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Abstract—Manganese crusts (Mn-crusts) are a type of mineral
deposit that exists on the surface of seamounts and guyots at
depths of >800 m. We have developed a method to efficiently map
their distribution using data collected by autonomous underwater
vehicles and remotely operated vehicles. Volumetric measurements
of Mn-crusts are made using a high-frequency subsurface sonar
and a 3-D visual mapping instrument mounted on these vehicles.
We developed an algorithm to estimate Mn-crust distribution by
combining continuous subsurface thickness measurements with the
exposed surface area identified in 3-D maps. This is applied to
data collected from three expeditions at Takuyo Daigo seamount
at depths of ∼1400 m. The transects add to ∼11 km in length
with 12 510 m2 mapped. The results show that 52% of the surveyed
area is covered by Mn-crusts with a mean thickness of 69.6 mm.
The mean Mn-crust occurrence is 69.6 kg/m2 with a maximum of
204 kg/m2 in the mapped region. The results are consistent with es-
timates made from samples retrieved from the area, showing more
detailed distribution patterns and having significantly lower uncer-
tainty bounds for regional-scale Mn-crust inventory estimation.
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I. INTRODUCTION

COBALT-RICH manganese crusts (Mn-crusts) form on the
slopes and shoulders of seamounts and guyots in geolog-

ically stable regions. The Mn-crust layer grows over millions
of years by precipitation from the ambient seawater, as seen
in Fig. 1 [1], [2]. The northwestern Pacific ocean is known to
have large Mn-crust deposits spread over several hundreds of
square kilometers [3]–[5]. Mn-crusts vary from 10 to 250 mm in
thickness and are found between a depths of more than 800 m,
with reports of Mn-crusts as deep as 5700 m. These deposits
contain cobalt, nickel, platinum, and various rare-earth elements,
making them a potential target for mining [6]–[9]. However, the
thickness of Mn-crust varies due to slope, seawater conditions,
depth, historical landslides, and sediment cover [2]. This makes
reliable estimation of quantitative Mn-crust distribution difficult.

The survey requirements of Mn-crusts are different to man-
ganese nodules (Mn-nodules), found in basins between 3500-
and 6000-m depth [7], [10]–[12], where noncontact methods
such as shipboard multibeam [13], [14], photogrammetry, and
sidescan surveys [15]–[17] from autonomous underwater vehi-
cles (AUVs) and remotely operated vehicles (ROVs) have been
applied. Mn-nodule distribution can be accurately estimated
from such data sets, since their distribution can be determined
from surface appearance and shape alone. Accurate estimates of
Mn-crust distribution requires both the subsurface thickness of
the crust layer and their lateral percentage cover to be known.
Dredging surveys are often used to survey the thickness of
Mn-crusts, but samples recovered using this method are often
damaged, and the method is biased toward loose rocks and edges
that are more likely to be snagged. Core drilling and sampling
from ROVs is effective to collect information about the thickness
and elemental composition of samples, whose context is under-
stood from camera footage [2], [3], [18]. However, obtaining
samples is time consuming, and the spatial resolutions achieved
are limited to just a few samples every kilometer [2]. The lateral
distribution of exposed crusts can be surveyed using video or still
cameras mounted on towed sleds or ROVs, where the footage
is manually labeled by human experts into categories such as
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Fig. 1. Mn-crusts at the Takuyo Daigo seamount in the northwestern Pacific ocean. (a) Continuous Mn-crust deposits as seen from the video feed of ROV
Hyper-Dolphin. (b) Cross section of a Mn-crust sample, showing crust (black color) deposited as a layer over a substrate rock (brown with intrusions).

TABLE I
SPECIFICATIONS OF THE PLATFORM (AUV BOSS-A)

Mn-crusts, nodules, or sediment deposits, which are compiled
into estimates of distribution [4], [6]. However, manual labeling
is time consuming, making it difficult to scale the operations to
larger regions.

