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Abstract—Many pelagic animals, such as krill, lanternfish, and
cephalopods, migrate to deep water at dawn to avoid visual preda-
tors during daylight hours and move up toward the sea surface
at dusk to search for food. This behavior is termed diel vertical
migration.” Migrating animals graze on phytoplankton or zoo-
plankton and in turn serve as food for higher trophic levels, hence
providing a key mechanism for carbon export via this migration.
These animals are often observed as sound-scattering layers by
echosounders, but the animals causing the acoustic scattering are
difficult to identify using acoustics alone. In a spring 2019 ex-
periment in Monterey Bay, we deployed autonomous underwa-
ter and surface vehicles over a seabed-mounted upward-looking
echosounder to collect environmental DNA (eDNA) with the goal of
identifying the vertically migrating animals. The echosounder was
installed at 890-m depth on the Monterey Accelerated Research
System (MARS) seabed cabled ocean observatory, providing real-
time data of acoustic backscatter from the full water column. One
long-range autonomous underwater vehicle (LRAUV) carrying
a Third-Generation Environmental Sample Processor (3G-ESP)
acquired water samples from a sequence of layers from near sur-
face down to ~290 m as directed by the distribution of animals
observed by the echosounder. During the sampling of each layer,
the LRAUYV ran on a tight circular yo-yo trajectory directly above
the echosounder, remaining in its beam by acoustically tracking
a station-keeping Wave Glider on the sea surface marking the
echosounder’s latitude and longitude. The persistent and simulta-
neous acoustic observation and eDNA acquisition enables identifi-
cation of animals at precise locations to better understand their
vertical migration behaviors. We present the methods and the
system performance in the experiment.

Index Terms—Autonomous underwater vehicle (AUYV),
biological layers, echosounder, Environmental Sample Processor
(ESP), sampling, Wave Glider.
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1. INTRODUCTION

ANY pelagic zooplankton and micronekton follow a

daily cycle of vertical migration, feeding at the surface
under cover of darkness and retreating to deeper water during
the day to avoid visual predators [1], [2]. This diel vertical
migration connects the photic zone to mesopelagic ecosystems,
and plays an important role in transporting nutrients and car-
bon across the thermocline. These daily migrations were first
identified using sonar, resulting in the term ‘“sound-scattering
layers (SSLs)” [3], [4], and they are of major ecological and
biogeochemical importance [5], [6]. The species that make up
these SSLs usually cannot be determined using acoustics alone.
Therefore, additional ship-based direct sampling (e.g. nets and
optics) is typically required to identify organisms and ground-
truth acoustic abundance estimates [7], [8]. However, when an
acoustic instrument is deployed for long periods on moorings or
observatory nodes, obtaining sufficient direct samples becomes
a challenge.

As marine animals move through the water they shed particles,
skin, or excrement that contain DNA. These traces can be
extracted and are collectively known as environmental DNA
(eDNA). The eDNA from water samples can therefore be used
to detect animals as well as single-celled organisms, ranging
from microbes to zooplankton, fish, and whales [9]. In this
paper, we demonstrate the use of an autonomous underwater
vehicle (AUV) to acquire eDNA samples within the acoustic
beam of a seabed-mounted upward-looking echosounder. These
techniques allow the biological constituents of the SSLs to be
identified autonomously over multiple cycles of vertical migra-
tion with fine vertical resolution.

An upward-looking acoustic package [10] based on a split
beam 38-kHz Simrad EK60 echosounder was installed at the
Monterey Accelerated Research System (MARS) ocean obser-
vatory to continuously observe the distribution and abundance
of animals in the water column. The MARS cabled observatory
is located outside the mouth of Monterey Bay on the seafloor at
890-m depth.! Its central hub has eight ports for instruments. The
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Fig. 1.

observatory is connected to shore through a 52-km optoelectrical
cable that delivers electrical power to attached instruments and
transmits data from those instruments to shore in real time.

