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Seafloor-Invariant Caustics Removal From
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Abstract—Mapping the seafloor with underwater imaging cam-
eras is of significant importance for various applications including
marine engineering, geology, geomorphology, archaeology, and bi-
ology. For shallow waters, among the underwater imaging chal-
lenges, caustics, i.e., the complex physical phenomena resulting
from the projection of light rays being refracted by the wavy sur-
face, is likely the most crucial one. Caustics is the main factor during
underwater imaging campaigns that massively degrades image
quality and affects severely any 2-D mosaicking or 3-D reconstruc-
tion of the seabed. In this article, we propose a novel method for
correcting the radiometric effects of caustics on shallow underwa-
ter imagery. Contrary to the state-of-the-art, the developed method
can handle the seabed and riverbed of any anaglyph, correcting the
images using real pixel information, thus, improving image match-
ing and 3-D reconstruction processes. In particular, the developed
method employs deep learning architectures to classify image pixels
to “noncaustics” and “caustics.” Then, it exploits the 3-D geometry
of the scene to achieve a pixelwise correction, by transferring ap-
propriate color values between the overlapping underwater images.
Moreover, to fill the current gap, we have collected, annotated,
and structured a real-world caustic data set, namely, R-CAUSTIC,
which is openly available. Overall, based on the experimental re-
sults and validation, the developed methodology is quite promising
in both detecting caustics and reconstructing their intensity.

Index Terms—Caustics, data set, fully convolutional
network, image segmentation, sun flickering, underwater 3-D
reconstruction.

I. INTRODUCTION

RADIOMETRIC effects of water refraction include the
chromatic aberration, which can be handled using high-

quality lens and the rippling caustics or sun flickering which
are of really high importance [1], [2]. These complex physical
phenomena result from the light rays being refracted by a curved
surface, such as the wavy interface between air and water.
Caustics effects (see Fig. 1) are apparent both in overwater and
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Fig. 1. Due to waves on the water surface, the refraction of natural sky
illumination is spatially varying. This creates 3-D patterns of variable light
flux, caustics, and 2-D illumination patterns. These patterns vary in time due
to dynamic surface waves.

underwater imagery depicting the bottom of optically clear water
bodies (seabed, lakebed, etc.). In the overwater cases, where
large-scale mapping operations are mostly involved, they can
be avoided by increasing the flying height, thus, increasing the
ground sampling distance (GSD) or by acquiring imagery with
the sun angle less than 30◦ over the horizon [3], [4], [5], [6].
However, in the shallow underwater cases, in most of which high
detailed 3-D reconstructions and textures are required, this is not
possible since the camera will exit the water, introducing also
the severe geometric errors caused by the refraction on the water
surface [4]. Moreover, rippling caustics’ generation precedes
wavy water surface, a water state in which overwater mapping
is not suggested since additional errors would be introduced due
to the waves [7], [8]. Till now, to avoid these intense lighting
artefacts on the bottom, image acquisition is performed under
overcast conditions, or with the sun low on the horizon [1], [2].

Hence, caustics seem to be the main factor degrading the
underwater image quality and affecting the image-based 3-D
reconstruction process in very shallow waters [1]. These effects
are adversely affecting image matching algorithms by throwing
off most of them, leading to less accurate matches [1] and
causing issues in the simultaneous localization and mapping
(SLAM)-based navigation of the remotely operated vehicles
(ROV) and autonomous underwater vehicles (AUV) on shallow
waters [9]. Also, they are the main cause for dissimilarities in
the generated 3-D models’ textures and orthoimages [1].
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Thus far, the rippling caustics effect has not attracted enough
attention from the scientific communities. However, during the
last years, where automated SfM and MVS techniques are
widely used by nonexperts, especially for mapping submerged
cultural heritage or benthic ecosystems in shallow waters, caus-
tics have been getting a lot of attention since, in many cases,
they prevent the 3-D reconstruction [1], [10]. At the same time,
only a few techniques have been proposed for the removal
of caustics from images and videos in the context of image
enhancement. However, recent literature [1], [10] indicates that
the more successful the caustics removal is, the more valid
matches are appearing in the stereo pairs and further processing
with structure-from-motion and multiview stereo (SfM-MVS)
techniques becomes possible for a number of applications.

The technical contributions of this work are as follows.
1) A new method for correcting the radiometric effects of

rippling caustics on the underwater imagery in shallow
areas. The method, contrarywise to the state-of-the-art,
can handle seabed of any anaglyph, correcting the images
using real pixel information. It first relies on state-of-the-
art deep learning tools which can accurately classify the
pixels of the image and then exploits the 3-D geometry of
the scene to achieve a pixelwise correction, by transferring
color values between the overlapping images. The pro-
posed pixelwise image correction method improves 3-D
reconstruction results or in many cases enables the 3-D
reconstruction in areas that was previously impossible.

2) A new benchmark data set: The R-CAUSTIC: Rippling
CAUSTICs underwater Image data set, is the first real-
world annotated data set for caustics detection and cor-
rection. The data set includes seven areas of different
characteristics and ground truth images without caustics,
images with caustics and a binary annotation of caustics
for each pose as well as camera calibration parameters.
The specific data set provides an opportunity to evaluate, at
least to some extent, the performance of different caustics
detection and image segmentation approaches.

The rest of this article is organized as follows. Section II
presents the physics and the effects of reppling caustics in key
point detection and matching, and discusses the related work
and limitations. Section III presents the real world data set
on underwater rippling caustics while Section IV presents the
proposed method for pixelwise image radiometric correction. In
Section V, the steps of the proposed method for pixelwise image
correction are tested over real-world data sets. Finally, Section
VI concludes this article.

II. CONTEXT AND RELATED WORK

A. Rippling Caustics

In optics, a caustic or caustic network is the envelope of light
rays resulting from the projection of light rays being reflected
or refracted by a curved surface [11], such as the wavy interface
between air and water. Therefore, caustics can be the patches
of light or their bright edges, often having cusp or spinode
singularities [12].

Rippling caustics are commonly formed when light shines
through waves on a body of water [12] (see Fig. 1). Kinemati-
cally, wavy fringes can be clearly recognized from specks due to
their relative smooth motion in contrast to the quick twinkling
behavior of the scattering. So, sunlight rippling caustics have an
optical flow field, while specks do not. Also, morphologically,
sunlight rippling caustics have characteristic strip and ringlike
outlines (see Fig. 1) in contrast with the randomly dispersive
location of the specks. On the contrary, the morphological
characteristics of the caustic waves, like the connectivity ex-
isting among many brilliant points (see Figs. 1 and 2), is much
more discriminating than the spectra of the brightness gradient.
Connected bright pixels differentiate from the underlying back-
ground scene by the fact that the scene generally looks rather
matte textured, but not dominantly brilliant. Furthermore, the
brilliant points of the scattering are relatively small, well spread,
and generally not connected to each other [13].

