quantum Shannon’s
theory. Hence, in the following subsection, we focus on three
classes of Pauli channels with the remarkable property of
allowing heralded noiseless communications.

B. Heralded Noiseless Pauli Channels

Interestingly, for certain Pauli channels D and E , at least
one of the components in equations (35) and (36) of the equiv-
alent quantum SWITCH channel can have maximal quantum
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TABLE II
THREE CLASSES OF PAULI CHANNEL PAIRS (D, E) THAT MAKE IDEAL AT LEAST ONE COMPONENT

OF THE EQUIVALENT QUANTUM SWITCH CHANNEL NQS(·)

capacity, hence, enabling perfect communication similar to the
known case of identical Pauli channels, D = E [25]. Indeed,
there can be highlighted three non-trivial classes (summarized
in Table II) of channel pairs (D, E) that activate noiseless
(i.e., perfect) communication in one or both components of
the equivalent channel:
• Class I: channel pairs with one of the components pX,Y,Z

being zero in both the channels, i,.e., pEα = pDα = 0 for a
certain α ∈ X,Y, Z, making N |−⟩

QS unitary, hence, ideal,
• Class II: channel pairs with pE0 = pD0 = 0, making N |+⟩

QS
identity channel,

• Class III: channel pairs where one of the channels is
unitary, i.e., one of the components pX,Y,Z being one and
the rest being zero, whereas the corresponding component
pX,Y,Z of the other channel is zero, making N |+⟩

QS unitary.
The corresponding components of the equivalent channels and
upper bounds on their quantum capacity are summarized in
Table II for all three classes of Pauli channels.

Remark 3: A particular case is constituted by Pauli chan-
nels that belong to both classes I and II, i.e., a pair of Pauli
channels (D, E) with pD0 = pE0 = 0 and pDα = pEα = 0 for a
certain α = {X,Y, Z}, for example,

D̃ = (0, pDX , 0, p
D
Z ),

Ẽ = (0, pEX , 0, p
E
Z),

where α = Y without loss of generality. Such channels make
both components (35) and (36) ideal (unitary and identity,
respectively). Hence, in this case, the overall equivalent chan-
nel becomes perfect [25], assuring noiseless communications
for any measurement of the control qubit.

Remark 4: An important subclass of Pauli channels are
entanglement-breaking channels, which have zero coherent
information and, therefore, zero quantum capacity. When one
of the channels put into a classical path is entanglement-
breaking, then the quantum capacity of the entire classical
path is zero due to the bottleneck inequality (12). Given a
Pauli channel with the probability vector (p0, pX , pY , pZ), it is
entanglement-breaking if [59], [60]∑

α=X,Y,Z

|2(p0 + pα)− 1| ≤ 1. (41)

For the channels D and E that make noiseless at least one of
the components N |∓⟩

QS (·) of the quantum SWITCH equivalent
channel, condition (41) means that D̃ or Ẽ have to satisfy the
conditions

p
D/E
X ≤ 1

2
, (42)

1
2
− p

D/E
X ≤ p

D/E
Z ≤ 1

2
, (43)

in order to be entanglement-breaking. A classical path of such
channels has zero capacity, Q(NC) = 0.
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1) Class I: In the following, we assume without lack
of generality that pEα = pDα = 0 for α = Y . Accord-
ingly, whenever the measurement of the control qubit in the
Hadamard basis returns |−⟩, which happens with probability
p− = ηXZ , the original quantum state ρ appears to be
transformed unitarily as Y ρY . Hence, it can be recovered by
applying the unitary corrective operation Y to the received
qubit, i.e., Y (Y ρY )Y = ρ. As a consequence, when the
measurement outcome is |−⟩, despite D and E being noisy
channels corrupting the quantum information embedded in
|φ⟩, a quantum path implemented via the quantum SWITCH
allows a noiseless quantum transmission with a probability
equal to ηXZ , and the receiver can easily recognize this event
by simply measuring the control qubit. Conversely, whenever
the measurement outcome of the control qubit is equal to |+⟩,
which happens with probability p+ = 1 − ηXZ , the original
quantum state ρ is altered through a weighted combination of
bit-flip X and phase-flip Z.

Corollary 1: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class I is lower-bounded as follows:

QLB
QS = η + max{0, (1− η)(1− log2(1− η))

+ (p̃X − η) log2(p̃X − η)
+ (p̃Z − η) log2(p̃Z − η)
+ (1− p̃X − p̃Z + η)
· log2((1− p̃X − p̃Z + η))}, (44)

Proof: By accounting for the hypothesis of pDY =
pEY = 0 without loss of generality, we obtain equations
ηXY = ηY Z = 0, η = ηXZ , p̃Y = 0, and p̃ = p̃X + p̃Z .
By plugging them into (37) and by performing some algebraic
manipulations, the proof follows.

