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Multiobjective Risk-Aware Path Planning in
Uncertain Transient Currents: An Ensemble-Based

Stochastic Optimization Approach
Sultan Albarakati , Ricardo M. Lima , Thomas Theußl , Ibrahim Hoteit , and Omar Knio

Abstract—A multiobjective, risk-aware framework is developed
for optimal path planning of autonomous underwater vehicles
operating in uncertain current. The uncertainty in the current
is described in terms of a finite ensemble of flow realizations. A
new optimization framework is proposed that accounts for the
full variability of the ensemble in a single optimization problem
whose solution may not necessarily coincide with any of the op-
timal deterministic paths corresponding to individual ensemble
members. We formulate stochastic problems that aim to minimize
a risk measure of the travel time or energy consumption, using a
flexible methodology that enables the user to seamlessly explore
various objectives, ranging from risk neutral to risk averse. We
illustrate the application of the proposed approach using two case
studies based on synthetic 2-D settings, and one case involving a
real-world problem in the Gulf of Aden. The results are analyzed
to assess the value of stochastic solution, guide the selection of
suitable risk measures, and demonstrate the impact of the risk
measures on the resulting path and on the distribution of travel
times.

Index Terms—Flow field ensemble, multiobjective optimization,
Pareto front, path planning, risk-aware formulation.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) are being
employed for various applications, including collecting

information on coastal ecosystems or underwater installations,
search and rescue operations, inspection of intake and dis-
charge of thermal plants, and management of shipping oper-
ations [1]–[3]. AUVs are also being utilized for military pur-
poses, e.g., for surveillance of ocean vehicles, as well as in
the mining, oil, and gas industries in the search for underwater
resources [4]–[6].

AUVs normally navigate in strong and dynamic current en-
vironments. Thus, it is essential to conduct path planning so
as to guarantee the efficiency and safeness of vehicles under
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such conditions. In addition, one is frequently faced with the
problem of optimizing different objectives, such as total travel
time, energy consumption, and quantity and quality of collected
information [7]–[9], and possibly a combination of these at
the same time. Another difficulty is the underlying uncertain
character of predicted currents based on which the AUVs path-
way planning is optimized. This is, nowadays, described by an
ensemble of possible realizations of the ocean currents [10],
[11], which needs to be taken into account in the planning.

While numerous studies have considered deterministic path
planning problems, e.g., [6], [12], [12]–[22], path planning for
AUVs operating in uncertain ocean environments has received
less attention.

Pereira and Suhatme [23] and Pereira et al. [24] used Markov
decision processes (MDP) to plan paths with minimum risk of
collision between the vehicle and obstacles (static or dynamic)
at the surface. Kularatne et al. [25] applied two methods to plan
a path that minimizes the energy expenditure. The first method
uses an MDP formulation to find an optimal cost policy, and
the second uses a graph-based approach to compute a minimum
expected cost path. Both methods consider a minimum energy
cost function and try to minimize the expected cost of a path.
Subramani et al. [26] and Subramani and Lermusiaux [27]
applied stochastic level-set partial differential equations to find
time optimal paths of vehicles navigating in uncertain flow fields.
They find the path by first computing the distribution of exact
time-optimal paths, obtained as the solutions of the stochastic
dynamically orthogonal level set equations, and then determine
the path that minimizes the risk of being suboptimal given the
uncertain time-optimal path predictions. Wang et al. [28] used
an ensemble approach to plan a path of AUVs in dynamic and
uncertain ocean currents. The approach is based on generating a
finite-size ensemble of the current field, and applying a Hamil-
tonian formalism to determine optimal paths corresponding
to individual members of the ensemble. Individual solutions
obtained for a particular realization are then evaluated against
the remaining ensemble members, and probabilistic measures
are then applied to select the best solution.

This work specifically focuses on ensemble-based approaches
used for path planning in uncertain currents [26]–[28]. This is
motivated by the fact that ensemble methods are now typically
used to describe uncertainty in realistic ocean forecasts, and for
the purpose of assimilating data ocean general circulation model
(OGCM) simulations. Note that a common feature of previous
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ensemble-based approaches for AUV path planning under un-
certainty [26]–[28] is that they relied on a simplified method-
ology, namely based on repeated applications of an essentially
deterministic solver. Specifically, the simplification is based on
optimizing the path based on individual realizations of the flow,
evaluating the resulting deterministic solutions based on the
other members of the ensemble, and then selecting the optimal
path based on the probabilistic criterion or risk measure. This
approach results in methods that are robust, but because they rely
on an ensemble of paths determined for individual realizations
of the current field, they may not result in an optimal solution.

The main contributions of this work are twofold: 1) new op-
timization models for path planning are developed that account
for the full variability of the ensemble in a single optimiza-
tion model; and 2) a multiobjective risk-aware path planning
approach is introduced to minimize travel time and energy
consumption in uncertain transient currents. A key feature of
the proposed optimization models is that the solution may not
necessarily coincide with any of the deterministic paths cor-
responding to individual ensemble members, which contrasts
with the type of solutions obtained in [26]–[28]. To this end, we
start by introducing a nonlinear deterministic 2-D path planning
problem for steady and unsteady ocean current fields. Then,
we extend it to a nonlinear stochastic programming problem
to accommodate an uncertain flow field. We derive stochastic
problems to minimize a risk measure of the travel time or energy
consumption. We adopt an objective function that combines
two risk measures: a risk-neutral and a risk-averse measure.
The risk-neutral measure is defined by the expectation operator
and the risk-averse measure by the Conditional Value at Risk
(CVaR) [29]. We use the CVaR of the travel time and the CVaR of
the energy consumption to measure the risk of long travel times
and high energy consumptions, respectively. We calculate the
value of stochastic solution (VSS) [30] to compare the stochas-
tic solution against the deterministic solution. To estimate the
value of perfect information, meaning the travel time reduction
obtained with a perfect flow field forecast compared to the
expected travel time calculated for an uncertain flow field, we
calculate the expected value of perfect information (EVPI) [30].
To illustrate the application of the resulting framework, we
consider two synthetic cases and a real-world case. The first
case involves a steady stochastic current field, the second case
involves an unsteady, stochastic double-gyre current field, and
the third involves a path planning problem in the Gulf of Aden.