1) Rippling Caustics Impede Key Point Detection and Image
Matching: To demonstrate the severe effects of rippling caustics
in the underwater imagery in shallow waters, and consequently,
their effects in key point detection and matching processes,
real-world data are presented and processed below. In Fig. 2,
three consecutive images with caustics of the same seabed area,
captured from exactly the same camera position and orientation
and with an interval of 5 s (from left to right) are presented
(more details on the data set used can be found in Section III).
It is obvious that rippling caustics, being dynamic phenomena,
cause a differentiation of the pixel values of the same area of
the bottom. Key points detected using the SIFT algorithm [14]
are also mapped on these images with blue dots. As can be
seen in the zoomed areas of the images depicted in the third
row of Fig. 2, the detected key points on and around the areas
affected by the phenomenon are totally different for the images
acquired at time t, t + 5 seconds, and t + 10 seconds. Indeed, the
boundaries of the rippling caustics on the seabed, appear to be a
dominant area in the feature detection step, due to the dominant
gradients between the bright and darker areas of the image.
On the contrary, the interior area of rippling caustics, which
is very bright or sometimes burnt, is inappropriate for feature
detection since it is characterized by the absence of texture.
Together with the variation of the phenomenon through time,
these are exactly the reasons why these effects are adversely
affecting image matching algorithms by throwing off most of
them, leading to less accurate matches [1] and causing issues
even in SLAM navigation in shallow waters [9].

To demonstrate these negative effects of rippling caustics on
the key point detection and matching processes, experiments
were performed on the images presented in Fig. 2 and their
respective caustics free image, using SIFT [14] algorithm and
brute-force matching (see Fig. 3).

It is of really high importance to state here that the attempted
matching process was performed on images having exactly
the same camera orientation, thus, depicting exactly the same
area of the seabed in a different time. The matching of the
above three consecutive frames is attempted and compared with
the matching results over the caustics-free images, where the
caustics-free image is matched with itself. This matching was
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Fig. 2. Images with caustics of the same seabed area from the same camera position, captured with an interval of 5 s (from left to right) and the detected key
points using SIFT [14]. In the first row the RGB images are demonstrated, in the second row the detected points on a white background while in the third row
zoomed areas are depicted.

based on n-space Euclidean distance and performed both from
left-to-right and right-to-left for redundancy. To filter these
matches, the RANSAC algorithm was utilized to identify the
inliers of the obtained point correspondences [15]. At the end of
this step, a set of matched points is found in the given scenes,
which are presented in Fig. 3 with lines of blue color. The
matched points between the images captured at t and t+5 seconds
are presented in Fig. 3(a) while the matched points between the
images captured at t+5 and t+10 seconds are presented in Fig.
3(b). In Fig. 3(c), the matches between the image itself, without
rippling caustics, are presented.

As also performed in [1], during the performed tests, it
was decided not to evaluate the number of the total and valid
matches only, but also the geometry of the matches, since some
valid results of the RANSAC filtering are still matching the
wrong points. Quantitative results suggested that in the first two
matching examples, the matched points between the first two
images were 47, between the second and the third were 43, while
between the same caustic-free image were 1044. The above
results suggest that the rippling caustics effect indeed affects
key point detection and matching process in the underwater
imagery in shallow waters, thus affecting the image-based 3-D
reconstruction in these areas.

B. Related Work on Caustics Detection and Removal

For many years, the computer graphics research community
has focused on the generation of caustics and as a result, many
techniques have been proposed that generate photorealistic re-
sults. At the same time, only a few techniques have been pro-
posed for the removal of caustics from images and videoes in
the context of image enhancement. A brief overview of the most
relevant work in caustics removal is provided next.

Trabes et al. [13] proposed a technique that involved tuning a
filter for sunlight-deflickering of dynamically changing under-
water scenes. They employed a continuous parameter optimiza-
tion inside a basic filter, which provided feedback for further
improving the performance of the filter. Being an optimization,
the filter’s performance is highly sensitive to suboptimal pa-
rameters, and in particular, the segmentation parameter which
is part of the objective function in the optimization. A different
approach was proposed in [16], where a mathematical solution
was presented involving the calculation of the temporal me-
dian between images within a sequence. A strong assumption
of this work, is the fact that feature matching (Harris corner
detection variant in [17]) is employed for the formation of the
sequence which makes this approach very susceptible to the light
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Fig. 3. Matching results between the image captured at t and t+5 seconds (a), between the image captured at t+5 and t+10 seconds (b), and between the image
without caustics and itself (c). Left column demonstrated matches over the RGB images while right only matches on a white background.

variations in the images and, in particular, caustics effects. The
same authors later extended their work in [18] and proposed
an online sunflicker removal method that treated caustics as a
dynamic texture. As reported in the paper, this only works if the
seabed or bottom surface is flat. Similar approaches have also
been proposed for general cases of dehazing and descattering of
images such as [19], [20], and [21]. Schechner and Karpel [22]
proposed a method based on processing a number of consecutive
frames. These frames were analyzed by a nonlinear algorithm
which preserved consistent image components while filtering
out fluctuations. Their proposed method, however, does not take
into account the camera motion which almost always leads to
registration inaccuracies. Forbes et al. [10] proposed a solution
based on two small and easily trainable convolutional neural
networks (CNNs). To detect caustics, a small CNN was trained
over synthetic data to overcome the obstacle of not having
ground truth data available for real world underwater caustics.
Being the first deep-learning based solution for caustics removal,
this method is very important for a variety of applications,
however, when it comes to reliable and accurate underwater 3-D
reconstruction and mapping, especially of submerged cultural
heritage or benthic community, artificial parts on the imagery
should rather be avoided. This proposed solution was extensively
evaluated in terms of keypoint detection, image matching, and
3-D reconstruction performance in [1]. Tripathy et al. [23]
presented a clustering-based approach for underwater sunlight

flicker removal. As in some other works, their method is based
on temporal median calculation and thresholding to be used as
an online algorithm for AUVs to minimize the sunlight flicker
distortions in the frames during the video survey and was tested
in a controlled pool environment.

Other methods for correcting the underwater imagery, i.e., a
piecewise linear transformation between the overlapping areas
of the images, exploiting the matched keypoints as control points
for the transformation, fail to deliver accurate and reliable 3-D
reconstruction, since the x-parallax of the 3-D objects is not
taken into account, delivering point clouds of different depths
on the corrected areas.

Despite the innovative and complex techniques developed,
addressing caustics removal with current procedural methods
requires that strong assumptions are made on the many varying
parameters involved, e.g., scene rigidity, camera motion, seabed
flatness, etc. As demonstrated in [1], replacing the caustics
affected area with synthetic pixel information, delivers quite
appealing results, albeit slightly increases the matched points
by 2%–3%, since caustics are replaced with artificial informa-
tion that cannot be cross-matched between overlapping images.
Moreover, real ground truth for caustics is not easily available,
preventing recent advances in machine learning to jump in. Con-
trary to the state-of-the-art, the developed method can handle
seabed and riverbed of any anaglyph, correcting the images using
real pixel information, thus, improving image matching and 3-D
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Fig. 4. Sample images from the R-CAUSTIC data set. First column: RGB images. Second column: The reference images. Third column: The difference images
between the images with caustics and the reference images. Fourth column: The thresholded difference image. Fifth column: The RGB images with the detected
contours. Each row depicts images for the respective subset of the data set.

reconstruction processes. In particular, the developed method
employs deep learning architectures to classify image pixels to
“noncaustics” and “caustics.” Then, exploits the 3-D geometry
of the scene to achieve a pixelwise correction, by transferring
appropriate color values between the overlapping underwater
images. Moreover, to fill the current gap, we have collected,
annotated, and structured a real-world caustic data set, namely,
R-CAUSTIC, which is openly available. Overall, based on the
experimental results and validation, the developed methodology
is quite promising in both detecting caustics and reconstructing
their intensity.

