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Snapshot Performance of the Dominant
Mode Rejection Beamformer
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Abstract—The dominant mode rejection (DMR) beamformer
constructs its weight vector using a structured covariance estimate
derived from the eigendecomposition of the sample covariance
matrix (SCM). Like all adaptive beamformers (ABFs), the DMR
ABF places notches in the direction of loud interferers to facilitate
the detection of quiet targets. This paper investigates how DMR
performs as a function of the number of snapshots used to estimate
the SCM. The analysis focuses on the fundamental case of a single
interferer in white noise. Theoretical calculations for the ensemble
case reveal the relationships among notch depth, white noise gain,
and SINR. The centerpiece of the paper is a detailed empirical
study of the single-interferer case, which includes snapshot-de-
ficient scenarios often ignored in previous work. Empirical data
demonstrate that the sample eigenvectors determine the mean
performance of the DMR ABF. On a log–log plot the mean notch
depth is a piecewise linear function of the number of snapshots and
the interference-to-noise ratio. The paper interprets the behavior
of the DMR ABF using recent results on sample eigenvectors
derived from random matrix theory.

Index Terms—Adaptive beamformer (ABF), dominant mode
rejection (DMR), eigendecomposition, random matrix theory
(RMT), sample covariance matrix (SCM).

I. INTRODUCTION

O NE goal of passive sonar array processing is to remove
loud interferers to detect and localize quiet sources. Con-

ventional beamformers (CBFs) are typically unable to achieve
this goal due to high levels of interference. When the CBF is
steered toward a quiet source, loud interferers can leak through
the high sidelobes of the conventional beampattern andmask the
low-level source signal. Adaptive beamformers (ABFs) place
notches in the direction of loud interferers, thereby facilitating
the detection of quiet targets. The minimum variance distortion-
less response (MVDR) beamformer, also known as the Capon
beamformer [1], is derived by minimizing output power sub-
ject to a unity gain constraint in the look direction. The MVDR
weight vector is a function of the inverse of the noise covariance
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matrix and the replica vector in the look direction. Assuming
the ensemble covariance matrix (ECM) is available and there
are fewer interferers than sensors, the MVDR processor has
deep notches in its beampattern corresponding to the locations
of the loud interferers. When the MVDR ABF is steered toward
a quiet source, the notches prevent loud interferers from leaking
through the sidelobes, guaranteeing a higher signal-to-interfer-
ence-and-noise ratio (SINR) for the signal of interest.
In most practical applications, ensemble statistics are not

available, and beamformers must be implemented using sample
statistics. Performance depends on the number of data snap-
shots used to estimate the sample covariance matrix (SCM).
Reed et al. show that the MVDR ABF requires twice as many
snapshots as sensors to achieve a mean output SINR within
3 dB of the SINR achievable with ensemble statistics [2]. Reed
et al. assume that the desired signal is not contained in the
measurements used to estimate the SCM. Monzingo and Miller
show that when the signal is included, the number of snapshots
required to achieve the ensemble performance is a function of
the signal-to-noise ratio (SNR) [3].
For large arrays or fast-changing environments, it is diffi-

cult to obtain the required number of snapshots because the
data are not stationary over long enough time intervals. These
cases require beamformers that achieve faster convergence by
reducing the adaptive degrees of freedom. One class of adaptive
methods relies on an eigendecomposition of the SCM. In his
comprehensive reference on array processing, Van Trees indi-
cates that there are two main types of eigenvector beamforming
algorithms [4, pp. 556–576]. The first type, which Van Trees
calls the “eigenspace beamformer,” projects the data into a sub-
space formed from the eigenvectors associated with the largest
eigenvalues, e.g., see [5]–[7]. The second type of algorithm is
dominant mode rejection (DMR) [8], which is the focus of this
paper. Instead of projecting into a reduced-rank subspace, DMR
uses the eigendecomposition to define a subspace containing the
dominant interferers that it wants to reject, thereby allowing it
to detect low-power signals. The DMR weight vector has the
same form as the MVDR weight vector, but the DMR ABF re-
places the SCM with a structured estimate constructed from the
eigendecomposition of the SCM.
While a number of papers explore how to make DMR robust

to mismatch [9]–[13] and investigate its performance using ex-
perimental data [14], few consider the snapshot performance of
the algorithm. There are no analytical expressions (similar to
those in [2] and [3]) that predict the number of snapshots DMR
requires to achieve a specific level of performance. Two papers,
authored by Messerschmidt and Gramann [15] and Redheen-
dran and Gramann [16], investigate DMR performance using
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deep- and shallow-water sonar data sets. The experimental anal-
ysis of beam noise in these papers supports the claim that the
DMR ABF requires fewer snapshots than the MVDR ABF to
achieve the same performance, but these papers do not extend
the empirical results to predict the relationship between snap-
shots and performance for an arbitrary array. Van Trees dis-
cusses how the output SINR of the DMRABF varies with snap-
shots for a specific example using a ten-sensor array, but he does
not derive analytic expressions for SINR, nor does he draw gen-
eral conclusions about algorithm performance [4, pp. 845–850].
While no analysis comparable to that of Reed et al. [2] exists

for the DMR ABF, Chang and Yeh [6] and Feldman and Grif-
fiths [7] analyze the snapshot performance of eigenspace beam-
formers. Eigenspace ABFs require the desired signal to be loud
enough that it is included in the reduced-rank subspace used for
the projection, whereas the DMR ABF depends on the desired
signal being quiet enough that it is not included in its domi-
nant interferer subspace. The difference in assumptions leads to
a fundamental performance difference between DMR and other
eigenspace methods, particularly when the subspace must be es-
timated from the SCM. See Van Trees [4, pp. 845–850] for ex-
amples illustrating why the results for eigenspace beamformers
are not directly applicable to DMR.
The goal of this paper is to investigate the snapshot per-

formance of the DMR ABF. The analysis focuses on the
fundamental case of a single interferer in white noise. While
the single-interferer assumption is unrealistic in practice, a
thorough understanding of this simplified case provides valu-
able insights and is a necessary first step in the analysis of more
complex scenarios. Theoretical calculations for the ensemble
DMR ABF reveal the relationships among notch depth, white
noise gain, and SINR. The centerpiece of the paper is a de-
tailed empirical study of the single-interferer case. This study
quantifies how DMR performance varies with the number of
snapshots used to estimate the SCM. It also demonstrates that
the sample eigenvectors have a greater effect on performance
than the sample eigenvalues.
An important aspect of the simulation study is that it includes