High-resolution scalable estimation of Mn-crust requires
automated methods to determine the lateral distribution and
thickness of Mn-crusts without physical sampling. Acoustic

methods can be used to measure Mn-crust thickness as long
as the Mn-crusts and their substrates have different acoustic
impedances [19]. However, it can be difficult to determine if
acoustic signals are of Mn-crust from their acoustic signature
alone. For this, visual methods can be effective if reliable auto-
matic classification methods can be developed [20]–[25].

This article presents a scalable way to determine the contin-
uous mass distribution of Mn-crust over hectare-scale regions
of the seafloor using visual and acoustic sensors. This builds
on the work described in [19], describing modifications to the
data acquisition hardware, and presenting novel data processing
methods that scale to the hectare-scale regions now surveyed
using this system. This overcomes previous limitations, where,
in [19], the seafloor was segmented into regions of crust, sed-
iment, and a mix of the two using Gaussian mixture models,
and acoustic measurements within each segment were used
to estimate the abundance of crust in each region. The high
computational cost of segmentation does not readily scale to
larger regions. While previous work analyzed small volumes of
ROV data, the majority of data in this article have been collected
using an AUV, described in [26], with modifications made to
the data acquisition system. This includes real-time control of
a double-gimbal system that orients the acoustic probe to be
normal to the seafloor by analyzing the 3-D visual mapping
data [27]. This allows acoustic measurements to be made on
steep slopes and complex terrains. The advances in the sensor,
platform, and novel algorithms described in this article allow
estimates of Mn-crusts to be made over hectare-scale regions of
the seafloor for the first time.

II. SYSTEM OVERVIEW

A. AUV BOSS-A

The specifications of the AUV “BOSS-A” [26], used to collect
the data analyzed in this article, are shown in Table I, and the
position of various sensors are shown in Fig. 2.

The acoustic probe is a parametric subsurface sonar that
records subsurface reflections of the seafloor. The probe consists
of a five-channel annular array of 2-MHz piezoelectric transduc-
ers for transmission and a 200-kHz piezoelectric transducer to
record reflections. It is dynamically focused on the seafloor at
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Fig. 2. Schematic representation of BOSS-A surveying Mn-crust using visual
and acoustic subsystems.

ranges from 0.5 to 2.5 m [19]. Since measurements require the
probe to be orthogonal to the measured surface for best results,
the probe is mounted on a two-axis gimbal. The relative slope
of the seafloor is calculated in real time, and the gimbals are
oriented normal to the seafloor [27]. The signals are analyzed to
find reflections from the crust-substrate boundary, and thickness
values are calculated, as described in Section III-B.

The visual system generates 3-D color maps of the seafloor
using a light sectioning method using a single camera, a sheet
laser, and LEDs for illumination, as described in [28]. The
deformation of the laser line, which corresponds to the
bathymetry of seafloor, can be used to calculate the xyz co-
ordinates of the points that fall on the line. As the AUV moves,
these points will come in the illuminated region of the image;
the RGB color values of the point can be identified based on the
motion of the AUV.

B. Data Analysis Workflow

For processing, the seafloor is divided into sections of 10-m
length, processed separately, and the results are compiled. The
workflow for processing each section is shown in Fig. 3. Visual
data are classified into sections of crust, nodule, and sediment,
as described in Section III-A, to calculate the percentage cover
of the exposed crust. The acoustic measurements over noncrust
regions are discarded, and reflections are processed to make
thickness measurements, as described in Section III-B. These
thickness values are extrapolated to the crust areas, and the
results are integrated to calculate the total volume of crust in
the region, as described in Section III-C.

III. ALGORITHMS

A. Seafloor Classification

The different seafloor types present in the survey area can be
classified into continuous Mn-crust deposits, Mn-nodules, and
sediments [6]. Examples of each type are shown in Fig. 4.

In terrestrial applications, researchers have used a support
vector machine (SVM) for classifying 3-D point clouds [29].
Although neural networks are widely used in image classifica-
tion tasks [30], [31], the SVM was found to perform better with

Fig. 3. Flowchart of the data processing framework. Contributions of this
article are highlighted in bold outlines.

a small number of well-defined classes and large training data
sets [32], [33].