III. R-CAUSTIC: RIPPLING CAUSTICS UNDERWATER

IMAGE DATA SET

In the literature, the data sets presented in [24] are the only
ones available related to rippling caustics. These data sets con-
tain raw material and results of the underwater experiments
performed in a pool, in the Red Sea and in the Mediterranean
Sea. However, the images are of low resolution and the data set is

not created with the purpose of being used with machine learning
and deep learning frameworks due to the lack of ground truth
images. Also, the scenes of this data set are not representing a
realistic set up for underwater image-based 3-D reconstruction
of the seabed or lakebed.

In this work, to fill this gap, R-CAUSTIC, which is a real-
world underwater caustics benchmark data set containing 1465
underwater images is presented (see Fig. 4). Together with the
RGB imagery, the corresponding generated ground truth images
are provided for facilitating the training and testing of machine
and deep learning methods for image classification. The data
set contains 7345 images in total. The specific data set also
provides the necessary data to evaluate, at least to some extent,
the performance of 3-D reconstruction approaches.

A. Data Collection

Data were acquired using a GoPro Hero 4 Black action camera
with image dimensions of 4000 × 3000 pixels, focal length of
2.77 mm, and pixel size of 1.55μm, and a tripod. Action cameras
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Fig. 5. Reference image created using the artificial shadow in (a) and the reference image created using the pixels having the lowest values compared with the
pixels of the same position in the rest of the imagery in (b). In the red rectangle, the multiple fish appearing in the reference image are highlighted.

are widely used for underwater image acquisition [2]. The data
set was captured in near-shore underwater sites at depths varying
from 0.5 to 2 m. No artificial light sources were used. Due to
the wind, the turbulent surface of the water created dynamic
rippling caustics on the seabed. In total, 1465 images were
collected using the same camera, separated into seven different
subsets according to the seabed type of the depicting area or
their overlap; subsets 1, 4, 5, 6, and 7 contain stereo images,
subset 3 tri-stereo images, and subset 2 consists of multistereo
imagery acquired in seven consecutive camera poses. As can be
seen in Fig. 4 where each row stands for a typical image from
each subset, the collected imagery presents a large variability in
terms of scene complexity, color, caustics complexity, frequency,
and scale. Images were collected with five seconds interval to
describe as much different instances of the caustics as possible.
The 7 subsets of the data set capture flat and 3-D seabed surfaces.

1) Reference and Ground Truth Image Generation: To cap-
ture the reference images of the data set (see Fig. 4, second
column), an artificial shadow was introduced in the scene, above
the water, to protect the water surface from the sun rays [see
Fig. 5(a)]. Since the images of the same branch of the data set
(i.e., left or right) are captured by the same camera position,
an alternative approach was also implemented for the reference
images generation. This was to create an image using the pixels
having the lowest values compared with the pixels of the same
position in the rest of the imagery. To perform that, images were
transferred to the lab color space to choose the pixels with the
lower luminosity.

Although this approach is generating images with great qual-
ity, in some cases, in the created reference image objects appear
that are apparent in one of the scenes, having lower values in the
lab space compared with the rest of the pixels of this position.
This led, in many cases, to the appearance of multiple fish in
the reference image, even in the branch of the data set there
is only one fish moving between the image instances [see Fig.
5(b)]. Having captured the reference images for each part of
the data set, the per-element differences Δ(x, y) between the
reference and each image of the data set containing caustics is
calculated and saved in a new image, the difference image (see

Fig. 4, third column). To generate a more accurate difference
image, containing only caustics and not other differences in the
pixels’ colors, a color transferring approach between the images
containing caustics and the reference images is performed, as
described in Section IV-B1. Color transferring is performed from
the images with caustics to the reference image. Also, since the
difference image contains noise due to scattering and passing
particles, the image is smoothed with a spatial Gaussian pre-filter
with a kernel size of 3 x 3 to 7 x 7 pixels, depending on the scene.

To compensate for changes in illumination conditions during
the acquisition phase and prepare the imagery for the ground
truth image generation, the difference images’ pixel values are
scaled and shifted so their minimum value is 0 and the maximum
value is 255. Finally, the thresholded difference images are
created (see Fig. 4, fourth column). To ensure that the ground
truth images do not include any false positives, a Canny edge
detector [25] is employed to facilitate the projection of the
detected contours on the original images containing caustics for
visual inspection (see Fig. 4, fifth column).

Although the above procedure is very consistent for generat-
ing the ground truth images, it must be noticed that caustics are
very complex physical phenomena and by their nature, they do
not have a very specific boundary. When the camera to object
distance is quite small (i.e., 0.5 m) and the incidence angle of the
light rays to the surface of the water is also large, their boundary
is characterized by very intense chromatic aberration effects. On
the contrary, when the incidence angle is closer to the perpen-
dicular, their boundary is of the same color values as the core
of the caustics bright white. The chromatic aberration intensity
is also depending on the direction of the ripples compared with
the lighting rays’ direction. As the angle of the ripples with the
lighting direction increases, the aberration increases too.

2) Underwater Camera Calibration: Since the collected
data set enables also the 3-D reconstruction of the imaged
areas of the seabed, underwater camera self-calibration [26]
was performed to deliver the retrieved parameters together
with the data set. Self-calibration techniques do not use any
calibration object. If images are taken by the same camera
with fixed internal parameters, correspondences between three



1306 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 48, NO. 4, OCTOBER 2023

Fig. 6. Proposed method for the pixelwise correction of the rippling caustics on the underwater imagery.

images are sufficient to recover both the internal and external
parameters [27]. Nowadays, self-calibration is widely applied
for the camera-housing system in underwater cases, as it is
assumed that refraction effects of the housing are compensated
by the interior orientation parameters [7], [28]. In the performed
approach, since the intrinsics were shared between all the images
of the data set, the intrinsic camera parameters were estimated
through COLMAP [29] SfM pipeline which exploits a RANSAC
variant called P3P(f)-RANSAC proposed by [30].

Results are included in the data set as a separate file. The
camera models used are of OpenCV [31]. For more information
on the models, readers may refer to [26], [31], and [32]. Below,
the estimated intrinsics are given with unrefined principal point
and with refined principal point, respectively

[fx, fy, cx, cy, k1, k2, p1, p2]

= [2416.65, 2424.26, 2000, 1500,

− 0.092734, 0.108091, 0.002016,−0.000773]

[fx, fy, cx, cy, k1, k2, p1, p2]

= [2343.20, 2346.41, 1930.11, 1481.97,

− 0.101428, 0.098774,−0.000378, 0.000014].