This article is organized as follows. Section II outlines the
problem statement. Section III presents the stochastic optimiza-
tion models for the minimum travel time and the minimum
energy consumption. The scope of numerical experiments is
defined in Section IV. Computational results are discussed and
analyzed in Section V. Finally, we summarize our conclusions
in Section VI.

II. PROBLEM STATEMENT

This work addresses the optimal path planning problem of
an AUV based on a stochastic optimization formulation. We
consider a 2-D uncertain flow field. The goal is to determine a
path that is feasible for every realization of the flow field that

minimizes a risk measure. The solution of this problem provides
a sequence of waypoints from a fixed starting point to a fixed
target.

In this setup, three types of objective functions are considered:
1) a risk measure of the travel time;
2) a risk measure of the energy consumption;
3) a risk measure of the energy consumption and travel time

through a multiobjective minimization.
We propose a novel stochastic programming formulation

based on a given ensemble of flow field forecasts. In this ap-
proach, the probability distribution of the flow field is discretized
into scenarios, with each scenario corresponding to one member
of the ensemble.

III. STOCHASTIC OPTIMIZATION PROBLEMS

We start by introducing the deterministic version of a 2-D
trajectory planning problem before; then, we extend it to a
stochastic programming problem to accommodate an uncertain
flow field and minimize a risk measure of the travel time or
energy consumption.

A. Deterministic Problem

The objective is to minimize the total travel time of a sin-
gle AUV from starting point to destination, in the presence
of current, and subject to kinematic constraints that limit the
magnitude of the acceleration and velocity vectors. We consider
the following 2-D trajectory optimization problem:

min

∫ T

t0

1 dt = T − t0 (1)

s.t.
dx(t)

dt
= v(t) + u(x(t), t) (2)

d2x(t)

dt2
= a(t) +∇u(x(t), t)

dx(t)

dt
+ ∂tu(x(t), t)

(3)

x(t0) = x0 (4)

x(T ) = xT (5)√
v2x(t) + v2y(t) ≤ vmax (6)

√
a2x(t) + a2y(t) ≤ amax (7)

x(t) ∈ χ ⊂ R2 (8)

v(t),a(t) ∈ R2 (9)

T ∈ R (10)

where x(t) = (x(t), y(t)) denotes the instantaneous position
of the AUV at time t, u(x(t), t) = (ux(x(t), t), uy(x(t), t) is
the time varying current field, v(t) = (vx(t), vy(t)) is the in-
stantaneous velocity of the AUV with respect to the current,
and a(t) = (ax(t), ay(t)) is the acceleration of the vehicle
with respect to the current. The total, ground-referenced, AUV
velocity is u+ v. The starting and ending time of the AUV
trajectory are denoted by t0 and T , respectively. In the stochastic
programming problem, we extend these symbols to cover the



1084 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 46, NO. 4, OCTOBER 2021

uncertain parameters and variables. Equations (2) and (3) are
the kinematic constraints, (4) and (5) define the starting point
and ending point, and (6) and (7) set upper bounds on the vehicle
relative velocity and acceleration, respectively. The constraint in
(8) forces the vehicle to navigate within the problem domain.

Note that in problem defined by (1)–(10), we do not consider
a constraint for obstacles avoidance as proposed in [21]. In
this work, we focus on extending this problem to a stochastic
problem to cover uncertain flow fields. However, the stochas-
tic version can be extended to include obstacle avoidance
constraints.

B. Stochastic Programming Problems

We derive a stochastic programming problem based on the
deterministic problem defined earlier and on 1) the discretization
of the time a finite-difference time discretization using a second-
order Taylor expansion; and 2) an ensemble-based discretization
of the probability distribution function of the uncertain flow field.
The optimal solution provides one path that is feasible for all the
members of the considered ensemble.

Let I := {0, 1, 2, 3, . . ., I} be a set with I + 1 grid points
that form the basis of the time discretization, and S :=
{1, 2, 3, . . ., S} be a set with S equiprobable scenarios that
represent the discretization of the probability distribution func-
tion of the uncertain flow field. For each scenario s ∈ S , we
define an independent time grid discretization that shares the
same grid points in I. Therefore, for each grid point i ∈ I,
and for each scenario s ∈ S , we have t(i, s), Δt(i, s), v(i, s),
a(i, s), and u(x(i), t(i), s), where t(i, s) is the time for grid
point i in scenario s, Δt(i, s) is the time difference between
t(i, s) and t(i− 1, s), v(i, s) and a(i, s) are the velocity and
acceleration vectors at the grid point i in scenario s, respectively,
and u(x(i), t(i), s) is the flow field vector for scenario s in the
position x(i) and t(i, s) at the grid point i.

In this setup, we assume that the AUV position vector x(i) is
the same for each scenario, meaning x(i, s) = x(i, s′), ∀s′ ∈
S . Therefore, the proposed problems adopt a two-stage decision
framework within each problem, where in the first-stage the path
is determined, x(i), and in the second-stage, recourse actions
(v(i, s), a(i, s)) are used to adapt to the flow field realization
and keep the AUV on the determined path. Note that the way-
points correspond to one sequence of positions, x(i), which are
feasible for all scenarios of the flow field, and therefore, all
scenarios share the same waypoints, but with a different timing.

1) Objective Function and Risk Measures: We adopt an
objective function that combines two risk measures: 1) risk
neutral; and 2) risk averse. The risk neutral is defined by the
expectation operator and the risk averse by the CVaR [29]. We
use the CVaR of the travel time and the CVaR of the energy
consumption to measure the risk of long travel times and high
energy consumptions, respectively. Basically, the CVaR operator
is used to derive optimization solutions with paths that avoid the
occurrence of long travel times or high energy consumptions for
some realizations of the flow field.