The authors built an SVM classifier with a polynomial kernel
for identifying Mn-crust from seafloor bathymetry and color
maps [34], [35]. To make the classification scale to large areas,
the seafloor was sampled into uniform sections called kernels
and classified, reducing the processing times to be linearly
proportional to the area of seafloor being classified. Two data
sets (seeTable III for details) were selected as training and testing
and cross-validation (CV) sets to ensure that robust classification
is achieved.

Each kernel is an independent 3-D point cloud with each point
described by its features (see Table II) derived from color (RGB)
and location (xyz) values and has no overlap with adjacent
kernels.

Bathymetric features describe the shape of the point cloud.
The standard deviation in the vertical direction is a measure of
the spread of the point cloud (f2). The slope of the seafloor,
independent of the direction it is facing, is represented by
f1 (measured as the altitude angle or elevation angle) and is
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Fig. 4. Different types of seafloor present in the area. (a) Top view of a 21-m section, with insets showing different types. (b) Detailed views of each type.
(c) Bathymetric maps. The frames are colored as follows: (red) continuous Mn-crust deposits; (blue) sediment-covered areas; and (green) nodules of varying sizes.

TABLE II
FEATURES CALCULATED WITHIN EACH KERNEL

Bold font indicate the features chosen for use in the final classifier based on the F1

scores calculated; see Fig. 7.

TABLE III
STATISTICS OF MANUALLY LABELED DATA SETS USED IN

BUILDING THE SVM CLASSIFIER

calculated as the deviation of the normal to the seafloor N,
as follows:

f1 = 90− cos−1(N ·V) (1)

whereV = [0, 0,−1]T is the unit vector along theZ-axis facing
away from the seafloor.

The seafloor is relatively smooth in sediment-covered areas
and is more rough for crusts and nodules. This surface roughness
is captured in two features, as defined in the ISO 4287:1997
standard: mean and standard deviation of the deviation from
the plane of the kernel in the normal direction. Assuming
that the kernel consists of n points, with each point i being
(xi, yi, zi, Ri, Gi, Bi), the deviation of each point is calculated
as

hi = |N · [xi, yi, zi]
T |. (2)

f3 and f4 are then calculated as the mean and the standard
deviation of all the points within the kernel, respectively.

Image features represent the features calculated from the color
of the seafloor. The simplest image features include the mean
RGB values of the kernel (f8, f9, and f10) and their standard
deviation (f11, f12, and f13). Since crusts and nodules appear
darker than the sediment areas, a luminosity image of the kernel
is constructed. Luminosity of a point i is a measure of brightness
of the point and is calculated as

Ii = 0.21Ri + 0.72Gi + 0.07Bi. (3)

The mean and standard deviation of luminosity for each kernel
are calculated as f5 and f6, respectively. Entropy (f7) is calcu-
lated from the luminosity image using the following equation:

f7 = −
∑
j

P (Ij) log(P (Ij)) (4)

where P (Ij) is the probability that a random point j will have a
luminous intensity Ij .

The normalized values of all features are compared using
Fig. 5, where a kernel size of 10-cm edge length is found to
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Fig. 5. Features used and their variation w.r.t. seafloor types. The values are
normalized to approximately zero mean and unit variance across the whole
training data for a kernel size of 10 cm. The bold font indicates features chosen
for use in the final classifier based on the F1 scores calculated; see Fig. 7.

Fig. 6. Confusion matrix of classifier after optimization.

be appropriate for discriminating between the different types of
seafloor.

To identify the optimal feature vector, optimize the hyperpa-
rameters, and train the classifier, two data sets are selected and
manually labeled. A summary of the two data sets is shown in
Table III. Data set 1 consists of 58 860 kernels and data set 2
consists of 44 830 kernels. The training data are constructed by
randomly selecting 5000 kernels from data set 1. The testing data
for the classifier, whose results are used to tune the SVM, are
constructed by randomly selecting a different set of 5000 kernels
from data set 1. The entire data set 2 is used as the independent
CV data set and is used in the final step for selecting the best
performing feature set.