Data from the echosounder sent to the onshore scientists
are combined to form an “echogram” (i.e., a composite visual
representation of the echoes over time) revealing processes like
the vertical migration of layers of animals in the water. The
echosounder emits focused sound pulses upward every 2.5 s
and receives echoes backscattered from pelagic animals. The
distance from the echosounder to the scattering object is derived
from the two-way travel time of the echo and, when the objects
are isolated, the phase differences of the echo signal between the
different receiving channels can be used to localize the objects
within the echosounder’s beam [11]. Most 38-kHz scattering
at this site is due to layers of micronekton and small fishes,
including krill, myctophids, sergestid shrimp, siphonophores,
and juvenile Pacific hake [4]. For dispersed animals, the echo
amplitude is (to the first order) proportional to the number of
animals in the water [12], giving a proxy for animal density
through the water column. Over time, the marine animals’ diel
vertical migration is represented on the echogram.

To determine the biological composition of the acoustic
scattering layers, we deployed a Tethys-class long-range AUV
(LRAUYV) equipped with a Third-Generation Environmental
Sample Processor (3G-ESP) [13], [14] (see Fig. 1) to acquire wa-
ter samples directly above the echosounder for the eDNA analy-
sis [15]. The LRAUV is 3.2 m long and 0.3 m in diameter at the

LRAUYV with a 3G-ESP installed in the vehicle’s fore—mid section (photo courtesy of Elisha Wood-Charlson).

midsection. It can run from 0.5 to 1 m/s using a propeller. Using a
primary battery, the vehicle has demonstrated arange of 1800 km
(three-week duration) at 1-m/s speed [16]. Long range is realized
by minimizing propulsion power consumption through an inno-
vative design of a low-drag body and a high-efficiency propul-
sion system [17]. In addition, by using a buoyancy engine, the
vehicle is capable of ballasting to neutral buoyancy and drifting
in a lower power mode. An LRAUV thus combines the mobility
and speed of propeller-driven vehicles and energy savings of
buoyancy-driven vehicles. An LRAUV’s science sensors suite
(all in the nose section) includes SBE GPCTD temperature,
conductivity, and depth sensors, a WET Labs BB2FL fluores-
cence/backscatter sensor (chlorophyll fluorescence excitation
wavelength 470 nm and emission wavelength 695 nm), an Aan-
deraa4831F dissolved oxygen sensor, and an LI-COR LI-192SA
photosynthetically active radiation sensor. The LRAUV soft-
ware architecture uses the state-configured layered control [18],
which divides the vehicle’s operations into a group of behaviors
assigned with hierarchical levels of priority. For each AUV mis-
sion, the vehicle runs a mission script that invokes appropriate
AUV behaviors to achieve a specified goal [16], [19].

The 3G-ESP s installed in the forward pressure housing of the
LRAUV. It uses cartridges to collect and process ocean samples
for the molecular analysis. Up to 60 cartridges are installed on a
wheel, and each cartridge contains the filters and reagents nec-
essary for collecting and processing one sample. The cartridges
connect to a central ring of valves that are part of a pumped
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seawater loop. When the LRAUV mission program triggers a
sampling event, the 3G-ESP rotates the motor-driven cartridge
wheel to align a designated cartridge with the processing station,
where power and actuators can be applied to the cartridge.
The pumped seawater loop is flushed clear, and actuators open
valves to direct the seawater through the cartridge, concentrating
particles, small animals (<1 mm), cells, and extracellular eDNA
onto the filters. A reagent is added to the sample to preserve
the cellular material for later analysis in the laboratory or to
extract an analyte from the sample for real-time detection and
quantification. In the presented study, the filter pore size was
0.2 pm, and all particulate samples were preserved onboard for
subsequent analysis in a shoreside laboratory [15].

Vehicle-to-vehicle autonomous tracking is based on AUV
onboard acoustic ranging and direction finding. The tracking
vehicle carries an acoustic transceiver and an ultrashort baseline
(USBL) array. The tracked vehicle carries an acoustic transpon-
der. The tracking vehicle periodically emits acoustic pulses.
When receiving the signal, the tracked vehicle sends a reply
pulse back to the tracking vehicle. The tracking vehicle estimates
the range of the tracked vehicle based on the round-trip travel
time of the signal, and estimates the direction based on the phase
differences at the array of hydrophones in the USBL. An early
test was reported in [20]. One Odyssey IIB AUV surveyed a field
in a lawnmower pattern. A second AUV navigated to follow the
surveying AUV based on the estimated range and direction.

