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Optical Underwater Communication: The Potential of
Using Converted Green LEDs 1n Coastal Waters

Jan Sticklus

Abstract—Compared to the open ocean where blue light-
emitting diodes (LEDs) perform well for data communications,
in coastal and harbor environments optical transmission becomes
worse and the color of lowest attenuation shifts to green. Another
problem concerns the “green—yellow gap” of LEDs, as the quantum
efficiency of current commercially available green LEDs is poor.
Since energy consumption is an important factor, particularly for
battery-powered systems, using blue LEDs is a tradeoff. Recently,
phosphor-converted green LEDs, which are pumped by highly effi-
cient blue LEDs, have been introduced to the market, and this type
of LED promises better performance. This paper compares the use
of blue, green, and converted green LEDs for applications in optical
underwater communication systems in coastal waters. Theoretical
aspects of the overall LED-water-detector channel are presented.
A method for determining individual system coefficients is devel-
oped, and the impact on the communication system performance
is explained. Practical approaches are introduced, complemented
by measurements in the Baltic Sea.

Index Terms—Coastal waters, converted light-emitting diode
(LED), green—yellow gap, optical underwater (u/w) communica-
tion.

1. INTRODUCTION

N CONTRAST to commonly used acoustic underwater

(u/w) communications, the optical u/w channel promises
much faster data transmission, but with the disadvantage of an
orders of magnitude decreased range. Possible applications are
autonomous u/w vehicles operating in a swarm or single vehi-
cles communicating with u/w platforms, such as sensor landers.
The basic components of u/w optical links include a modulated
light source at the transmitter side, the water column, and a pho-
todetector at the receiver side. The modulated electrical signal
needs to be converted into photons before traveling through the
water column. Typical light sources that allow fast switching
are lasers and light-emitting diodes (LEDs). A collimated laser
beam provides high irradiance, offering a longer range compared
to diffuse light sources, but requires sophisticated pointing and
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acquisition when used with hovering or moving vehicles such as
autonomous underwater vehicles (AUVs) or remotely operated
vehicles. Therefore, for practical purposes, LEDs are a suitable
compromise as their typically wide radiation pattern can be al-
tered by reflectors or lenses. Our focus for setting up u/w optical
systems is based on using commercially available components
which are moderately priced and off the shelf. Widely used de-
tectors at the receiver side are silicon photodiodes (PD), rather
than expensive and fragile photomultiplier tubes, which would
be the best choice for maximum ranges in the clear deep sea.

Developing u/w systems requires testing before operation in
the field. In most instances, deep sea gear testing is split into
pressure tests for maximum depth and field trails in shallow wa-
ters for functionality checks, since the use of testing tanks have
many limitations with respect to acoustics and optics. Baltic Sea
u/w tests allow us to reference the values from our setup to a
commercially available oceanographic instrument. This refer-
encing is beneficial, considering that this will also be the en-
vironment for investigating optically communicating AUVSs in
the future. LED-based mobile u/w communication benefits from
a diffuse (e.g., spherical) character of both transmitting and re-
ceiving elements. As the body of the vehicles often causes shad-
owing, two hemispherical optical transducer heads are common,
analogous to lower and upper transducers in acoustics. For many
optical u/w applications, pressure housings with a flat or hemi-
spherical port made of glass or plastics are used. Generally, these
housings are relative heavy, bulky, and expensive. The main dis-
advantage of the hemispherical port is the focus-sensitive layout,
whereas the limited field of view (FOV) of up to +=47° [1] is the
main drawback of the flat port design. Both designs suffer from
numerous transitions through different media in the optical path,
which may also cause uncertainties in analytic calculations. An
alternative is to use pressure-neutral casting of optical compo-
nents in a transparent resin. Many electronic components are
able to withstand high pressure in deeper water. For field test-
ing, we decided to cast LEDs and PDs in highly transparent
polyurethane. Arranging several of these rigid elements allows
the setup of a transducer head with a hemispherical characteris-
tic, and also individual addressing of elements to save valuable
energy. A possible close-to a hemispherical design is a trun-
cated pyramid structure [2]. The number of elements used is a
compromise between transmitted power, efficiency, space, and
cost.

In this paper, we examine the usability of blue and green
LEDs with the aim to support future developments in optical
communication for u/w vehicles in coastal waters. We present
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and discuss the main elements of the u/w communication chan-
nel, beginning with the medium water in Section II, the light
source in Section III, and the photodetector in Section IV. In
addition, we also consider the effects of two typical modulation
schemes in Section V. The experimental setup and procedures
are introduced in Section VI, followed by the experimental re-
sults in Section VII. Finally, concluding remarks are provided
in Section VIIIL.