Fig. 6 shows the confusion matrix of the classifier after
optimization, where the crust kernels are double weighted
during training to ensure the algorithm prioritizes identifying
Mn-crusts. The final performance is measured using the F1

score [31], [36]. The feature set with the best classification per-
formance is identified by doing an extensive search under three
categories—image features only (C1), bathymetric features only
(C2), and a combination of both image and bathymetric features

Fig. 7. Performance of the feature vector size on classification. Beyond seven
features, increasing the number of features increases scores by a minimal
amount. However, on CV, the higher results turn out to be due to overfitting.
The selected classifier (ζ9) is highlighted.

(C3). Feature vectors from C3 performed better than others.
Fig. 7 shows the accuracy values for the best two classifiers
for each feature vector length with the CV accuracy plotted
alongside. The classifier ζ9, with nine features (f1, f3, f4, f6,
f7, f8, f10, f11, and f13), has both the highest CV scores of 90%
accuracy and 87.7% F1 score. This feature vector was selected
for the SVM classifier and is highlighted in bold in Fig. 7. The
decision boundary of the classifier ζ9 shows that crust is more
prevalent in steeper areas. The mean roughness value is higher
than the standard deviation of roughness for nodules indicating
an undulating texture.

The classifier is further tuned by optimizing the hyperpa-
rameters, which influence the SVM decision function. Values
are optimized using a random search over a large range of
parameter values followed by an extensive grid search about
the best performing parameter values [37].

B. Acoustic Data Interpretation

Acoustic reflections made over seafloor sections classified as
crust are used to estimate a thickness value [38]. The acoustic
measurements are corrupted by noise generated by scattering,
multipath reflections, and local inclusions in the crust layer.
To identify a continuous layer of Mn-crust from successive
measurements, the algorithm carries out filtering of individual
pulses, extracting signal boundaries, reframing the signal into
a distance based grid, and identifying secondary reflections to
calculate thickness.

Initially, each recorded signal is filtered by removing the spec-
tral components that fall away from the transmitted frequency
of 200 kHz. In extracting signal boundaries, the signal region
of interest is identified using binary thresholding using Otsu’s
method [39] to identify the first reflection, i.e., the top surface
of the seafloor.

In the third step, the reflections are bundled into a single
image frame, with adjacent signals lined up with their first
reflection matching and subsequent values as pixel intensi-
ties below. The signals are sampled into a uniform 2-D grid.
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Fig. 8. Illustration showing acoustic thickness estimation. The reflections are arranged as an image aligned w.r.t. the top reflection. A cost function is calculated
for each potential thickness [see (5)].

An illustration is shown in Fig. 8, where darker colors indicate
stronger reflections. The image is filtered using a median filter
to reduce noise. The signal intensities are then corrected for
attenuation in crust.

Since the top surface has been identified as Mn-crust by
the SVM classifier, a near continuous secondary reflection is
assumed to exist, and the best candidate is selected using an
integral function that calculates the strength of reflections at
each distance from the top surface. The entire acoustic frame is
denoted as Φ and an individual point in the image as φi

τ , where
i denotes the X coordinate (ping number) and τ denotes the Y
coordinate (depth from seafloor). A cost function is calculated
for each potential thickness value of τ

Γτ = −
∑
i∈X

|φi
τ̂ | (5)

where φi
τ̂ is the point with highest intensity within a threshold

distance to τ , for each ping i. For example, in Fig. 8, the point
directly above τ is used (τ̂ = τ − 1). This is done to account
for minor local variations of thickness within the layer. The
mean thickness is identified as τ having the lowest cost Γτ and
the secondary layer, which is the crust–substrate interface, is
calculated as φi

τ̂ , for each ping i. Thus, the thickness becomes

ti = τ̂i. (6)

This results in a thickness value, which is consistent over the
range of several meters, yet accommodates for the local minor
variations in crust thickness.

C. Data Fusion and Crust Volume Estimation

The thickness measurements made in the previous step lie
along the 2-D path, where each acoustic ping struck the seafloor
within the 1.5-m-wide 3-D map. Since the thickness of Mn-
crusts is assumed to change gradually over the range of several
meters, the measured thickness values are extrapolated into all
crust kernels, and the volume of crust present in the area is
calculated by integrating over all kernels.