The CVaR of a random variable is defined as the conditional
expectation of the random variable to be greater than the value

Fig. 1. Example of a final time distribution with VaR1−α and CVaR1−α

marked as a dashed line and a continuous line, respectively.

at risk of the random variable for the 1− α quantile (chosen by
the user). We illustrate the concept of CVaR1−α in Fig. 1. In the
context of the present path planning problem, the CVaR1−α of
random travel time T (ξ) is defined as

CVaR1−α[T (ξ)] := min
μ

{
μ+

1

1− α
Eξ[C(ξ)]

}
(11)

where ξ is a random vector that parameterizes the stochastic
variability of the current, μ denotes the value at risk, Eξ is the
mathematical expectation with respect to ξ, andC(ξ) is a random
variable defined as

C(ξ) := min
c(ξ)

{
c(ξ)|c(ξ) ≥ T (ξ)− μ, c(ξ) ∈ R+

}
. (12)

Based on the definitions earlier and the discretization of the
probability distribution function of the uncertain flow field, we
consider two objective functions.

1) Minimization of a combination of risk measures of the
travel time

min
Δ

{φ(Δ, s) := βE[T (s)] + (1− β)CVaR1−α[T (s)]}.
(13)

2) Minimization of a combination of risk measure of the
energy consumption

min
Δ

{φ(Δ, s) := βE[E(s)] + (1− β)CVaR1−α[E(s)]}.
(14)

Here, Δ := (x(i), Δt(i, s), v(i, s), a(i, s), μ, c(s), T (s)),
β ∈ [0, 1] is a parameter that defines the weight of the expec-
tation and CVaR operators, E is the expectation with respect to
the discrete distribution, and E(ξ) is the energy consumption of
the AUV.

C. Minimum Time Problem (MTP): Minimization of a Risk
Measure of the Travel Time

We define the following formulation for the minimization of a
combination of expected travel time and CVaR1−α of the travel
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time:

MTP:zT := min β

[
1

S

∑
s∈S

T (s)

]
+ (1− β)

×
[
μ+

1

1− α

(
1

S

∑
s∈S

c(s)

)]
(15)

s.t. c(s) ≥ T (s)− μ ∀s ∈ S (16)

T (s) =
∑
i∈I

Δt(i, s) ∀s ∈ S (17)

t(i, s) =
∑

ii≤i∈I
Δt(ii, s) ∀i ∈ I, s ∈ S (18)

x(i+ 1) = x(i) + [v(i, s) + u(x(i), t(i, s), s)]Δt(i, s)

+
1

2
a(i, s)Δt(i, s)2 ∀i ∈ I, ∀s ∈ S

(19)

v(i+ 1, s) = v(i, s) + a(i, s)Δt(i, s) ∀i ∈ I, ∀s ∈ S (20)

√
v2x(i, s) + v2y(i, s) ≤ vmax ∀i ∈ I ∀s ∈ S (21)

√
a2x(i, s) + a2y(i, s) ≤ amax ∀i ∈ I ∀s ∈ S (22)

Δt(i, s) ≤ Δtmax ∀i ∈ I, ∀s ∈ S (23)

x(0) = x0 (24)

x(N) = xT (25)

x(i) ∈ χ ⊂ R2 ∀i ∈ I (26)

v(i, s), a(i, s) ∈ R2 ∀i ∈ I, ∀s ∈ S (27)

c(s) ∈ R+ ∀s ∈ S (28)

t(i, s), Δt(i, s) ∈ R+ ∀i ∈ I, ∀s ∈ S (29)

μ ∈ R+ (30)

T (s) ∈ R+ ∀s ∈ S. (31)

We denote this problem by MTP. It is a nonlinear stochastic
programming problem with bilinear and quadratic terms. The
objective function corresponds to the function defined in (13).
The first term is the expectation and the second the CVaR with
respect to the discrete distribution of the travel times, where
S denotes the number of discrete equiprobable scenarios, and β
and α are fixed parameters. Equation (17) defines the total travel
time for each scenario s as the summation of Δt(i, s) over all
grid points, (18) defines the time for grid point i in each scenario
s. Equation (16) results from the definition of CVaR using the
optimization formulation in (11) and (12). Equations (19)–(22)
are the discrete version of the kinematic equations and bounds on
the relative velocity and acceleration. The step size is bounded
by Δtmax in (23).

The problem formulation is based on a sequence of waypoints
with position x(i), which are common to all scenarios, but in

each scenario each waypoint has a distinct timing evaluated
using (18).

D. Minimum Energy Problem (MEP): Minimization of a Risk
Measure of the Energy Consumption

The path planning problem to minimize a combination of the
expectation and CVaR of the energy consumption is formulated
for a fixed travel time. The solution of this problem provides
also a path that is feasible for each scenario of the flow field
ensemble. The problem definition is

MEP:zE : = minβ

[
1

S

∑
s∈S

E(s)

]

+ (1− β)

[
μ+

1

1− α

(
1

S

∑
s∈S

c(s)

)]
(32)

s.t. T fixed =
∑
i∈I

Δt(i, s) ∀s ∈ S (33)

E(s) =
∑
i∈I

(||v(i, s)||22 ·Δt(i, s)
) ∀s ∈ S (34)

c(s) ≥ E(s)− μ ∀s ∈ S (35)

(18) to (30) (36)

E(s) ∈ R+ ∀s ∈ S. (37)

In the MEP, the objective function refers to energy consump-
tion and it corresponds to the function defined in (14). The two
terms and parameters S, β, and α are defined as in the MTP. In
(33), we fix the total travel time for each scenario. Equation (34)
is the total energy consumption for each scenario s. Equation
(35) results from the definition of CVaR using the optimization
formulation in (11) and (12).

E. Multiobjective Minimization of a Risk Measure of the
Energy Consumption and Travel Time

The two problems formulated earlier are also integrated
into a multiobjective framework. We adopt the ε-constraint
method [31] in a framework where for a fixed travel time, we
minimize the energy consumption using the MEP. With the
solution pair (time, energy), we build a Pareto-optimal solution
curve.