To enable LRAUV acoustic tracking, we installed a Teledyne
Benthos acoustic modem in the vehicle being tracked, and a
Teledyne Benthos directional acoustic transponder (DAT) in
the tracking vehicle. The DAT integrates an acoustic modem
and a USBL acoustic positioning system [21]. Based on the
range and direction estimates of the tracked vehicle, the tracking
vehicle autonomously updates its own commanded position to
follow the tracked vehicle at the desired standoff distance. In
a 2015 experiment in Monterey Bay, one LRAUV stayed on
a targeted 10.5°C isotherm over 13 h in drift mode [22]. The
isotherm depth ranged from 10 to 35 m. A second LRAUV
acoustically tracked the drifting LRAUYV, and ran on a circular
yo-yo trajectory around it [22], [23]. The yo-yo depth range was
from surface to 60 m, and the radius of the circle was 200 m.
In a 2018 experiment to the north of the Hawaiian Islands, one
LRAUYV sampled the deep chlorophyll maximum layer at ~100-
m depth in a cyclonic eddy for four days [24]. A second LRAUV
acoustically tracked the sampling LRAUYV, and spiraled around
it to measure the contextual water properties both horizontally
and vertically (from 50 to 200 m depths). The average tracking
distance was about 800 m. In both experiments, one Wave Glider
also acoustically tracked the drifting or sampling LRAUV. In
the tracking algorithms on the LRAUV and the Wave Glider,
the tracking and tracked vehicles were considered lying on the
same horizontal plane (hence the DAT-measured slant range was
used as the horizontal range), given that the depth difference
between the two vehicles was smaller than or comparable to
their horizontal distance.

In this study, an LRAUV equipped with a 3G-ESP was
required to remain in the acoustic beam of a seabed-
mounted echosounder, to collaboratively observe and sample the
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Fig. 2. Illustration of collaborative operation of LRAUV Makai, Wave Glider

Tiny, and the seabed-mounted EK60 echosounder in the May—June 2019
experiment.

vertically migrating animals (see Section II). A station-keeping
Wave Glider was deployed to mark the echosounder’s lati-
tude and longitude. To remain in the echosounder’s beam, the
LRAUYV was required to acoustically track the Wave Glider at
a horizontal distance within ~100 m, while the LRAUV took
water samples from near surface down to ~290 m. Thus, the
depth difference between the two vehicles was up to three times
the horizontal distance, so it was no longer appropriate to use the
slant range as the horizontal range. To meet this stringent track-
ing accuracy requirement, we improved the tracking algorithm
as presented in Section III.

By closely tracking the Wave Glider that marked
the echosounder’s location, the LRAUV remained in the
echosounder’s beam while acquiring water samples at a se-
quence of depths. These samples were coregistered with the
biological layers observed on the echogram. This was the first
known effort of combining autonomous mobile eDNA sampling
and simultaneous echosounder observation of biological fea-
tures. The system performance is presented in Section IV. We
conclude and outline future work in Section V.

II. EXPERIMENT SETUP

In a field experiment from May 29 to June 6, 2019, research
vessels and autonomous platforms were deployed around the
MARS site to collaboratively observe and sample the vertically
migrating animals through both traditional and novel means.
The LRAUV Makai equipped with a 3G-ESP was positioned
within the echosounder’s acoustic beam as shown in Fig. 2.
Makai acquired water samples at a sequence of depths from near
surface down to ~290 m starting at 10 A.M. (or 10 P.M.) after the
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dawn (or dusk) migration had completed. Before each sampling
mission, scientists selected the sampling depths based on the
real-time echogram from the seabed-mounted echosounder. The
mission program with these depth settings was then transmitted
to Makai via Iridium satellite when the vehicle was on the sea
surface. Our objective was to adaptively sample the densest SSLs
to identify their constituents via eDNA sequencing.