scenarios with fewer snapshots than sensors. A significant lim-
itation of previous work on eigenspace ABFs is the assumption
that the number of snapshots exceeds the number of sensors.
The theoretical predictions derived by Chang and Yeh [6] and
Feldman and Griffiths [7] rely on asymptotic calculations where
the number of snapshots approaches infinity while the array
size remains fixed. This type of asymptotic analysis is not rel-
evant for large arrays, which almost always operate with fewer
snapshots than sensors. Fortunately, new mathematical results
in the area of random matrix theory (RMT) offer the oppor-
tunity to analyze the snapshot-deficient cases that are of prac-
tical interest. RMT characterizes the statistical behavior of the
eigenvalues and eigenvectors of large random matrices [17]. In
contrast to the previous asymptotic approach, RMT allows both
the number of sensors and snapshots to grow to infinity, while
holding their ratio fixed. Since the RMT results converge rela-
tively quickly with respect to the number of sensors, it is pos-
sible to use the theory to analyze arrays of moderate size. This
paper interprets the snapshot behavior of the DMR ABF using
the recent results of Paul [18], Nadler [19], Johnstone and Lu

[20], and Benaych-Georges and Nadakuditi [21] on the eigen-
values and eigenvectors of the spiked covariance model. This
model is identical to the structured SCM assumed in DMR pro-
cessing, i.e., the data consist of several dominant interferers plus
spatially white noise.
The paper is organized as follows. Section II gives an

overview of the beamforming problem, reviews standard
metrics used to assess beamformer performance, and presents
the DMR beamformer. Section III derives the notch depth,
white noise gain, and SINR for the ensemble DMR ABF.
Section IV presents the simulation study of DMR performance
as a function of the number of snapshots used to estimate
the SCM. Using the same large set of simulations, Section V
examines the relative influence of the sample eigenvalues and
eigenvectors on DMR notch depth. Section VI interprets the
empirical results using insights drawn from RMT. Section VII
relates the conclusions drawn from the DMR study to results
for other ABFs. Section VIII summarizes the paper and briefly
discusses topics for future work.

II. BACKGROUND

Abraham and Owsley introduced the DMR ABF in 1990 [8].
As noted in the introduction, other authors derived variations of
the DMR beamformer to address problems such as mismatch,
e.g., the work of Cox et al. [9], [10]. The following section
briefly reviews essential background on the beamforming
problem and discusses several important performance metrics.
Section II-B defines the version of the DMR beamformer used
throughout this paper.
This paper uses the following notational conventions. Bold

lowercase letters denote vectors, and bold uppercase vectors de-
note matrices. Nonbold letters are scalars. Greek letters repre-
sent ensemble quantities, and roman letters represent estimated
quantities, e.g., is the ECM and is the SCM. Superscript
denotes the Hermitian transpose.

A. Planewave Beamforming and Performance Metrics

This section provides a brief overview of narrowband
planewave beamforming. For a thorough treatment of the sub-
ject, see the textbook by Van Trees [4]. The notation introduced
below is consistent with [4].
Planewave beamforming assumes that the data measured by

an array consist of one or more planewave signals plus noise.
For a narrowband beamformer, the signal received by an array
can be written as a column vector

(1)

where is the number of planewave signals, is the ampli-
tude of the th signal, is the planewave replica vector for the
th signal, and is a vector of complex noise samples. For an
-sensor linear array oriented along the -axis, the replica for

the th signal is a complex exponential vector

... (2)
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where is the wavelength, is the planewave angle mea-
sured from the positive -axis, and is the location of the th
sensor. Note that the replica is normalized such that .
This paper assumes that the signal amplitude is a zero-mean
complex circular random variable and that the complex circular
random noise is zero mean and spatially white. Assuming that
the planewave signals are independent, the ECM for the re-
ceived signal is

(3)

The power in the th source is , and the white noise power is
.
The goal of beamforming is to process the received vector
such that a planewave signal from a desired direction

passes through undistorted while signals from other angles are
attenuated. The output of a linear beamformer is , where
is the weight vector associated with the steering angle .

The conventional beamformer is the spatial matched filter for
the replica vector associated with the steering direction, i.e., the
CBF weight vector is

(4)

The normalization guarantees that the CBF has unity gain
in the look direction.
The remainder of this section reviews standard metrics of

beamformer performance. Each of the metrics defined below
depends on the weight vector , which depends on the steering
angle . To keep the notation simple, the dependence on is
not explicitly included in the definitions. Note that for data-de-
pendent (adaptive) weight vectors, the following metrics are
also data dependent, thus they can be modeled as random vari-
ables and quantified by their statistics (mean, variance, etc.).
The first metric of interest is the beampattern, which is de-

fined in terms of the angle or, equivalently, in terms of its co-
sine

(5)

The beampattern is analogous to the frequency response of a
filter. It quantifies the beamformer’s response to a unity ampli-
tude planewave from angle . Note that the weight vector
depends on the steering angle , but this dependence is sup-
pressed in (5) and all subsequent equations to simplify the no-
tation.
Since one purpose of a beamformer is to eliminate loud sig-

nals coming from angles other than the steering direction, it
is important to quantify how much the beamformer attenuates
these interferers. The notch depth (ND) is defined as the abso-
lute value squared of the beampattern in the direction of an in-
terfering signal, e.g., for the th interferer

ND (6)

ND is associated with a particular interference direction ; it is
not necessarily associated with a minimum in the beampattern.

White noise gain (WNG) is a standard metric that quantifies
the improvement in the SNR provided by a beamformer when
the noise is spatially white. It is defined as

WNG (7)

WNG is a useful indicator of how robust a beamformer is to
array perturbations or mismatch. The CBF has the optimal
WNG, which is equal to the number of sensors .
The final twometrics of interest are SINR and SINR loss. The

SINR of a beamformer is defined as

SINR (8)

where is the desired signal power, is the replica associ-
ated with the desired signal, and is the ensemble interfer-
ence-plus-noise covariance matrix. This definition uses the en-
semble rather than the sample covariance because it pro-
duces a smoother result when the SINR must be estimated from
sample realizations of the weight vector [4, p. 732]. SINR loss
is defined as the ratio of the SINR for an ABF designed using
snapshots to the SINR obtained for a beamformer designed

using ensemble statistics

SINR
SINR

(9)

Note that .