F. Solution Approach

Our solution approach starts by choosing values for the risk
parameters β and α, setting the time horizon Th over which
the MEP is solved, and the number of steps kmax used to dis-
cretize this time horizon. An initialization of the MTP is, then,
determined by solving the deterministic problem for a single,
randomly-selected, ensemble member. With this initialization,
we solve the MTP for the entire ensemble, yielding the minimum
of a risk measure of the travel time. This solution is, then, used to
initialize the first MEP, with fixed travel time equal to Tm, where
Tm = E[T (s)] is the expected travel time of the MTP solution.
Note that Th must be greater than Tm. The MEP problems for



1086 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 46, NO. 4, OCTOBER 2021

Fig. 2. Flowchart of the solution approach.

k = 1, . . . , kmax, are solved in a similar fashion, i.e., using the
solution of the previous MEP as initialization and a fixed travel
time of Tm + (Th − Tm)k/kmax. The Pareto curve is built by
combining the results of the MTP and the kmax MEP problems
between Tm and Th. See Fig. 2 for details.

G. Feasibility of Solutions

The solution algorithm yields one path that is feasible for each
member (scenario) of the flow field ensemble. In general, if at

least for one scenario the current is stronger than the maximum
AUV velocity, then the problem may become infeasible. How-
ever, because the flow field varies with the position solutions may
still be obtained that take advantage of the current variability
to reach the target. For example, in the results presented in
Section V-A, there are paths that initially move away from the
target but later adapt toward the target. In [21] and [32], it is
shown that in 3-D deterministic settings, optimal solutions can
be determined that take advantage of the surface currents, as
well as by changing depth along the path. As an alternative, the
model can be extended to include slack variables for the bounds
on the velocity and acceleration, with a large penalty value in
the objective function for nonzero positive slack variables. Such
approach can provide solutions in cases where the AUV may
not avoid strong unfavorable currents.

H. Evaluation of Deterministic and Stochastic Solutions

We compare the stochastic and deterministic solutions using
a measure known as the VSS [30]. The VSS provides a measure
of the expected loss when using the deterministic solution. In
addition, we calculate the EVPI [30] that provides an indication
of the value of perfect flow field forecasts. For the case studies
addressed, with β = 1, the loss and value are measured in terms
of travel time or energy consumption. Before presenting the
expressions for the VSS and EVPI, we introduce the following
nomenclature and notation.

1) The optimal solution of MTP or MEP as SP := zT or
SP := zE .

2) The expected value (EV) problem, defined by using the
average flow field as a single scenario in the MTP or MEP.

3) The EV solution x(i)|u obtained from the EV problem.
4) The expected result of the EV solution EEV :=

E[minφ(x(i)|u, s)]. EEV is the average value of the ob-
jective functions obtained from the MTP or MEP with
x(i)|u fixed and one member of the flow field ensemble
per problem.

5) Δ∗|s denoting the solution of the MTP or MEP considering
only one scenario s, i.e., one element of the ensemble per
problem.

6) The EV of the optimal solution, also known as wait-
and-see solution, as WS := E[zT (Δ∗|s)] or WS :=
E[zE(Δ∗|s)] for the MTP and MEP, respectively.

Based on the aforementioned notation and definitions, we
define the VSS and EVPI as

VSS := EEV − SP (38)

EVPI := SP − WS. (39)

IV. NUMERICAL EXPERIMENTS

To illustrate the results of the proposed AUVs pathway opti-
mization models, we consider two synthetic cases and a realistic
case. The first case involves a steady stochastic current, which we
refer to as Case 1. The second case, Case 2, involves a stochastic
unsteady double-gyre flow. The third case, Case 3, considers an
unsteady OGCM ensemble.
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TABLE I
DOMAIN SIZE AND PARAMETERS FOR CASES 1 AND 2

TABLE II
DOMAIN SIZE AND PARAMETERS FOR CASE 3

The parameters defining the vehicle, domain, and models used
in Cases 1 and 2 are outlined in Table I. For Case 3, we consider
two instances, as defined in Table II.

A. Case 1

Case 1 considers a steady stochastic current defined by

ux(x, ξ) = 0.8 · exp(−(y − 50))2 · cos
(
2π · x
40

+ πη(ξ)

)

uy(x, ξ) = 0.0 (40)

where η(ξ) is a random variable that defines the uncertainty
in the horizontal direction. We adopt a discrete distribution
for η(ξ), where η(ξ) = i/S, i = 1, . . ., S. Fig. 3 depicts four
realizations of the uncertain flow field; the horizontal current
magnitude ux(x, s) is color coded in the background. Note that
the maximum horizontal current magnitude is 0.8.

B. Case 2

We consider a more complex current field, consisting of a
stochastic unsteady double-gyre [33]. Specifically, the uncertain

current field is expressed as

ux(x, t, ξ) = −π(γ +A(ξ)) sin(πf(x, ξ)) cos(πy)

uy(x, t, ξ) = −π(γ +A(ξ)) cos(πf(x, ξ)) sin(πy)
df(x, ξ)

dx
(41)

where

f(x, ξ) = a(t, ξ) · x2 + b(t, ξ) · x
a(t, ξ) = (δ + ε(ξ)) sin(ω · t)
b(t, ξ) = 1− 2(δ + ε(ξ)) sin(ω · t).

The parameters γ, δ, and ω are assumed fixed; we set γ =
0.1, δ = 0.2, ω = π/40. The random variables A(ξ) and ε(ξ)
are assumed to be independent and uniformly distributed over
the intervals [0,0.1], and [0, 0.2], respectively. Using these pa-
rameters, we generate 48 time-dependent current field scenarios,
which are illustrated in Fig. 4. In this figure, each scenario is
represented by one arrow at every location depicted. Note that
the maximum current magnitude is 0.6.

C. Case 3

In this case, we consider an ensemble of time-dependent ocean
fields simulated using an assimilative OGCM of the Red Sea,
which was developed in [34] and [35] and exploited in [32]
for optimal path planning in a deterministic current setting.
We provide a brief description of the system, which is largely
adapted from that provided in [32].