Our goal was to maintain Makai within the echosounder’s
“field of view” (i.e., within its main beam), so that the sam-
ples collected could be coregistered with the biological layers
observed on the echogram. At the 38-kHz operating frequency,
the echosounder’s half power (i.e., —3 dB) beam width is 7°,
corresponding to a beam cone of 109-m diameter at the sea
surface and 73-m diameter at 290-m depth. The —10-dB beam
width is 12°, corresponding to a beam cone of 187-m diam-
eter at the sea surface, and 126-m diameter at 290-m depth.
Hence, Makai was required to navigate within a ~100-m radius
around the echosounder (based on the —10-dB beam width).
Beam angles were confirmed during a calibration using standard
methods [25] in a 15-m-long, 10-m-wide, and 10-m-deep test
tank at the Monterey Bay Aquarium Research Institute before
deployment. As a navigation aid, a Liquid Robotics Wave Glider
Tiny was deployed on the sea surface directly above the seabed-
mounted echosounder, and circled around the echosounder loca-
tion (36.71211°N, 122.18703°W) by closed-loop control based
on GPS fixes. Tiny’s circle radius was set to 75 m, sufficiently
large to prevent fast turns that could cause twists and excessive
force on the umbilical cable between the surface float and the
submerged “sub.” Makai was equipped with a Teledyne Benthos
DAT, and Tiny carried a Teledyne Benthos acoustic modem. In
each sampling depth bin, Makai acoustically tracked Tiny while
taking one water sample on a tight circular yo-yo trajectory
(centered on Tiny’s location), as illustrated in Fig. 2.

III. LRAUV NAVIGATION AND SAMPLING ALGORITHMS

A. Estimating Acoustic Target’s Latitude and Longitude From
Range and Direction

During Makai’s sampling missions, Makai tracked Tiny as
the acoustic target. Makai’s DAT was programmed to emit
acoustic pulses every 25 s. When receiving Makai’s ping, Tiny’s
modem sent a reply pulse back to Makai. Makai’s DAT received
Tiny’s reply to estimate 7iny’s slant range and direction (azimuth
and elevation angles), which were then transformed to Tiny’s
coordinates in Makai’s vehicle reference frame. Makai used
its own attitude and position to transform 7iny’s coordinates
in Makai’s vehicle reference frame to latitude and longitude.

Noise in Makai’s DAT-measured elevation angle of Tiny
would introduce errors when transforming 7iny’s slant range
and direction to coordinates in Makai’s vehicle reference frame.
In this experiment, Tiny’s depth was zero (on the sea surface)
and Makai’s depth was known in real time. Hence, we devised a
method of using the known depth difference of the two platforms
rather than the elevation angle when transforming 7iny’s slant
range and direction to its coordinates on Makai’s vehicle plane,
as illustrated in Fig. 3. Suppose Makai’s pitch angle is 6 and its
roll angle is zero. Tiny’s location is projected onto the horizontal
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Fig. 3. Diagram of deriving the horizontal distance between LRAUV Makai
and Wave Glider 7iny using the slant range and the depth difference (when 7iny’s
azimuth angle from Makai is zero).

plane at a point with a horizontal distance dj, from Makai. The
vertical projection line intersects the Makai vehicle plane at a
point with a distance d, from Makai. By the Pythagorean theo-
rem, dy, is derived from the slant distance r and the two vehicles’
depth difference (i.e., the vertical distance) d,, as follows:

iy = /T L. )
In general (see Fig. 11), when 0 is small, d;, can be approxi-
mated by dj, and the relative approximation error is

&y — dn <1 —cos(0).
dp

The equal sign holds when Tiny’s azimuth angle from Makai
is zero (which is the case shown in Fig. 3). In the experiment, on
Makai’s yo-yo trajectory in the sampling missions, § = 420°.
Thus, the maximum relative error of approximation was 1 —
cos(£20°) = 6%.

In one sampling mission from June 3 to 4, Makai acquired
samples in a sequence of seven depth bins—35—-40 m, 50-55 m,
100-105 m, 125-130 m, 150-155 m, 200-205 m, 250-255 m—
as shown in Fig. 4. Each sample in each depth bin took about
1 h. Tiny’s slant range from Makai r as measured by Makai’s
DAT is shown by the red dots in the upper panel. The horizontal
distance d;, derived in real time using (1) is shown by the blue
circles in the upper panel.

After Tiny’s coordinates were transformed from Makai’s ve-
hicle reference frame to the Earth reference frame, the raw
latitude and longitude estimates went through outlier rejection
and low-pass filtering using a sliding window of five data points.
In each set of five data points, the center latitude and longitude
were calculated. The data point with the largest distance to the
center was deemed an outlier and rejected, as shown in Fig. 5.
The remaining four latitudes (and longitudes) were averaged to
produce the low-pass filtered latitude (and longitude).
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Tiny’s latitude and longitude (raw and low-pass filtered) es-
timated by Makai during Makai’s sampling mission in the first
depth bin (35—40 m) is shown in Fig. 6.