B. DMR Beamformer

To derive the DMR ABF, Abraham and Owsley start with
a general model for that includes discrete planewave signals,
colored noise, and spatially white noise with power [8]. They
assume that there are strong planewave signals (interferers)
that need to be attenuated to facilitate detection of a weaker de-
sired planewave signal. With this assumption, they can partition
the covariance matrix into a dominant interferer subpace and a
noise subspace; the latter includes the weaker signals and the
noise. DMR assumes that the large eigenvalues of are all as-
sociated with interferers to be rejected and that the small eigen-
values are due to weak signals and noise. Sorting the eigen-
values in descending order leads to the following expression for
the eigendecomposition of the ECM:

(10)

where is the th eigenvalue and is the corresponding
eigenvector. The eigenvectors corresponding to the largest
eigenvalues define the dominant subspace. The DMR ABF
forms a structured approximation to using the dominant
subspace plus an orthogonal noise subspace with equal power

in each noise direction, i.e.,

(11)
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The DMR weight vector is the MVDR weight vector [1], with
the ECM replaced by

(12)

where is the replica associated with the steering angle .
In practice, the ECM is not available, so cannot be

constructed. Instead, the structured covariance matrix required
for DMR is computed using the SCM based on snapshots.
The SCM and its eigendecomposition are defined as

(13)

where is the th data snapshot, and and are the sample
eigenvectors and eigenvalues, respectively. Using the SCM, the
sample DMR covariance matrix is

(14)

where is the estimated noise power

(15)

The factor in (15) compensates for the inherent bias in
sample variance calculations. This factor is negligible when is
large, but must be included to obtain unbiased results for snap-
shot-deficient cases. The advantage of using the estimated noise
power when computing is that it eliminates the small
eigenvalues, which cause problems with inverting the SCM to
compute the MVDR weight vector.
Substituting for in (12) and using the matrix

inversion lemma, the DMR weight vector can be written

(16)

is the generalized cosine between vectors and
, as defined in [22].
As discussed in Section I, several authors consider modifi-

cations of the basic DMR ABF to address issues of robustness
[9]–[13]. While a thorough discussion of robust DMR is beyond
the scope of this paper, it is important to note that all the mod-
ified DMR algorithms exclude an eigenvector from the domi-
nant subspace when its associated interferer moves too close to
the desired look direction. Attenuating a loud signal that is in-
side the mainlobe (ML) of the beamformer while maintaining
the unity gain constraint is quite difficult. This problem is not
unique to DMR; the performance of most ABFs degrades sub-
stantially in the presence of ML interference if the proper ad-
justments are not made [4, pp. 471–472].

TABLE I
PARAMETERS OF CANONICAL SINGLE-INTERFERER EXAMPLE

III. ENSEMBLE PERFORMANCE FOR THE SINGLE-INTERFERER
EXAMPLE

The remainder of the paper focuses on an illustrative example
of a single planewave interferer in spatially white noise. For
simplicity, the example also assumes that the measured data do
not contain a desired signal arriving from the steering direc-
tion. Although these assumptions are unrealistic in practice, this
example facilitates a fundamental analysis of the DMR ABF’s
ability to remove interference. A thorough understanding of this
single-interferer example is required before considering more
realistic multiple-interferer scenarios. This section derives the
ensemble performance of the DMR ABF for the single-inter-
ferer example. The ensemble results provide a baseline for com-
parison in the later sections that consider the snapshot perfor-
mance of the DMR ABF.
For a single interferer, the expression for the ECM in (3) sim-

plifies to

(17)

In this case, it is easy to show (cf. [23, pp. 617–618])
that the maximum eigenvalue of the covariance matrix is

and the rest of the eigenvalues are .
The eigenvector associated with the maximum eigenvalue is

. The interference-to-noise ratio (INR) is defined
as .
Table I summarizes the parameters of the canonical single-in-

terferer example used throughout the paper. The example
uses a 50-sensor equispaced linear array with half-wave-
length spacing. The array is steered to broadside, and the
interferer is located near the peak sidelobe of the CBF.
The directional cosine associated with the interferer is

. For all results described
below, the DMR subspace dimension is set to one. INR is a
simulation variable.

A. Ensemble Beampattern

Substituting the ensemble statistics into (16) and rearranging,
the DMR weight vector for the single-interferer case is

(18)

The above expression relies on the normalization of the replica
vectors defined in Section II-B. Fig. 1 shows the
ensemble DMR beampattern for the canonical single-interferer
example when the INR is 40 dB. The beampattern is plotted
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Fig. 1. Ensemble DMR beampattern for the canonical single-interferer
example. The interferer location is (see Table I), and the INR is 40
dB. The CBF beampattern is shown for comparison. Arrows indicate the ND
for both beamformers.

as a function of the directional cosine . Compared to
the beampattern of a uniformly weighted CBF (dashed line), the
ensemble DMR beampattern (solid line) has a deep notch at the
location of the interferer , when the array is steered
to broadside. Note that this paper distinguishes between a notch
and a null. According to Van Trees [4, p. 471], a null is a point
where the beampattern is exactly equal to zero, whereas a notch
is a “partial null,” which is not a zero crossing of the beam-
pattern. As defined in Section II-A, ND is the absolute value
squared of the beampattern at the interference direction ( in
this case). It quantifies how much the interference will be atten-
uated compared to the desired signal that passes with unity gain.
The ND of the ensemble DMR ABF is 127.0 dB for this ex-
ample. The CBF beampattern does not have a drop near be-
cause the example was designed to locate the interferer near the
peak sidelobe of the conventional beamformer.While there is no
real notch in the CBF, ND is still defined as .
The ND of the CBF for this example is 13.5 dB.

B. Ensemble Notch Depth

A general formula for the ensemble DMR ND in the single-
interferer case is derived by evaluating (6) using the weight
vector in (18)

ND (19)

where is the generalized sine
squared [22]. When the INR is small, (19) shows that ND is
equal to , which is the ND provided by the uni-
formly weighted CBF. As INR increases, ND starts to roll off.
At high INRs, ND decreases by 20 dB for every 10-dB in-
crease in INR. Fig. 2 illustrates this behavior using the canon-
ical single-interferer example. The solid line shows how ND
varies with INR on a log–log plot. A piecewise linear approx-
imation of ND can be constructed using an approach sim-
ilar to that used to create Bode plots of the magnitude response
of linear time-invariant systems. The numerator of (19) is the
CBF ND, which corresponds to a constant offset. The denom-
inator contributes 0 dB up until the breakpoint defined by INR

. For INRs higher than the breakpoint,

Fig. 2. Ensemble DMR ND (solid line) as a function of INR for the canonical
single-interferer example. The dashed line shows the piecewise linear approxi-
mation to the ensemble ND.

the denominator corresponds to a 20-dB/decade decrease in ND.
The dashed line in Fig. 2 shows the straight-line approxima-
tion to ND . The maximum error between the approximation
and the true curve occurs at the breakpoint and is approximately
equal to 6 dB.