To extrapolate thickness measurements, for a kernel i, a
window of influence Ji is defined as the set of all kernels within
a threshold distance dth from the center of i (set to 2 m). The
number of kernels in set Ji is calculated to be NJi , and the
number of crust kernels is calculated to be CJi . Assuming Ĵi to
be the set of all kernels insideJi, where a thickness measurement
is made, the thickness of the crust at i is calculated as a weighted

TABLE IV
SUMMARY OF FIELD EXPERIMENTS CONDUCTED AT TAKUYO DAIGO

SEAMOUNT IN THE NORTHWESTERN PACIFIC OCEAN

sum of thickness values of Ĵi

ti =

{ ∑
j∈Ĵi

wjtj

CĴi

, if CĴi
> 0

0, otherwise
(7)

where CĴi is the number of crust kernels within Ĵi. The weight
wj of each measurement tj is calculated as an inverse function
of Euclidean distance from kernel j to kernel i (dij)

wj = 1− dij
dth

. (8)

The local percentage cover of exposed Mn-crust deposits (Ψi)
about i is calculated as

Ψi =
CJi

NJi

100. (9)

Using the density of Mn-crust (ρ) calculated from samples
collected in the area, the local mass coverage per unit area of
Mn-crust about i is calculated as

Mi =
ρ
∑

j∈Ji
tj

NJi

. (10)

The window of influence Ji is then moved to the next point,
where a thickness measurement was taken and the calculations
are repeated, to estimate the distribution of crust along the entire
mapped area.

IV. ANALYSIS OF FIELD SURVEYS

Field trials of the system were conducted at the southern
shoulder of the Takuyo Daigo seamount. In a span of over five
years, several dives were made to depths between 1350 and
1600 m below sea level. A summary of the dives is given in
Table IV.

A. Continuous Flat Mn-Crust Deposits

The steps in analyzing a seafloor section to estimate crust
distribution are shown in Fig. 9. They show a seafloor section
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Fig. 9. Steps in processing the data collected over a flat crust section. The crust
layer breaks toward the right, and the broken pieces can be seen at the extreme
right. A short vertical drop and a small section of sediment separates the two.
(a) Top view of the seafloor section with locations of acoustic measurements
shown as dots. (b) Acoustic signals recorded. (c) SVM classification. (d)
Estimated thickness values. The horizontal axis denotes the interpolated trace
distance along the red dots in (a) and is significantly longer than the length of
the seafloor section. (e) Percentage cover. (f) Mass coverage of crust.

consisting of a flat continuous Mn-crust layer, which is 6 m in
length and 1.5 m in width. Fig. 9(a) shows the top view of
the 3-D reconstruction with the red dots showing the locations
of acoustic measurements. Toward the right, a short vertical
drop, seen in the reconstruction as a white vertical strip, is
present, where the crust breaks off and the broken slabs are
seen immediately afterward. The acoustic reflections recorded

Fig. 10. Sediment section transitioning into a nodule section. Because no
crust kernels were found, thickness values are not calculated. (a) Top view of
the 3-D reconstruction. The trace of acoustic measurements [see Fig. 9(a)] has
been omitted for clarity of visualization. (b) SVM classifier output. (c) Acoustic
signals recorded by the probe, showing no consistent layer of crust. The image
shows weak second layers of reflections in areas shown in boxes, presumably
from a buried layer of crust.

by the probe are shown in Fig. 9(b). The classification results
are shown in Fig. 9(c); other than a small section in the middle,
all measurements are made over Mn-crust. A thickness value is
calculated for points [red dots in Fig. 9(a)], which lie on kernels
classified as crust, and is shown in Fig. 9(d). The horizontal axis
of the plots represents the distance corresponding to the trace of
the acoustic measurements on the seafloor. Due to the gimbals
continuously orienting the acoustic probe so that the pulse is
normal to the seafloor, the trace is longer than the length of the
3-D reconstruction. The percentage cover calculated using (9)
is plotted in Fig. 9(e). The graph shows a dip in coverage in the
middle due to the sediment-covered area. The estimated mass
coverage is shown in Fig. 9(f), with ~180 kg/m2 of crust.