B. Tracking Acoustic Target While Sampling

In each 5-m sampling depth bin, Makai ran on a circular yo-yo
trajectory (at 0.8-m/s speed and +20° pitch angle) centered
on Tiny’s estimated latitude and longitude at a programmed
radius of 20 m. The lower panel of Fig. 6 shows Makai’s yo-yo
trajectory in the first depth bin.

IV. SYSTEM PERFORMANCE

During a sampling mission, Makai estimated 7iny’s latitude
and longitude based on the DAT-measured range and direction
from Makai to Tiny, as well as Makai’s attitude and position.
At the start of the mission, Makai logged its own GPS location
before diving. Once underwater, Makai calculated its location
based on the initial latitude and longitude and the estimated
speed and the measured heading and attitude. In an ocean
current, Makai’s dead-reckoned latitude and longitude devi-
ated from the Earth-referenced counterparts because the vehicle

Wave Glider 7iny’s slant range and horizontal distance from LRAUV Makai (upper) and Makai’s depth (lower) during a seven-sample mission. In the

@,

- Data point with largest distance to center:
regarded as outlier and rejected.

' Center of 5 [latitude longitude] data points

Illustration of the algorithm of finding and rejecting the outlier in each set of five data points.

velocity used in the dead-reckoning calculation was relative to
the water rather than the Earth. The same deviation was carried
over to Makai-reckoned Tiny latitude and longitude because
they were calculated based on Makai’s own dead-reckoned
location. This deviation did not adversely affect Makai’s acoustic
tracking of Tiny because the tracking was based on the relative
locations of the two platforms, which carried the same deviation.
However, to reconstruct Makai’s Earth-referenced trajectory for
performance evaluation, we must remove the deviation.

Fig. 7 shows Makai and Tiny’s navigation performance in the
first sampling depth bin. The upper and lower left panels show
the latitudes and longitudes of Makai and Tiny, respectively.
In this duration, there was a southward current. To counteract
the current to stay below Tiny, Makai made a northward move-
ment relative to the water, and hence its dead-reckoned latitude
progressed northward while its Earth-referenced latitude did
not. The current-induced deviation in latitude/longitude equals
the difference between Tiny’s GPS latitude/longitude and 7iny’s
latitude/longitude reckoned by Makai.

In the upper left panel of Fig. 7, Tiny’s GPS latitude and 7iny’s
latitude reckoned by Makai are each low-pass filtered by a 11-
min sliding window (the time for Makai to run four 20-m radius



502 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 46, NO. 2, APRIL 2021
Tiny's estimated latitude and longitude during Makai's sampling in the first depth bin (35~40 m commanded)
| | | | | from 3-Jung 21:50 to 3-Juyne 22:51 (PDT) | | | | |
$36.717 LIl e
% . °
2 B rxe o 52588 ° B 00 xox® |
£36.716 . . cpxes 99%% Do o L x5585° R
>36715 Lo 520 ° pge 555588 8o w*9 8 80 ~ Raw -
= 36.714 — . 6‘ 0° ‘ ‘ ‘* . ‘ ‘ | ‘ ‘ ‘ ° 4-point low-pass filtered (after outlier rejection)| |-
T T T T T T T
2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800
) | | | | | | | | | | | | | | | | | |
T -122.1855 B <6 oo . B -
g et Tl oL IS
>-122.1865 : o %007 T %98 Bgoonl ey oo T TR0 woatsegesce BRI el
= T T T T T T T T T T T T T T T T T T
2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800
B | | | | | | | | | | | | | | | | | |
£35 =
Q.
()
©
T 40 ~
g I I I I I I I I I I I I I I I I I I
2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800
Elapsed time (seconds) since mission start 3-June 21:13 (PDT)
Fig. 6.  Tiny’s estimated latitude and longitude (upper and middle panels) during Makai’s sampling mission in the first depth bin (Makai’s vertical trajectory

shown in lower panel).