C. Ensemble White Noise Gain

Using (18) in (7), the ensemble DMR WNG for the single-
interferer example is

WNG

(20)
Dividing the numerator and the denominator of (20) by the nu-
merator and rearranging yields

WNG

(21)

When the INR is large, only the leading order terms in the de-
nominator fraction matter. In this case, the expression reduces
to

WNG (22)

where is defined as the square of the ratio of the generalized
cosine and sine. The factor of predicts the loss in
WNG of the ensemble DMR ABF as compared to the optimal
WNG of . This loss can be interpreted as the cost of placing
a notch in the beampattern in the direction of the interferer. The
loss factor is only a function of the interferer location relative to
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Fig. 3. Ensemble DMRWNG as a function of INR for the canonical single-in-
terferer example. The solid line shows the results for the single interferer located
near the peak sidelobe of the CBF. The dashed lines show the optimal WNG

and the large INR approximation derived in (22).

the look direction and not a function of the INR. For interferers
outside the ML, is small and the loss in WNG is minimal.
Fig. 3 shows the ensemble WNG as a function of INR for the
canonical single-interferer example. The plot illustrates how the
WNG smoothly transitions between the optimal value of for
low INR and the WNG value for high INR. Since the
interferer is outside theML, the maximum loss inWNG is small
(on the order of 0.2 dB).

D. Ensemble SINR

For the single-interferer example, the ensemble SINR can be
written as a function of ND and WNG. Substituting the ECM
defined in (17) into (8) yields

SINR (23)

Assuming that the ABF is steered toward the true source direc-
tion, equals 1. In this case, the SINR is

SINR
SNR

INR ND WNG
(24)

where SNR . The two terms in the denominator rep-
resent the power of the interferer and the power of the white
noise at the output of the ABF. Fig. 4 plots these terms as a
function of INR for the canonical single-interferer example. It
is easy to bound the output interferer power using piecewise
linear approximations for INR and ND. In Fig. 4, the solid line
is INR ND and the dash–dot line is the straight-line approx-
imation to this term. At its worst, the approximation is 6 dB
larger than the true value (due to the error in the ND approxi-
mation); the maximum deviation occurs at the breakpoint. The
peak value of INR ND over all INR occurs at the breakpoint
and is equal to

INR ND (25)

For the case presented in Fig. 4, the interferer power at the
output of the ensemble DMR ABF (solid line) is always less

Fig. 4. Comparison of the interferer and white noise terms in the denominator
of the SINR equation for the ensemble DMR ABF. Results are shown for the
canonical single-interferer example.

than the white noise power (dashed line). When this is true, the
SINR is primarily controlled by the white noise term rather than
the interferer. It is useful to derive the condition that guaran-
tees INR ND WNG . Based on the discussion in
Section III-C, the largest that WNG can be is , thus the
smallest that WNG can be is . Comparing the max-
imum value for INR ND from (25) and the minimum value
for WNG yields

(26)

which reduces to

(27)

Since for values outside the 3-dB point of
the ML, the white noise term is guaranteed to be at least 6 dB
larger than the interferer term for interferers located outside the
ML of the CBF. Thus, as long as the interferer is not too close
to the look direction, the ensemble DMR ABF is guaranteed to
have a notch deep enough to make the interferer irrelevant. In
this case, the ensemble SINR is approximately

SINR SNR WNG (interferer outside ML) (28)

IV. SNAPSHOT PERFORMANCE FOR THE SINGLE-INTERFERER
EXAMPLE

This section investigates the performance of the DMR ABF
as a function of the number of snapshots available to estimate
the SCM and its corresponding eigendecomposition. Specifi-
cally, it presents the results of an empirical study characterizing
ND, WNG, and SINR for a single interferer in spatially white
noise. The simulations use the canonical example introduced in
Section III (see Table I). Both the interferer and the noise are
modeled as complex circular Gaussian random variables. His-
tograms and other estimated statistics are based on 3000 Monte
Carlo trials.
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The study considers cases ranging from 2 to 50 000 snap-
shots. DMR requires at least two snapshots for the single-inter-
ferer example since it needs an estimate of the dominant sub-
space and an estimate of the power in the noise subspace. The
dominant subspace is defined by the eigenvector associated with
the maximum eigenvalue. With two snapshots, the noise power
is simply a scaled version of the only other nonzero eigenvalue
[see (15)]. Although obtaining 50 000 snapshots is unrealistic
in practice, this case is included to illustrate performance as
gets large. In some plots, the performance for
snapshots is also highlighted since snapshots is the “rule of
thumb” for acceptable performance [4, p. 733]. The rule is based
on the analysis of the MVDR ABF by Reed et al. [2].

A. Sample Beampatterns

Fig. 5 shows sample DMR beampatterns for the case of a
strong interferer; the INR is 40 dB. Fig. 5(a) compares the DMR
beampatterns generated using ensemble and sample statistics
with the beampattern of a uniformly weighted CBF. All the
DMR beampatterns have a notch near the interferer location .
Fig. 5(b) zooms in around the interferer to show the depth of the
DMR notches. The DMR ABFs designed using 2 and 100 snap-
shots have notches of 59.1 and 76.2 dB, respectively. The
ensemble DMR ABF, generated using the ECM, has a substan-
tially lower notch of 127.0 dB. Note that while the ensemble
beampattern has a minimum at the interferer angle, the sample
beampatterns have minima at slightly different angles due to the
mismatch in the sample statistics. These sample minima are not
as small as the ensemble minimum.

