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Trans-Dimensional Inversion of Modal Dispersion
Data on the New England Mud Patch

Julien Bonnel ¥, Member, IEEE, Stan E. Dosso

Abstract—This paper presents single receiver geoacoustic inver-
sion of two independent data sets recorded during the 2017 seabed
characterization experiment on the New England Mud Patch. In
the experimental area, the water depth is around 70 m, and the
seabed is characterized by an upper layer of fine grained sed-
iments with clay (i.e., mud). The first data set considered in this
paper is a combustive sound source signal, and the second is a chirp
emitted by a J15 source. These two data sets provide differing in-
formation on the geoacoustic properties of the seabed, as a result
of their differing frequency content, and the dispersion properties
of the environment. For both data sets, source/receiver range is
about 7 km, and modal time-frequency dispersion curves are esti-
mated using warping. Estimated dispersion curves are then used as
input data for a Bayesian trans-dimensional inversion algorithm.
Subbottom layering and geoacoustic parameters (sound speed and
density) are thus inferred from the data. This paper highlights
important properties of the mud, consistent with independent in
situ measurements. It also demonstrates how information content
differs for two data sets collected on reciprocal tracks, but with
different acoustic sources and modal content.

Index Terms—Geoacoustic inversion, New England mud
patch, seabed characterization experiment (SBCEX), underwater
acoustics, warping.

I. INTRODUCTION

HAT is mud? Any child would come with a quick and
W trivial answer: mud is a brown sticky thing, fun to play
with. When asked the same question, an acoustical oceanog-
rapher may have to think twice. A muddy sediment is a fined
grained sediment with clay content, without any doubt. But what
about its specific geoacoustic properties? These are largely un-
known, as most historical geoacoustic inversion studies have fo-
cused on sandy sites. To learn more about mud, an ocean acous-
tics experiment—called seabed characterization experiment
(SBCEX)—was designed, and took place on the New England
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Mud Patch, in March/April 2017. The mud patch is a shallow
water area (depth ~70 m) with a relatively flat bathymetry, lo-
cated 110 km south of Cape Cod, MA, USA. The main feature
of the seabed is an upper layer of mud [1], [2], which justifies
this location as the SBCEX area. Indeed, the main objectives of
SBCEX are first, to understand the physical mechanisms that
control sound propagation in mud, second, to quantify uncer-
tainties in estimated seabed model parameters, and third, to as-
sess the resulting geoacoustic models and inversion methods. To
reach these goals, both in sifu direct measurements and acous-
tical remote sensing methods have been deployed. Particular
care was taken to cover a wide frequency band, from ~ 10 Hz
to ~50 kHz. This paper focuses on the last two objectives of
SBCEX: estimating seabed parameters with uncertainties, and
assessing the consistency of inversion methods. The scope of this
paper is restricted to low-frequency propagation (f < 500 Hz)
at intermediate range (r ~ 7 km) in a single receiver context.

At the frequencies, ranges, and water depths discussed here,
the oceanic environment acts as a dispersive waveguide. Propa-
gation can be described by normal-mode theory, and the pressure
field can be modeled by a set of modes that propagates disper-
sively [3]. Each frequency component of each mode travels with
its own group speed, so that modal arrivals have frequency de-
pendent travel times. Provided that these travel times can be
estimated from the data, they can be used as input for inversion
algorithms, to estimate source range [4]-[7], water sound-speed
profile (SSP) [8], [9], and/or seabed geoacoustic properties [5],
[91-[12].

In a single receiver context, a convenient way to resolve the
modal travel times is to plot the signal in the time-frequency
(TF) domain. The TF positions of the modes are called modal
dispersion curves: they provide a direct measurement of the fre-
quency dependent travel times, which in turn are related to range
and modal group speeds. However, it is well known that modal
separability increases with range [3], and one cannot naturally
resolve modes in the TF domain except at long ranges [13].
In such case, it is necessary to resort to more advanced signal
processing. In the past ten years, a nonlinear processing method
called warping has emerged as an effective way to resolve modes
with a single receiver, even when they are not separated on a
conventional spectrogram [5]—-[9], [11], [13]-[18].

Modal travel times have been used recently for geoacoustic
inversion in the SBCEX context by Wan et al. [19] and Bon-
nel et al. [20]. The first study [19] considered a (relatively)
long range (r ~ 15 km), so that the low-frequency components
(f < 80 Hz) of the first 4 modes were resolved on conventional
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TF representations. The second study [20] was performed at
shorter range (r ~ 5 km), and warping was used to resolve up
to mode number 18 over the frequency band 20-440 Hz. The
two studies were conducted on different tracks, but they con-
sistently indicate that the sound-speed ratio at the mud/water
interface is slightly lower than 1, and that a positive strong gra-
dient is required in the mud layer to fit the data (this will be
questioned later in this paper). However, neither of these studies
quantified uncertainty about the geoacoustic estimates. Also,
both studies used a fixed knowledge about the subbottom lay-
ering, applying information collected during a chirp reflection
survey, carried out before SBCEX. As a result, neither of these
studies addressed the fundamental questions about the amount
of the seabed structure that can be resolved using modal TF
dispersion curves.

The present paper also focuses on geoacoustic inversion of
modal TF dispersion curves. However, an emphasis is placed on
filling the gaps noted above: assessment of the information con-
tent of the data, and uncertainty estimation. To do so, geoacous-
tic inversion is performed in a Bayesian framework, allowing a
quantitative estimation of the uncertainties. Also, model param-
eterization is inferred from the data, using a trans-dimensional
(trans-D) methodology. As a result, geoacoustic parameters
(sound speed, density), subbottom layering and associated un-
certainties are estimated. Note that a proper estimation of the
uncertainty requires knowledge of the data error statistics, which
in general are unknown a priori. In this paper, data error statistics
are also estimated from the data, using a trans-D autoregressive
(AR) process to model the error correlation over frequency.

Mode estimation with warping and trans-D inversion is ap-
plied to two independent data sets. The source for the first data
set is a combustive sound source (CSS) signal, i.e., a power-
ful wideband impulsive signal [21]. The source for the sec-
ond data set is a J15-1 towed source, producing low-frequency
chirps at relatively low signal-to-noise ratio (SNR). For the
two data sets, single hydrophone receptions are considered.
The source/receiver configurations are such that the two ex-
perimental tracks are reciprocal, i.e., the two tracks are virtually
identical, but source and receiver positions are exchanged. This
configuration enables verification of the consistency of the in-
version results. It also illustrates how data information content
varies with source type, and thus with number of modes and
bandwidth. Note that trans-D geoacoustic inversion has been
successfully applied in the past to modal TF dispersion curves
for a hard seabed [9], but this paper is the first in a fine grained
sediment context. More importantly, this paper provides new
information about inversion consistency and data information
content, by using a common method to compare two indepen-
dent data sets, nearly collocated in space and under similar ocean
environment conditions.