Corollary 2: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class I is upper-bounded as follows:

QUB
QS = 1 + (1− p̃X − p̃Z + η) log2((1− p̃X − p̃Z + η))

− (1− p̃X) log2(1− p̃X) + (p̃Z − η) log2(p̃Z − η),

Proof: By accounting for the hypothesis of pDY =
pEY = 0 without loss of generality, we obtain equations
ηXY = ηY Z = 0, η = ηXZ , p̃Y = 0, and p̃ = p̃X + p̃Z .
By plugging them into (38), and by performing some algebraic
manipulations, the proof follows.

To properly quantify the gain in terms of quantum capacity
assured by the adoption of the quantum SWITCH, we report
the difference δQQS/C

△
= QLB

QS − QUB
C between the quantum

SWITCH lower bound given in Corollary 1 and the upper
bound on the capacity achievable with a classical path and
given in (40). For Class I, (40) simplifies as follows:

QUB
C = 1 +H2(p̃X) + η log2 η

+ (p̃X − η) log2(p̃X − η)
+ (p̃Z − η) log2(p̃Z − η)
+ (1− p̃X − p̃Z + η)
· log2(1− p̃X − p̃Z + η). (45)

The difference δQQS/C represents a conservative estimate of
the capacity gain provided by a quantum path, since: i) the
quantum SWITCH lower bound underestimates the quantum
capacity of the equivalent quantum SWITCH channel, and
simultaneously ii) the classical path upper bound overestimates
the capacity achievable via a classical path. For the Pauli
channels of class I, δQQS/C is given by:

δQQS/C = H2(η)−H2(p̃X)

− min
{

0, (1− p̃X − p̃Z + η)

· log2(1− p̃X − p̃Z + η)
+ (p̃X − η) log2(p̃X − η)
+ (p̃Z − η) log2(p̃Z − η)

+ (1− η)(1− log2(1− η))
}

= H2(η)−H2(p̃X)

− min{0, p+Ic(N |+⟩
QS )}. (46)

Therefore, if coherent information of the non-ideal component
of the quantum SWITCH equivalent channel is positive, the
lower bound for capacity of quantum path exceeds the upper
bound for capacity of classical path if H2(η) > H2(p̃X).
Otherwise, the condition reads p+|Ic(N |+⟩

QS )| > H2(p̃X) −
H2(η). For the Pauli channels satisfying these conditions,
the quantum path necessarily outperforms the corresponding
classical path in terms of their quantum capacities.

2) Class II: Herein, if a measurement of the control qubit
in the Hadamard basis returns |+⟩, which happens with
probability p+ = pDXp

E
X+pDY p

E
Y +pDZp

E
Z , the original quantum

state ρ is transmitted perfectly. In this case, we can obtain the
following lower and upper bound for quantum capacity of the
quantum path.

Corollary 3: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class II is lower-bounded as follows:

QLB
QS = 1− p̃X − p̃Z + ηXZ

+ max{0, ηXZ log2 ηXZ

+ (p̃X − ηXZ) log2(p̃X − ηXZ)
+ (p̃Z − ηXZ) log2(p̃Z − ηXZ)
+ (p̃X+p̃Z−ηXZ)(1−log2(p̃X+p̃Z−ηXZ))}. (47)

Proof: By accounting for the hypothesis of pD0 = pE0 =
0 without loss of generality, we obtain equations ηXY = p̃X−
ηXZ , ηY Z = p̃Z − ηXZ , η = p̃X + p̃Z − ηXZ , p̃Y = p̃X +
p̃Z − 2ηXZ , and p̃ = 2(p̃X + p̃Z − ηXZ). By plugging them
into (37) and by performing some algebraic manipulations,
the proof follows.

Corollary 4: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class II is upper-bounded as follows:

QUB
QS = 1 + ηXZ log2 ηXZ − p̃Z log2 p̃Z

+ (p̃Z − ηXZ) log2(p̃Z − ηXZ). (48)

Proof: By accounting for the hypothesis of pD0 =
pE0 = 0 without loss of generality, we obtain equations
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ηXY = p̃X − ηXZ , ηY Z = p̃Z − ηXZ , η = p̃X + p̃Z − ηXZ ,
p̃Y = p̃X + p̃Z − 2ηXZ , and p̃ = 2(p̃X + p̃Z − ηXZ).
By plugging them into (38) and by performing some algebraic
manipulations, the proof follows.
By noting that (40) simplifies as:

QUB
C = 1 +H2(p̃Z) + ηXZ log2 ηXZ

+ (p̃X − ηXZ) log2(p̃X − ηXZ)
+ (p̃Z − ηXZ) log2(p̃Z − ηXZ)
+ (1− p̃X − p̃Z + ηXZ) log2(1− p̃X − p̃Z + ηXZ),

(49)

the distance between the upper bound for the capacity of
a classical path and the lower bound for the capacity of a
quantum path is given by:

δQQS/C = H2(p̃X + p̃Z − ηXZ)−H2(p̃X)

− min
{

0, ηXZ log2 ηXZ

+ (p̃X − ηXZ) log2(p̃X − ηXZ)
+ (p̃Z − ηXZ) log2(p̃Z − ηXZ)
+ (p̃X + p̃Z − ηXZ)

· (1− log2(p̃X + p̃Z − ηXZ))
}

= H2(p̃X + p̃Z − ηXZ)−H2(p̃X)

− min{0, p−Ic(N |−⟩
QS )}. (50)

Therefore, if coherent information of the non-ideal component
of the quantum SWITCH equivalent channel is positive, the
lower bound for capacity of quantum path exceeds the upper
bound for capacity of classical path if H2(p̃X + p̃Z − η) >
H2(p̃X). Otherwise, the condition reads p−|Ic(N |−⟩

QS )| >
H2(p̃X)−H2(p̃X + p̃Z − η).

3) Class III: For the third class, without restriction of
generality, pDY = 1 (hence, the rest of components are zero).
By reasoning as in the previous Corollaries, the lower and
upper bounds reported in Corollary 5 and 6 can be derived.

Corollary 5: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class III is lower-bounded as follows:

QLB
QS = 1 + pX log2 pX + pZ log2 pZ

− (pX + pZ) log2(pX + pZ). (51)

Proof: By adopting similar reasoning as in Corollary 3
and by noticing that ηXY = pX , ηY Z = pZ , ηXZ = 0, η =
pX + pZ , p̃X = pX , p̃Y = 1, p̃Z = pZ and p̃ = 1 + pX + pZ ,
the proof follows.

Corollary 6: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for Pauli channels of
class III is upper-bounded as follows:

QUB
QS = 1. (52)

Proof: By adopting similar reasoning as in Corollary 4
and by noticing that ηXY = pX , ηY Z = pZ , ηXZ = 0, η =
pX + pZ , p̃X = pX , p̃Y = 1, p̃Z = pZ and p̃ = 1 + pX + pZ ,
the proof follows.

Fig. 7. Density plot of the lower bound (51) on quantum capacity of the
quantum path for Pauli channels of class III. The white triangle highlights
the area of probabilities which makes one the corresponding Pauli channel
entanglement-breaking and, due to Remark 4, quantum capacity of the
corresponding classical path can be calculated explicitly, Q(NC) = 0. Notice
that due to the condition pX + pZ ≤ 1 of consistency of probabilities only
the lower half of the plot is considered.

The lower bound on the quantum capacity achievable through
a quantum path for Pauli channels of class III as a function
of pX and pZ is plotted on Fig. 7.

By noting that (40) simplifies as:

QUB
C = 1 +H2(pX) + pX log2 pX + pZ log2 pZ

+ (1− pX − pZ) log2(1− pX − pZ), (53)

the distance between the upper bound for the capacity of
classical path and the lower bound for the capacity of quantum
path is given by

δQQS/C = H2(pX + pZ)−H2(pX). (54)

C. Bit- and Phase-Flip Channels

In this subsection, we consider a particular subclass of
class I, namely Pauli channels P that allow one to calculate
their quantum capacity Q(P) explicitly. For the sake of
simplicity, we take10 channel D being the bit-flip channel and
channel E being the phase-flip channel as in [24] and [28],
whose probability vectors are given by:

D̃ =
(
1− p, p, 0, 0

)
(55)

Ẽ =
(
1− q, 0, 0, q

)
, (56)

From (55), it appears clear that channel D flips the state of a
qubit from |0⟩ to |1⟩ (and vice versa) with probability p, and
it leaves the qubit unaltered with probability 1− p. Similarly,
from (56), channel E introduces with probability q a relative
phase-shift of π between the complex amplitudes α and β of

10This choice is not restrictive, since other types of depolarizing channels
are unitarily equivalent to a combination of bit-flip and phase-flip chan-
nels [24]. Hence, the analysis in the following continues to hold and it can be
generalized to any depolarizing channel by exploiting proper pre- and post-
processing operations.
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Fig. 8. Density plot of the upper bound (59) on quantum capacity achievable
with a classical path as a function of the error probabilities p and q of bit-
and phase-flip channels D and E .

the qubit |φ⟩ = α |0⟩+β |1⟩, and it leaves the qubit unaltered
with probability 1− q.