II. OPTICAL PROPERTIES OF SEAWATER

For optical u/w communications, coastal waters, such as the
Baltic Sea, are more challenging than oceanic waters. This is
due to much higher complexity with respect to their inherent
optical properties (including light absorption, scattering, and at-
tenuation). The expected maximum range for optical u/w com-
munication in coastal waters is a few meters, thus it is one order
of magnitude less than in the clear ocean [3]. There are two ba-
sic parameters describing the attenuation of light in water. For
collimated light, it is the beam attenuation coefficient ¢, and for
diffuse light it is the diffuse attenuation coefficient K, or Ky
for downwelling natural irradiance. For laser light, the use of ¢
is appropriate, but for less focused beams K is more suitable
[4]. While ¢ describes the inherent optical properties of the wa-
ter and depends only on the medium, K describes an apparent
optical property, as K depends on the medium and the radi-
ance distribution, where the radiance distribution is determined
mainly by the sun’s position at the sky [5]. The parameter K is
upper limited by c¢, but is usually lower than c as the typical ra-
diance distribution is not that of a light beam. For clear oceanic
water, K is roughly a third part of ¢ for a given wavelength [3].
Depending on the application, a suitable attenuation coefficient
value is found between c and K [3], [6]. The basic formulas for
the decay of light intensity in water are

E=FEy-e°" (1

and accordingly

E=FE, - & ()

where Fj is the initial irradiance (in watts per square meter).
After traveling a distance r (in meters) in a medium with an at-
tenuation coefficient of ¢ or K (in 1/m), the residual irradiance
is E (in watts per square meter) [3]. Oceanic and coastal waters
can be classified as the so-called Jerlov water types, starting
with types I-III for the ocean and 1C-10C for coastal waters,
varying from clear to more turbid [7]. Diffuse attenuation coeffi-
cients for Jerlov coastal water types 1C-9C and oceanic type II1
are shown in Fig. 1. The coefficients K; and c are wavelength
dependent, and the wavelength spectra of K for different water
types show individual minima at certain wavelengths. The min-
ima shift from blue wavelengths for less turbid oceanic to green
wavelengths for more turbid coastal waters. For harbor waters
with high chlorophyll concentrations, red light was found to be
least attenuated [8], [9]. For the Baltic Sea, K; values of types
III to 9C are documented, depending on the region and season.
Types 3C and 5C occur relatively often in the Baltic Sea [10]. As
an inherent property, the attenuation coefficient c is composed of
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Fig. 1. Total diffuse light attenuation coefficients K; for the Jerlov water
types (shown in the legend) as a function of light wavelength, replotted from
database [7].
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Fig.2. Typical wavelength spectrum of the total diffuse attenuation coefficient
K for the Baltic Sea in summer (solid line). Additionally, the coefficients for
different water constituents are given (see legend). Redrawn from [11].

the sum of the light absorption coefficient a and light scattering
coefficient b, all in the unit 1/m. The optically active components
in natural waters are mainly colored dissolved organic matter
(CDOM, also called yellow substances or gelbstoff), detritus
(debris of plankton or sediments), and phytoplankton (microal-
gae). The optical properties (a, b, c) of these generally decrease
with wavelength, while (molecular) absorption by pure water
increases with wavelength, as illustrated in Fig. 2.

HI. LIGHT SOURCE
A. Green—Yellow Gap

In the light attenuation spectrum of the Baltic Sea water (see
Fig. 2), the minimum is in the green wavelength range of about
520-590 nm, which makes the use of green LEDs advantageous
for optical communications [12], as the lowest attenuation is
linked to the highest water transparency. Blue to green col-
ored light (approximately 450-550-nm wavelength) is typically
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Fig. 3. LED wall-plug efficiency (also called radiant efficiency) of Luxeon

Z-series LEDs at 700-mA forward current. Values were calculated using inter-
mediate binning from datasheet [14].

generated with indium gallium nitrite (InGaN) semiconductor
LEDs. On the other hand, aluminum gallium indium phosphide
(AlGalnP) semiconductor LEDs deliver yellow to red light (ap-
proximately 570—660 nm). Although the market offers a huge
variety of LEDs, in the green—yellow—orange color region only
LEDs with a poor efficiency are currently available. This area is
called the “green—yellow gap” of LEDs [13] (see Fig. 3), which
is obviously just at the wavelengths of the lowest attenuation in
coastal waters.

Announced a few years ago and still relatively rare in the
market are converted green LEDs. They use highly efficient blue
LEDs combined with a phosphor conversion layer to produce
green light. These LEDs can potentially close the “green—yellow
gap.” A market survey of these commercially available LEDs re-
veals that the Luxeon Z-series is well suitable for testing. These
off-the-shelf high-power single-color LEDs are well known for
their high efficiency and are available in many colors including
a converted green type, called “lime.” One characteristic of this
LED is a high spectral bandwidth (in relation to deep-blue and
pure green LEDs), as illustrated in Fig. 4 and indicated by the
large full-width half-maximum value in Table I. A minor power
portion between approximately 600 and 700 nm (see Fig. 4) is in
the range of higher attenuation (even higher than the attenuation
of the blue regime) and, therefore, will be less effective for the
received power of a detector.

B. Light-Emitting Diode Speed

A further disadvantage of converted green LEDs is the rela-
tively slow phosphor-mediated conversion process, which limits
the bandwidth to a few megahertz [15]-[17]. To determine the
suitability of these converted LEDs for optical communication
applications, the test setup shown in Fig. 5 was implemented.
This setup consisted of a signal generator connected to a high-
speed MOSFET switch to drive the LEDs with a square signal,
and a fast photodetector linked to an oscilloscope to show the
resulting peak shape.
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Fig. 4. Normalized light emission spectra of differently colored Luxeon Z-

series LEDs (Lumileds Holding B.V., Amsterdam, The Netherlands) at 300-mA
forward current measured using an USB2000 spectrometer (Ocean Optics, Inc.,
Dunedin, FL, USA).