The underlying assimilation system operates sequentially as
cycles of forecast-analysis steps, using the MIT OGCM (MIT-
gcm) for forecasting the Red Sea circulation, and an ensemble
Kalman filter (EnKF) for updating the model forecasts with
satellite sea surface height and temperature observations every
time they become available [36]. The system domain extends
from 30◦E to 50◦E and from 10◦N to 30◦N, covering the
whole Red Sea, the Gulf of Suez, the Gulf of Aqaba, and the
Gulf of Aden. To measure Euclidean distance in the problem
domain, we consider 30◦ longitude, 10◦ latitude, and the sea
level as the origin, and measure all the distances from this
point. The system was configured on a spherical grid with
a 0.04◦ × 0.04◦ horizontal resolution, resulting in 500× 500
grid points, and 50 vertical layers ranging from 4 m at the
surface to 300 m near the bottom. After validating the model
outputs with available in situ and satellite remote sensing ob-
servations [37], [38]; this ensemble assimilation system was
integrated to generate flow-fields conditioned for the month of
January 2006.

From this data set, we selected 32 ensemble members at
specific times, forming regular 3-day-long intervals. Once the
nodal velocities are defined, the velocity vector at arbitrary
spatial locations is determined through a tricubic interpolation
method as described in [21]. Finally, the local velocity values
are interpolated linearly between neighboring time snapshots to
describe the time-dependent velocity vector.

We consider a time-dependent ensemble current field, given
by an OGCM simulation of the oceanic circulation in the Gulf
of Aden. Fig. 5 shows an overview of the surface current field
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Fig. 3. Current field for four different scenarios of Case 1. ux is the horizontal current velocity. (a) Scenario 1. (b) Scenario 16. (c) Scenario 32. (d) Scenario 50.

Fig. 4. Current field of Case 2 with snapshots at six different times. To visualize uncertainty in the current field, multiple arrows are plotted at each grid point
that corresponds to different realizations of the local velocity vector. (a) Snapshot at time 0. (b) Snapshot at time 20. (c) Snapshot at time 40. (d) Snapshot at time
60. (e) Snapshot at time 80. (f) Snapshot at time 100.

in the Gulf of Aden, for six time snapshots of the 32 ensemble
members. To illustrate the variability of the flow, the velocity
vector in each member is represented by one arrow at each
location depicted.

As further discussed below, in Case 3, we consider two
instances. In Instance I, the AUV starts at point A and its
destination is point B; see Fig. 5(a). In Instance II, the start
point is B and the destination is at point A.

V. RESULTS

We implemented the proposed approach using the software
system general algebraic modeling system (GAMS) [39]. The
cases were optimized using the open-source software package
for large-scale nonlinear optimization IPOPT 3.12 [40]. The
runs were performed on a workstation with 2.5-GHz CPUs and
128-GB RAM. In Cases 1–3, it took 16 min to solve MTP, and
approximately 2 min to solve MEP for each fixed travel time.
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Fig. 5. Current field of Case 3 with snapshots at six different times. The uncertainty in the current field is represented by multiple arrows plotted at each grid point
that corresponds to different realizations of the local velocity vector. (a) Snapshot at time 6 h. (b) Snapshot at time 12 h. (c) Snapshot at time 18 h. (d) Snapshot at
time 24 h. (e) Snapshot at time 30 h. (f) Snapshot at time 36 h.

The size of the MTP is 54 514 variables and 63 052 equations
in Case 1, 75 338 variables and 81 219 equations in Case 2, and
19 546 variables and 19 267 equations in Case 3. In this section,
we present the results of the stochastic optimization experiments
for the case studies described earlier. For each case, we present
the following results.

1) The optimal solution paths: a) path for the optimal solution
of MTP or MEP; b) path for the EV solution, x(i)|u; and
c) path obtained from solving the MTP or MEP for each
element of the ensemble.

2) Distributions of the positions as a function of the scenarios.
For each path, we use spheres to show the distribution
of positions along the path, one position per scenario, at
specific times. Green spheres are used for β = 1, yellow
spheres for β = 0, a red sphere for the EV solution, and
blue spheres for the distribution of positions obtained from
the MTP or MEP for each element of the ensemble with
the path from the EV solution fixed.

3) Risk management results showing the expected travel time
and CVaR of the travel time as a function of β for the MTP.

4) Assessment of the stochastic solutions using the VSS and
EVPI as a function of β for the MTP.

5) Distributions of times as a function of scenarios using
box-plots with the distribution of the time for each scenario
for each grid point obtained with the MTP for β = 0,
β = 1, the EV solution, and the solution of the MTP for
each element of the ensemble with the path from the EV
solution fixed.

6) Pareto-optimal curves for time–energy, including box
plots depicting the distribution of energy consumption for
each travel time, for both β = 0 and β = 1.

Animations of the AUV paths and the ocean current for the
MTP and MEP for both cases are provided in the supplementary
material.

A. Case 1

A stochastic synthetic field is considered here with a compos-
ite of vertical shear and cosine function as given by (40).

Fig. 6 shows that the optimal path obtained with
the EV solution is significantly different from the optimal paths
obtained with the MTP with β = 0 or β = 1. This is a relevant
result because it highlights the difference in the paths between
the deterministic solution (obtained with the average current)
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Fig. 6. Case 1. Optimal paths (lines) and distributions of the AUV position (spheres) at selected times, obtained from the solutions of the MTP. The green spheres
(•) indicate the solution with β = 1 (risk neutral), the yellow spheres (•) the solution with β = 0 (risk averse), the red sphere (•) is the expected current solution,
and the blue spheres (•) the solution of the MTP for each element of the ensemble with the path (from the mean current solution) fixed. Thin black lines indicate
the (deterministic) solutions of the MTP considering only individual elements of the ensemble. Background color gradient indicates depth. (a) Snapshot at time
25. (b) Snapshot at time 50. (c) Snapshot at time 70. (d) Snapshot at time 108. (e) Snapshot at time 124. (f) Snapshot at time 127.