IV. PROPOSED METHOD FOR PIXELWISE IMAGE

RADIOMETRIC CORRECTION

To deal with the feature detection and matching problem in
images with caustics, the very accurate detection of the not
affected areas of the images is proposed in this work, enabling
feature detection only on these areas. For the approach presented
here, it is of utmost importance to maintain as much of the origi-
nal RGB information of the images as possible. Next, to correct
the affected imagery, a pixelwise method based on the stereo
or the multiview geometry is proposed. This method works

on the overlapping area of the imagery and takes advantage of
the pixel correspondences in this area. The overall workflow of
the proposed method is illustrated in Fig. 6 while the different
modules of the method are described in detail in the following
sections.

Initially, to detect the unaffected areas with very high accu-
racy, reliability, and repeatability over different caustics patterns,
different types of seabed, luminosity, and visibility conditions, a
fully convolutional neural network (FCN) classifier is exploited.
The classifier is being trained using the R-CAUSTIC data set.

Having detected the unaffected and consequently the affected
areas on the initial imagery since it is a binary classification
problem, a color transferring approach is performed between
the consecutive or overlapping images. These images are then
matched using only the key points detected on the not-affected
areas of the images classified as “noncaustics,” are stereo-
rectified and their respective disparity maps are generated. In
this step, the binary images resulted by the FCN are also repro-
jected using the homography matrices computed for the initial
imagery rectification. Having all the necessary data available,
the pixels classified as “noncaustics” are not processed while
the rest of the pixels are replaced by their corresponding pixels
on the matched images using the disparity maps. Finally, the cor-
rected stereo-rectified images are projected back onto the initial
camera model to facilitate further SfM-MVS processing and
texturing.

A. Pixel Classification

Although the unaffected areas are appearing on the images as
pixels having lower exposure than the caustics’ pixels, for the
method presented here, a sophisticated approach was chosen to
be implemented. This was decided because of the very intense
effects of chromatic aberration appearing on the boundaries of
caustics, not being able to be detected by a simpler method such
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as thresholding. Moreover, it was also important to classify as
not-affected areas white colored areas and reflective materials
of the seabed such as, e.g., marbles and ground control points
(GCP) markers placed for photogrammetric campaigns in the
shallower waters (see Section V). Since underwater imagery
can be captured by very different distances from the seabed,
different imaging sensors, different luminosity, and visibility
conditions and caustics size might vary depending on the water
surface state, it was considered important for the deep fully
convolutional network to be able to deal with multimodal and
multiscale image data for semantic labeling. To that direction,
several state-of-the-art architectures were implemented and used
for training and testing, providing insights for their performance
over the specific problem of caustics. As such, a similar approach
to the one presented in [33], which is based on SegNet [34], a
U-Net [35], two FCN models with ResNet50 and ResNet101
backbones [36], respectively, and two DeepLabV3 [37] models
with a ResNet50 and ResNet101 backbones, respectively, were
trained, evaluated, and tested using the R-CAUSTIC data set as
well as real world images. For more information on these results
(see Section V).

B. Stereo-Rectification and Disparity Maps Generation

The most important steps of the proposed method are the
accurate matching and stereo-rectification of the imagery and,
consequently, the accurate disparity maps generation and filter-
ing. However, before these steps, a color transferring approach
is performed between the images of the stereopair or even the
whole block.

1) Color Transferring in the CIE-lαβ Color Space: Color
transferring is an important step of the proposed method. It
will prevent the appearance of visible patches of pixels in the
corrected imagery and will deliver seamless corrected imagery.
Indeed, due to different exposure and white color balancing of
the images, it is very likely that the replaced regions are clearly
recognizable by color differences creating visual artifacts in the
image that are not part of the object itself. The main goal of
this step is to obtain a visual consistent and pleasing corrected
image, by equalizing the color profile of all images of the data
set while fine details are preserved

To apply this color transferring approach, the well-established
methodology presented in [38] is exploited. It is based on the lαβ
color spaced developed by [39] which minimizes the correlation
between the three image channels. This facilitates different
operations in different color channels with the confidence that
undesirable cross-channel artifacts will not occur [38]. In ad-
dition, this color space is logarithmic, which means, to a first
approximation, that uniform changes in channel intensity tend to
be equally detectable [38]. In the implemented method, first, the
RGB images are converted to lαβ color space. There, the l axis
represents an achromatic channel, while the α and β channels
are chromatic yellow–blue and red–green opponent channels. To
achieve the color transferring, the mean and standard deviations
along each of the three axes are computed for both the source and
target images. These mean values are subtracted from the image
data points [38], i.e., the values of each channel. Consequently,

the resulted data points are scaled comprising the new image by
factors determined by the respective standard deviations. After
this transformation, the new data points (of the new image) have
standard deviations that conform to the image. Next, instead
of adding the averages that were previously subtracted, the
averages computed for the image are added. Finally, the result
is converted back to RGB via log-LMS (long, medium, short),
LMS, and XYZ color spaces and the new image is ready for fur-
ther processing. Color transferring was performed sequentially,
starting from an image selected by the user or the first image of
a data set.

2) Feature Detection, Matching, and Epipolar Geometry
Retrieval: Next, feature detection is performed using
BRISK [40] detector. BRISK is adaptive, offering high
quality performance as in other state-of-the-art algorithms,
albeit at a dramatically lower computational cost (an order of
magnitude faster than SURF in some cases) [40]. To detect
matchable features, the generated binary images from the
previous step are exploited here. To that direction, for detecting
the necessary features, BRISK [40] is working only in areas that
are classified as “noncaustics” in the binary mask. Even for this
specific approach BRISK detector was chosen due to its lower
computational cost. SIFT, SURF, ORB, or other state-of-the-art
detectors can also be used to detect the necessary features.

The detected features on an image are then matched to the
corresponding features on the overlapping images and the map-
ping of these features between these images is stored in a vector.
This matching is based on n-space Euclidean distance and it is
performed both from left-to-right and right-to-left for redun-
dancy. However, since in feature matching, several blunders
might occur, the RANSAC [15] algorithm is utilized to identify
the inliers of the obtained point correspondences. The algorithm
takes all the matched points as input, formulates a mathematical
model that incorporates the majority of the points, and filters
out the remaining points which are considered as outliers. To
accomplish that, the fundamental matrix is computed and the
measure for thresholding inlier points is the distance from the
epipolar line. At the end of this step, a set of matched points is
found in the given scenes.

3) Stereo-Rectification and Disparity Maps Generation:
Knowing the epipolar geometry of the overlapping images, the
initial imagery is then projected to form the stereo-rectified
imagery in pairs. By using exactly the same matrices which
describe the epipolar geometry of the two images, the predicted
binary images resulting from the FCN are also projected in their
stereo-rectified form. These projections are necessary to reduce
the complexity of the problem across horizontal epipolar lines
and facilitate the pixelwise image radiometric correction. Since
for the vast majority of the divers acquired underwater imagery,
the optical axes of the cameras are not parallel to each other,
to have horizontal epipolar lines parallel to the baseline, the
reprojection of both image planes onto a common plane parallel
to the baseline needs to be performed. The rectification approach
followed was first proposed in [41] and involves the decomposi-
tion of each rectifying homography into a projective and an affine
component. Then the projective component that minimizes a
well-defined projective distortion criterion is found. The affine
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component of each homography is further decomposed into a
pair of simpler transforms; one designed to satisfy the constraints
for rectification, the other is used to further reduce the distortion
introduced by the projective component.