TABLE 1
SOME OPTICAL PROPERTIES OF SEVERAL LEDS USED IN THIS STUDY

Manufacturer Color Peak Spectral Viewing
Part no. wavelength  half width angle
[nm] [nm] [degree]
Osram
LD W5SN deep-blue 449 25 120
LB W5SN blue 465 25 120
LT W5SN green 520 33 120
LY W5SN yellow 597 18 120
Lumileds
LXZ1-PRO1 royal blue 450 20 125
LXZ1-PMO1 green 530 30 125
LXZ1-PX01 lime, 550 100 125
conv. green
[14], [20], [21]

Comparing the curves for royal blue and converted green in
Fig. 6, the lowpass characteristic of the converted LED is visible.
By using the rise time tr (in seconds) from 10% to 90% of the
amplified photodetector signal, the approximate bandwidth BW
(in hertz) can be determined as follows:

BW ~ @ 3)
tr
In case of the tested converted green LED, a tr of 170 ns was
identified, leading to a BW of slightly over 2 MHz. Based on this
result, symbol rates in the order of a few megabits per second,
depending on the signal-to-noise ratio (SNR), are theoretically
achievable [18].

C. Light-Emitting Diode Efficiency

The radiant efficiency 7 (also termed wall-plug efficiency) of
an LED is defined as the ratio of emitted optical power P, ,q to
the electrical input power P, both in watts:

Prad
Pel

n= “

Wall-plug efficiency values for nine different LEDs are shown
in Fig. 3.
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Fig. 6. Peak shape of Luxeon Z-series LEDs at 1 MHz. The plot shows
overlayed oscilloscope screenshots, with the upper curve for royal blue LED
and the lower curve for the converted green LED.

In datasheets for different LEDs, the radiated power in the
visible spectral range is typically given for deep blue and deep
red colors as a radiometric value (in watts). For wavelengths
between deep blue and deep red, the photometric value (in lu-
men) is commonly documented and these photometric values
are weighted by the photopic (daytime) human eyes sensitivity
curve [19]. A simple conversion from photometric to radiomet-
ric units for a single wavelength can be performed using the lu-
minous efficiency factor of 683 Im/W at 555 nm and the photopic
eye sensitivity function. However, LEDs are not monochromatic
light sources. They show a nearly Gaussian-shaped spectral dis-
tribution, as pictured for royal blue and green in Fig. 4, thus
a simple conversion is not accurate. To solve this problem, an
integration of all contributing wavelengths is necessary, and this
has been performed in 5-nm steps for the radiant power plotted
in Fig. 3.

Instead of measuring the radiant power (in watts) directly,
which would require expensive equipment such as an integrating
Ulbricht sphere, the irradiance (in watts per square meter) at a
constant distance is measured. For the comparison of LEDs,
this simplification can be done, since the chosen LEDs show
a radiant characteristic close to a Lambertian source, i.e., the

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 44, NO. 2, APRIL 2019

>

Rohde & Schwarz ®

HMO 3034
oscilloscope
Thorlabs ®
amplified silicon photodetector
PDA-10A EC

200-1100nm, 150MHz

0.8

O  Osram deep blue
O Osram blue
0.7+ A Osram green
V¥V  Osram yellow
— 0.6 @  Lumileds blue
= : i
I+ B Lumileds converted green
‘\S\E 05l € Lumileds green
= .
5
2041
A~
©
8 03f
g
£
£
8 0.2+
0.1+
f f f {
0.0 0.5 1.0 1.5 2.0
current [A]
Fig. 7. Ratio of irradiance emitted per electrical power as a function of elec-

trical current for different LED types and colors.

polar radiation pattern is almost circular and the total viewing
angle at 50% intensity is approximately 120° (see Table I).
These measurements were conducted for different currents to
examine changes in efficiency. These tests were performed in
air, since the results at this stage do not require u/w testing.

Fig. 7 shows that the blue LED has the highest ratio of ir-
radiance to electrical input power, the converted green LED is
less efficient, and the yellow and green LEDs show considerably
lower efficiencies. Normalized to the values of the most efficient
deep blue LED as 100%, the converted green ones are offering
efficiencies in the low 70%, and the green ones only in the mid
30%. The relation may slightly vary with current.

It is beneficial for the total efficiency to use more
LEDs operated with lower currents, instead of forcing
fewer LEDs using high currents. For further testing Luxeon
Z-series LEDs in royal blue, green and converted green colors
were selected.

D. Reflector

The radiation pattern of plain LEDs typically shows a wide
and smoothly decreasing angular displacement, characteristic
of a Lambertian source with an intensity of 50% at 60° off axis.
By installing a reflector, this can be changed toward a narrower
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Fig. 8. Measured LED beam pattern with and without reflector in air and u/w.

Tests were made on a goniometer bench. Four Luxeon Z-series LEDs tightly
mounted on a metal-core printed circuit board were driven with 7 =300 mA.
Intensity is gauged by an Extech LT 300 light meter with an aperture tube at
0.7-m distance.

Fig. 9.

Casted LED element with reflector for u/w testing.

and more homogeneous pattern, but the irradiance in the center
is increased at the cost of a reduced emission angle.