B. Sediment to Nodules Transition

Fig. 10 shows a 12-m section that transitions from full sedi-
ment cover to full nodule cover. The acoustic signals also show
a clear change from a weak top reflection in sediment-covered
areas to sharper reflections with change in the type of seafloor.
Since no crust is present, no thickness values are calculated.
However, in the acoustic reflections, a weak second reflection
can be seen indicating the presence of a buried layer. It is seen
that some edge kernels are misclassified as crust due to the
limitation of the color correction method used in generating the
3-D maps. In the presented example, this creates a 2.7% error in
the percentage cover estimates. However, since the acoustic data
are collected along the middle of the transect, which is classified
correctly as sand/nodules, no error in thickness measurements
and final mass calculations is incurred.
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Fig. 11. Seafloor section containing a variety of types. Toward the left, the
layer of crust is partially covered by sediment and gets broken in the middle.
Farther to the right, the sections are covered by nodules. (a) Top view of the
seafloor section. (b) Acoustic signals recorded by the probe. (c) SVM classi-
fication of the seafloor section. (d) Thickness values estimated. (e) Percentage
cover of crust. (f) Mass coverage of crust. Toward the left side, although it is
nearly 100% covered by crust, the layers are thin, and hence, the mass coverage
is only about 75% of the maximum coverage expected in the area.

C. Sediment-Covered Flat Mn-Crust Near a Ledge

Fig. 11 shows a 12-m section of various types of seafloor. It is
centered on a ledge of flat Mn-crust and partially covered by a
layer of sediment. Below the ledge, a thick layer of sediment is
visible, followed by broken slabs of Mn-crust. Since Mn-crusts
are exposed partially, the coverage estimate oscillates between
near zero and 80%. Toward the left, the sparse and weak acoustic
reflections indicate a sand layer, and a second layer becomes

Fig. 12. Percentage cover of Mn-crust along mapped transects. The four ROV
transects (shown by arrows) have a higher percentage cover as regions with
exposed crusts were followed manually by the ROV pilots, whereas the AUVs
used for all other transects followed preplanned trajectories. Crust coverage can
vary rapidly such as in the area marked by �, with very different landscapes
only 10 m apart (3-D maps shown in insets).

Fig. 13. Two locations where the transects intersect are selected for intercom-
parison between AUV and ROV collected data (see Fig. 12 for the locations).
The blue outline shows the ROV transects, and the red outline indicates the AUV
transects.

clear, where the crust is exposed. Toward the right, the seafloor
is covered in nodules, and it shows in the acoustic reflections as
strong reflections, but with no secondary layer visible. To the left
of the nodules, where a sand section of about 0.8 m is present, a
secondary layer beneath the sediments is visible in the acoustic
reflections; however, the type of the layer cannot be determined
with the proposed techniques.

D. Compiled Results From All Dives

The data collected from all the dives are analyzed and com-
bined, and the distributions for a 50-cm edge window are shown
in Figs. 12–15. Since the ROV transects followed a crust layer,
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Fig. 14. Thickness of Mn-crust along mapped transects. The thickness is
higher in deeper and steeper sections of the seamount (left bottom area). The
samples collected from the visible area and the samples that are close to the
mapped area are shown as green and red triangles, respectively.

Fig. 15. Final volumetric coverage estimate along mapped transects. The
results vary from nil to 204 kg/m2, with the maximum crust coverage found
in the steeper lower sections of the mapped region.

the results show a high percentage cover throughout. These four
transects were mapped during a single dive and are indicated
using green arrowheads. The remaining transects, mapped by
AUVs, shows a varying landscape that has anywhere between
0% and 100% crust coverage. It is seen that the lower sections of
the seamount, which are also steeper, have a high crust coverage.
In some areas, the cover is seen to vary rapidly. The section
marked by � has flat continuous Mn-crust deposits in the upper
section, whereas the lower section, only 10 m away, shows a
sediment-covered seafloor. This high variability in the seafloor
classes indicate the need for a continuous measurement system
to assess the crust volume accurately. Locations A and B in
Fig. 12 are intersects of ROV and AUV transects, with closeup
views in Fig. 13 showing consistency between the transects.
Crossing A is a sand-covered crust area (exposed crust is seen to
the right and top of the intersection) with some rocks. Crossing B
is covered with nodules of various sizes.