The remainder of this paper is organized as follows. Section II
briefly describes the SBCEX experiment and the two data sets
used in this paper. Sections III and IV successively review the
dispersion curve estimation method, and the trans-D inversion
method. Section V presents the inversion results for the CSS
data set while Section VI presents the results for the J15 data set.
Finally, Section VII discusses the result of the two inversions,
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Fig. 1. Map of the mud patch. The background color gives the mud thickness,
as measured in twtt. The source locations considered in this paper are shown as
crosses, while the receiver locations are shown as triangles.

and provides comparison with the state-of-the-art knowledge of
the SBCEX area. Section VIII concludes this paper.

II. EXPERIMENT DESCRIPTION

A. Seabed Characterization Experiment

The SBCEX took place on the New England Mud Patch,
110 km south of Cape Cod, MA, USA, in March/April 2017.
This region is characterized by a smooth bathymetry. The main
feature of the seabed in the experimental area is a top layer of
fine grained sediments (i.e., mud) [1], [2], whose geoacoustic
properties were unknown before SBCEX.

The area was surveyed in late summer 2015, before the main
experiment in 2017. The 2015 pilot experiment consisted of
first, a multibeam sonar survey to measure bathymetry, second,
a chirp seismic reflection survey to assess subbottom layer-
ing, and third, an extensive effort of physical sampling with
sediment cores. Fig. 1 shows the mud thickness over the ex-
perimental areas, as measured in two-way travel times (twtt)
during the chirp reflection survey [22]. The mud is thickest in
the North-West/South-East direction, with twtt constantly larger
than 12 ms. This translates into a layer thickness of approxi-
mately 9 m, assuming a sound speed of 1500 m/s.

Many acoustic instruments were deployed during SBCEX.
These included AUVs, gliders, moored, and towed acoustic
sources/receivers, etc. The water column oceanography was
monitored during the whole experiment. The winter weather
and various storms occurring before and during SBCEX en-
sured a well mixed water column. As a result, the water SSP
was relatively uniform and constant, an ideal situation for geoa-
coustic inversion.

B. Propagation Track

This paper focuses on low-frequency sound propagation (f <
500 Hz) along the thick mud direction. Two specific data sets
are considered, which were recorded on reciprocal linear tracks,
as illustrated in Fig. 1. The two tracks are separated by about
500 m. At the track extremities, the distances are 460 m (North-
East) and 630 m (South-West).

Along these tracks, the source/receiver range is ~7 km, and
the subbottom layering is presented in Fig. 2. It consists of a
stack of layers, whose interfaces have been resolved during the
reflection survey. The first interface is denoted the mud base; it
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Fig.2. Subbottom layering along the source/receiver track, based on interpre-

tation of the reflection survey data.

is interpreted to delimit the mud layer that is so characteristic of
the SBCEX area. The second interface is interpreted as the base
of a sand layer. Both mud and sand have been sampled with
cores during the pilot survey, at least in other locations where
the mud layer was thinner. The third and fourth interfaces are
reflectors delimiting unknown layers, too deep to be sampled by
cores. They have been dubbed “deepbasel” and “deepbase2” in
the SBCEX jargon. An important feature of the chosen track is
that the bathymetry and the subbottom are largely range inde-
pendent. The only exception is the deepbase? interface, whose
twtt vary by ~10 ms, or ~10 m if one assumes a sound speed
of 2000 m/s.

The water SSP was measured on oceanographic moorings in
the SBCEX area during the experiment. It is relatively constant
and without significant spatial variability. Over the period of
interest for this paper, it can be modeled as a constant gradient
from 1468 m/s at the surface to 1469 m/s at the seabed.

C. Source and Receiver Specifications

As stated above, this paper focuses on two different
source/receiver configurations, which are illustrated in Fig. 1
and described below. In these two cases, water depth can be
considered as constant, with D = 74.5 m.

1) CSSto SWAMI: The first data set consists of a CSS signal
recorded on the shallow water acoustic measurement instrumen-
tation (SWAMI) array. The specific CSS transmission occurred
on March 13 around 15:41 UTC at a way-point called “station
3”, located at (40.48743 N; 70.632989 W). Three shots were
successively emitted at depth z;, = 20 m. The specific signal
studied in this paper is the first shot of this set. The CSS signal is
known to be a high-intensity low-frequency pulse, contaminated
by several weaker bubble pulses [21]. The source signature was
measured during the experiment using a monitor hydrophone
1 m from the CSS, hard-mounted to the CSS deployment frame.
This source signal will be used for source deconvolution, as
explained in Section III-B.

The CSS impulsive signal was recorded 6.8 km away on
the SWAMI array, located at (40.45865 N; 70.56213 W). The
SWAMI is a multihydrophone L-shaped array. A single channel
is considered here: hydrophone 10 at depth z, = 52 m. Results
on other hydrophones would be expected to be the same, as long
as hydrophone depth is not on the null of specific modes.
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The time series of the received signal is shown in Fig. 3(a).
This figure shows the direct arrival just before ¢ = 0.1 s, with a
long decaying tail, a classical feature of modal dispersion. The
signal also has a precursor 30 ms before the main arrival. This is
due to the source signal which produces a small precursor before
the main signal, and not to propagation. Overall, the signal has
an excellent SNR. Its spectrogram is presented in Fig. 3(b).
One can see the same features as in the time series, as well as
clearer hints of modal dispersion. This will be discussed further
in Sections III and V.

2) JI5to IVAR: The second data set consists of a J15 signal
recorded on the intensity vector autonomous recorder (IVAR).
The J15 is a towed, low-frequency, acoustic source. The consid-
ered J15 signal is a linear chirp from 50 to 250 Hz in 1.6 s. Chirps
were emitted every 6 s on March 18 at depth z; = 42 m. The
specific signal studied in this paper is a single chirp emitted at
11:01 UTC, located at (40.4572 N; 70.5694 W). The J15 signal
was controlled using an analog signal generator. The knowledge
of the generated signal will be used for phase compensation, as
explained in Section III-B.

The J15 chirp was recorded 6.7 km away on the IVAR,
located at (40.48655 N; 70.63831 W). The IVAR is a bottom
moored instrument measuring particle motion, as well as sound
pressure. Only the sound pressure is considered here, recorded
on the IVAR hydrophone, 0.65 m above the seafloor.

The received signal is bandpass filtered between 50 and
250 Hz. The time series of the filtered signal is shown on
Fig. 4(a). The chirp starts around ¢ = 0.1 s and lasts until
t = 1.7 s, but the SNR is too low to clearly see the signal.
Fig. 4(b) shows the spectrogram of the received signal, where
the chirp’s shape is clearer. Modal dispersion cannot be visually
resolved on this spectrogram. It is nonetheless present in the
data, and this will be discussed further in Sections III and VI.

Significant wave height was obtained from the National Data
Buoy Center, Station 44097 (Block Island). It is ~ 1.4 m during
the CSS experiment, and ~ 1.0 m during the J15 experiment.
Since our inversion is based on mode travel times and not on
signal amplitude, the impact of sea surface roughness is not
likely strong. Roughness may scatter the signal and take energy
out of the forward field, but the effect on travel time is assumed
to be small. From the inversion point of view, it will be included
into the unavoidable model mismatch.