Both the bit- and the phase-flip channels admit a single-
letter expression for the quantum capacity [8]:

Q(D) = 1−H2(p) (57)
Q(E) = 1−H2(q). (58)

This allows us to substitute the upper bound (45) on the
quantum capacity achievable with a classical paths for class
I channels, with an improved upper bound arising from the
bottleneck inequality in (12) for D and E , namely,

QUB
C ≡ 1−max {H2(p), H2(q)} . (59)

In Fig. 8 we plot it as a function of the error probabilities p
and q of D and E .

Remark 5: Whenever p or q are equal to 1
2 , no quantum

information can be sent through any classical path traversing
the channels D and E , since QUB

C = 0.
According to Table II, a quantum path for D and E leads to

the following components of the equivalent quantum SWITCH
channel [2], [24], [28]:

Ñ |−⟩
QS = (0, 0, 1, 0) (60)

Ñ |+⟩
QS =

1
pq

(
(1− p)(1− q), p(1− q), 0, (1− p)q

)
, (61)

with measurement outcome probabilities p− = pq and p+ =
1 − pq, respectively. Corollaries 1 and 2 allow one to derive
from (60) and (61) the lower and upper bounds on the capacity
achievable with a quantum path for D and E .

Corollary 7: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for bit- and phase-flip
channels is lower-bounded as follows:

QLB
QS = pq + max{0, 1− pq +H2(pq)−H2(p)−H2(q)}

=

{
pq, if 1− pq +H2(pq)−H2(p)−H2(q) < 0
1 +H2(pq)−H2(p)−H2(q), otherwise.

(62)

Fig. 9. Density plot of the lower bound (62) on quantum capacity achievable
with the quantum SWITCH as a function of the error probabilities p and q
of bit- and phase-flip channels D and E .

Proof: By accounting for the probability vectors given
in (55) and (56), we obtain the equations ηXY = ηY Z = 0,
ηXZ = η = pq, p̃X = p, p̃Y = 0, p̃Z = q, and p̃ = p + q.
By plugging them into (37) and performing some algebraic
manipultions, the proof follows.

Corollary 8: The quantum capacity Q(NQS) of the equiva-
lent quantum SWITCH channel NQS(·) for bit- and phase-flip
channels is upper-bounded as follows:

QUB
QS = 1− (1− p)H2(q) (63)

Proof: By accounting for the probability vectors given
in (55) and (56), we obtain the equations ηXY = ηY Z = 0,
ηXZ = η = pq, p̃X = p, p̃Y = 0, p̃Z = q, and p̃ = p + q.
By plugging them in to (38) and performing some algebraic
manipultions, the proof follows.

In Fig. 9 and Fig. 10 we plot the lower bound (62) and upper
bound (63), respectively, as functions of the error probabilities
p and q of the channels.

A particular interest is brought by D and E , whereof at
least one has a null capacity (i.e., p = 1

2 or q = 1
2 ) reducing

to zero the capacity of the corresponding classical path in
accordance with (59). In this case, for any meaningful choice
of p, q ̸= 0, the quantum SWITCH assures a non-null capacity.
In particular, in the extreme case of D and E having both
zero capacity, the quantum capacity achievable by utilizing
the quantum SWITCH is greater than zero,

1
4
≤ Q(NQS) ≤

1
2
. (64)

To properly quantify the gain in terms of quantum capacity
assured by the adoption of the quantum SWITCH, in Fig. 11
we plot the difference δQQS/C between the lower bound QLB

QS
for quantum path and the upper bound QUB

C for classical path.
Despite being δQQS/C an underestimation of the actual gain
provided by a quantum path, we can observe in Fig. 11 that the
adoption of the quantum SWITCH incontrovertibly increases
the performance in terms of capacity with respect to classical
paths within the broad range of values of the error probabilities
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Fig. 10. Density plot of the upper bound (63) on quantum capacity achievable
with the quantum SWITCH as a function of the error probabilities p and q
of bit- and phase-flip channels D and E .

Fig. 11. Density plot of the difference between the quantum SWITCH lower
bound (62) and the classical path upper bound (59) as a function of the error
probabilities p and q of bit- and phase-flip channels D and E .

p and q that correspond to the region with δQQS/C > 0. For any
setting of p and q within this wide region, the quantum path
enables with certainty the violation of the bottleneck inequality
given in (12). A particular example is drawn by the extreme
case of δQQS/C = 1, which represents a setting for p and q
where the equivalent quantum SWITCH channel behaves as
an ideal channel, even if no quantum information at all can
be sent through any classical path. Indeed, this is achieved for
p = 1

2 and q = 1 or vice versa.
Regarding the regions with negative δQQS/C, they do not

imply that a classical path outperforms the quantum path,
given that capacity bounds – rather than exact capacities – are
involved within δQQS/C. To further discuss this point, in Fig. 12
we plot the difference δQQS

△
= QUB

QS − QLB
QS between the

upper- and lower bounds of the quantum capacity achievable
via a quantum path for the bit- and the phase-flip channels
D and E given in (55) and (56). Roughly speaking, this
quantity measures the uncertainty about the true value of the
quantum SWITCH capacity Q(NQS). Fig. 12 highlights that

Fig. 12. Density plot of the difference between the upper bound (63) and
lower bound (62) on quantum capacity achievable with the quantum SWITCH
as a function of the error probabilities p and q of bit- and phase-flip channels
D and E .