During Makai's sampling in the first depth bin (35~40 m commanded)
from 3-June 21:50 to 3-June 22:51 (PDT)
36.717

36.716
8 36.715
2
Foeria
36.713
36.712

—— Dead-reckoned latitude/longitude of LRAUV Makai
Earth-referenced latitude/longitude of Makai
Makai-reckoned latitude/longitude of Wave Glider Tiny (11-minute low-pass filtered and delay-corrected)

—— GPS latitude/longitude of Tiny (11-minute low-pass filtered and delay-corrected)

-122.186 -

Longitude

2400 2800 3200 3600 4000 4400 4800 5200 5600
Elapsed time (seconds) since mission start 3-June 21:13 (PDT)

Fig. 7.
and the square, respectively.

circles) to suppress short-term undulations. The difference of the
two low-pass filtered quantities is taken as the current-induced
latitude deviation. This deviation is removed from Makai’s dead-
reckoned latitude to produce Makai’s Earth-referenced latitude.
The longitudes are processed in the same way, as shown in the
lower left panel. The plan view of Makai’s dead-reckoned and
Earth-referenced tracks are shown in the right panel, along with
Tiny’s GPS track. Makai’s Earth-referenced trajectory shows
that it stayed near the echosounder location within a ~100-m
horizontal distance.

As shown in Fig. 4, the average horizontal distance between
Makai and Tiny in the first sampling depth bin was about 60 m
(the average over all seven samples was about 80 m), which was
much larger than the desired 20 m in Makai mission setting.
Considerations of this discrepancy are as follows. Tiny was
circling around the echosounder location at an average speed
of 0.48 m/s. Makai’s DAT acquired acoustic fixes of Tiny at an
average interval of 1 min, which corresponded to about 30-m

From 3-June 21:50 to 3-June 22:51 (PDT)

36.718 q
100 m
| S
36.716
o 1
°
2
© N\~
— 36.714 N
Dead-reckoned track of LRAUV Makai
7 Earth-referenced track of Makai
GPS track of Wave Glider Tiny (raw)
¢ Location of seabed-mounted echosounder
36.712 1
-122.190 -122.188 -122.186 -122.184 -122.182
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Makai and Tiny’s latitudes and longitudes in Makai’s first sampling depth bin. In the right panel, Makai’s start and end locations are marked by the triangle

traveled distance by 7iny. Once Makai received Tiny’s new
location, Makai accordingly adjusted course to attempt to catch
up with Tiny and circle around it. However, the 30-m lag led
to an increased distance between the two vehicles. There were
other error sources such as the DAT USBL ranging error.

A perspective view of Makai’s Earth-referenced trajectory
over the entire seven-sample mission is shown in Fig. 8. Over
the sampling duration in each depth bin, the average current
velocity can be estimated based on Makai’s Earth-referenced
and dead-reckoned latitudes and longitudes as follows:

(LatCorrectioneng — LatCorrectionggar) X REarth
duration

(@)

Vcimmhward

(LonCorrectioneng —LonCorrectiongt) X REarth X cos(Latayg )

Vc,castward = duration

3)
where

LatCorrection = Earth-referenced latitude — dead-reckoned latitude
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Trajectories of Tiny (red) and Makai (blue) and estimated current velocity (black arrows)
from 3-June 21:13 to 4-June 05:07 (PDT)
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Fig. 8. Makai and Tiny’s trajectories during the seven-sample mission. The
seabed-mounted echosounder’s location (latitude and longitude) is marked by
the asterisk.

LonCorrection = Earth-referenced longitude — dead-reckoned longitude.

The subscripts start and end refer to the start and the end of
the duration, respectively. Reaqn is the radius of the Earth. Lat,y,
is the average latitude in the duration. In the above calculations,
latitude and longitude are in radians.

The estimated current velocities in the seven depth bins are
shown in Fig. 8. Despite the significant velocities and the vertical
shear of the current, Makai was able to stay near the echosounder
location within a ~100-m horizontal distance. It is noted that at
the end of the fourth sample, Ziny briefly left the programmed
circle, and Makai followed Tiny, so that they both deviated
from the echosounder location. A likely cause was that 7iny got
tangled by drifting kelp so that either the rudder was obstructed
or the added drag from the kelp slowed the vehicle and caused
it to drift with the ocean current. It appears that the kelp cleared
itself and 7iny was able to return to the programmed circle after
about 20 min.