III. DISPERSION CURVE ESTIMATION
A. Modal Propagation in a Single Receiver Context

In our context (shallow water D < 100 m, low-frequency
f <500 Hz), acoustic propagation is conveniently described
using normal-mode theory. Given a broadband source emit-
ting at depth z, in a range-independent waveguide, the spectral
component of the pressure field Y (f) received at depth z, after
propagation over a range 7 is given by [3]

e(jrkm (f)=rBm (f))

Ko (f)r
(D

M
Y(f) ~ QS(f) Z \I/m(f, Zs)\Ilm(f; Zr)

m=1



BONNEL et al.: TRANS-DIMENSIONAL INVERSION OF MODAL DISPERSION DATA ON THE NEW ENGLAND MUD PATCH 119

Amplitude (a.u.)

"o 0.1 02 03 04 05 06
Time (s)

Frequency (Hz)
P O T
2 2 8 3% 8 & & &
g8 &8 8 8 8 &8 38 &

o
3

o

0 0.1 0.2 03 04 05 06
Time (s)

©

Frequency w.r.t warped time (Hz)
P N e - S
s 8 8 8 8 8 3

°

Warped time (s)

(®)

Frequency (|

0 01 0.2 03 04 05 06
Time (s)

(d
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Fig. 4. (a) Received J15 signal (amplitude is normalized and given in arbitrary linear units). (b) Spectrogram of the received signal. (c) Spectrogram of the signal
after phase compensation, and estimated dispersion curves. (d) Spectrogram of the signal after source deconvolution and warping. Modes are labeled in (d) to
facilitate understanding. All spectrograms are presented on an arbitrary linear colormap. Subfigure layout is the same as in Fig. 3.

where M is the number of propagating modes, and k,, (f),
Bm (f), and W, (f, z) are respectively the real part of the hori-
zontal wave number, the imaginary part of the horizontal wave
number, and the modal depth function of mode m at frequency
f. The term S(f) is the source spectrum, and () is an unimpor-
tant constant factor.

Let us denote S(f) = |S(f)|e’?s /), with |S(f)] the source
amplitude and ¢ (f) its phase. One can further write (1) more

compactly as

M

Y(f) =Y An(f)e?n ) ©)

m=1

where

U, (f7 Zs)\I/m (fa ZT) efrﬁm (f)

Vkm (f)r

A (f) = QIS(/)] (©)
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is the modal amplitude and

(bm (f) = ¢s(f) + kn (f)?” “4)

is the mode phase.

As stated in the introduction, in a single receiver context, it is
convenient to represent the propagated signal in the TF domain
[23]. The TF position of a given mode is defined as its dispersion
curve. It is given by the mode group delay

1 d

T (f) = o df [P (f)] (52)
=7(f) + oo () (5b)

where v, (f) = 27(df /dk,,) is the group speed of mode m,
and 7 (f) = (1/2m)(d/df )¢ (f) is the source group delay. If
the source is an impulse, then 7, ( f) = ¢ is the source emission
time. On the other hand, if the source is a frequency modulated
chirp, then 7,(f) is the inverse function of its instantaneous
frequency.

The modal dispersion curves 7,, (f) depend on the environ-
ment through the group speeds v, (f). They thus depend on
seabed layering, sound speeds, and densities. However, seabed
attenuation does not impact vy, (f), as its effect is embedded
into 3, (f), and thus into the mode amplitude A,,(f). As a
result, dispersion curves are completely insensitive to seabed
attenuation. This paper will thus ignore attenuation, and fo-
cus on the other geoacoustic properties. The same holds true
for source and receiver depth, which do not impact the group
speeds.

The modal dispersion curves also depend on the source in-
trinsic characteristics, through 7 (f). Section III-B will explain
how to compensate for the source influence. Two different proce-
dures will be briefly explained: source deconvolution and phase
compensation.

B. Source Deconvolution and Phase Compensation

Source deconvolution aims at completely canceling the
source influence. The basic idea is to divide Y'(f) by S(f),
and thus obtain the impulse response of the waveguide. If S(f)
is fully known, source deconvolution is straightforward. The
only concern is to prevent division by zero (or small values), at
frequencies where S(f) is (near) null. Here, a classical decon-
volution method is used [24]. The received signal after decon-
volution is

Y(f)5*(f)
max {|S(f)[?, €}

with e empirically chosen as e = 0.01 max {|S(f)[*}.

In our dispersion curve estimation context, only the signal
phase is important. In this case, true source deconvolution is not
required. One may compensate for the source phase, ¢s(f), in
the following way:

Ydeconv(f) = (6)

Yoo(f) =Y (f)e 7. (7)
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After source deconvolution or phase compensation, the modal
phases become

XN (£) = Ky (f)r + 27 fdlt (8)

and the dispersion curves are

TgleconV(f) _ 4 dt (9)

r
Vgm (f )
with dt an unknown time constant that reflects a potential dif-
ference between the source and receiver time bases. Note that if
source and receiver are synchronized, then d¢ = 0. This is not
the case in this paper.

The dispersion curves, as given by (9), do not depend on the
source spectrum. They are thus good data to be used as input
of geoacoustic inversion algorithms, as only the geoacoustic
properties of the seabed need to be inverted for. This will be de-
scribed in Section I'V. Before that, we will recall how a nonlinear
processing, called warping, allows high-resolution estimation of
the dispersion curves in a single receiver context.

Please note that source deconvolution, as described by (6), has
been successfully applied as a preprocessing in warping analysis
of another CSS signal recorded during SBCEX [20]. Also, phase
compensation, as described by (7), has been successfully applied
in warping analysis of baleen whale vocalizations (i.e., low-
frequency chirps) recorded in shallow water [6], [16]. In this
paper, source deconvolution is applied to the CSS data, while
phase compensation is applied to the J15 data.

C. Warping

Generally speaking, warping operates on a given signal y(t)
as [25]

Wy(t) = VI (@)]y[h(t)]

where Wy(t) is the warped signal and h(t) is the warping
function, with A/(¢) its time derivative. The warping function
h(t) must be bijective. As a result, any warped signal can be
unwarped using 1! (¢) as the new warping function.

Warping can be adapted to a given physical situation by
choosing the suitable h(t). Dispersion based warping has been
introduced by Touze et al. [14]. Its objective is to transform the
signal to increase the separability of the modes by linearizing the
modal phase. As a result, warped modes are continuous tones,
and thus horizontal in the TF domain. To do so, dispersion-based
warping is based on equations approximating the environment
by an ideal range-independent waveguide with a perfectly re-
flecting surface, a constant water sound speed ¢,,, and a perfectly
rigid seabed. In this case, the warping function is

h(t) = V& + £2

(10)

(1)

witht, =r/c,.

Warping has been successfully applied in the past for modal
filtering in a variety of scenarios [6], [7], [11], [16], [26], [27].
It has notably been used for geoacoustic/tomographic inversion
using CSS [20] and J15 chirp data [8].
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D. Dispersion Curve Estimation

After source deconvolution (or phase compensation) and
warping, dispersion curve estimation is trivial. The whole pro-
cess is as follows:

1) perform source deconvolution using (6) or phase com-
pensation using (7), based on prior knowledge of source
characteristics;

2) warp the signal using (10) and (11);

3) compute the spectrogram of the warped signal, and filter
the (warped) modes using classical TF filtering;

4) unwarp the filtered modes;

5) estimate the group delay (or the instantaneous frequency)
of each individual mode.