δQQS ≲ 0.33 for most of the considered values for the error
probabilities p and q, indicated with colors ranging from purple
to turquoise. This is an indication of a good tightness of the
derived bounds. Conversely, as q goes to zero, the difference
between the two bounds increases, reaching the maximum
value of 1 qubit when p = 1

2 . Regardless of the tightness
quality, the aforementioned analysis still holds, since we
compare the lower bound on the quantum path capacity with
the upper bound on the classical path capacity. Moreover,
this comparison incontrovertibly quantifies the advantages
achievable with the quantum SWITCH over any classical path.

Before to close the discussion on bit- and the phase-flip
channels, let us focus on the case of D and E characterized
by the same error probability p = q. In particular, this setting
allows one a direct comparison with the analysis developed
in [24] for the lower bound on the quantum capacity achievable
by utilizing the quantum SWITCH.

Corollary 9: When p = q, the lower bound QLB
QS in (62) on

the quantum capacity achievable via a quantum path imple-
mented through the quantum SWITCH can be rewritten as:

QLB
QS =

{
p2, for p ∈ [p0, 1]
1 +H2(p2)− 2H2(p), otherwise

(65)

with p0 ≃ 0.128.
Proof: For p = q, the argument within the maximum

operator in (62) reduces to 1 − p2 + H2(p2) − 2H2(p).
By solving the inequality 1 − p2 + H2(p2) − 2H2(p) < 0,
it results that when p0 ≤ p ≤ 1 the aforementioned inequality
is satisfied. Hence, the proof follows.

By directly comparing (65) with Eq. (8) in [24] (associated
Figure 2), the higher accuracy of the lower bound in (65)
is evident. In Fig. 13 we plot the upper bound QUB

C from
a classical path and the lower and upper bounds QLB

QS and
QUB

QS from a quantum path. Specifically, we observe that the
adoption of the quantum SWITCH incontrovertibly boosts the
performance in terms of achievable quantum capacity and
allows one to violate the bottleneck inequality (12), whenever
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Fig. 13. Quantum capacity bounds as a function of the error probabilities
q = p of the noisy channels D and E . The green area denotes the region
– enclosed by the lower- and the upper bound QLB

QS and QUB
QS – where

the quantum SWITCH capacity Q(NQS) belongs to, whereas the blue area
denotes a conservative estimate of the quantum SWITCH advantage over
classical paths.

p is greater than a threshold value roughly equal to 0.3,
as detailed in Corollary 10.

Corollary 10: When p = q, we have the following:

Q(NQS) > Q(D → E) ∀ p ≥ p1 (66)

with p1 ≃ 0.3161. Clearly, the same result holds for
Q(E → D).

Proof: The proof follows by accounting for the result in
Corollary 9 and by performing some algebraic manipulations.
Specifically, it is possible to recognize that for p1 ≤ p ≤ 1 the
lower bound in (65) is greater than the upper bound in (59):

Q(D → E) ≤ 1−H2(p) ≤ p2 ≤ Q(NQS), ∀ p ≥ p1 (67)

We note that the advantage of the quantum SWITCH over
classical paths was shown to exist in literature for values
of p ≥ 0.62 in [24]. Corollary 10 improves this result by
extending the range in which the lower bound on the quan-
tum capacity achievable by utilizing the quantum SWITCH
exceeds the upper bound on the quantum capacity achievable
via classical path. This is due to the higher accuracy of the
lower bound derived in this manuscript.

VI. CONCLUSION

In this work, we investigated the ultimate rates achievable
with quantum paths implemented via the quantum SWITCH.
Specifically, we derived expressions for both the upper- and
the lower bound on the quantum capacity for different popular
quantum channels. Some of the derived expressions depend,
remarkably, on computable single-letter quantities, whereas for
same particular cases the upper and the lower bounds coin-
cide. Our findings reveal the substantial advantage achievable
with a quantum path over any classical combination of the
communications channels in terms of ultimate achievable com-
munication rates. Furthermore, we identified the region where
a quantum path incontrovertibly outperforms the amount of
transmissible information beyond the limits of conventional

quantum Shannon’s theory, and we quantified this advantage
over classical paths through a conservative estimate.