Over 32 h from June 3 to 5, Makai completed three sam-
pling missions (seven samples per mission). Fig. 9 shows the
echogram recorded by the seabed-mounted echosounder during
these missions. The color scale indicates the mean volume
backscattering strength (S, in dB re 1 m™t). Makai’s yo-yo
trajectory in each depth bin and the descent from one depth
bin to the next is visible in the echogram as the bright narrow
line of backscatter. All other backscatter was due to dispersed
biological targets, likely including dispersed schools of small
pelagic fish near the surface and a mixture of micronekton (iden-
tified in video surveys by a remotely operated vehicle as krill,
siphonophores, lanternfish, sergestid shrimp, juvenile hake) in
the deeper layers. In the duration of each depth bin, Makai
acquired one water sample for eDNA analysis. The samples
were coregistered with the biological layers recorded on the
echogram.

The total 21 eDNA samples captured the biological layers
formed after the dawn and dusk vertical migrations. The diel
vertical migration of mesopelagic animals is clearly visible with

the descent of the main scattering layer at dawn and its ascent
at dusk. A variety of other scattering structures are also visible,
including at least eight thin layers, which formed shortly after
the upward migration in the evening of June 4. Mission plan-
ning based on the real-time echogram allowed Makai to target
several of these layers for sampling. The strong backscatter
in the upper 20 m over 6 h on June 4 around 00:00 was due
to small epipelagic fish, likely anchovy, feeding in dispersed
shoals at night. Molecular analysis of the samples is currently
underway.

In addition to collecting eDNA samples, Makai continuously
measured temperature, salinity, chlorophyll, and dissolved oxy-
gen as shown in Fig. 10. In between the three sampling missions,
Makai ran on a circular yo-yo trajectory in the upper 50 m
centered on Tiny to make measurements in the upper water
column. These contextual data are important for understanding
the environmental context of the animals’ vertical migration.
Since migrating animals may be targeting layers of prey, such
as phytoplankton, knowing the physical structure of the water
column can help us explain why we find certain animals at
different depths. In Fig. 10, we see the thermocline was at about
50-m depth, and in the upper 30 m, there was a phytoplankton
layer indicated by high chlorophyll.

V. CONCLUSION AND FUTURE WORK

In afield experiment in Monterey Bay during May—June 2019,
a 3G-ESP LRAUYV acquired eDNA samples at a sequence of
depths from near surface down to ~290 m over diel cycles,
directed by the distribution of animals observed in live data from
a seabed-mounted echosounder. The LRAUV remained within
the beam of the echosounder while collecting eDNA samples by
acoustically tracking a station-keeping Wave Glider. This exper-
iment demonstrated a new mode of persistent and simultaneous
eDNA sampling and acoustic observation for studying the be-
haviors of vertically migrating animals. The molecular analysis
of the samples (currently underway) will allow correlation of
eDNA signals with the acoustic traces of the midwater animals
over diel migration cycles.

After each sampling mission, the LRAUV ascended to the
sea surface to receive the next set of sampling depths via
satellite communications, and then dove to take samples ac-
cordingly from shallow to deepest bins. In some cases, the
deeper scattering layers had shifted in position by the time
the vehicle reached them. To mitigate that problem, we are
currently developing acoustic messaging approaches so that
sampling directives can be altered as needed without requiring
the LRAUV to ascend to surface, using a sea-surface gateway
(e.g., a Wave Glider or a buoy near the LRAUV) that relays
shore commands via the satellite to the submerged vehicle via
acoustics. By eliminating repeated surfacing and diving trips, the
LRAUV’s efficiency and accuracy of targeted sampling of bio-
logical features will be improved. In addition, we are developing
an LRAUYV algorithm that directly derives its Earth-referenced
location when acoustically tracking a surface asset (e.g., a Wave
Glider or a mooring), based on the LRAUV-measured range
and direction of the surface asset as well as the surface asset’s
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known GPS location transmitted to the LRAUV via acoustic
messaging.

An echosounder was incorporated into a Wave Glider and
an imaging Dorado AUV used in this study. Development of
onboard decision making will realize real-time detection and
classification of biological features, and inter-vehicle commu-
nications will enable transmitting this information to a 3G-ESP
LRAUYV for targeted sampling. The combination of these new
capacities will free the acoustically directed sampling effort
from a fixed geographic location, and expand the potential
questions that can be addressed.