This process has been used in the warping reference previ-
ously cited (see [6]-[8], [11], [16], [20], [26], [27]), and will
thus not be detailed here. The reader unfamiliar with it may
find detailed explanations in [13]. It is nonetheless interesting to
remind that warping requires an accurate determination of the
first sample to be warped. This has been recently discussed in
[28], and today the best solution seems to be a trial and error
process. Doing it well notably improves the dispersion curve
estimation of the first mode [28].

Once dispersion curves are estimated, they can be used as in-
put data for geoacoustic inversion algorithms. Section I'V details
the inverse theory and algorithms used in this paper.

IV. INVERSE THEORY AND ALGORITHMS

This paper uses Bayesian trans-D inversion, which will be
quickly reviewed below. More complete treatments of Bayesian
methods and/or Markov-chain Monte Carlo methods are given
in [29], and applications in geoacoustic inversion can be found
in [30].

A. Trans-D Bayesian Inversion

Trans-D inversion is designed to sample probabilistically over
a set of possible models that may vary in their number of pa-
rameters (dimensions). For example in this paper, models vary
in the number of seabed layer interfaces and the order of an
AR error model. To describe the approach more generally, con-
sider a finite set /C, indexed by k, specifying choices of model
parameterizations with the corresponding sets of model param-
eters denoted as my,, and let d represent observed data (modal
dispersion curves in this paper). Bayes’ theorem for a trans-D
model can be written as [29]-[31]

P(k,my|d)

Zk’EK ka/ P(kl) P(m;,“{:’) P(d‘k/7 mk,) dm;(‘/
where M, represents the parameter space associated with in-
dex k. In (12), P(k)P(my|k) is the prior probability of the
state (k,my,), and P(d|k,m;) is the conditional probability
of d given (k,my), which is interpreted as the likelihood of

(k,my,), denoted as L(k, my,). The posterior probability den-
sity (PPD) P(k, my|d) is defined over the trans-D parameter

(12)

space and quantifies the information content of the data and
before constrain the model parameters. The denominator (nor-
malization) on the right side of (12) represents the total Bayesian
evidence of the set of possible models.

Markov-chain Monte Carlo methods can be applied to sam-
ple the trans-D PPD in (12) to provide marginal probability
densities and other statistical measures quantifying parameter
uncertainties. The sampling algorithm must transition between
models with differing numbers of parameters while satisfying
reversibility (detailed balance). The reversible-jump Markov-
chain Monte Carlo (fjMCMC) algorithm accomplishes this by
accepting a new state (&, mj,), given a current state (k,my,),
with probability given by the Metropolis—Hastings—Green cri-
terion [29]

A(K',mj, |k, my)

Q(k, my |k, m},) P(K')P(mj,|k') L(K' m)],)
Q(K',mj, |k, my) P(k)P(my|k) L(k,my)

= min |1,

J|
13)

In (13), Q(k',m}, |k, my ) is the proposal probability density of
proposing a new state (k’, mj,) given the current state (k, my,),
and |J| is the determinant of the Jacobian matrix for the coor-
dinate transformation between parameter subspaces. The most
common form of rjMCMC in geophysical inversion adds and
deletes parameters (referred to as birth and death steps, re-
spectively) in such a manner that |[J|=1. In addition to birth
and death steps, jMCMC applies perturbation steps where pa-
rameters of the current model are perturbed randomly without
changing model dimension. For geoacoustic parameters with
uniform bounded priors, a partition model for interface depths,
a symmetric proposal density for perturbation steps, and new
parameters in birth steps drawn from the prior, the acceptance
criterion for all steps reduces to the likelihood ratio [32]

L(K, m;,)]
[:(k, l’l’lk) '

Employing effective proposals densities is key to an efficient
rjMCMC sampling algorithm. In the approach used here, an ef-
ficient proposal density for parameter perturbations is based on
principal-component (PC) decomposition of the unit-lag pa-
rameter covariance matrix; that is, the covariance estimated
from successive parameter changes along the Markov chain
[32], [33]. The PC decomposition provides both directions and
length scales for effective parameter updates. Perturbations are
applied in a rotated parameter space where the axes align with
the dominant correlation directions (i.e., PC parameters are un-
correlated). The PC proposal is initiated from an analytic lin-
earized estimate that is subsequently updated with a nonlinear
estimate from the on-going sampling (a diminishing adapta-
tion). The acceptance rate of perturbations and birth/death steps
is improved by applying the method of parallel tempering (PT)
[34], [35], which is based on a series of interacting Markov
chains with successively tempered (relaxed) likelihoods raised
to powers < 1. PT is also (and mainly) used for escaping lo-
cal modes in nonlinear MCMC inversions; it ensures the full

A(K', mj, |k, m;) = min {1, (14)
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posterior is properly sampled. In our case, the PC proposals are
adapted individually to the tempering of each Markov chain.
This combination of PC proposals and PT has been shown to
significantly improve sampling efficiency in trans-D inversion
[32], [36].

B. Likelihood Function and AR Error Model

Defining the likelihood function requires specifying the sta-
tistical distribution of the data errors, which is then interpreted
as a function of the model parameters. In many practical inverse
problems the data error distribution, accounting for both mea-
surement and theory/modeling errors, is not well known a priori.
In such cases, it is reasonable to make a conservative choice,
such as a multivariate Gaussian distribution (supported by the
Central Limit Theorem and maximum entropy), and consider
the parameters of this distribution as unknowns in the inversion.
The validity of this choice can be considered a posteriori by
examining the data residuals (difference between measured and
predicted data), which should approximately follow the assumed
error distribution.

The measured data considered in this paper consist of a set
of dispersion curves d = [d] ,d7,... ,d@]T for M acoustic
modes, with observations at N; frequencies for the ¢th mode
(i.e., d; is a column vector with /N; elements, and the total data
set d includes N = Zf\il N; data). Assuming the data errors
are unbiased and Gaussian distributed with independent errors
between modes, the likelihood function can be written as

M

1
com) =11 oprereg

i=1

exp [—ri(m)T Cdzlri(m)/ﬂ

(15)
where r;(m) = d; — d;(m) and Cyq; are the data residuals and
data error covariance matrix for the ¢th mode, respectively, with
d; (m) representing predicted data computed for model param-
eters m (the subscript on m indicating model dimension is not
required here and is dropped for simplicity).

We further assume that the error standard deviation for all
frequencies of the ¢th mode is o; (i.e., each mode has a distinct
standard deviation), and that the error correlation over frequency
for the ¢th mode can be represented by either a zeroth-order or
a first-order AR process, denoted as AR(0) and AR(1), respec-
tively. An AR(0) process represents uncorrelated residuals while
an AR(1) process represents correlated residuals corresponding
to a Toeplitz covariance matrix that decays exponentially away
from the main diagonal. It is possible to invert for the parameters
of such a covariance matrix. However, the AR error model used
here provides a convenient formulation that avoids the require-
ment to compute the determinant and inverse of the covariance
matrix at each sampling step. Furthermore, AR sampling is car-
ried out trans-dimensionally so that the data determine to what
extent an AR(0) or AR(1) model is required, to avoid over- or
under-parameterizing the error model.