Fig. 7. Case 1. Box-plot of the distribution of times t(i, s)∀s ∈ S, for selected grid points i, obtained from the solution of the MTP. In (c), the green line is
the mean current solution and the boxes depict the distribution of times for each element of the ensemble with the path (from the mean current solution) fixed. In
each box, the central red mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles of the travel time distribution,
respectively. (a) β = 0 (risk averse). (b) β = 1 (risk neutral). (c) Expected value solution.

and the stochastic solution. This figure also reveals that the
stochastic solution is not contained in the individual solu-
tions obtained from the MTP with individual elements of the
ensemble.

The subfigures in Fig. 6 at different snapshot times show that
the risk-neutral solutions (β = 1) have a wider distribution of
positions than the risk averse (β = 0). In most of the snapshot
times, the distribution of positions of the individual solutions
obtained from the MTP with individual elements of the ensemble
is also the widest. Fig. 7 provides additional results, where it
is shown that the EV solution leads to a wider distribution of
times in the individual solutions obtained from the MTP with
individual elements of the ensemble, and that the solution with
β = 0 results in the narrowest distribution of times.

Fig. 6 also shows that the EV solution has the minimum
expected travel time. This result is probably due to averaging
the current that has a substantial smoothing effect, due to the
current setup where the current alternates between going left
and right.

Fig. 8 shows that the expected travel time decreases as
β increases, whereas the CVaR of the travel time increases as
β increases. This figure provides a guide to choose a suitable β
that represents a tradeoff between the increment of the expected
travel time and reduction of the CVAR of the travel time,
compared to the solution for β = 1.

The value of the stochastic solution is demonstrated by three
results: 1) the difference between the path of the EV solution
and the path from the MTP; 2) the distribution of the travel
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Fig. 8. Case 1. Left: Expected travel time and CVaR of the travel time as a function of the risk parameter β from the MTP solution. Right: VSS and EVPI versus
β for the MTP.

Fig. 9. Case 1. Optimal paths (lines) and distributions of the position (spheres) of the AUV at given time snapshots, obtained from the solutions of the MEP. The
green spheres (•) indicate the solution with T fixed = 235, and the blue spheres (•) with T fixed = 136. Background color gradient indicates depth. (a) β= 0 (risk
averse), snapshot at time 12. (b) β= 0 (risk neutral), snapshot at time 12. (c) β = 0 (risk averse), snapshot at time 45. (d) β = 0 (risk neutral), snapshot at time 45.
(e) β = 0 (risk averse), snapshot at time 72. (f) β = 0 (risk neutral), snapshot at time 72. (g) β = 0 (risk averse), snapshot at time 132. (h) β = 0 (risk neutral),
snapshot at time 132.

Fig. 10. Case 1. Time–energy Pareto-optimal curve with box-plot for the distribution of E(s)∀s ∈ S. In each box, the central red mark indicates the median,
the green (+) indicates the mean, and the bottom and top edges of the box indicate the 25th and 75th percentiles of the distribution of energy spent, respectively.
(a) β = 0 (risk averse). (b) β = 1 (risk neutral).
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Fig. 11. Case 2. Optimal paths (lines), distributions of the AUV position (spheres) at selected times, obtained from the solutions of the MTP. The arrows represent
the local velocity vectors of the flow field ensemble. The green spheres (•) indicate the solution with β = 1 (risk neutral), the yellow spheres (•) the solution with
β = 0 (risk averse), the red sphere (•) is the mean current solution, and the blue spheres (•) the solution of the MTP for each element of the ensemble with the
path (from the mean current solution) fixed. (a) Snapshot at time 20. (b) Snapshot at time 47. (c) Snapshot at time 88. (d) Snapshot at time 98.

Fig. 12. Case 2. Optimal paths obtained from the solution of the MTP. The
arrows represent the local velocity vectors of the flow field ensemble. The green
path is obtained with β = 1 (risk neutral), the yellow path with β = 0 (risk
averse), and the blue path is the expected current solution. Thin black lines
indicate the (deterministic) solutions of the MTP considering only individual
elements of the ensemble.

times obtained from the three approaches: a) the MTP, b) the
EV solution, and c) from using the MTP for each element of
the ensemble with the path from the EV solution fixed; and 3)
the positive values of VSS. The VSS and EVPI for the MTP
are given in Fig. 8, where one can see that the VSS increases as
we seek more risk-averse solutions (decreasing β), whereas the
EVPI increases with β.

In the case of the MEP, we study the energy consumption of
the vehicle for fixed travel times, ranging from T fixed = 136 to
T fixed = 235. The paths for T fixed = 136 and T fixed = 235 for
β = 0, β = 1 are shown in Fig. 9.

We observe that for the larger travel time, the vehicle seeks
regions of uniform near-zero velocity current, which corre-
spond to lower depths, so that it can reduce the relative ve-
locity and energy consumption without being affected by the
current velocity; see Fig. 9. Therefore, for the larger travel
time, the vehicle is less affected by the distribution of the

currents, as can be observed by the narrow distribution of the
green spheres in Fig. 9. In contrast, for the shortest travel
time, the vehicle navigates closer to the surface, where the
current variability has higher impact on the distribution of
positions.

Fig. 10(a) and (b) illustrates the time–energy Pareto curves
with box-plots for β = 0 and β = 1, respectively. The energy
consumption decreases monotonically with increasing the travel
time, for both values of β.

First, analyzing the case β = 1, one observes that the distribu-
tions of the energy consumption become narrow as the (selected)
travel time increases. This effect is explained by noticing that
increasing the travel time, the path is driven to lower regions,
and thus, the impact of the current variability on the energy
consumption is smaller. However, given that the regions near
the starting and ending points still have appreciable and highly
varying currents, the distribution of energy consumption does
not collapse to a narrow distribution.

The box-plot for β = 0 shows that the distributions of the en-
ergy consumption almost collapsed to a single value. Compared
to β = 1, with β = 0, more robust results are obtained, in the
sense that the optimal path does not lead to variations of the
energy consumption as observed in Fig. 10(b).