APPENDIX A
PROOF OF PROPOSITION 1

By accounting for the equivalent channel model presented in
Sec. III, let us denote with Q(N |−⟩

QS ) the quantum capacity of
the equivalent quantum SWITCH channel heralded by a |−⟩-
measurement of the control qubit |φc⟩, and with Q(N |+⟩

QS ) the
quantum capacity of the quantum SWITCH channel heralded
by a |+⟩-measurement of the control qubit |φc⟩. Since these
two events, occurring with the probabilities p− and p+ given
in (17), are disjoint, by accounting for the total probabil-
ity theorem it is possible to express the overall quantum
capacity Q(NQS) of the equivalent quantum SWITCH channel
NQS(·) as:

Q(NQS) = p−Q(N |−⟩
QS ) + p+Q(N |+⟩

QS ). (68)

By accounting for (9) it results that the channel coherent
information constitutes a lower bound – in the region where
it is not negative – for the quantum capacity Q(N |−⟩

QS ) of the
quantum SWITCH channel11 heralded by a |−⟩-measurement,
and the same holds for the quantum capacity Q(N |+⟩

QS ). Hence,
it results:

Q(N |∓⟩
QS ) ≥ max{0, Ic(N |∓⟩

QS )}, (69)

where Ic(N ) is defined in (8) and the max operator accounts
for the case of negative coherent information. Therefore, the
quantum capacity of the overall equivalent channel is lower
bounded as:

Q(NQS) ≥ p−max{0, Ic(N |−⟩
QS )}+ p+ max{0, Ic(N |+⟩

QS )}

= max{0, p−Ic(N |−⟩
QS )}+ max{0, p+Ic(N |+⟩

QS )},
(70)

where the last equality arises from non-negativity of the
probabilities p± ≥ 0.

APPENDIX B
PROOF OF PROPOSITION 2

It is known that quantum capacity of a Choi-stretchable
channel N is bounded from above by relative entropy of
entanglement ER(ρN ) of its Choi matrix [42]. Hence, if the
components N |∓⟩

QS (·) of the equivalent quantum SWITCH
channel are Choi-stretchable, their quantum capacities are
upper-bounded as:

Q(N |∓⟩
QS ) ≤ ER(ρN |∓⟩QS

). (71)

11Any quantum channel N satisfying N (I) = I , i.e., mapping the identity
to itself, is a unital channel. For unital channels, the channel coherent
information Ic(N ) defined in Definition 6 and the channel reverse coherent
information Irc(N ) coincide [42]. It is straightforward to verify that the
quantum SWITCH channel NQS(·) given in (19) is a unital channel for both
the cases of measuring the control qubit either in the state |−⟩ or in the
state |+⟩.
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Therefore, since quantum capacity of the equivalent quantum
SWITCH channel is the average quantum capacity (68) of its
components, it is upper-bounded as:

Q(NQS) ≤ p−ER(ρN |−⟩QS
) + p+ER(ρN |+⟩QS

). (72)

APPENDIX C
PROOF OF PROPOSITION 3

To prove the proposition and accordingly to (70), it is
necessary to calculate channel coherent information Ic(N |∓⟩

QS )
of both the components of the equivalent quantum SWITCH
channel (characterized by their probability vectors (35)
and (36)). Accordingly to (4), we extend the channels
N |∓⟩

QS (·) as

ρRB = (IR ⊗N |∓⟩
QS )(ρRA) (73)

With respect to the definition of channel coherent informa-
tion (8) and by reasoning as in [24], [42], and [61], it can be
shown that the state |ψRA⟩ maximizing (8) is the maximally
entangled state between systems A and R, i.e., |ψRA⟩ = |Φ+⟩.
Hence, taking into account the definition of Choi matrix (5),
ρRB is the Choi matrix ρN |∓⟩QS

of the corresponding channel

N |∓⟩
QS (·). Hence, the channel coherent information Ic(N |∓⟩

QS )
is given by:

Ic(N |∓⟩
QS ) = S(ρ∓B)− S(ρN |∓⟩QS

), (74)

where ρ∓B = TrR[ρN |∓⟩QS
]. For two not necessarily identical

Pauli channels, by taking into account (35) and (36)) and

(IR ⊗X)ρΦ+(IR ⊗X) = ρΨ+ , (75)
(IR ⊗ Y )ρΦ+(IR ⊗ Y ) = ρΨ− , (76)
(IR ⊗ Z)ρΦ+(IR ⊗ Z) = ρΦ− , (77)

where ρΦ± = |Φ±⟩ ⟨Φ±| and ρΨ± = |Ψ±⟩ ⟨Ψ±| with
|Φ±⟩ = 1√

2
(|00⟩ ± |11⟩) and |Ψ±⟩ = 1√

2
(|01⟩ ± |10⟩), the

corresponding Choi matrices can be given as:

ρN |−⟩QS
=

1
p−

(
ηY ZρΨ+ + ηXZρΨ− + ηXY ρΦ−

)
, (78)

ρN |+⟩QS
=

1
p+

((∑
α

ηαα

)
ρΦ+ + η0XρΨ+

+ η0Y ρΨ− + η0ZρΦ−

)
, (79)

with the probabilities

p− = η, p+ = 1− η. (80)

The first term in (74) can be evaluated straightforwardly, since
TrR[ρΦ± ] = TrR[ρΨ± ] = I

2 , so that: ρ∓B = I
2 , where I is an

identity matrix. Consequently, S(ρ∓B) = log2(2) = 1.
Conversely, the evaluation of the second term −S(ρN |∓⟩QS

)
△
=

Tr
[
ρN |∓⟩QS

log2 ρN |∓⟩QS

]
in (74) is more cumbersome since

ρN |∓⟩QS
is not diagonal. Indeed, to evaluate log2 ρN |∓⟩QS

, it is
convenient to determine the spectral decomposition of ρN |∓⟩QS

.

In fact, by knowing the eigenvalues λx of ρN |∓⟩QS
, the von

Neumann entropy can be re-expressed as:

−S(ρN |∓⟩QS
) = Tr

[
ρN |∓⟩QS

log2 ρN |∓⟩QS

]
=
∑
x

λ∓x log2 λ
∓
x . (81)

Taking into account pE/D0 = 1 − p
E/D
X − p

E/D
Y − p

E/D
Z , the

eigenvalues λ∓x of ρN |∓⟩QS
are given by:

{λ−x } =
{

0,
ηXY
η

,
ηXZ
η

,
ηY Z
η

}
, (82)

{λ+
x } =

{ p̃X − ηXY − ηXZ
1− η

,
p̃Y − ηXY − ηY Z

1− η
,

p̃Z − ηXZ − ηY Z
1− η

,
1− p̃+ η

1− η

}
. (83)

Therefore, the corresponding von Neumann entropy reads:

−S(ρN |−⟩QS
) =

1
η

(
ηXY log2 ηXY + ηXZ log2 ηXZ

+ ηY Z log2 ηY Z

)
− log2 η, (84)

−S(ρN |+⟩QS
) =

1
1− η

(
(1− p̃+ η) log2(1− p̃+ η)

+ (p̃X − ηXY −ηXZ) log2(p̃X−ηXY − ηXZ)
+ (p̃Y − ηXY −ηY Z) log2(p̃Y −ηXY − ηY Z)

+ (p̃Z − ηXZ−ηY Z) log2(p̃Z−ηXZ − ηY Z)
)

− log2(1− η). (85)

Finally, we evaluate the weighted coherent information
of N |−⟩

QS by plugging into the obtained von Neumann
entropies (84) and (85) and probabilities (80):

p−Ic(N |−⟩
QS ) = η(1− log2 η) + ηXY log2 ηXY

+ ηXZ log2 ηXZ + ηY Z log2 ηY Z , (86)

p+Ic(N |+⟩
QS ) = (1− η)(1− log2(1− η))

+ (p̃X−ηXY −ηXZ) log2(p̃X−ηXY −ηXZ)
+ (p̃Y −ηXY −ηY Z) log2(p̃Y −ηXY −ηY Z)
+ (p̃Z−ηXZ−ηY Z) log2(p̃Z−ηXZ−ηY Z)
+ (1− p̃+ η) log2(1− p̃+ η), (87)

from which the lower bound (37) on the quantum path capacity
for arbitrary Pauli channels follows.

APPENDIX D
PROOF OF PROPOSITION 4

We start by borrowing the upper bound (72) on capacity of
N |∓⟩

QS (·) from the relative entropy of entanglement of its Choi
matrix:

Q(N |∓⟩
QS ) ≤ ER(ρN |∓⟩QS

)
△
= inf

ζ∓s

S(ρN |∓⟩QS
||ζ∓s ), (88)

where ζ∓s is an arbitrary separable state, and S(ρN |∓⟩QS
||ζ∓s ) is

the relative entropy of ρN |∓⟩QS
with respect to it (see Def. 8).
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Since ER(ρN |∓⟩QS
) is defined as an infimum of S(ρN |∓⟩QS

||ζ∓s )
with respect to ζ∓s , it is upper-bounded as

Q(N |∓⟩
QS ) ≤ ER(ρN |∓⟩QS

) ≤ S(ρN |∓⟩QS
||ζ∓s ), (89)

for arbitrary ζ∓s . On the other hand,

S(ρN |∓⟩QS
||ζs)