TABLE V
ESTIMATED Mn-CRUST AT TAKUYO DAIGO SEAMOUNT MEASURED ALONG A

TOTAL TRANSECT LENGTH OF 10.9 km (SEE TABLE IV FOR SURVEY DETAILS),
WITH UNCERTAINTY VALUES IN BRACKETS

The variability of estimated values indicates the contrasting nature of the Mn-crust
deposits. An indicative estimate using only samples collected from the same area is
compared.
*Visual mapping data for area estimates are used to calculate this value.

The thickness values measured and the samples collected
from the area are shown in Fig. 14. The relative abundance of
crust in the upper and lower sections of the map and the lack of
crust in the central regions is observed. The thickness varies from
about 40 mm to a maximum of 114 mm, with a mean thickness
of 69.6 mm. A total of 26 samples were collected in the past in
the area covered; their locations are shown as green triangles.
Although there is no exact overlap between the samples collected
and the surveyed regions, seven samples are within 10 m of the
transects. These samples, shown as red triangles, are used for
further analysis for comparing the results of the present survey
with sampling-based methods in Section IV-E.

The final volumetric estimates are shown in Fig. 15, which
shows the unit crust mass coverage for every part of the mapped
regions. The results vary from zero up to a maximum of
204 kg/m2. As observed from Figs. 12 and 14, the lower steeper
sections of the seamount contains maximum coverage of crusts,
even though the coverage can vary abruptly in a short range of
a few tens of meters.

E. Discussion

Quantitative estimates of Mn-crust abundance are obtained
over large areas using the instruments and methods described. A
summary of the results along with the variability and estimates
of uncertainty for each measurement is provided in Table V.
The variability is calculated as the one-sigma deviation from
the mean value. The uncertainty is estimated as the error in
measurements on the mean and variability values.

The sources of error in the measurements are propagated
as systematic errors depending on the thickness, the density
of crust, the area, and the classification. The 3-D mapping
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Fig. 16. Mass coverage of each transect shown in Fig. 15 and its variability. This is compared with a simulated sampling scenario, by randomly selecting points
from the surveyed data. Mean value and error for each data set are written above the bars. Variations among transects show that extrapolating the results from
a single transect to the whole area can result in erroneous estimates. The error values indicate that >200 random samples are required for getting an accuracy
comparable to the proposed method.

system has a one-sigma uncertainty of 9.17% affecting the total
mapped area. The thickness measurements are subject to a 6.1%
variability in the velocity of sound (2932 ± 179 m/s) in Mn-
crusts [19]. The percentage cover has 10% uncertainty from clas-
sification (CV accuracy—see Section III-A). In calculating the
total amount of Mn-crust present in the area, a 1.9% variability
in the density of crust (1920± 36 kg/m3) is also considered [19],
resulting in a total uncertainty of 27.2%. It is estimated that there
is 870 t of Mn-crust in the mapped area, with an uncertainty
of 237 t. Error in mass coverage is calculated to be 18%, and
the calculations show the amount of crust per unit area to be
69.6 kg/m2 with an uncertainty of 12.5 kg/m2. However, partic-
ularly notable is the variability of 59.7 (±10.7) kg/m2, which is
85.8% of the mean value. This is consistent with the observation
that crust deposits are highly variable and, therefore, require
continuous measurements to accurately map their distribution
and indicates that high-resolution measurements are required
for accurate portrayal of crust distribution and inventory survey.