B. Case 2

In this case, we consider a stochastic unsteady double-gyre
flow. Fig. 11 shows that the path obtained with the EV solution
differs substantially from the path of the stochastic solutions
obtained with the MTP for β = 0 and β = 1. However, the paths
obtained with the MTP are quite similar. This figure provides
also a dynamic view of the distribution of the positions, given by
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Fig. 13. Case 2. Box-plot of the distribution of times t(i, s), ∀s ∈ S, for selected grid points i, obtained from the solution of the MTP. In (c), the green line is
the EV solution and the boxes correspond to the solution of the MTP for each element of the ensemble with the path (from the EV solution) fixed. In each box, the
central red mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles of the travel time distribution, respectively.
(a) β = 0 (risk averse). (b) β = 1 (risk neutral). (c) Expected value solution.

Fig. 14. Case 2. Left: Expected travel time and CVaR of the travel time as a function of the risk parameter β from the MTP solution. Right: VSS and EVPI versus
β for the MTP.

the colored spheres, for each path. The solution from the MTP
with β = 0 has the narrowest distribution of positions, whereas
the distributions of the two other solutions change with time.
Also, for times t > 47, the red sphere representing the EV so-
lution detaches from the distribution of particles corresponding
to individual members of the ensemble along the path of the EV
solution.

Fig. 12 simultaneously depicts the individual optimal paths
corresponding to an individual element of the ensemble. These
(deterministic) paths have a similar trend to the paths obtained
with the MTP, but there is a wide range between them, which
makes it difficult to select one of them as the optimal solution
under uncertainty.

Fig. 13 outlines that both solutions with β = 0 and β = 1
have a narrow distribution of the times at specific grid points
until approximately grid point 90. Afterward, the distribution
of the times increases, but still, it remains narrower than the
distribution of the times obtained along the path from the EV
solution.

Fig. 14 shows a steep decrease in the expected travel time
solution from β = 0 to β = 0.1, whereas for β > 0.1, it has a

small variation. The CVaR of the travel time increases with β
but without a significant change.

The trends of the VSS and EVPI as a function of β are similar
to the ones of Case 1. Again, the VSS is higher for risk-averse
solutions, indicating that these solutions are more distant from
the deterministic solution than the risk-neutral solution. This is
explained by the fact that the deterministic solution is based on
the average flow field.

The value of the stochastic solutions is clearly captured
in Fig. 11(d), which highlights the difference between the
stochastic solutions, green, yellow, and blue spheres. Note that
the red sphere indicates the solution obtained with an average
current, which is then evaluated using the individual members
of the flow ensemble and visualized using the blue spheres,
which all arrive later than the yellow and green spheres. The
difference in travel times is well illustrated by the distribution
of the times in Fig. 13(c), which shows that the blue spheres
arrive later than the green and yellow spheres; see the final
boxes in Fig. 13(a) and (b).

Using the MEP, we study the energy consumption for fixed
travel times, from T fixed = 80 to T fixed = 170. The paths
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Fig. 15. Case 2. Optimal paths (lines) and distributions of the AUV position (spheres) at given selected times, obtained from the solution of the MEP. The arrows
represent the local velocity vectors of the flow field ensemble. The blue spheres (•) indicate the solution with T fixed = 80, the yellow spheres (•) with T fixed = 125,
and the green spheres (•) with T fixed = 170. (a) β = 0 (risk averse), snapshot at time 10. (b) β = 1 (risk neutral), snapshot at time 10. (c) β = 0 (risk averse),
snapshot at time 52. (d) β = 1 (risk neutral), snapshot at time 52. (e) β = 0 (risk averse), snapshot at time 90. (f) β = 1 (risk neutral), snapshot at time 90. (g) β =
0 (risk averse), snapshot at time 120. (h) β = 1 (risk neutral), snapshot at time 120.

Fig. 16. Case 2. Time–energy Pareto-optimal curve with box-plot for the distribution of E(s)∀s ∈ S. In each box, the central red mark indicates the median,
the green (+) indicates the mean, and the bottom and top edges of the box indicate the 25th and 75th percentiles of the distribution of energy spent, respectively.
(a) β = 0 (risk averse). (b) β = 1 (risk neutral).
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Fig. 17. Case 3. Optimal paths (gray lines) and distributions of the AUV position (spheres) obtained from the solutions of the MTP. The arrows represent the local
velocity vectors of the flow field ensemble. The green spheres (•) indicate the solution with β = 1 (risk neutral) and the yellow spheres (•) indicate the solution
with β = 0 (risk averse). (a) Instance I, snapshot at time 6 h. (b) Instance II, snapshot at time 6 h. (c) Instance I, snapshot at time 12 h. (d) Instance II, snapshot at
time 12 h. (e) Instance I, snapshot at time 24 h. (f) Instance II, snapshot at time 24 h. (g) Instance I, snapshot at time 36 h. (h) Instance II, snapshot at time 33 h.

obtained for three fixed travel times are distinct; see Fig. 15.
However, the solution paths for those fixed times obtained with
β = 0 and β = 1 are similar, as can be seen by comparing the
right and left sides of Fig. 15. In contrast to Case 1, there is
no region of the domain with uniform low currents. Therefore,
with increasing travel times, the solution paths change and have
to adapt to the flow. Note that the distribution of the positions
is almost collapsed to a single sphere, which does not represent
a similar behavior in the distribution of energy consumption for
each grid point.

Fig. 16(a) and (b) illustrates the time–energy Pareto curves
with box-plots for β = 0 and β = 1, respectively. Both curves
monotonically decrease as we increase the (selected) travel time.

In these figures, we can observe that the distribution of the
energy consumption for β = 0 is almost collapsed to a single

value, whereas the range of the distribution for β = 1 is larger
and increases with the (selected) travel time.

The solutions for β = 0 represent robust solutions because
there is small variation of the energy consumption for the entire
range of travel times considered. For example, for T fixed = 170,
compare the distribution of the energy consumption with β = 0
and β = 1.