Fig. 8 demonstrates the measured relative spatial intensity of
a quad LED element without a reflector in relation to the same
LED element with reflector in air, and that of a casted element
with reflector u/w. This LED element contains four Luxeon
Z-series LEDs on a metal-core printed circuit board, bonded
to a Carclo 10255 reflector and casted in highly transparent
polyurethane, cf., Fig. 9. The flatness at the top of the angular
pattern is slightly degraded (see Fig. 8) since the reflector base
is flooded with a layer of polyurethane, which creates an extra
transition in the optical path.

IV. PHOTODETECTOR
A. Sensitivity

A benefit of using green or converted green instead of blue
LEDs is the enhanced photosensitivity of PDs at longer visible
wavelengths. The quantum efficiency (QE) for a given wave-
length is the ratio of the generated photocurrent to the number

g
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a , First Sensor PC10-6b
L e Hamamatsu $3590-08
0.1 T e Osram BPW34
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0ot
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wavelength [nm]
Fig. 10. Photosensitivity of standard and blue enhanced detectors.
TABLE II
PROPERTIES OF ALL PHOTODETECTORS USED IN THIS STUDY
Manufacturer ~ Type blue Sy Sy Sy/Sy
Part-No. enhanced @450 nm blue @550 nm green
[A/W] [A/W]
Osram
BPW34 Si PIN PD no 0.16 0.31 1.94
BPW34B  SiPIN PD yes 0.28 0.42 1.49
Advanced
Photonix
PDB-C156 Si PIN PD no 0.1 0.22 22
PDB-C107 SiPINPD  yes 0.19 0.31 1.63
Hamamatsu
$3590-08  SiPIN PD yes 0.28 0.37 1.32
First Sensor
PC10-6b Si PIN PD yes 0.32 0.39 1.22
AD1900-11  Si APD yes 28 34 1.21
gain = 100

[23]-[28]; Sy and S, are the sensitivities for blue and green. Silicon positive intrinsic
negative photodiode (Si PIN PD). Silicon avalanche photodiode (Si APD).

of incident photons. In the visible range, the theoretical QE
maximum is doubled from 400 to 800 nm; see [22]. For the ap-
plication in optical u/w communication, blue enhanced devices
are more suitable, as shown in Fig. 10. The sensitivity for blue
and green lights of some common photodetectors is compared
in Table II. We define the sensitivity ratio v, of a PD as the
photosensitivity S, (in ampere per watt) for green (550 nm)
divided by the photosensitivity .S, (in ampere per watt) for blue
(450 nm) as follows:
S,

Vgp = S_Z (5)
In the best case, with a QE of 100% for both 450- and 550-
nm wavelengths, vy, achieves a value of 1.22. This means the
PD is 22% more sensitive for green as for blue. Even blue
enhanced devices are often less close to the physical border (QE
= 100%) in the blue region as in the green, which increases v,
This ratio will be used later to compare blue and green colored
systems. Of course such ratio can be formed for any other color
or wavelength pairing, respectively.



540

Cr
— 1+
RE
+
®----- ' OPAMP, — VOUt
PD Tc
®----- . °D
VR 1
Fig. 11.  Circuit of a basic TIA [32]. As an example, designing a TIA for an

Osram BPW34B photodetector (as used later in the evaluation) by employing
an Analog Devices AD8651 OPAMP for a target bandwidth of 1 MHz and a
maximal irradiance of 2 W/m? for V,,; = 2 V output signal yields approxi-
mately Rp = 230 k2 and C'p = 1 pF, when the PD is reversed biased with
Vr to reduce the junction capacitance C'p to 15 pF.

B. Amplification

A p-i-n PD in the photoconductive mode usually generates a
tiny current, which requires amplification and conversion into
a voltage in a suitable range for further processing. For com-
munication purposes, this will generally include a fast analog-
to-digital conversion with high resolution to offer a large dy-
namic range. The amplification is typically performed by a
transimpedance amplifier (TIA), frequently a one-stage circuit
consisting of a low-noise operational amplifier (OPAMP) with a
high gain—bandwidth product and a resistor Ry and a capacitor
C' in the feedback loop, as illustrated in Fig. 11. In calculating
a TTA for a particular PD, many variables have to be consid-
ered. The use of design tools for simulation is recommended
[29]-[31].

C. Noise Analysis

According to the Shannon-Hartley theorem, the maxi-
mal achievable bitrate R, of a communication channel is
expressed as

R, = BW - log, (1 + SNR). ©)

In u/w optical communications with LEDs and p-i-n PDs, the
bandwidth limiting factors are typically the rise time of the LED,
including driver at the transmitter side and the capacitance of the
PD at the receiver side. The SNR is the most relevant parameter
with respect to the achievable bitrate, i.e., the noise has to be
kept as low as possible, since the strengthening of the signal
would be power consuming and the signal would be attenuated
quadratically and exponentially with the distance 7; see (11).
Ultimately, a decreased noise level will also boost the systems
maximum reach.
The SNR equates as

2 (S P)? P?
SU TN CIT. . B
P2 e (S -NEPiota1)>  NEP7,
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where P, is the received power at the PD and S is the sensitiv-
ity, isignal 18 the average signal current, and 4,45 is the average
noise current. The total noise equivalent power NEP;.:, has
many contributors, such as shot noise, thermal noise, dark cur-
rent noise, and preamplifier noise, and dependencies, such as
sensitivity of PD, bandwidth, and temperature. Further sources
can also be identified [3], [33], [34]. Typical dominant sources
of noise are the shot noise, the thermal or Johnson noise in the
feedback resistor Ry, and the PDs dark current noise, repre-
sented, respectively, as NEPg;,, NEP; . , and NEP;,