Under the above assumptions, the residual error model ac-
counting for covariance, referred to as the total residuals, can be
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written as [37], [38]

ri} (m, a;)
:{%j—dmﬁn%
dij — dij(m) + a; [d;j 1) — di(j1)(m)] ,

where a; = 0 for an AR(0) error process and a; # 0 for an
AR(1) process. The likelihood can then be written as

r® (m, a)r/ (20?)}

(17)
where a = [ay,...,ay]" and o = [o1,...,00/]7. In (17) the
standard deviations, order (zero or first) of the AR process, and
AR(1) coefficients can be treated as unknowns, sampled in the
inversion as follows.

A maximum-likelihood estimate for o; can be derived by
setting 0L(m, a, o) /0o; = 0, leading to [39], [40]

M
1
L(m,a,U):H W exp |:

i=1

1/2
o1(m,q) = i‘rm(m a)‘2 (18)
l s & Nl l y 4 .
Substituting (18) back into (17) leads to
7 ep(—Ni/2) | ) -
—1V; t i
E(m, a) = H W I',L» (m, aq;) (19)

i=1

Equation (19) applies the maximum-likelihood estimate for o
in terms of m and a, such that sampling over m and a samples
implicitly over the corresponding maximum-likelihood values
6 (m, a) (i.e., maximum-likelihood standard deviations are au-
tomatically applied for each choice of (m, a)) [40].

To consider possible moves in trans-D AR sampling, it is
convenient to define a simple notation whereby m, represents
a model with an AR(0) error process for the ith mode, and
m; and m) represent models that are identical to mg except
for an AR(1) error process for the ¢th mode with values of
the AR(1) coefficient of a; and a}, respectively. A model with
an AR(0) error process has only one move available: a birth
step to an AR(1) process. If the proposed AR(1) coefficient
in this birth step is drawn from a uniform prior of width Aa,
then the proposal density is given by Q(m;|my) = 1/Aa. A
model with an AR(1) process has two moves available with equal
probability: a death step to an AR(0) process with Q(mg|m; ) =
1/2, and perturbation of the AR(1) parameter with the proposal
taken to be Q(m}|m;) = G(a}|a1)/2, where G(a}|ay) is the
value at @} of a Gaussian density centered at a;. With these
definitions the acceptance probability of a birth step can be



BONNEL et al.: TRANS-DIMENSIONAL INVERSION OF MODAL DISPERSION DATA ON THE NEW ENGLAND MUD PATCH

TABLE I

INVERSION PARAMETER LIST

Parameter ‘ Unit ‘ Search bounds ‘
Number of interfaces k& - [1; 8]

AR coefficient a., - [-0.5 ; 0.99]
Interface depth z; m [0.1 ; 50]
Layer sound speed c; m/s [1440 ; 2500]
Layer density p; g/cm?® [1.3;2.4]
Basement sound speed c m/s [1440 ; 2500]
Basement density pp g/cm3 [1.3;2.4]
Range r km [6.55 ; 6.95]
Time shift dt S [-0.01 ; 0.2]

Prior information is uniform over the given search bound.

determined as [38]

= min Q(mg|m;) P(my) £(m,)
A(m;|my) = _1, Q(m; [myo) P(my) L‘(mo)} (20)

_ in |1, 2 1/Aa L{my)

D AT Z(mg) } 1)

— min 1 L(m;)

_ _,“(mo)]. o

Similarly, the acceptance probabilities of AR death and pertur-
bation moves, respectively, can be shown to be

A(mg|m;) = min [1, 2 ‘ggzg ] (23)
A(m!|m; ) = min [1, ﬁgi; } . (24)

C. Summary and Application to SBCEX Data Set

In this paper, the environment is modeled as a range-
independent waveguide. Water depth is D = 74.5 m. The wa-
ter SSP is a gradient linear with 1468 m/s at the surface and
1469 m/s at the bottom. The seabed is assumed to be a stack
of isospeed layers. The layer sound speeds, densities, and the
interface depths are collected into a parameter vector m. As
explained before, the size of m depends on the number of
interfaces (and thus layers) of the considered model, as de-
termined by the trans-D method. Also, the inversion samples
trans-dimensionally over a, the AR process parameter for each
mode covariance.

The data d is a set of modal dispersion curves. The replicas
d;(m) are given by (9). They are simulated using the modal
code ORCA [41]. Please note that time shift d¢ and range r
are unknown parameters that must be estimated. They are thus
included in m.

A uniform prior is set for every parameter. The parameter
list and the search bounds are summarized in Table I. The first
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parameter k is the number of interfaces. The second parameter
a,, is the AR coefficient for mode m. Both k and every a,, are
sampled trans-dimensionally; their value thus impact the size
of the parameter space. The three parameters interface depth
z;, sound speed c;, and density p; are given for layer 4, with
i € [1; k]. The four last parameters are ¢y, pp, 7, and dt; they
are not sampled trans-dimensionally. Overall, the size of the
parameter space is 3k + 5 + n,, with n, the number of modes
whose data error is correlated. Note that the upper limit of 8
for k has been chosen so that the normal mode model would
be stable. Also, the upper limit of 50 m for interface depth has
been chosen as a compromise between inversion efficiency and
the data capacity to resolve deep details. Indeed, one can show
with simulation that at the lowest frequency (15 Hz), more than
95% of the mode energy that is in the seabed is above this 50 m
limit. We thus assume that our multimode data are essentially
insensitive to structure at deeper depths.

For each layer, sound speed and density are related through
a two-dimensional (2-D) prior based on Hamilton’s empirical
relationship [42]. For a given layer 7, the algorithm checks if the
sound speed ¢; and density p; verify cmin < ¢; < Cmax, With

Cmin = (1.54 — 0.907p; + 0.3695p}%%) % 1500.4

(3

(25)

Cmax = (1.60 — 0.907p; + 0.3695p7-°) % 1501.4  (26)

with cpin and cpax in meter per second and p; in gram per cubic
centimeter. If this relationship is not respected, the model is
rejected. This approach defines the Hamilton prior as a uniform
probability density over the 2-D ¢ — p region within the bounds
specified in (25) and (26), with a value of zero outside of this
bounded region.

Last but not least, PT is carried out using eight parallel rjM-
CMC chains. The chains’ temperatures are given by a geometric
series starting at 7; = 1, and with a constantratio of 1.3 between
successive terms (7; = 1.37T;_1). The results presented below
are from 2.1 x 10* samples at Ty = 1 after thinning the chain
by a factor of 10 and removing the first 10* samples as burn-in.
The samples presented here thus represent 1/10th of the sam-
ples drawn on the first chain after burn-in, or 1/80th of the total
samples drawn.

V. CSS DATA ANALYSIS

This section presents the CSS data analysis: first, the disper-
sion curve estimation, and then, the inversion results.