△
= Tr

[
ρN |∓⟩QS

(
log2 ρN |+⟩QS

− log2 ζ
∓
s

)]
= Tr

[
ρN |+⟩QS

log2 ρN |∓⟩QS

]
− Tr

[
ρN |∓⟩QS

log2 ζ
∓
s

]
△
= −S(ρN |∓⟩QS

)− Tr
[
ρN |∓⟩QS

log2 ζ
∓
s

]
. (90)

Let us choose the separable state ζs by reasoning as in [42]:

ζ∓s =
1
2

1∑
i=0

|i⟩ ⟨i| ⊗ N |∓⟩
QS (|i⟩ ⟨i|). (91)

By exploiting the Kraus decomposition of N |∓⟩
QS (·) with

respect to the corresponding probability vectors (35) and (36),
after some algebraic manipulations and taking into account
p
E/D
0 = 1 − p

E/D
X − p

E/D
Y − p

E/D
Z , (91) can be re-written as

the following diagonal matrices:

ζ−s = diag
(ηXY

2η
,
ηXZ + ηY Z

2η
,
ηXZ + ηY Z

2η
,
ηXY
2η

)
, (92)

ζ+
s = diag

(1− p̃X − p̃Y + ηXY
2(1− η)

,
p̃X + p̃Y − ηXY − η

2(1− η)
,

p̃X + p̃Y − ηXY − η

2(1− η)
,
1− p̃X − p̃Y + ηXY

2(1− η)

)
. (93)

While the von Neumann entropy S(ρN |∓⟩QS
) is known from (84)

and (85), the second term in (90) is less trivial. Denoting
ρN |∓⟩QS

log2 ζ
∓
s

△
= Ξ∓, after some algebraic manipulations,

we obtain

Ξ− =
ηXY
η

log2

(ηXY
2η

)
ρΦ− +

ηY Z
η

log2

(ηXZ + ηY Z
2η

)
ρΨ+

+
ηXZ
η

log2

(ηXZ + ηY Z
2η

)
ρΨ− , (94)

Ξ+ =
1− p̃X − p̃Y + ηXY

1− η
log2

(1− p̃X − p̃Y + ηXY
2(1− η)

)
ρΦ+

+
p̃Z − ηY Z − ηXZ

1− η

· log2

(1− p̃X − p̃Y + ηXY
2(1− η)

)
(ρΦ−−ρΦ+)

+
p̃X − ηXZ

1− η
log2

( p̃X + p̃Y − ηXY − η

2(1− η)

)
ρΨ+

+
p̃Y − ηY Z

1− η
log2

( p̃X + p̃Y − ηXY − η

2(1− η)

)
ρΨ−

− ηXY
1− η

log2

( p̃X + p̃Y − ηXY − η

2(1− η)

)
(ρΨ+ +ρΨ−).

(95)

Taking into account that Tr[ρΦ± ] = Tr[ρΨ± ] = 1, we obtain:

Tr[Ξ−] =
1
η

(
ηXY log2 ηXY + (ηY Z + ηXZ)

· log2(ηY Z + ηXZ)
)
− 1− log2 η, (96)

Tr[Ξ+] =
1− p̃X − p̃Y + ηXY

1− η
log2(1− p̃X − p̃Y + ηXY )

+
p̃X + p̃Y − ηXY − η

1− η

· log2(p̃X + p̃Y − ηXY − η)− 1− log2(1− η).
(97)

Finally, plugging in the obtained result to (90) and weighting
it by the probabilities (80), we find:

p−S(ρN |−⟩QS
||ζ∓s )

= η + ηY Z log2 ηY Z

+ ηXZ log2 ηXZ − (ηY Z + ηXZ) log2(ηY Z + ηXZ),
p+S(ρN |+⟩QS

||ζ∓s )

= 1− η

+ (p̃X − ηXY − ηXZ) log2(p̃X − ηXY − ηXZ)
+ (p̃Y − ηXY − ηY Z) log2(p̃Y − ηXY − ηY Z)
+ (p̃Z − ηXZ − ηY Z) log2(p̃Z − ηXZ − ηY Z)
− (1− p̃X − p̃Y + ηXY ) log2(1− p̃X − p̃Y + ηXY )
− (p̃X + p̃Y − ηXY − η) log2(p̃X + p̃Y − ηXY − η)
+ (1− p̃+ η) log2(1− p̃+ η). (98)

By summing both obtained terms up the upper bound (38)
on the quantum path’s capacity for arbitrary Pauli channels
follows.
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