24 isignal - BW
NEP,;,, = \/ 219 Peignal ' Zﬁ;gdl ®)

4-k-T-BW
NEPug, = | = ©)

2. q- Z.dark -BW
G2

NEP;, = (10)

NEP, 1, = \/NEP2

sigs

+NEP};, +NEP; . (11
Another important source is the noise of the amplifier. The
corresponding values are the voltage noise density e,, and the
current noise density 4,,, which can be found in the OPAMP
datasheet. The calculation can be aided by design tools [30],
[31]. Given noise voltages can be converted to currents through
Ry and currents via S to NEP. The resulting NEPopapp has to
be integrated into equation of the NEP ., (11). A simulation
of the example in Fig. 11 yields a minimal detectable current,
equal to the noise current (SNR = 1), in the order of 1 nA. For
further SNR calculations, this value will be used as 7,,0;se-

D. Optical Filter

To reduce noise introduced by ambient light, optical filtering
can be employed. Commonly used filters are colored glass or
thin-film types with bandpass or shortpass characteristics [6].
Drawbacks of filters can be transmission losses and the depen-
dence on the angle of incident. Care must be taken in designing a
filter—photodetector combination for a wider FOV [35]. Optimal
matching of filter curves to the LEDs spectra can be difficult to
archive, since the standard assortment on the market is limited,
or may require customized solutions. In our experiments, PDs
without filters were used, to avoid another spectral-sensitive
component in the setup. To eliminate daylight influence, the
experiments were executed at dark night.

V. MODULATION SCHEME

A further issue of u/w optical communications is the choice
of the modulation scheme. Several feasibility studies compared
the performance of these modulation techniques regarding band-
width efficiency, power requirements, bit error performance, and
implementation complexity [6], [9], [36]. Widely used is non-
return-to-zero ON—OFF keying (NRZ-OOK) due to the simplic-
ity in implementation. In consideration of the factors mentioned
before, pulse position modulation (PPM) is recommended as
a good compromise for applications like this. For further
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TABLE III
MODULATION SCHEME COMPARISON

Criteria NRZ-OOK 8-PPM

Bandwidth efficiency
Bandwidth BW in [hertz]
Bitrate Ry, in [bits per second]

Ry, =BW R, =0.375BW

Power efficiency low high
BER performance

SNR in [decibel] 13.5 14.0
(for target BER of 1.0- e — 6)

(SNR per symbol)

Integration complexity lowest low

[91, [36].

investigations and calculations, 8-PPM is used and compared
with NRZ-OOK (see Table III).

The related bit error rate (BER) for NRZ-OOK is given as
follows [37]:

1
BERNRrz 00k = 3 erfcv0.5 - SNR. (12)

Concerning the formula of the BER for 8-PPM, refer to equal
energy orthogonal signals in [38]. Since the presented integral
cannot be derived in closed form, the calculation requires some
computational effort.

VI. EXPERIMENTAL PROCEDURE AND SETUP

The irradiance E (in watts per square meter) collected by the
active area A of the PD (in square meter) and the photosensi-
tivity S’ (in ampere per watt) determines the signal current I (in
amperes) as follows:

I=E-A-S. (13)

If we assume that the LED is a point source with a specific
emission angle, the irradiance E seen by a detector decreases
with distance r following an inverse square law. The ratio of the
irradiances at two distances (£, and E>») is proportional to the
two distances r; and r5 by
2

i _r (14)

E, 12
Direct measurement of the received power is possible by a pre-
cision light meter containing an irradiance-detector head with a
linear response in the visible range. This is advantageous when
dealing with sources with various wavelengths, such as the three
differently colored LEDs in the device under test (DUT). The
sensor head is cosine corrected, thus the characteristic matches
the angular sensitivity curve of a typical flat-substrate photode-
tector design, which is intended to be used for later setups. Fur-
thermore, the waterproof version of the detector allows u/w mea-
surements (Gigahertz-Optik P9710-4 optometer and RW3703
WQ detector head). Generally, a high absolute accuracy of irra-
diance measurements is hard to achieve and requires extensive
calibration. Since our target is to undertake comparative mea-
surements, a good linearity of the detector head is beneficial.
The main factors for planning and executing u/w tests in the

floating pipe
water surface 1
L I

moveable position «—}—=

.

distance r
7 ,\>U
irradiance /‘ED with
detector reflector
Fig. 12.  Experimental setup with floating pipe for determining ky .
transmitter area
0 )
r
transmitter detector area

point source

Fig. 13.  Geometric layout of transmitter and receiver.

Baltic Sea are natural attenuation conditions in the seawater,
no reflections from pool walls, and in our case easy access. To
avoid or minimize the influence of ambient light, measurements
were done at night. Although the water properties could not be
changed actively, it is possible to repeat the measurements un-
der different conditions, such as clearer or more turbid waters.
It is important for later work that comprehensible parameters
are recorded, e.g., measuring attenuation coefficient values by
oceanographic instruments, such as a spectral transmissiometer
[39]. A boundary condition for the test setup is no inclination
between the LED(s) and the light sensor. This equipment should
be in the line of sight and carefully aligned. Also, depth and dis-
tance of the LED(s) and detector should be kept at a certain ratio
to minimize surface reflections. A sketch of the setup used in
our experiment is shown in Fig. 12.