A. Dispersion Curve Estimation

As stated in Section III, the first step for the estimating dis-
persion curves is source deconvolution, or phase compensation.
CSS data are processed with source deconvolution. Indeed, the
impulsive nature of the signal is not favorable for defining the
source phase, and thus deconvolution is preferred over phase
compensation. The spectrogram of the signal after deconvolu-
tion is shown in Fig. 3(c). One can note a clear improvement
over the raw signal shown in Fig. 3(b). The precursor before the
main arrival has disappeared, and the dispersion pattern becomes
clearer. Indeed, the raw signal shows interferences between the
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Fig. 5. Trans-D marginal posterior probability profiles for the CSS source
signal. The probabilities for the geoacoustic parameter profiles are normalized
globally for seabed depth from 0 to 50 m. Averaged interface depths estimated
from the reflection survey are plotted as horizontal continuous black lines over
the marginal probability densities. Minimum and maximum depths for the lowest
horizon (deepbase?2) are plotted as horizontal dashed black lines.

main CSS pulse, and secondary arrivals due to the bubble pulses.
These are clearly reduced by source deconvolution.

One may wonder about the quality of the source signal
recorded on the monitor hydrophone, and used for deconvo-
lution. It obviously cannot be perfectly representative of the
true source signal S(f), as it is very likely contaminated by
surface and/or ship hull reflection(s). However, the deconvolu-
tion result appears to be a significant improvement. It is at least
good enough to separate modes with warping. This is illustrated
on Fig. 3(d), which shows the spectrogram of the signal after
deconvolution and warping. One can see that the modes are
clearly separated, and can thus be filtered using conventional
TF filtering. Dispersion curves can subsequently be estimated.
Successful estimates have been obtained for modes 1 to 7, and
for frequencies from 15 to 300 Hz. Estimated dispersion curves
are superimposed on the spectrogram in Fig. 3(c).

Note that mode 4 appears absent in Fig. 3(d) while its esti-
mated dispersion curve is present is Fig. 3(c). Actually, mode 4
is visible on the spectrogram of the warped signal, if plotted on
a decibel scale. However, this representation obscures the other
modes, and is not shown here. The weak excitation of mode 4
is likely due to source and/or receiver depth near a null for this
mode.

B. Inversion Results

The estimated dispersion curves shown in Fig. 3(c) serve
as input data for the Bayesian trans-D method described in
Section IV. Inversion results can be summarized by marginal
posterior probability profiles, as shown in Fig. 5, where warmer
colors indicate regions of higher probability and white is zero.
The averaged depth of the interfaces measured during the re-
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flection survey (and illustrated in Fig. 2) are superimposed on
Fig. 5 to facilitate comparison. The minimum and maximum
depths of the lowest horizon are also superimposed on Fig. 5.
To plot these, the survey twtt (see Fig. 2) have been converted
to depth using the cumulative velocities estimated by the in-
version. Once again, please note that the inversion results are
completely independent from the seabed layering information
obtained during the reflection survey (black horizontal lines).

One can see from the left panel of Fig. 5 that the data have
information to resolve at least four interfaces. Their most prob-
able depths are z = 8.1, 11.3, 20.1, and ~32 m. Please note
that this does not preclude the existence of models with more
than four interfaces, and/or interfaces at other depths. However,
it does say that these four interfaces are consistently present in
most sampled models, and hence emerge in the marginalization.

Looking at the two right panels of Fig. 5, one see that the en-
vironment very likely has a first isospeed layer with sound speed
¢ = 1471 m/s, density p = 1.56 g/cm? and a thickness of about
8 m. After that and during the next 3 m, sound speed increases,
with probable values between 1500 and 1600 m/s. This result
may actually reflect a sound-speed gradient in this region, from
z ~ 8to z ~ 11 m. Results at greater depths are more uncertain,
although the inversion seems to resolve several deeper layers.
The results notably show a low velocity (~1600 m/s), low den-
sity (~1.5 g/lcm?) layer at depths between about 20-32 m. Such
a low density layer below a higher density, apparently consoli-
dated layer is unusual, and may represent an inversion artifact.
Inversions sometimes produce unrealistic structure, particularly
at greater depths where sensitivities are lower, in an attempt to
fit noisy data which may include theory errors that do not ex-
actly follow the inversion assumptions. Particular care has been
taken here to model errors, including the trans-D AR processes
to represent error correlations and a posteriori residual anal-
ysis (see Section V-C). Nonetheless, fully characterizing error
statistics is a challenging problem, which can lead to spuri-
ous model structure. However, it is interesting to note that the
velocity and density values between about 20-32 m in Fig. 5
are similar to those at the base of the mud layer at ~12 m
depth, such that low velocity/density layer could represent sim-
ilar sediments, with the higher velocity/density from 12-20 m
representing an intervening layer of different composition. Fur-
thermore, a similar low velocity, low density layer was estimated
in a previous study, using modal dispersion inversion on another
part of the mud patch [20]. Hence, a definitive conclusion on
the authenticity of the low velocity/density layer is not possible
without deep coring. However, it would be interesting to com-
pare this result with inversions that take into account the mode
Airy phase of low order modes (e.g., [19]). Indeed, both Airy
phase and the high order modes that are used here are sensitive
to features deep below the seabed. In a given frequency band, the
consistency of inversion using Airy phase (of low order modes)
and/or high order modes is still an open question.

A comparison with the reflection survey shows that the first
interface from the inversion at z ~ 8 m is well within the mud
layer. The interpretation here is that the mud is homogeneous
over the first 8 m, and below this is a region with increasing
sound speed, likely due to increasing sand content within the
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Fig. 6. Sampling history and distribution of the number of interfaces and
likelihood values.

mud, before transitioning to sand. The sand layer, resolved by
the high-frequency reflection survey, is too thin (~ 50 cm) to be
resolved by our data set, which has a smallest wavelength of
about 3 m. As a result, high speed mud and sand are seen as one
by our inversion. Interestingly, the inversion interface at the bot-
tom of the mud/sand coincides closely with the reflection survey
sandbase. Deeper, the deepbasel interface seen by the reflection
survey is invisible to our inversion. This once again may be ex-
plained by the limited frequency band of our source, preventing
resolution of thin layers. However, the inversion resolves an in-
terface around z = 20 m, which is generally consistent with the
survey deepbase2, particularly given that this interface is range
dependent. It also resolves an extra interface around z = 32 m,
which is too deep to have been seen during the reflection survey.

C. Inversion Quality Check

One must not trust inversion results without checking inver-
sion convergence. To do so, Fig. 6 shows the sampling history
of the jMCMC algorithm. It presents the evolution of the misfit
and of the number of interfaces, as well as their distribution.
One can see that sampling seems stationary and that misfit dis-
tribution is smooth. These, combined with the smooth marginal
profiles of Fig. 5, are good indications that the trans-PPD is not
under-sampled. Also, marginal profiles from the first half of the
sample to those of the second half have been visually compared,
and do not show any significant differences. It is thus reasonable
to assume convergence.

Interestingly, the number of interface distribution (see Fig. 5)
shows that all the sampled models have between four and eight
interfaces. This is fully consistent with the four-interface hy-
pothesis stated above. Indeed, extra interfaces are required to
create a gradual sound speed increase, as seems to be the case
at the base of the mud layer.