B. Notch Depth Statistics

This section characterizes the variability of the DMR ND for
the single-interferer example using a large set of Monte Carlo
trials. Fig. 6 shows histograms of ND for an interferer with
40-dB INR. The figure compares the NDs for the DMR ABFs
generated with 2 and 500 snapshots. Fig. 6 highlights several
important points about DMR ND. First, the ND distributions
are unimodal and slightly asymmetric. The tail on the left (lower
notch values) is longer than the tail on the right (higher notch
values). Second, DMR ND improves with a larger number of
snapshots, as expected. The mean ND for the 500 case is
26.8 dB lower than the mean for the 2 case. While per-
formance improves with snapshots, it is important to note that
the mean ND with 500 (10 N) snapshots is still 43.3 dB away
from the ensemble result. The ensemble prediction is overly op-
timistic and unlikely to be achievable in practice.
Fig. 7 shows how ND varies with INR for the cases of 2, 100,

and 50 000 snapshots. The CBF and ensemble DMR results are
included for reference. Each curve represents a different number
of snapshots. The symbols denote the mean ND and the error
bars indicate the spread of the distribution between the 10th
and 90th percentiles. The error bars are asymmetric around the
mean, as expected from the histograms in Fig. 6. Fig. 7 illus-
trates several important points. First, at very low INR, the ND
for all the snapshot cases converges to the uniformly weighted
CBF result. This agrees with the ensemble prediction. Second,
while all the curves show a rolloff of ND with increasing INR,
the slope of the curves does not always agree with the slope of

Fig. 5. Comparison of beampatterns for the conventional and DMR beam-
formers for the canonical example when the INR is 40 dB. The plots show
results for the DMR beamformers generated with the ensemble covariance, as
well as for the sample covariances estimated with 2 and 100 snapshots. (a) Con-
ventional and DMR beampatterns for single-interferer example. (b) Closeup of
DMR beampatterns around interferer location. Circles highlight the NDs at the
angle of the interferer.

Fig. 6. Histograms of DMR ND for the canonical example when the INR is
40 dB. Results are shown for DMR ABFs generated using 2 and 500 snapshots.
The dashed line indicates the ND achievable with ensemble statistics.

the ensemble prediction. For low numbers of snapshots ( 2,
100), the slope is equal to 1, i.e., 10-dB decrease for every 10
dB of INR. This does not agree with the ensemble slope of 2.
For higher numbers of snapshots (such as the 50 000 case
shown), the slope is equal to 2 for low INRs and switches to
1 for higher INRs. The threshold at which the slope change

occurs depends on the number of snapshots.
When implementing the DMR ABF, it is useful to know the

number of snapshots required to achieve a specific level of per-
formance. Based on the same set of Monte Carlo trials as Fig. 7,
Fig. 8 displays ND as a function of snapshots for five different
INRs. Similar to Fig. 7, the symbols denote the mean ND and
the error bars indicate the spread of the distribution between the
10th and 90th percentiles. The solid symbols on the right-hand
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Fig. 7. DMR ND as a function of INR for the canonical example. Results are
shown for DMRABFs generated using three different numbers of snapshots and
for the ensemble DMR ABF. The symbols denote the mean ND and the error
bars mark the span between the 10th and 90th percentiles of the data. The CBF
ND is included for reference.

Fig. 8. DMR ND as a function of snapshots for the canonical example. Results
are shown for five INR levels: 40, 10, 0, 20, and 40 dB. The symbols de-
note the mean ND and the error bars mark the span between the 10th and 90th
percentiles of the data. The five filled symbols on the far right-hand side of the
plot indicate the ND of the associated ensemble DMR beamformer.

side of the plot indicate the ensemble results for each of the INR
levels. Fig. 8 highlights several important points about the snap-
shot dependence of the DMR ABF. For the lowest INR shown
on the plot ( 40 dB), the ND remains constant at the same value
as the CBF. For INRs of 10 and 0 dB, ND decreases with snap-
shots until it reaches the ensemble value, where it levels off. At
the higher INR values, ND decreases at a rate of 10 dB/decade
of snapshots over the five-decade range shown on the plot. Ex-
trapolating the 10-dB/decade slope for the higher INR cases pre-
dicts the number of snapshots required to reach the ensemble
ND. The 20-dB case requires more than 10 snapshots, and the
40-dB case requires more than 10 snapshots. It is unrealistic to
expect that these large numbers of snapshots will be available
in any practical scenario.
The error bars in Figs. 7 and 8 indicate the variability of DMR

ND around the mean. As the ND decreases, the error bars main-

tain approximately constant spread for INRs above 0 dB. Since
a log scale is used in these figures, this implies that the vari-
ability decreases with increasing ND. Examining the standard
deviation of ND shows that for high INR, the slope of the stan-
dard deviation versus INR curve is 1, i.e., a 10-dB decrease
in standard deviation for every 10-dB increase in INR. Simi-
larly, the standard deviation decreases 10 dB for every decade
of snapshots for high INRs. This suggests that the standard de-
viation of DMR ND for high INR is INR .
The main conclusions about ND derived from the canonical

example are as follows. For INRs below a threshold, the DMR
ABF does not “see” the interferer and the mean ND is equal
to the CBF result. The INR threshold depends on the number
of snapshots. Above the threshold, the mean ND decreases lin-
early when plotted on a log–log scale. The slope of the mean ND
curves is predictable, suggesting that a piecewise linear model
for ND could be constructed. The difference in the slope of ND
versus INR curves explains why no snapshot implementation
can attain the deep notches associated with the ensemble beam-
former. The standard deviation of DMR ND is inversely pro-
portional to INR and snapshots.

C. Effect of Interferer Location on Notch Depth

This section investigates the effect of the interferer location
on DMR ND. The purpose is to assess whether the conclusions
of the previous section are applicable in general. Fig. 9 shows
the ND versus INR results for two different cases. Compared
to the canonical example (Table I), the only difference in these
cases is the interferer location . In the first case, ,
which is a point near the first null of the CBF beampattern (see
Fig. 1). Comparing Fig. 9(a) with Fig. 7 indicates that the ND for
this alternate interferer case shares two important characteristics
with the canonical example. First, for high INRs, the slopes of
the lines in Fig. 9(a) are the same as in Fig. 7. For 2 and
100, the slope is 1. For 50 000, the slope is initially 2
(following the ensemble prediction) and switches to 1 above
a threshold INR. The INR threshold where the slope changes
from 2 to 1 depends on the interferer location. The second
common feature of Figs. 9(a) and 7 is that the error bars for high
INRs indicate approximately constant spread. Log–log plots of
the standard deviation versus INR show a slope of 1 for INRs
above 0 dB in both the canonical example and the
case. This suggests that the spread of the ND around the mean
is proportional to the mean, independent of interferer location.
There are some noticeable differences in Figs. 9(a) and 7. While
the mean ND starts near the CBF ND for the case,
it is not exactly equal to this value. Also, the ND associated
with the alternate interferer goes up slightly before beginning
its linear descent for the 2, 100 snapshot cases.
Fig. 9(b) shows ND as a function of INR for the case where