APPENDIX A
PROJECTIONS OF WAVE GLIDER LOCATION ONTO LRAUV
PLANE AND HORIZONTAL PLANE

In Fig. 11, the LRAUV Makai and the Wave Glider Tiny are
located at points M and 7', respectively. The LRAUV plane
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Makai-measured temperature, salinity, chlorophyll, and dissolved oxygen during the three sampling missions. Makai’s track in each sampling depth bin

AEMF is defined by Makai’s forward direction M F and
starboard direction M E. The angle between plane AEM F' and
the horizontal plane CEM G is Makai’s pitch angle 6. Makai’s
roll angle is assumed to be zero. Fig. 11 illustrates the following
orthogonal projections of point 7" onto the LRAUV plane and
the horizontal plane.

1) The orthogonal projection of the Wave Glider location
onto the LRAUYV plane: point 7" is orthogonally projected
onto plane AEMF to point A. The distance between
points M and 7' is the slant distance r measured by
Makai’s DAT. The angle between lines M F and M A is
Tiny’s azimuth angle o from Makai. The angle between
lines MT and M A is Tiny’s elevation angle ~ from Makai.
The orthogonal projection of the Wave Glider loca-
tion onto the horizontal plane: point 7' is orthogo-
nally projected onto plane CEMG to point D. The
distance between points M and D is dj. Line T'D
intersects the LRAUV plane AEMF at point B.

2)
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Fig. 11.  Upper panel: perspective view of the projections of the Wave Glider
location onto the LRAUV plane and the horizontal plane. Lower panel: plan
view of the horizontal plane.

The distance between points M and B is d,. The angle
between lines M F' and M B is denoted by /3. Angles 3
and « generally differ (except for « = 5 =0 or 7) but
covary.

In the LRAUYV algorithm for estimating 7iny’s location, the
DAT-measured azimuth angle o was used but the elevation angle
~ was ignored (i.e., the elevation angle was deemed zero); the
distance d;, was calculated using the known depth difference
of the two platforms [see (1)]. Therefore, Makai reckoned that
Tiny was at point J on line M A, at a distance dj, from point M .
However, point B was Tiny’s actual intersecting point on plane
AEMF (on projection line T'D), on line M B at a distance d,
from point M. Point B’s coordinates in Makai’s vehicle refer-
ence frame would be transformed to Tiny’s actual latitude and
longitude. Using point .J instead of point B in this transformation
generally introduces an error in 7iny’s latitude and longitude
estimates. The distance error d), — dj, and the angle error  — «
are derived as follows.

A. Distance Error

In the right triangle BD M, the relation between d,, and dj, is
d2 = dj + BD? 4)
In the right triangle BDE
BD = BEFEsin(0). 5)
In the right triangle BEM
BE = djycos(). (6)
Incorporating (6) into (5), and then into (4), we have
di =di + disinz(e) cos?(B). (7

Solving for d,,, we have

1
ap = dh\/ 1 — sin2(9)cos2(B)” ®

Noting that
1 — sin?(6)cos?(3) = sin?(3) + cos?(B) — sin?(#)cos?(3)
= sin?(3) + cos?(B)cos?(6)

(8) is rewritten as

dp = dh\/ sin?(8) + c0152 (B)cos2(6) ©)
Noting that
1 ~ sin®(B) + cos?(B)
sin(3) + cos2(B)cos2()  sin?(3) 4 cos2(3)cos2(h)
 1+tan?(B)
cos?(0) + tan?(3)
we have
dp = dh\/cos;(;)tjfifg(ﬁ)' (10)
When approximating d,, by d},, the relative error is
_ 2 2
dpdpdh — - \/ Cosl(i)t;;?;)(ﬁ ). (1

The above error reaches the maximum value 1 — cos(6) when
B =0orm (i.e., when o = 0 or 7).

B. Angle Error

Considering the right triangles AMT and AEM , we have
(12)
(13)
Considering the right triangles AMT and ABT, we have

AFE = rcos(y)cos(a)
ME = rcos(v)sin(«).

AB = rsin(v)tan(0). (14)

In the right triangle BEM

ME
6 = arctan(m) (15)
sin(a)
= 1
arctan [cos(a) - tan(’y)tan(@)] (16)
where (12)—(14) are used.
The angle error is
sin(«)

— = arct —a. 17
p — o= arctan Los(a) - tan(*y)tan(ﬁ)] “ 17

When 6 = 0 or v = 0, the angle error is zero. The angle error
increases with 6 and .
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