It is also important to verify the statistical hypotheses used to
define the likelihood function. The assumption of Gaussian-
distributed residual errors with correlations described by an
AR(0) or AR(1) process is considered in Fig. 7. This figure
presents histograms of total residuals (16), and compares them
to a Gaussian distribution. The Gaussian hypothesis seems rea-

sonably valid for most modes, but not for all, such as mode
four which is clearly bimodal. Fig. 7 also presents autocorrela-
tion of total residuals, and compares these with autocorrelation
of raw residuals. The latter have wide central peaks, represen-
tative of a strong correlations. However, the autocorrelations
of the total residuals have narrow peaks, typically only one
point wide. This illustrates that the (total) residuals of all modes
are largely uncorrelated (when covariance is taken into account
through the trans-D AR process). This ensemble residual anal-
ysis generally supports our initial statistical hypothesis about
the data error, even if Gaussian hypothesis is not valid for all
modes.

VI. J15 DATA ANALYSIS
A. Dispersion Curve Estimation

As for the CSS, the first step to estimating dispersion curves
is to compensate for the source influence. For the J15 signal, this
is done using phase compensation, as explained in Section ITI-B.
Note that source deconvolution has also been tried, and provided
similar result. Phase compensation is preferred here because it
is a simpler process. Also, it is worth demonstrating that the
inversion process does not require a full characterization of
the source signal, as phase compensation ignores amplitude
information.

The spectrogram after phase compensation is shown in
Fig. 4(c). Obviously, phase compensation does not improve
SNR. However, one can now see a modal dispersion pattern
emerging from the noise. The phase-compensated signal is then
warped, and the spectrogram of the warped signal is shown in
Fig. 4(d), where modes are labeled in red to facilitate reading.
Because of the low SNR, mode identification is relatively dif-
ficult in Fig. 4(d). Modal filtering was performed as a trial and
error process. The filtering quality was visually assessed by plot-
ting the dispersion curves of the filtered modes on the original
spectrogram. The final result is shown on Fig. 4(c). Dispersion
curves have been estimated for modes 1 to 6, and for frequencies
from 52 to 248 Hz.

B. Inversion Results

As for the CSS, estimated dispersion curves serve as input
for the Bayesian trans-D algorithm, and results are summarized
by marginal posterior probability profiles, as shown in Fig. 8.

In this case the data do not have sufficient information content
to resolve more than one interface, with a most probable depth
of z = 9.1 m. Above that interface, sound speed and density are
very well resolved. Their most probable values are ¢ = 1474 m/s
and p = 1.56 g/cm3. Below this layer is a higher speed/higher
density basement, whose geoacoustic properties are less certain.
Nonetheless, its sound-speed value (around ¢ = 2000 m/s) is a
good average of the layered model found by the CSS.

It is particularly interesting to note that the first layer es-
timated here is thinner than the mud layer, as defined by the
reflection survey. However, it is fully consistent with the CSS
inversion result, and corresponds to the upper part of the mud
which is isospeed. The J15 inversion shows a strong change of



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 45, NO. 1, JANUARY 2020

126
Mode 1 Mode 2 Mode 3 Mode 4
0.6 0.8 0.3
0.6+
204 z 2z 50.2
? ? 04 R 05 ?
Qo Q Q2 Q
0.2 o o 201
0 0 0 0
-5 0 5 5 0 5 5 0 5 -5 0 5
Total Residual (ms) Total Residual (ms) Total Residual (ms) Total Residual (ms)
Mode 5 Mode 6 Mode 7
0.8 0 1
»06 »06 >
204 204 2os
el Q o
[ [ [
2 0.2 e 0.2 o
0 0 0
-5 0 5 ) 0 5 5 0 5
Total Residual (ms) Total Residual (ms) Total Residual (ms)
Mode 1 Mode 2 Mode 3
1 1
[ [ =4 = =
2 "] ] 2
[ o © ©
g 3 05 3 0.5 i I 3
S S S \ S
] o Iv] "]
el o 0 S 0 s
5 5 5 5
< < < <
-0.5 -0.5 -0.5
-20 0 20 -20 0 20 20 0 20
Lag (points) Lag (points) Lag (points) Lag (points)
Mode 5 Mode 6 Mode 7
c c c
o o o
=] =] =]
© o ©
I I I
S £ =
[=} o o
S I 5]
S S S
3 3 3
< < <
Lag (points) Lag (points) Lag (points)
Fig. 7. Posterior ensemble residual analysis. The upper two rows show histograms of total data residuals compared to Gaussian distributions. The lower two

rows show compare raw residual autocorrelations (red dashed lines) and total residual autocorrelations (black lines).

0 T T T T

10 : o

15} 1t

20} 1t

25 1 -

z (m)

30 1

35 1 -

40 1t

45 {

50 aP——
2400 1.4 16 1.8 2 22

» (a/cm?)

1600 2000

Interface Prob c (m/s)

Fig. 8. Trans-D marginal posterior probability profiles for the J15 source
signal. The probabilities for the geoacoustic parameter profiles are normalized
globally for seabed depth from 0 to 50 m. Averaged interface depths estimated
from the reflection survey are plotted as horizontal continuous black lines over
the marginal probability densities. Minimum and maximum depths for the lowest
horizon (deepbase2) are plotted as horizontal dashed-black lines.

impedance deep within the mud, at the specific depth where
the CSS inversion shows an increase in sound speed. Putting
these two results together strongly suggests that the top of the

mud layer is homogeneous, but that a transition exists before
the mudbase.

As done for the CSS study, inversion convergence and residual
statistics have been studied. Results are similar to those of the
CSS, and are not presented here.

VII. DISCUSSION

Another important verification after inversion is to visually
assess the quality of the fit between data and replicas. The es-
timated and predicted dispersion curves, both for CSS and J15,
are presented in Fig. 9. One can see an excellent match for the
two data sets.

Fig. 9 also illustrates the difference of information content
between the CSS and the J15 data set. The J15 data has def-
initely poorer information content (fewer modes and smaller
bandwidth), and so the inversion results are less informative.
The higher order modes and the lower frequencies of the CSS
data set allows the inversion to resolve more layers, thinner
layers, and deeper layers. The downside here is the use of an
impulsive and loud sound source, as opposed to the relatively
quiet J15 chirp.