The received power of the system is affected by the properties
of the transmitter, the medium, and the receiver. In [34], the
effective received power P, is given by the formula

P, e K7 .D? coso
4-72 - tan? 0
Using the conditions outlined in Fig. 13, P, is the received

power and P, is the transmitted power (both in watts). The half-
reflector opening angle is represented by 6, the distance r is in

P =

15)



542

meters, and the attenuation coefficient K has the unit 1/m. D
stands for the detectors aperture diameter (in meters) and the
angle ¢ represents the inclination with respect to the optical
axis.

Calculations can be performed for each of the three different
colored LEDs as DUT. The first uncertainty involves use of
the correct water attenuation coefficient ¢ or K, or as stated
before, probably a value in between. The second uncertainty is
the value of the radiated power of the LED. The radiated power
can either be directly measured using expensive instrumentation
and possibly resulting in measurement error, or calculated based
on datasheet curves of their relative spectral emission (subject
to binning tolerances). Furthermore, an assumed ideal beam
shape with uniform power density is probably not achievable,
and must be taken into consideration.

On the other hand, field tests performed under real and con-
stant conditions can deliver irradiance data at the receiver lo-
cation(s), but it is important that the electrical power is kept
constant. Let us denote the attenuation coefficient as Ay, which
is valid for the specific test setup, the water conditions, and the
approximate peak wavelength of the light source (since the LED
is not monochromatic) [6], [40].

An expansion of (15) with 7 results in

P, K. 7r-D2~cos¢)
Pp=——"_ gckr. = 77 16
712 tan2f © 4 (16)
Substituting K by kgy and setting ¢ = 0 (no inclination) gives

I

—kgysr
———— e T Ay
w12 - tan?d

p - (17)

The transmitter area term could also be represented by the area

of a spherical crown yielding

_ P
_2-7r-r2-(1—cos0)

P, et A (18)

Using (18) will result in the same answer in (24). The irradiance
at a distance r can be expressed as

P.
E, = . (19)
Adet
Solving for P, at two distances r; and 7o gives
Pf'l = EH . Adet (20)
P7'2 = Er2 . Adet~ (21)
Substituting (20) into (18) and (21) into (18) results in
P, _k
EW=—F5—=5 ¢ 22
YT tan? 6 22)
P, i
Eo=—F5——= ¢’ 23
T nr?tan?d ‘ @3)
Forming the quotient of F.; and FE, leads to
E -1} g hays
= . 24
Bry 1} | s @9
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Finally, solving for Ky results in

Erl : T%)
In (
k o E’r2 : T% ]

s = 25
e = (25)

Hence, for every DUT LED with an individual wavelength,
at least two irradiance measurements at different distances
need to be undertaken. More measurements would be useful
for confirming the persistence of the determined Kgy. Let us
name these individual system coefficients kgyspiues Fsysgreens
and Kgysconvereen, Tespectively. By using Ay, the ratio of two ir-
radiances (e.g., the attenuation) at two distances r; and r» can

be calculated as [41]
2
_ e*ksys‘(rlfm) . (Tl) .
T2

The next task is a comparison of the reach of two light sources
fed with equal electrical power having the same optical char-
acteristic (reflector), but different color-dependent radiant effi-
ciencies, see also Section III-C. These properties of the DUT
LEDs are leading to diverse values of the initial irradiance Ej
at the initial distance 7. Different wavelengths are also causing
individual attenuations. To fulfill this task, we want to determine
the distance 7., where the received power is the same for the
two LEDs under investigation. This can be done efficiently by
measuring the irradiance at the same distance ry for both DUTs,
as illustrated in Fig. 14. A blue and a green LED pair was used,
but the use of other color pairings such as blue and converted
green would also be valid. Given £ = P/A

Erl
Er2

(26)

e
(28)

Povive = Eoblue - Aodet

PO green — EO green ° AOdct-

Using (17) for blue and for green and equating the received
power P, results in

EO blue * AOdet

—ksysblue T
e T - Adet
2772, (17(;059)

EO green * AOdct

—kgysgreen T
— . @ Msysgreen . A 29
2-m-r2- (1 —cosb) det 9)
and after simplification leads to
EO blue - e_kbysmuch = EO green * e_k”bgree“ " (30)
Upon solving for r
In < Eopiue )
E T n
— 31)
W (e
n < e~ Fksysblue )
yields
Teq =10 + T (32)
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Fig. 14.
data from August 18, 2016; see Table IV.

c.f., Fig. 14. The last step requires the substitution of r
In ( E()blue )
EO green
eysareen \
e Fsysgreen
In ( e Fsysblue >

To take the wavelength-dependent sensitivity of the PDs into
account, the last equation can be extended by the sensitivity
ratio v, derived in (5). This will change the definition of r.,
being the distance of the same irradiance, into the distance of
the same generated photocurrent 7.5 as

1 ( Eoprue 1 )
n — ——
EO green  Vgb

e*ks_vsgrcou
I T
e Fsysblue

The determined values can be used to calculate the absolute
values of power or irradiance at the PD at a distance ry. Of
course this equation can be modified to other color pairs. For
example, blue and converted green with associated vcy,.