The stereo-rectified imagery is then used for the disparity
maps generation. This is achieved by stereo-processing the
imagery by semiglobal matching (SGM) [42], [43], evaluating
in eight line directions instead of 16, to reduce the processing
time. The exact approach followed is described in [42] where
the consistent semiglobal matching (CSGM) is first presented.
Compared with SGM, CSGM uses the same steps but also the in-
tensity consistent disparity selection. It uses a pixelwise, mutual
information-based matching cost for compensating radiometric
differences of input images, a feature necessary when processing
images with caustics. Pixelwise matching is supported by a
smoothness constraint that is usually expressed as a global cost
function. CSGM performs a fast approximation by pathwise
optimizations from all the eight directions. In addition, post-
processing steps for removing outliers, recovering from specific
problems caused due to the caustics’ effects and the interpolation
of gaps are also applied.

Occlusions and mismatches can be distinguished as part of the
left/right consistency check. Regarding the interpolation for the
gaps caused by the mismatched pixel areas on the caustics, it is
performed by propagating valid disparities through neighboring
invalid disparity areas. To achieve the best possible interpolation,
this is done similarly to SGM along paths from eight directions.
According to [42], where the implementing postprocessing was
first presented, this approach emphasizes the use of all informa-
tion without a preference to foreground or background. More-
over, instead of the mean, the median is used for maintaining
discontinuities in cases where the mismatched area is at an
object border. The implemented interpolation method has the
advantage that it is independent of the used stereo matching
method. Finally, median filtering can be useful for removing
remaining irregularities and additionally smooths the resulting
disparity image.

C. RGB Values Replacement and Back-Projection
of the Images

Considering that for each stereo-rectified image, the binary
image of “noncaustics” and “caustics” classes and the disparity
maps are available in the same projection, the pixelwise image
correction can be performed. To that direction, for each pixel
of an image that is not classified as “noncaustics” in the bi-
nary image, the RGB values of the corresponding pixel in the
overlapping image are found, using the disparity map and vice
versa. The relation between the source and the target pixels is
expressed in the following:

xtarget = xsource − disparitysource (1)

xsource = disparitytarget + xtarget (2)

where xtarget is the horizontal coordinate of the pixel in the n+1
image of the stereo pair and xsource the horizontal coordinate of
the pixel in the n image of the block. This process is performed
only if the target pixel is classified as “noncaustics.”

That way, the areas that are not classified as “noncaustics,” are
pixel-wisely corrected by exploiting the rigorous geometry of the
stereo-pair. By using this approach, the disparity (x-parallax) of
each pixel is taken into account, facilitating a more accurate and
reliable correction approach that is not adversely affecting the
later SfM and MVS steps, but it improves them. This is achieved
as this horizontal displacement between rectified feature points
is related to the depth of the feature. This way the method can be
used to recover the images over 3-D structures without affecting
the 3-D position of the SfM and MVS processing calculated
subsequent.

V. EXPERIMENTAL EVALUATION

In this section, the proposed method for pixelwise image
correction is tested end evaluated over the R-CAUSTIC data set
and other real-world images collected, proving its robustness,
accuracy, and reliability.

A. Pixel Classification

To form a reliable image pixel classification model, the
data set presented in Section III was used to train and cross-
validate SegNet [34], U-Net [35], two FCNs with ResNet50 and
ResNet101 backbones [36], respectively, and two DeepLabV3
[37] models with a ResNet50 and ResNet101 backbones, re-
spectively. To that direction and to prove and evaluate their
generalization and domain adaptation potential over different
types of scenes and subsets, seven training-testing approaches
were performed for each of the FCNs.

To achieve that, the seven subsets were categorized based on
the similarity of the scene in terms of caustics frequency, patterns
and seabed uniformity and characteristics. Subsets 1, 2, and 3
are considered to have similar background, although caustics
are of very different scale and complexity, subsets 5 and 7 are
also considered similar. The rest of the subsets are not similar to
each other. They represent totally different types of seabed and
caustics.

B. Choosing a Shallow or a Deep ML Architecture?

Concerning the selection of a deep architecture for address-
ing the image classification problem, before the decision that
an FCN would be more appropriate for the proposed solu-
tion, several tests were performed using shallower ML archi-
tectures. Training and testing were performed for classifying
the underwater imagery using AdaBoost [44] and specifically
AdaBoost-SAMME [45] having decision trees [46] as the base
estimator, decision trees [46], K-nearest neighbors (KNN) [47],
quadratic discriminant analysis (QDA), random forests [48] and
linear support vector machines [49]. Also, a simple thresholding
approach was performed. Regarding the thresholding, its value
was changed over the different images, while for the rest of the
methods, the default values as set in [50] were used. Resulting
metrics from training over subsets 4, 5, 6, and 7 and testing over
subsets 1, 2, and 3 are presented in Table I.

As can be seen in Table I, the metrics achieved by all the FCNs
outperform the rest of the methods used for image classification.
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TABLE I
TESTING PERFORMANCE OF THE VARIOUS METHODS

The linear SVM follows with almost 10% less accuracy and
after that, AdaBoost comes with almost 13% less accuracy. By
comparing the precision score of the rest of the classifiers, they
are achieving quite similar percentages, however, this is not the
case for the recall and the F1 scores where only the linear SVM
and the AdaBoost classifiers are quite close. It is also evident
that AdaBoost is outperforming the results of the decision trees,
however, this was expected. For the majority of the performed
tests, the shallower classifiers as well as the thresholding were
not able to distinguish between caustics and other bright artifacts
on the scene, i.e., white rocks with high accuracy. Moreover, they
did not succeed in reliably detecting the boundary of the caustics
when it is characterized by the intense chromatic aberration
effect. This is also reflected in the achieved metrics in Table I.
Two typical examples are presented in Figs. 7 and 8.

There, the input RGB image is given, along with the predic-
tions of the tested shallow architectures. In the red rectangles,
some typical cases of false negatives, i.e., pixels that are wrongly
classified as “caustics” are highlighted. On the other hand,
orange rectangles indicate areas of false positive, i.e., pixels that
are wrongly classified as “noncaustics.” This, together with the
experiments performed over the different subsets, highlights the
difficulty of those methods to generalize over the different types
of seabed and caustics.

The metric and visual results of the above experiments, justify
the use of a deeper architecture for classifying the underwater
imagery affected by caustics, as also used in [10]. Even if the re-
sulted metrics of most of the tests performed using the shallower
architectures are lower than those achieved by the exploited FCN
architecture, they do not prohibit their use. However, one has to
consider the specific goal of the application. As such, for a more
close to real time application, where only key point detection
and matching is needed, i.e., visual odometry, etc., AdaBoost,
decision trees, KNNs, QDA, or even simple thresholding could

be used due to their minimal prediction times, compared to the
SVMs and the FCN architectures.