The trans-D result allows a statistical analysis of various
seabed features. Of particular interest here is the sound-speed
ratio at the mud/water interface. Its marginal posterior probabil-
ity is plotted on Fig. 10, both for the chirp and for the CSS. One
can note that the two distributions are virtually identical, which
demonstrates inversion consistency. It also shows that the two
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data sets have enough information content to resolve this part of
the mud. The 95% credibility interval for the sound-speed ratio
is [0.9996; 1.0050] for the CSS, and [0.9989; 1.0147] for the
J15. Tt is safe to say that the sound-speed ratio is very close to 1.
The trans-D result also shows the first ~8 m of the mud as
homogeneous. This does not necessarily mean that the mud is
homogeneous. As a matter of fact, the mud appears slightly
laminated when looking at the seismic survey data [22].
Nonetheless, the information content of our data does not pro-
vide the resolution to discern such layers: at the frequencies
considered in this paper, the acoustic behavior of the first ~8 m
of mud is depth-independent. Acoustic data with a higher fre-
quency content may be able to resolve layers within the mud.
Another interesting feature of our result is the apparent
conflicting answers given by Figs. 5 and 8: at several depths,
the 95% credibility interval of one inversion does not intersect
the 95% credibility interval of the other. This is particularly
true between 20 and 30 m, where the CSS inversion predicts

a low speed/density layer (see Fig. 5) while the posterior
uncertainties of the J15 inversion (see Fig. 8) do not suggest
that such a layer is probable. Since the J15 data have lower infor-
mation content, the inversion cannot resolve the deep layers seen
in the CSS inversion, and thus the trans-D approach replaces
this with a single layer. This single layer is well constrained
and therefore has lower uncertainties. The key point here is that
uncertainty and resolution are intimately related and both must
be considered when comparing inversion results. Considering
both resolution and uncertainty, the results of the two inversions
are not inconsistent with each other. This clearly illustrates the
importance of information content, and demonstrates that our
CSS data are more informative than the J15 data.

The results obtained here can be compared with other results
from the literature. Very few SBCEX results have been pub-
lished at the time of writing this paper. However, this paper is
part of a SBCEX special issue, and we suggest the curious reader
to forage this issue to cross-compare results. Nonetheless, in situ
measurements from a novel acoustics core system are reported
in [43]. They show that the upper part of the mud layer has
a constant sound speed, whose value is very close to the water
sound speed. In places where mud was not too deep, the acoustic
cores were able to sense a transition region one or two meters
above the mud base. In this region, sound speed gradually in-
creases and reaches values between 1500 and 1550 m/s. This
fully supports the results we obtained with the CSS.

Another interesting comparison is with other inversion stud-
ies performed during SBCEX. As far as we know, Wan et al.
[19] and Bonnel et al. [20] published the only two peer-reviewed
articles on this subject at the time of writing this paper. Nonethe-
less, other studies have been presented during special sessions on
SBCEX at recent ASA meetings, such as the work by Lin et al.
[44] or by Knobles er al. [45]. All these references [19], [20],
[44], [45] use different data sets, and different inversion meth-
ods. However, they have one important common feature. They
all use the reflection survey layering as a prior deterministic in-
formation for the inversion. In other words, they do not invert for
number of layers, nor for layer thickness. They all have common
and consistent results: they estimate a strong gradient in the mud
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layer, and a sound-speed ratio at the mud/water interface around
0.99. The estimated sound-speed ratio is consistent with our in-
version result, with the acoustic cores discussed above [43], as
well as with other independent in sifu measurements [46]. On
the other hand, the strong gradient does not seem realistic, as
physical properties (e.g., porosity) of the mud are likely to be
constant with depth—at least in the major (upper) part of the
mud layer (e.g., [47]).

Still, inversion methods and data from these previous studies
[19], [20], [44], [45] are solid, and their results should not be dis-
carded thoughtlessly. It is too early to make a definitive answer
about the true geoacoustic properties of the mud. However, the
conclusions of the comparison of the various inversions cited
above are as follows.

1) If one uses the subbottom layering from the reflection

survey, then a strong gradient is required to reproduce any
long range acoustic data [19], [20], [44], [45].

2) If one does not use the subbottom layering information
from the preliminary survey, then no gradient is required
to predict the acoustic field, as shown in this paper.

Doing inversion without the preliminary survey information
may seem appealing, as it brings results that are more aligned
with expected mud properties. However, it does require inver-
sion for seabed layering. This in turn requires advanced—and
computationally intensive—inversion algorithms. The success
of this paper is partly due to the choice of a propagation track
that is range independent, while the tracks considered in [19],
[20], [44], and [45] were range dependent.

Another option to perform trans-D geoacoustic inversion
without dealing with range dependent effects is to consider short
range experimental setup. Indeed, if range is small enough, then
range dependence is not an issue, and one can invert for seabed
layering without prior information. This has been done by Bel-
court et al. [48] on wide-angle seabed reflection-coefficient data,
collected at two different sites on the Mud Patch. Their results
are similar to those presented here: they also indicate that the
upper part of the mud is homogeneous (with sound-speed ratio
~1), but that sound speed increases a few meters before the mud
base. It is significant to note that two studies based on differ-
ent data sets, on different physical quantities (spherical-wave
reflection coefficients versus modal dispersion curves), on dif-
ferent sediment models (viscous grain-shearing theory versus
compressional-wave velocities and densities), and on different
experimental setups (r < 1 km versus r ~ 7 km) lead to results
that are so consistent with each other.

VIII. CONCLUSION

This paper presented single receiver geoacoustic inversion of
two independent data sets recorded on reciprocal tracks during
the 2017 SBCEX on the New England Mud Patch. The first
data set is a CSS signal, a powerful impulsive source with a
large bandwidth, but contaminated by several secondary bubble
pulses. The second data set is a chirp emitted by a J15 source,
with a low SNR. A careful combination of source deconvolu-
tion/phase compensation and warping allowed the resolution
and estimation of 7 modes from 15 to 300 Hz for the CSS, and
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6 modes from 52 to 248 Hz for the J15. The estimated modal
dispersion curves served as input for a Bayesian geoacoustic
inversion.

The chosen tracks for the two sound sources are range inde-
pendent, so that both subbottom layering and geoacoustic pa-
rameters (sound speed and density) have been estimated from the
data. This was done using a rigorous trans-D inversion method.
In particular, the number of seabed layer interfaces and their
depths were treated as unknown, and data error statistics were
modeled as correlated Gaussian variables using a trans-D AR
process. This hypothesis was verified a posteriori, after the in-
version.

The seabed of the experimental area is known to have a first
thick layer of fine grained sediment with clay, or mud. The
inversion results show that this mud layer is homogeneous over
most of its depth, with sound speed around 1460 m/s and density
around 1.6 g/cm®, which corresponds to a sound-speed ratio at
the mud/water interface of nearly 1. The mud also includes a
transition region, above the so-called mudbase, where speed
increases by 50 to 100 m/s. These findings are consistent with
in situ measurements performed during the experiment, as well
as with other inversion results obtained in the area.

A novel feature of this paper is the comparison of two data
sets, collocated independently both in time and space. Because
source signals were different, the two data sets do not have the
same information content. The trans-D Bayesian method used
here allows an accurate quantification of this information con-
tent, which in turn allows accurate estimation of uncertainties.

The paper further illustrates that the data considered here do
not have enough information content to resolve thin layers that
were resolved by a previous seismic survey. If one is interested in
predicting propagation on the mud patch at a few hundred hertz,
then the results shown in this paper are perfectly suitable. On the
other hand, if one is interested in learning as much as possible
on the mud patch layering, including fine structure, then the data
considered here are not sufficient. This would require higher fre-
quency acoustic data capable of resolving thin layers. However,
no single data set is fully informative. Future geoacoustic inver-
sion research should consider meta-studies combining different
data sets with different (and ideally complementary) informa-
tion content.
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