A comparison of the results is made with estimates made
using only samples taken within 10 m of the mapped region
and is included to show the advantages of the proposed method.
Since a percentage cover estimate cannot be calculated from
ROV sampling dives, percentage cover estimates calculated in
the previous step are used instead. Samples taken in an area
within a distance of 10 m of the mapped region was considered,
which show a mean thickness of 63.3 mm with a standard
deviation of 29.5 mm. A total of seven samples are selected,
which are collected from five locations, as indicated in Fig. 14.
The limited number of samples constitutes a large statistical error

of 37.8% in sample thickness measurements. Since percentage
cover cannot be calculated from samples, the estimates made
in the previous step are used to illustrate the advantages of
continuous measurements. It is seen from Table V that the final
estimated crust mass per unit area and the total amount of crust
in an area equal in size to the mapped area have an uncertainty
of 49.7% and 58.9%, respectively.

The high uncertainty in surveys based on sampling, as com-
pared to AUV surveys, arises due to the significantly smaller
number of measurements. In acoustic surveys from an AUV,
there are over one million measurements, and thus, the statistical
error is negligible. Only the 6.1% systematic error, due to the
variability in the speed of sound, needs to be considered. On
the contrary, the thickness of physically recovered samples can
be measured with high accuracy, making the systematic error
almost zero. Nevertheless, the statistical error is high and can be
reduced only by increasing the number of samples in the given
area. Producing an uncertainty less than the systematic error in
the acoustic measurements requires a minimum of 268 samples
to be collected for an equivalent surveyed area. Since sampling
using ROVs takes approximately 40 min–1 h [2], collecting
so many representative samples is not practical. Furthermore,
the continuous local variability of crust cover indicates that
pointwise sampling alone is not suitable for accurate survey of
Mn-crust distribution.

To study the spatial distribution of Mn-crust over the scale
of hundreds of meters, crust per unit area and its variance for
each transect (see Fig. 15 for transect numbers) are compared
in Fig. 16. These transects are roughly parallel in most places
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and are spaced between 100 and 250 m in the lower sections.
The bar charts to the right show estimates made by randomly
selecting a fixed number of points, equally from each transect, to
simulate sampling where the total number of points considered
is shown. The error bars indicate the systematic error for the
full data and the standard deviation of 50 iterations for each
random selection of point locations. The systematic error is not
shown in the random point samples to illustrate the level of
uncertainty that would be expected if an equivalent number of
samples was recovered. A larger number of points provide a
more representative estimate of the crust coverage, where the
statistical error levels become comparable to the systematic er-
rors in the proposed method after 200 random points. Even with
200 locations sampled, which would take approximately eight
days of bottom time for ROV sampling, the spatial variability
still influences the estimates (e.g., transect iii), indicating that
further sampling is required to capture the variability between
adjacent transects. The variation in estimates among transects
indicates that extrapolating results from a single transect over
the entire mapped area can lead to highly inaccurate results.
Multiple surveys at different locations are required to accurately
estimate crust coverage and volume.

V. CONCLUSION

1) In situ measurements of the distribution of Mn-crust in
hectare-scale regions have been demonstrated for the first
time by using machine learning tools to analyze visual
3-D maps and acoustic subbottom sonar measurements.
The results were combined to calculate the total mass and
distribution of the Mn-crust in the region. The measure-
ments were validated using samples collected from the
survey area, which indicated a comparable total volume
of crust.

2) SVM methods can achieve a high level of classification
accuracy (90%), where it has been demonstrated that
combining both shape and visual features improves the
performance over classifiers that consider only shape or
visual features. Furthermore, this article showed that using
too many features leads to overfitting, and that a relatively
small number of combined features have better general-
ization.

3) The proposed method is advantageous over sampling with
a nearly 50% lower uncertainties in crust estimates. It is
shown that it is not practical to achieve a similar uncer-
tainty level using sampling and video surveys, since >200
samples would be required. Also, the proposed method
avoids the inherent biases of sampling toward samples that
are easy to collect, and not characterizing regions with no
samples, such as nodules and sediments.

4) The surveyed region of the Takuyo Daigo seamount has
an average Mn-crust distribution of 69.6 kg/m2 for a
12 510 m2 mapped region, with occurrence ranging be-
tween 0 and 204 kg/m2. The region has a variability in
distribution of 85.8%, indicating that continuous mea-
surements are needed to accurately characterize Mn-crust
distribution.
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