However, when it comes to the maximum improvements on
the sparse and the dense 3-D reconstruction using the less neces-
sary images, a deep architecture seems to be the best solution. By
classifying the pixels of the underwater imagery with the highest
accuracy, only the pixels that it is really necessary to be replaced
are undergoing the correction process, keeping as much as possi-
ble of the original imagery unprocessed. This way, there is more
area on the image available for the keypoint detectors, ensuring
a more robust SfM process. In addition, as already proved, the
FCN, achieves to detect in an accurate and reliable degree the in-
tense chromatic aberration effects on the boundaries of the caus-
tics, something really important for facilitating a more realistic
corrected imagery and as will be shown in Section V-D, enabling
the generation of a more complete dense 3-D point cloud.

1) Training and Cross-Validating Deep ML Models: Taking
into account the categorization of the subsets based on the type
of seabed and caustics they are depicting, eight (8) different
training and testing approaches were formed (see Tables II and
III) to check the generalization and domain adaptation potential
and the trained networks. For each case, six different models
where trained and tested, forming the respective subcase: (a) for
SegNet [34], (b) for U-Net [35], (c) and (d) for two FCNs with
ResNet50 and ResNet101 backbones [36], respectively, and (e)
and (f) for the two DeepLabV3 [37] models with a ResNet50 and
ResNet101, respectively. In the first case, the models are trained
over subsets 4, 5, 6, and 7 and testing is performed over subsets 1,
2, and 3. In the second case, the models are trained over subsets
3, 4, 5, 6, and 7 and testing is performed over subsets 1 and 2.
The third case involves training on 1, 2, 3, 4, and 6 and testing on
subsets 5 and 7. For the fourth approach, the models are trained
over subsets 1, 2, 3, 5, and 7 and tested on subsets 4 and 6. In
the fifth, sixth and seventh approach, the models are trained over
only subsets 1, 3, and 6, respectively, and tested over the same
subsets; 2, 4, 5, and 7. Finally, in the eighth case, the models
were trained using all the available data to form a model able
to predict over various unseen data. The number of the images
used for training these three models (three for each network) are
exactly the same with the previous training approaches. Cases
5–7 aimed to prove the necessity of the variability of the scenes
of the data set and to reply to the question whether it is better
to train the model using N images coming from one subset or
using N images coming from many subsets.

For training the FCNs, a sliding window approach to extract
128 × 128 patches was used. Due to the size of the images being
too large to fit all at once to the GPU used, they were broken into
those smaller patches for training the deep learning models. The
stride of the sliding window defines the size of the overlapping
regions between two consecutive patches. At training time, a
smaller stride allows us to extract more training samples and acts
as data augmentation. At testing time, a smaller stride allows
us to average predictions on the overlapping regions, which
reduces border effects and improves the overall accuracy. During
training, cross-validation and testing, a 32 pixels stride was
used. Models are implemented using the PyTorch framework.
Torch is a scientific computing framework with wide support for
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Fig. 7. Input RGB image together with the predictions of the tested architectures for an image from subset 4.

Fig. 8. Input RGB image together with the predictions of the tested architectures for an image of a real world application, not contained in the data set.
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TABLE II
AVERAGE TESTING PERFORMANCE AFTER 30 EPOCHS OF TRAINING

machine learning algorithms that puts GPUs first. All the models
were trained over 30 epochs using stochastic gradient descent
(SGD) with a base learning rate of 0.01, a momentum of 0.9,
a weight decay of 0.0005, and a batch size of 60. The learning
rate was divided by 10 after 20 epochs. Regarding the number
of the epochs of training, various applied approaches indicated
that more than 30 epochs offer nothing more to the network’s
performance. To this direction, the network was trained on 30
epochs where for each epoch were used 10.000 samples acquired

from ten images of each subset over 167 iterations. For the
training approaches on which only one subset was used, the
same number of samples was retrieved from 50 images.

Fig. 9 presents the training loss and cross-validation accuracy
for training FCN-ResNet101 on subset 1 (case 5 d). Lines
in green color represent the running-window cross-validation
accuracy while lines in orange the cross-validation accuracy
on all the validation data for each 100 iterations. Lines in red
represent the training loss for the same running-window while
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TABLE III
AVERAGE TESTING PERFORMANCE AFTER 30 EPOCHS OF TRAINING

Fig. 9. Training loss and cross-validation accuracy for training the FCN with the ResNet101 backbone over subset 1.

lines in blue represent the mean loss for each iteration. In Fig. 9,
which is representative for the majority of the performed training
approaches, one can notice that the cross-validation accuracy
(orange line) is over 92%–94% and the mean training loss (blue
line) is less than 0.15 even from the first 2500 iterations (15
epochs). However, moderate oscillation in the running window
cross-validation accuracy and training loss is present in most of
the multisubset training approaches.

The oscillation observed in the same figure is directly related
to the complexity and the clarity of the caustics on the subsets
used for training. To investigate the source of this oscillation,
initially the base learning rate is altered. By the tests performed
it is concluded that the reduction of the learning rate did not
decreased the oscillation of the accuracy but on the contrary it
increased it while the increase of the learning rate did not affect it.
This implies that the oscillation of the running-window values is
caused by the variance of the cross-validation data and especially
the use of a random sample. Increasing the window size or
reducing batch size will effect in reduction of the oscillation,
however, this is not the case for the performed experiments.
Regarding the accuracy of all the cross-validation performed
every 100 iterations for all the validation data and the mean
loss, no remarkable oscillation is noticed, proving the reliability
of the models.

2) Testing the Models: To test the different models trained
over unseen subsets of the data set, two metrics are used; F1
score which is a single metric that combines recall and precision
using the harmonic mean and accuracy which is the ratio of the
correctly labeled subjects to the whole pool of subjects. Tables II
and III present the various metrics calculated after testing the
several trained models over 30 epochs. It is obvious that for all
the trained models, the achieved metrics for “noncaustics” pixel
classification are quite high, indicating their great generalization.
It is also evident that the models trained only on subsets 3 or 6
(cases 6 and 7) are achieving lower metrics compared to the rest,
proving the necessity of the R-CAUSTIC data set as a whole. It is
reminded that the main goal here was the very accurate detection
of the nonaffected areas of the images, enabling feature detection
and color values transferring only from those areas.

Overall, the results delivered by all the trained models are
very satisfying, classifying with very high accuracy and relia-
bility the pixels of the underwater images. Differences on the
sensitivity of the models are expected, however this highlights
the need to train a final model using all the available subsets.
However, the slight prevalence of the models trained on the
FCN-ResNet101 should be mentioned, while SegNet follows.
The small variations observed in the metrics were expected due
to the diverse characteristics of the subsets used for training and
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Fig. 10. Typical examples of the RGB images (second column), the ground truth binary images (third column), and the predicted binary images (fourth column)
using the models trained in the respective cases (first column).

testing and the different FCN architectures used for training. It
is also an indication of the performance of the trained models
over different types of caustics. However, these variations are
not affecting the overall accuracy of the models in a severe
degree. Actually, the differences in the F1 score for caustics and
“noncaustics” are mostly attributed to the indefinite boundary of
caustics due to the chromatic aberration effect, and as such the
differences between the predicted and the ground truth values,
especially in subsets 3 and 6. This is also the reason for the

lower accuracy achieved in “caustics” class, since the chromatic
aberration affects a larger percentage of this class, compared to
the “noncaustics” class.