the interferer is located exactly at the null of the CBF beampat-
tern, i.e., . Note that the results for this case
are almost identical to the case. The only major
difference is the shape of the 50 000 results for INRs below
0 dB. For an interferer located at a null of the CBF, the ND of
the sample DMR beamformer is far away from the ND of the
CBF and the ensemble DMR ABF, both of which are exactly
equal to zero on a linear scale ( on a log scale).
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Fig. 9. DMR ND as a function of INR for two different interferer locations.
Other than the interferer angle, all other simulation parameters are identical to
the canonical single-interferer example (Table I). Results are shown for DMR
ABFs generated using three different numbers of snapshots. The symbols de-
note the mean ND and the error bars mark the span between the 10th and 90th
percentiles of the data. The CBF and ensemble DMR results are shown for the
first case. For the second case, both the CBF and ensemble NDs are identically
zero, which is off the scale of the decibel plot. (a) ND versus INR for interferer
located near a null of conventional beampattern. (b) ND versus INR for inter-
ferer located at a null of conventional beampattern.

These examples demonstrate that the important conclusions
about ND slope and variability derived from the canonical
single-interferer example are valid for other interferer loca-
tions. The dependence of ND on is strongest for low INR.
Finally, the example in Fig. 9(b) indicates that DMR does not
maintain the nulls of the CBF when it is implemented using the
SCM instead of the ECM.

D. White Noise Gain Statistics

This section analyzes the WNG of the DMR ABF as a func-
tion of INR and snapshots. Fig. 10 illustrates how WNG varies
with INR for the canonical single-interferer example. The solid

Fig. 10. Mean DMR WNG as a function of INR for the canonical example.
Results are shown for ABFs generated using 2, 100, and 50 000 snapshots.
The dashed lines indicate the optimal value of , which is the
WNG of the CBF, and the asymptotic value WNG derived
in Section III-C.

lines show the mean WNG for 2, 100, and 50 000 snap-
shots. The mean ND versus INR plots for these cases are very
similar to the ensemble result shown in Fig. 3. Specifically, the
mean WNG starts at a fixed level below and rolls
off as INR increases, eventually approaching WNG . The
WNG for low INR is a function of the number of snapshots.
For larger values, WNG is closer to the optimal value. For
50 000 snapshots, WNG is essentially equal to the optimal value
for INRs less than or equal to 30 dB. The INR at the rolloff
point is also a function of . For , this point matches the
ensemble result. For the snapshot-deficient case , the
rolloff starts at a slightly higher INR.
Fig. 10 also illustrates the variability of theWNG. The shaded

region in the plot indicates the 1st and 99th percentiles for the
2 case. The percentile lines for the 100 and 50 000

cases lie inside the shaded region. Note that the WNG vari-
ability is quite small. The 1st and 99th percentiles lie within
0.25 dB of WNG and within 0.43 dB of the optimal value

. For large INRs, WNG is concentrated around the
asymptotic value WNG .
This section indicates that WNG of the DMR ABF has very

low variability. This is true as long as the interferer is located
away from the steering direction (outside the 3-dB points
of the ML). As INR increases, the mean WNG converges
to WNG . The narrowing of the shaded region around
the asymptotic mean indicates that the distribution is highly
concentrated for high INRs.

E. SINR Statistics

Recall that for the single-interferer example, SINR is simply
the ratio of the SNR to the sum of the interferer and noise powers

SINR
SNR

INR ND WNG
(29)

Similar to the ensemble case, a plot of the interferer and noise
components in the denominator of the SINR equation provides
useful intuition. Fig. 11 compares the mean INR ND for dif-
ferent numbers of snapshots to the mean 1/WNG. Results are
shown on a log scale. For low INR, the interferer power for all
snapshot cases is identical to the ensemble predictions shown in
Fig. 4. As INR increases, the curves for the three snapshot cases
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Fig. 11. Comparison of themean interferer andwhite noise terms in the denom-
inator of (29) for the canonical single-interferer example. Results are shown for
three different numbers of snapshots: 2, 100, and 50 000.

separate from one another. Unlike the ensemble result that de-
creases as INR gets large, INR ND for the sample DMR ABF
levels out at a fixed value that depends on . This behavior
makes sense in light of the ND versus INR results shown in
Fig. 7. The slope of ND versus INR for sample DMR is 1 over
most of its range, whereas it is 2 for ensemble DMR. These
results indicate that once the INR is sufficiently high, the net ef-
fect of the interferer at the output of the DMR ABF is indepen-
dent of the interferer power, and depends only on the number of
snapshots. In essence, the beamformer is “treading water” with
respect to the interferer. It is not falling behind (letting more
of the interferer through), but it is not increasing its lead either
(which ensemble DMR does by making its notch proportion-
ately deeper).
As defined in Section II-A, the SINR loss is the ratio of the

SINR obtained with snapshots to the ensemble SINR. Using
the definition of SINR for the single-interferer example in (29)
and the simplified result in (28) for SINR , SINR loss is

SINR
SINR WNG INR ND WNG

(30)

The above expression assumes the interferer is outside the ML.
As shown in Fig. 3, WNG is very close to for all INRs.
Thus, the first factor in (30) is a constant. This suggests that the
behavior of the SINR loss for a single interferer depends only
on the INR ND and 1/WNG terms shown in Fig. 11. Given this
intuition, consider what the mean SINR loss looks like for the
canonical example. Fig. 12 shows how varies with INR
for three snapshot cases: 2, 100, and 50 000. As expected
from the discussion of the “treading water” phenomenon above,
the mean SINR loss is essentially independent of the INR once
INR reaches a snapshot-dependent threshold. For this 50-sensor
case, the threshold INR is approximately 0 dB.
Fig. 13 shows the trend in the mean SINR loss as a function

of the number of snapshots. The results are shown for four dif-
ferent INR values. Note that the mean for the 40-dB INR case is
representative of the mean for INRs above 0 dB since the mean
is independent of INR for these cases (as shown in Fig. 12).