The range of the distribution of the energy consumption
increases with travel time for β = 1; see Fig. 16(b). This in-
crease indicates that as the (selected) travel time increases,
the impact of the uncertainty on the energy consumption is
higher. The space domain does not exhibit regions with uni-
form low current, but rather a stochastic transient double-gyre
flow; therefore, as the travel time increases, the vehicle is al-
ways subject to the variability of the flow. Thus, for the larger
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Fig. 18. Case 3. Box-plot of the distribution of times t(i, s)∀s ∈ S, for selected grid points i, obtained from the solution of the MTP. In each box, the central
red mark indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles of the travel time distribution, respectively. (a) Instance I, β =
0 (risk averse). (b) Instance II, β = 0 (risk averse). (c) Instance I, β = 1 (risk neutral). (d) Instance II, β = 1 (risk neutral).

travel times, the vehicle is exposed to a wider distribution of
currents.

C. Case 3

In this case, we consider realistic flow fields described by an
ensemble generated using an assimilative OGCM in the Red Sea.
The objective is to demonstrate the capabilities of the proposed
models and optimization approach to handling realistic multiple
flow fields in a single problem, as an extension of previous
work [32]. Even though the navigation is 3-D time-dependent
inherently, we address a surface-navigation using the MTP. This
focus enables visualizing trajectories, AUV positions, and a
straight forward analysis of the predicted results. As mentioned
before, two instances are considered. In Instance I, the vehicle
starts in a region of relatively low current and heads toward the
center of a strong vortex. In Instance II, the reverse situation
occurs as the starting point and destination are switched. Note
that due to the time-varying uncertain current field, the distri-
bution of the current fields differs at common path locations in
Instances I and II. For example, the AUV does not cross the left
vortex at the same time, and thus, the AUV experiences different
currents.

Fig. 17 shows the two paths obtained for β = 1 (risk neutral)
and β = 0 (risk averse) with the MTP, for both instances. We
observe that in regions of weak currents, the paths tend to be
straight lines, whereas in strong currents or regions of strong

shear, the AUV path exhibits appreciable curvature, which illus-
trates the impact of currents.

In Instance I (left column in Fig. 17), the path starts oriented
toward the South West with an inflection point below the destina-
tion, namely to take advantage of the vortex’s strong current field
as the AUV approaches its destination. In contrast, in Instance
II, the starting point is below the destination, and therefore, the
path takes advantage of the vortex field to move up, heading to
the destination point.

Comparing the risk-neutral and risk-averse paths, one ob-
serves a smaller difference between them in Instance I, and a
larger difference in Instance II; compare the left and columns in
Fig. 17. This deviation constitutes a solution of the risk-averse
path to minimize the 10% (β = 0 and α = 0.90) largest travel
times. In Instance II, the starting point in the vortex center does
not provide flexibility to the path to adapt to the strong flow, as
in Instance I. Therefore, the vortex induces a larger deviation
between paths due to the impact of the strongest currents.

The distribution of travel times at each grid point and the
final travel times are presented in Fig. 18. We observe that
Instance II has shorter expected travel times for both the risk-
neutral and risk-averse solutions than Instance I. However, the
difference is not significant, reflecting the optimization frame-
work adapting to the uncertain flow and choosing alternative
paths that minimize travel time. Similar patterns in the distribu-
tion of travel times along the path are obtained with risk-neutral
and risk-averse results.
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VI. CONCLUSION

We proposed an ensemble-based approach to plan the path
of an AUV operating in transient and uncertain current fields.
For this purpose, we developed a robust, multiobjective, and
risk-aware framework. This optimization framework is based
on a stochastic programming methodology incorporating a risk-
aware objective function that accounts for the variability of the
ensemble, and accommodating solutions that may not neces-
sarily coincide with a deterministic solution corresponding to
a specific member of the ensemble. The stochastic problems
are used to minimize a risk measure of the total travel time
or energy expenditure. We relied on an objective function that
integrates a risk-neutral (defined by the expectation operator),
and risk-averse (defined by the CVaR) measures. We use the
CVaR of the total travel time to measure the risk of long travel
times, and the CVaR of energy consumption to measure high
energy expenditures. We compared the stochastic solution with
the deterministic solution using the VSS measure, and estimated
the EVPI to assess the value of perfect flow field forecasts.

We tested the proposed framework using two synthetic cases
and a real application in the Gulf of Aden. In the two synthetic
cases, the MTP results show that there is a significant difference
between the optimal paths from the stochastic solutions and
the EV solution, and with the solution of the MTP considering
only one element of the ensemble per problem. For the MEP
case, as the travel time increases from its minimum value, the
energy spent monotonically decreases. As in the MTP case,
the solutions of the risk-neutral measure have a wider distri-
bution in the energy consumption than those obtained with the
risk-averse measure. In the first case, the paths have the same
shape for different arrival times but differ in depth; however,
in the second case, because of the unsteadiness of the current
field, the paths have different shapes for different arrival times.
The box-plot Pareto curves show that in the first case, the
distribution of the energy consumption gets narrower as the
arrival time increases; however, in the second case, they get
wider. This occurs because in the first case, the AUV can avoid
a strong current by navigating at lower depth, whereas this
is not possible in the second case. We also demonstrated the
application of the proposed approach through experiments with
a realistic OGCM ensemble. In particular, results obtained for
the MTP revealed appreciable differences between the paths
corresponding to risk-neutral and risk-averse solutions. As in
the synthetic cases, the solutions of the risk-neutral measure
exhibited a wider distribution in the arrival time than those of
the risk-averse measure. Finally, detailed visualizations were
used to examine the predicted box-plot Pareto-optimal solu-
tions. These visualizations illustrate how the vehicle’s path
adapts to the structure of the uncertain current field, as well
as its unsteadiness, to minimize total travel time and energy
consumption.

The work will evolve in two directions in the future. First, we
plan to incorporate a sample average approximation approach
to study the impact of the sample size on the solution paths,
travel times, and energy consumption. This approach will also
enable the calculation of estimators and confidence intervals
of the expected travel time and CVaR of the travel time for a

solution path. The second direction will consider the inclusion
of other sources of uncertainty, e.g., related to localization of the
AUV, as well as more general forms of the objective function,
namely to reflect mission specific goals.
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