In Fig. 10, the input RGB images with the respective ground
truth and SegNet’s predictions are illustrated. For the first and
the second row of the figure which is showing the predictions
over an image from 1 and 2 subset, respectively, the binary
image is predicted by the model trained on 3, 4, 5, 6, and
7 subsets.
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Fig. 11. Various real-world RGB images (first and third column) and the respective predictions using the model trained on all the available subsets (case 8 d)
(second and fourth column).

Especially in the first row, it can be noticed that the pixels
classified as “caustics” exceed those in the ground truth. These
results come from the training of the model in more close-range
imagery, giving it the ability to detect the intense chromatic
aberration on the boundaries of the caustics. However, this
cannot be achieved in the ground truth image. Following, the
third and the fourth row present the predicted binary masks using
the model trained over the 1, 2, 3, 4, and 6 subsets for images
belonging to the fifth and the seventh subsets, respectively.
Finally, the fifth and the sixth rows are illustrating the predicted
binary masks using the model trained on the 1, 2, 3, 5, and 7
subsets for images belonging to the fourth and the sixth subsets,
respectively.

In addition, an FCN-ResNet101 model was trained exploiting
all the available subsets, to be used for classifying unseen un-
derwater imagery. For training this model, the same parameters
as before are used. Results over images captured for real-world
underwater photogrammetric applications in shallow waters are
presented in Fig. 11.

There, it is obvious that the trained model can generalize
over different types of seabed and caustics with high reliability.
A very important outcome is also that the model achieves to
classify really bright areas of the image that are not caustics as
“noncaustics” correctly. This can be seen on the last two images
of Fig. 11 where the white stones on the seabed and a white
ground control point (GCP) are classified as “noncaustics.” This
example with the GCP is of really high importance for the
underwater photogrammetric applications.

C. Pixelwise Image Radiometric Correction

In this section, results regarding the pixelwise image cor-
rection are presented and evaluated. Fig. 12 presents typical
examples of corrected images from the presented data set while
Fig. 13 presents examples of real-world corrected imagery.

The first column depicts the original images with caustics,
the second column depicts the binary images predicted by the

trained FCN model and the third column demonstrates the
corrected imagery. By observing the corrected imagery, it is clear
that the proposed method achieves impressive visual results,
since in the vast majority of the corrected images the rippling
caustics are mitigated enough for certain image processing appli-
cations, like 3-D reconstruction, and the replaced pixels are not
clearly obvious. However, in some cases like the one presented in
the second row of Fig. 12, the corrected areas are obvious. This is
a result of an inadequate color transferring approach, indicating
great differences in luminosity between the overlapping images
used for the correction. In fact, in some cases, these differences
cannot be compensated by the color transferring only. However,
as will be shown by the experiments presented in Section V-D,
this is not affecting the 3-D reconstruction performance in a
measurable degree. To solve this issue, Poisson blending [51]
could be implemented on the boundary of the corrected with the
uncorrected areas, however, this would affect the pixel values
in an uncontrollable degree, affecting even more the SfM-MVS
processes.

To demonstrate the importance of the color transferring step
proposed in this methodology, in cases where no extreme dif-
ferences between the source and the target images are apparent,
a typical example is given in Fig. 14.

There, a corrected image created by the proposed methodol-
ogy with the color transferring step is presented in (a) while the
same image corrected by the proposed methodology without
applying the color transferring step is presented in (b). It is
obvious that in the case where the color transferring is not
applied, the replaced pixels are obviously enough, since they
are characterized by lower RGB values.

Although it is not clearly obvious in the scale at which the
images are presented in Fig. 12, the proposed approach achieved
really high accuracy in the pixel replacement process. When
having a closer look to the corrected imagery, no offsets and other
pixel displacements are obvious, especially in formations on the
scene, being continuous between a corrected and a noncorrected
area of the image.
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Fig. 12. Examples of corrected images for the seven subsets. The first column depicts the original images with caustics, the second column depicts the binary
images predicted by the trained FCN model and the third column demonstrates the corrected imagery.

D. Improving 3-D Reconstruction

Following the pixelwise correction of the underwater imagery,
the corrected data were processed with a commercial SfM-MVS
software for evaluating the improvements on the 3-D recon-
struction, which was the initial objective of the effort. To that
direction, six different test cases were processed (see Figs. 15

and 16). Typical images for these six test cases can be seen in
Fig. 12.

The first three test cases are using images of the already
presented benchmark data set; the first test case is using tri-stereo
imagery from subset 3, the second testcase is using stereo
imagery from subset 1 while for the third test case multiple-view
stereo imagery (seven consecutive images) from subset 2 was
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Fig. 13. Examples of corrected images for real-world imagery. The first column depicts the original images with caustics, the second column depicts the binary
images predicted by the trained FCN model, and the third column demonstrates the corrected imagery.

Fig. 14. Corrected image by the proposed methodology with the color transferring step (a) and the same image corrected by the proposed methodology without
applying the color transferring step (b).

used. These three test cases will facilitate the evaluation of the
proposed correction methodology in terms of 3-D reconstruction
improvement, compared also to the generated 3-D point clouds
using the already available reference imagery. The 3-D recon-
struction results are presented in Fig. 15. Results of the rest of the
four subsets presented in Section III are not presented here since
due to the complexity of the scene and the poor texture of the
smooth and glossy rocks, the improvements are not easy to be
highlighted, since the 3-D point clouds of the reference imagery
are incomplete too. As such, the subsets presented in Fig. 15 are
those that are generating the most complete 3-D reconstructions,
facilitating a detailed and direct comparison of the results.

By comparing the 3-D point clouds generated using the ref-
erence imagery (left column of Fig. 15) to the 3-D point clouds

generated using the uncorrected and the corrected imagery,
significant differences can be noticed. It is clear that caustics
are preventing a proper 3-D reconstruction of the scene, since
when images affected by them are used, the resulting 3-D point
clouds are incomplete for all the tested cases. More specifically,
dense image matching (DIM) algorithms are failing to match
the corresponding points of the affected areas and only the
unaffected areas are appearing in the 3-D point cloud. It is also
important to highlight that as reported also in Table IV, when
using the uncorrected imagery, not all of the images were aligned
for the test case 1 and test case 3. In the latter, this resulted in a
much less covered area by the 3-D point cloud.

Coming to the third column, it is obvious that when the
imagery corrected by the proposed methodology is used, the
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Fig. 15. Three-dimensional reconstructions using the reference imagery (left column), the uncorrected imagery (middle column) and the corrected imagery by
the proposed methodology (right column). Each row refers to a different test case.