Fig. 12. Mean SINR loss for the DMRABF as a function of INR for the canon-
ical example. Results are shown for three different numbers of snapshots:
2, 100, and 50 000.

Fig. 13. Mean SINR loss for the DMR ABF as a function of snapshots for the
canonical example. Results are shown for INRs between 40 and 40 dB. The
dashed line shows the predicted mean SINR loss for theMVDRABF, as derived
by Reed et al. [2].

For reference, Fig. 13 shows the predicted mean SINR loss for
the MVDR ABF derived by Reed et al. [2]. Note that this re-
sult is only valid for since the SCM used to compute
the MVDR weights must be full rank. Reed et al. predict that
the MVDR ABF requires twice as many snapshots as sensors to
achieve , whereas Fig. 13 shows that DMR requires
only two snapshots to achieve the same result. It is important to
note that the analysis in [2] is not limited to the single-interferer
case. The DMR result reported here is consistent with the claim
for other eigenspace ABFs that two snapshots per interferer are
required for . Section VII considers the relationship
to other ABF results in more detail. Before that discussion, it is
important to demonstrate that the sample eigenvectors control
DMR performance and to relate these empirical results to RMT
predictions. Section V examines the role of the eigenvectors,
and Section VI describes the relevant RMT results.
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Fig. 14. Histograms of ND for the canonical example. The four panels
show results for different numbers of snapshots: 2, 100, and 50 000.
Each panel contains results for three beamformers generated using different
structured covariance matrices: (blue), (green),
(red), and (black cross). The and histograms are
indistinguishable.

V. EIGENVALUES VERSUS EIGENVECTORS

The DMR weight vector depends on the eigendecomposition
of the SCM. This section investigates the relative influence of
the sample eigenvalues and eigenvectors on ND. Fig. 14 com-
pares the standard DMR ABF (generated with sample statis-
tics) with two alternative DMR implementations. The first of
these alternative beamformers uses the ensemble eigenvectors
and the sample eigenvalues to generate the structured covari-
ance used in its weight vector

(31)

The second uses the ensemble eigenvalues and the sample
eigenvectors to generate the structured covariance
used in its weight vector

(32)

While these alternative formulations cannot be implemented in
practice, employing them in a simulation environment can an-
swer the question of whether the eigenvalues or eigenvectors
control DMR performance.

Fig. 15. Mean ND as a function of INR for four beamformers constructed
with four covariance matrices: (stars), (circles),
(squares), and (crosses). Results are shown for the 2 snapshot case.

Fig. 14 shows histograms of ND for the canonical single-in-
terferer example considered previously. The INR is 40 dB, and
the histograms contain data from 3000 Monte Carlo trials. The
three panels show the results for different numbers of snapshots:
2, 100, and 50 000. Each panel shows histograms of ND for the
standard DMRABF and the two alternative beamformers. Black
crosses indicate the ensemble ND ( 127 dB in all cases). When
the ensemble eigenvectors are used to construct the covariance
matrix , the resulting histogram is centered on the en-
semble ND. In contrast, when the sample eigenvectors are used
to construct the covariance matrix , the histogram is
centered on the standard DMR result. The sample eigenvector
results are indistinguishable from the standard DMR results in
this plot. Fig. 14 demonstrates that the accuracy of the sample
eigenvectors determines how well the DMR ABF can eliminate
a loud interferer.
Fig. 15 shows that the sample eigenvectors control ND

regardless of INR. The plot displays the mean ND as a function
of INR for the four beamformers: standard DMR, DMR with
sample eigenvalues, DMR with sample eigenvectors, and
ensemble DMR. Results are shown for the two-snapshot case.
Over the entire range of INRs shown (from 40 to 40 dB),
the mean ND of the alternative sample eigenvector beamformer
lies on top of the standard DMR result. For INRs greater than
0 dB, the alternative sample eigenvalue beamformer follows
the same trend as the ensemble DMR beamformer. For INRs
less than 0 dB, the sample eigenvalue beamformer has a lower
ND than the ensemble beamformer. As increases, the sample
eigenvalue beamformer rapidly converges to the ensemble
result.
The simulations in this section demonstrate that the sample

eigenvectors determine the ND of the DMR ABF. Since ND
is fundamentally related to SINR, it follows that predicting the
overall performance of the DMR beamformer requires an under-
standing of the behavior of the sample eigenvectors. Section VI
reviews recent RMT results that characterize the accuracy of the
sample eigenvectors.
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VI. INSIGHTS FROM RMT

As noted in the introduction, recent work on RMT contains
valuable insights about the behavior of the eigenvalues and
eigenvectors of large random matrices. The book by Bai and
Silverstein provides a comprehensive overview of the mathe-
matical results in this area [17]. Since the SCM is a random
matrix, RMT is applicable to analyze adaptive beamforming
problems. For example, Richmond et al. [24] use RMT to study
the behavior of diagonally loaded MVDR ABFs. Nadakuditi’s
dissertation is a major contribution to the application of RMT
to array processing [25]. In addition to discussing the MVDR
results, the dissertation describes a new rank estimator for sig-
nals in white noise. The rank estimator uses RMT predictions
of the sample eigenvalues along with the Akaike information
criterion. See the subsequent journal article by Nadakuditi and
Edelman [26] for more information.
As shown in Section V, the sample eigenvectors have a

greater impact on DMR performance than the sample eigen-
values. Several authors have RMT results on the fidelity of
eigenvectors that are relevant to the analysis of the DMR
ABF. Paul [18], Nadler [19], Johnstone and Lu [20], and Be-
naych-Georges and Nadakuditi [21] describe the eigenvectors
of the spiked covariance model. This model assumes that the
data consist of one or more loud signals plus white noise. The
RMT analysis of the spiked covariance case is asymptotic:

and the ratio . Unlike traditional asymp-
totic analyses of ABFs ( fixed, ), RMT provides
useful predictions for snapshot-deficient cases . The
key result related to DMR is a prediction of the limiting value
of the generalized cosine between the ensemble eigenvector
and the sample eigenvector

if

if

(33)

Note that INR is the output SNR that would be
associated with a CBF steered toward the exact interferer direc-
tion. Equation (33) describes a phase transition phenomenon.
When INR is below the threshold, is orthogonal to .
When INR is above this threshold, is a biased estimate
of . The threshold is the square root of the ratio of sensors to
snapshots. Fig. 16 shows how the prediction varies with
INR and for a 50-sensor array.
The phase transition behavior of the sample eigenvectors ex-

plains several important aspects of DMR performance. First,
it explains why DMR ND is equal to the CBF ND for low
INR. For interferers below the threshold, the sample eigenvector
is orthogonal to the true eigenvector, meaning that the beam-
former knows nothing about the location of the interferer. For a
50-sensor array operating with a single snapshot, the threshold
is exceeded by interferers with INRs of 8.5 dB and higher. As
the array accumulates more snapshots, the threshold decreases,
meaning that the array can “see” interferers with even lower

Fig. 16. RMT predictions of the generalized cosine squared between the en-
semble eigenvector and the sample eigenvector as a function of INR and snap-
shots. Results are shown for a 50-sensor array.