The decision as to which LED color is beneficial can be
guided by these calculations. For better understanding, let us
consider two example pairs: blue/green versus blue/converted
green LEDs, supported by the graphical presentation in Fig. 14.
For the first blue/green pair, blue starts with a higher initial
irradiance Ejypiye than green Eygreen, but decreases faster due
to higher attenuation. At larger distances beyond the calculated
point of equal irradiance 7eqpblue—green, the signal of a green
LED would be stronger.

Concerning the second blue/converted green pair, a converted
green LED has a relatively high initial power value Ey. green t00,
but the attenuation of converted green is only slightly higher

Teq = T0 + (33)

Teqs = T0 + 34)

distance r [m]

Dependence of the irradiance from the distance between transmitter and receiver for different colored LEDs (see legend). Plot based on experimental

than for green and much less as for blue. This leads into an
intersection with blue at a comparatively shorter distance at
Teqblue—conv.green-

Now the noise floor has to be taken into consideration. It
represents a practical lower limit of a detectable signal, see also
Sections IV-B and IV-C. Since we seek for a maximization of the
signal, hence SNR, the curve intersecting the noise floor at the
largest distance is proposed to deliver the strongest signal. For
short distances, another color may overtake, in this example blue
Up 10 7eq blue—conv.green > DUt this has less importance because the
SNR is high at these short distances anyway.

The next step is to develop a calculation of the SNR, one of
the most important parameter for communications. To integrate,
the PDs wavelength-dependent sensitivity requires changing the
view from irradiances to currents [42]. Combining (3), (19), and
(26) leads to the SNR at distance

7“02 :
(S “ Aget - Ep - 3 e Favs(n "’“)
1

(inoise )2
Based on the measurements of the initial values Ej and 7, the
determined ky¢ for the investigated colors and the identified
Inoise, W€ are now in the position to calculate the SNR and
thereafter to compare the BER of different modulation schemes
at a certain distance. A practical way to conduct this evaluation
is to use a spreadsheet program.

SNR =

(35)

VII. EXPERIMENTAL RESULTS

To determine the individual kg of the three different colored
LED:s, five experiments were performed in summer 2016 in the
Eckernfoerde Bight at coordinates 54° 28.490' N and 9° 50.803’
E. The intention was to evaluate the proposed method under
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TABLE IV
EXPERIMENTAL RESULTS

July 23 August 18  August26  September 6  September 28
Visibility, subjective in meters 2 4 4 3 2
Temperature of water in degree celcius 20 19 19 18 18
ksys in 1/m
For blue 0.311 0.252 0.198 0.224 0.434
For green - 0.119 0.106 0.132 0.195
For converted green 0.164 0.157 0.142 0.182 0.237
Teq iN meters
For blue (450 nm)-converted green (550 nm) 2.52 3.67 6.41 9.40 2.24
Teq iN meters
For blue (450 nm)-green (525 nm) - 6.99 104 10.7 4.48
Teqs in meters with vy, = 1.22
For blue (450 nm)-converted green (550 nm) 1.16 1.58 2.86 4.66 1.23
Teqs in meters with vy, = 1.17
For blue (450 nm)-green (525 nm) - 5.81 8.66 9.00 3.82
Data of Summer 2016 in the Eckernfoerde Bight at 54° 28.490' N and 9° 50.803' E.
different optical water conditions and to improve the setup. The 051 LED color
LEDs were driven with the same constant current during the 045+ (|:|) blue e °

. converte reen
experiments and related forward voltages were recorded. To o4t O green ¢ 3
achieve equal electrical input power values for following cal- — st
culations, corrections were applied afterward to the measured £ °
irradiance values assuming that the radiant efficiency of the 3 033 T
LED is linear in this narrow range. This is essential withrespect 3 %7 .. o ..m
to the comparison of measured irradiance values. As the spec- 5§ o021 to D,,.—”" o
tral sensitivity of the irradiance detector head is known, minor £ o571 O O ﬂ -7
corrections for the individual wavelengths were applied. Noad-  ~ 1 - o-" -¢
ditional filters in the optical path were used. Since the irradiance 005
decrease is dominated by the geometric loss, care was taken in '

. . . 04 : : |
selecting the two distances 1 and 7. If the distance between 2016-07-01 2016-08-01 2016-09-01 2016-10-01
r1 and 79 is too small, the accuracy of the determination of this date
distance is insufficient. If the distance is too large, irradiance . . . . .

Fig. 15.  Determined attenuation coefficient kgy s, based on measurements in

levels become too low for an accurate determination of the dif-
ference in power. In this experiment, an LED of power 3 W and
distances of 0.4—0.8 m were used for 1, and 1.3-2.2 m for 9.
Since the measurements were conducted under natural condi-
tions, signal variations due to scattering from particles drifting
in the current were averaged by using a long integration time
of 5 s. Although the measurements were performed at night,
ambient light values and meter offsets were taken into account.
Table IV and Fig. 15 show the results.

During two days of relatively clear water conditions, an u/w
spectrophotometer (AC-S, WetLABS, Philomath, OR, USA)
was used for measuring in situ optical properties. This allowed a
comparison of the determined £y with the attenuation, absorp-
tion, and scattering coefficients measured by the AC-S equip-
ment [43], as presented in Fig. 16. On both days, the deter-
mined values for ks were close to absorption coefficient values,
which indicates negligible loss due to scattering at these short
distances [6].