TABLE IV
EVALUATION METRICS BETWEEN THE UNCORRECTED AND THE CORRECTED IMAGES

completeness of the 3-D point cloud is improved to a great
degree, delivering point clouds very similar to the ones generated
by the reference imagery. Some insignificant differences can
be observed on the perimeter of the reconstructed area. These
differences are not attributed to some defect of the corrected

imagery but on the extremely intense chromatic aberration that
is apparent at the areas of the image having large radial distance
when the luminosity of the scene is increased. This effect is not
that intense on the reference images since they are characterized
by lower illumination. In these cases, chromatic aberration is
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Fig. 16. Resulting 3-D point clouds for the rest three tests performed over
real-world imagery. In the left column the 3-D point cloud generated using
the original uncorrected imagery is presented while in the right column, the
respective 3-D point cloud of the corrected imagery is presented.

caused by the lens of the camera, as a result of the different
refractive indices of the lens for each wavelength of light.

In Fig. 16, three different tests performed over imagery used
for real underwater 3-D reconstruction tasks are presented.
Again, as in the first three test cases, when using real world
imagery, the imagery resulted by the proposed methodology
achieved to deliver a more complete 3-D point cloud in the areas
covered by caustics.

To facilitate a deeper evaluation of the improvements on the
3-D reconstruction, all the 3-D point clouds presented above
were imported into Cloud Compare freeware [52] for further
investigation. In particular, the following parameters and statis-
tics that are widely used also in the literature for evaluating 3-D
point clouds [8], [53], [54], were computed for each point cloud.

Total number of sparse and dense points: All the 3-D points
of the point cloud were considered for this metric, including any
outliers and noise [52]. For the purposes of the work presented
here, the total number of 3-D points reveals the effect of the
correction methodology on the matchable pixels among the

images. The more corresponding pixels are found in the DIM
step on the images, the more points are generated. Higher values
of total number of points are considered better in these cases;
however, this should be crosschecked with the surface density
metric, since it might be an indication of noise on the point cloud.

Surface density: The density is estimated by counting the
number of neighbors N (inside a sphere of radius R) for each
point [52]. The surface density used for this evaluation is de-
fined as N/(Pi×R2), i.e., the number of neighbors divided
by the neighborhood surface. Cloud Compare [52] estimates
the surface density for all the points of the cloud and then it
calculates the average value for an area of 1m2 in a proportional
way. Surface density is considered to be a positive metric, since it
defines the number of the points on a potential generated surface,
excluding the noise being present as points out of this surface.
This is also the reason of using the surface density metric instead
of the volume density metric.

Roughness: For each point, the “roughness” value is equal
to the distance between this point and the best fitting plane
computed on its nearest neighbor [52], which are the points
within a sphere centred on the point. Roughness is considered
to be a negative metric since it is an indication of noise on the
point cloud, assuming an overall smooth surface.

Table IV presents the above metrics, together with the ratio of
the aligned images by the total images, the average percentage
of the pixels of the images containing caustics based on the
predicted binary images, the number of the matched points (the
number of the points of the sparse point cloud) and the respective
percentage of the change achieved between the uncorrected and
the corrected imagery, the number of the dense points and the
respective percentage of change, the density D and the respective
percentage of change, and finally the roughness R.

By observing the metrics presented in Table IV, a first impor-
tant outcome is that when the corrected imagery is used, more
images are aligned in the image alignment step. Moreover, it can
be noticed that for all the performed tests, when the corrected
imagery is used, more points are matched, delivering a denser
sparse point cloud and a more robust 3-D geometry of the scene.
It is noted that in [1], a state-of-the-art method increased matched
points only by 2%–3%, ten times less than the smallest increase
achieved here. These first two outcomes were expected, and the
background is already reported in Section II-A1. The increase
of the matched points, is proportional to the number of the
images covered with caustics. However, there is not a strict
relation between those two. This is not satisfied for test case
1 and test case 3, since not the same number of images are
aligned. An increase in the number of the dense points is also
observed. However, this is not of the same magnitude as that
for the matched points. Again, here test case 1 and test case 3
are excluded for the same reasons as before. Coming now to the
density of the point clouds and their roughness, no significant
differences can be observed.

Regarding the density, this was expected since the unaffected
areas of the images are remaining the same, so there is no reason
for generating more 3-D points there. However, the fact that
the roughness of the point clouds is remaining the same is of
great importance. In the literature [54], it is reported that most
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of the underwater image enhancement methods are increasing
the roughness of the generated 3-D point clouds. Nevertheless,
this does not apply for the proposed methodology, highlighting
the accuracy and the quality of the performed pixelwise image
correction.

VI. CONCLUSION

In this article, a novel method for correcting the radiometric
effects of caustics on the shallow underwater imagery was
presented. In addition, R-CAUSTIC, the first real-world data set
on underwater rippling caustics was delivered and documented.

The proposed method first relies on state-of-the-art deep
learning tools which can accurately classify the pixels of the
image as “noncaustics” or “caustics” and then exploits the 3-D
geometry of the scene to achieve a pixelwise correction, by
transferring color values between the overlapping images. The
method depends on the good matches among the images, since
an accurate fundamental matrix calculation is a prerequisite.
However, if no good matches can be achieved, even when the
detected masks are exploited in the key point detection step,
images are not even appropriate for image-based 3-D recon-
struction, which this method intends to improve.

Results suggest that the tested FCNs architectures achieve
very high accuracy in this binary classification problem even
from the first 15–20 epochs. Differences on the sensitivity of the
models were also expected, however, this highlighted the need
to train a final model using all the available subsets. Pixel classi-
fication results over images captured for real world underwater
photogrammetric applications in shallow waters suggested that
the trained models can generalize over different types of seabed
and caustics with high reliability. Caustics correction experi-
ments performed illustrated the robustness and the reliability
of the method over different types of seabed, different types of
caustics and different anaglyph of the scene. The need of the
color transferring step that is proposed was also highlighted.

Concerning the improvements on the 3-D reconstruction of
the scenes, the effectiveness of the proposed method was clearly
obvious, since complete 3-D point clouds were delivered, leav-
ing no doubts about the achieved results. It was proven that
when the corrected imagery is used for performing 3-D recon-
struction tasks, more images are aligned, and more points are
matched. This delivers a more robust, complete, and reliable 3-D
reconstruction. Moreover, it was also considered very important
that the proposed method did not increase the roughness of
the generated dense point clouds for all the testing cases. The
proposed method will enable the users to capture less images
and deliver more complete results, covering also larger areas.
This will reduce the SfM-MVS processing time and the revisit
of the underwater site for extra data will be avoided.

By using the proposed method, a more chromatically consis-
tent and realistic representation of the seabed is achieved. From
the experiments performed, some remaining artifacts noticed on
the images, especially in the areas having large radial distance,
are attributed to the really intense chromatic aberration effect.
However, this was not to be dealt with within the context of this
work. It was found that this effect is negatively affecting mainly

the SfM-MVS process, compared with the skipping of the color
transferring step. To overcome these issues, a channel-based
correction of the refraction effect on the water-lens-air interface
has to be performed. However, it can be easily avoided by using
dome ports instead of flat ports and by avoiding fish-eye lenses
and generally very small focal lengths. Although this approach
was developed intending to correct the radiometrically affected
areas on the underwater imagery, it can also be exploited to
correct overwater, aerial, and satellite imagery for specularities,
shadows, and occlusions caused by illumination conditions,
objects, or even clouds.
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