INRs. Fig. 16 illustrates the change in threshold as a function of
snapshots.
Second, the phase transition described in (33) explains why

the DMR ABF fails to achieve the ensemble ND in many cases.
When the interferer exceeds the threshold, the sample eigenvec-
tors are biased since for any value of .
The bias vanishes as , and the rate at which it vanishes
depends on the INR. This agrees with the DMRND versus snap-
shot results shown in Fig. 8. ND decreases as increases. Since
the array size is fixed , an increase in means a de-
crease in . Fig. 8 also shows that the number of snapshots re-
quired to achieve ensemble performance is a function of INR.
Before the development of the RMT results discussed above,

most analyses of the sample eigenvectors relied on perturbation
theory [27]–[29]. The perturbation approximation is ,
thus it is applicable for high numbers of snapshots. Cox con-
jectured an approximate expression for the generalized sine
squared between the ensemble and sample eigenvectors [30]
that yields reasonable results for lower numbers of snapshots

INR
(34)

Using (33) the corresponding RMT result for a component
above the threshold is

INR

INR INR
(35)

In the limit of large INR, both predictions for reduce to
INR .

VII. RELATIONSHIP TO OTHER ABF RESULTS

Sections IV and V investigated the performance of the DMR
ABF when the weights are estimated using sample statistics.
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The purpose of this section is to discuss how these DMR results
relate to prior work on ABFs. While there are no analytical pre-
dictions for DMR performance as a function of snapshots, such
results exist for other algorithms.
Reed et al.’s seminal work [2] on MVDR performance pre-

dicts the expected value of SINR loss as a function of the array
size and snapshots

(36)

Note that this result is valid for because the MVDR
weight vector can only be computed when the covariance
matrix is full rank. Fig. 13 compares the SINR loss for the
DMR ABF to the MVDR prediction. For the single-interferer
example, the DMR ABF converges to the optimal SINR sig-
nificantly faster than the MVDR ABF. This is a well-known
advantage of eigenspace methods [4, pp. 845–850].
As indicated in Section I, Chang and Yeh [6] and Feldman

and Griffiths [7] analyzed the performance of a different type
of eigenspace ABF than DMR. Their algorithm operates on the
signal-plus-noise subspace, whereas DMR uses only the noise
subspace. They show that the SINR for the eigenspace ABF im-
plemented with the SCM depends on both the subspace dimen-
sion and the SINR for the ensemble case. In general, the louder
the signal component, the greater the number of snapshots re-
quired to achieve adequate performance. The results of [6] and
[7] are not directly applicable to DMR because the DMR ABF
excludes eigenvectors associated with the signal from its dom-
inant subspace. It is important to note that these derivations for
the eigenspace ABF assume that , similar to [2]
Much of the prior work on ABF performance focuses on

SINR rather than on the beampattern, thus there are few re-
sults to compare with the DMR ND analysis presented in this
paper. Richmond’s work on the MVDR ABF is the most rel-
evant [31]. He derives the probability density function (pdf)
and cumulative distribution function (cdf) of the magnitude re-
sponse and computes the probability that a sidelobe is below
a given threshold. A detailed comparison of the DMR results
and Richmond’s MVDR predictions is beyond the scope of this
paper. It is important to note that the derivation in [31] also as-
sumes , thus it does not address the snapshot-deficient
case.
The discussion above highlights the lack of ABF results for

cases where . Based on Section VI, RMT offers great
promise for analyzing the snapshot-deficient scenarios that are
of great practical interest. Section VIII summarizes the paper
and comments on some possible directions for further research.

VIII. CONCLUSION

This paper presents a theoretical analysis and an empirical
study of the DMR ABF for the single-interferer example. The
theoretical calculations for the ensemble case provide valuable
insights into the relationship among notch depth, white noise
gain, and SINR. The important results for the ensemble case are
that the loss in WNG due to placing a notch only depends on the
location of the notch and that the ensemble ND is guaranteed to
be deep enough so that the SINR depends only on the white
noise component.

The empirical study reveals several key points. First, the
snapshot performance of the DMR ABF primarily depends on
the sample eigenvectors. The sample eigenvalues have very
little effect. Second, DMR performance metrics have a phase
transition that is similar to the one predicted by RMT for
the sample eigenvectors. The INR associated with the phase
transition is a function of the size of the array and the number
of snapshots. Third, above the transition, the mean ND on a
log–log scale has a predictable slope as a function of snapshots
and INR. The standard deviation of ND also follows a linear
trend. These results suggest that a piecewise linear model for
DMR ND is appropriate. Fourth, for interferers outside the ML
associated with the steering direction, WNG is concentrated
around the ensemble prediction and is close to the optimal
value. Finally, for a single interferer, the mean SINR is within
3 dB of optimal for two snapshots or more, consistent with
the claim of other eigenspace ABFs that two snapshots per
interferer are required for .
The results presented in this paper suggest several possibili-

ties for further research. The evidence of the phase transition in
the ND results indicates that the RMT predictions for the sample
eigenvectors are useful for constructing a model of DMR ND.
Such a model would provide valuable information for sonar per-
formance predictions. A recent conference paper describes our
work on an analytical model of the mean DMR ND based on
RMT [32]. A companion paper compares the RMT model pre-
dictions to experimental measurements [33]. The latter publi-
cation considers the problem of two interferers, but additional
research needs to be done on how DMR handles multiple inter-
ferers. An important aspect of the multiple-interferer case is the
rank estimation problem, which has not been addressed in the
single-interferer examples examined here. In addition to rank
estimation, mismatch is another important topic that future work
should address. A mismatch analysis of the DMR ABF, similar
to Gilbert and Morgan’s work [34] on MVDR, would be very
valuable.
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