When comparing the values of k¢ for green and converted
green LEDs in Figs. 15 and 16, experiments with converted
green show higher kg, values. This effect is related to a signif-
icant part of the spectral bandwidth above 580 nm (see Fig. 4).
As presented in Table IV, the converted green LEDs have sig-

the Baltic Sea in summer 2016.

nificant shorter reqs values compared to the green LEDs, thus
they can be a substitution for blue or green LEDs in coastal
waters.

The found water conditions in the Baltic Sea during the field
tests were relatively clear, in the range of Jerlov water type
3C. Referring to Fig. 1, more turbid coastal waters such as
5C-9C, where the attenuation minimum shifts toward higher
wavelengths, would further benefit the results of the converted
green LED.

Effects of power variations and noise floor levels can be iden-
tified in Fig. 17. Looking at the one extreme of very small power
and a lifted noise floor, the result is that at short distances blue
can be the better choice. Contrariwise with very high power
and a lowered noise floor, the outcome is a long distance and
green can be the better choice here. It can also be distinguished
that decreasing the noise floor level can have a similar effect
as increasing the power. The impact on the important commu-
nication parameter BER is shown for two modulation schemes
with varying conditions of four experimental days in Figs. 18
and 19. Keeping the BER constant, the converted green LEDs
are archiving the largest distances. Similarly, keeping the dis-
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Fig. 16.  Measurements in the Baltic Sea showing spectral optical properties and the determined ksys values on August 26 and September 5, 2016. ACS data
including correction for pure water attenuation and scatter [43]. Note that a = absorption; b = scattering; and ¢ = attenuation.
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Fig. 17.  Graphics is showing the influence of power variations to the irradiance and achievable distance between LEDs and PD for a certain noise floor level for
different colors (see legend). Projected to a spherical radiation the initial example (middle set of curves) corresponds to approximately 25 W of electrical power.
So the three sets of curves are located in a practical quite possible range. Plot based on experimental data from August 18, 2016; see Table IV.

tances constant results in the lowest BER for the use of converted
green. The decision which modulation scheme to use in this case
is up to the preference of maximizing the distance and the energy
efficiency or the bitrate; cf., Table III.

VIII. CONCLUSION AND FUTURE WORK

In the Baltic Sea and other waters with similar optical prop-
erties, converted green LEDs can outperform the slightly higher
energy-efficient blue LEDs due to the higher light transmission

at green wavelengths. This advantage of converted green LEDs
is even better in more turbid waters. However, a disadvantage of
the converted green LEDs is the limited speed of the phosphor
conversion process. Taking into consideration that even blue en-
hanced silicon photodetectors are typically 20% more sensitive
for green as for blue light, the choice of converted green LEDs
for optical u/w communication systems up to several megabits
per second is confirmed.

It would be desirable for u/w communications if the LED mar-
ket would offer faster color converted LEDs with lower spectral
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Fig. 18. Comparison of the calculated attainable distance between LED and

PD for two modulation schemes and three colors, based on measurements at
four days under varying water parameters ksys in the Baltic Sea in summer
2016. Boundary conditions are: LEDs driven with same electrical power, target
BERof 1.0 - € — 6, iy0ise Of 1 nA, Osram BPW34B photodetector and Lumileds
Z series LEDs.
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Fig. 19. Comparison of the calculated BER for two modulation schemes

and three LED colors at the same distance between LED and PD, based on
measurements at four days under varying water parameters ksys in the Baltic
Seain summer 2016. Boundary conditions are: LEDs driven with same electrical
power, target BER of 1.0 - e— 6 for converted green LED, %p0ise Of 1 nA,
Osram BPW34B Photodetector and Lumileds Z series LEDs. The values of the
corresponding distances are: August 18, 7.36 m (8-PPM) and 7.49 m (NRZ-
OOK); August 26, 7.47 m (8-PPM) and 7.61 m (NRZ-OOK); September 6,
6.95 m (8-PPM) and 7.07 m (NRZ-OOK); September 28, 6.23 m (8-PPM) and
6.33 m (NRZ-OOK). These values are also extractable from Fig. 18.

bandwidth and widen the choice of wavelengths. A matter of
importance for the design of systems with low energy consump-
tion is beside the use of efficient LEDs, the performance of
the photodetector, and a low noise level. Since many variables
and their relation to each other play a role, a reliable prediction
without calculation or simulation can be difficult.

The general scope of the future work is the modeling of the
u/w optical channel for communication purposes. Since many
influencing factors can be identified on the path from the light
source to the detector, these factors should be considered in
simulation software. The light source is the first of three main
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blocks, including the LED type, the power, a reflector, a win-
dow, and the geometrical setup. The second block contains the
water parameters, depth, ambient light, and the distance. The
third comprises the detector, the window, a filter, the geomet-
rical setup, and a basic amplifier. The plan is to provide some
standard off-the-shelf parts as predefined LEDs and photodetec-
tors, as well as predefined water classes and some basic ambient
light scenarios. The outcome will be the SNR and the bandwidth
for the selected parts under chosen conditions. Based on these
values, the performance of different modulation schemes can
be distinguished. The objective is to support the choice of parts
and to provide an opportunity to estimate the systems behavior
under different conditions. The aim is to ease the way toward vi-
able, robust, powerful, and efficient u/w optical communication
systems.
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