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Method for Remote Sensing Oil Spill Applications
Over Thermal and Polarimetric Imagery

Thaweesak Trongtirakul *, Sos Agaian

Abstract—Several oil spill disasters have been reported in the last
decade, posing a major threat to the marine ecosystem, damaging
marine life, vital for protecting the environment, and reducing
economic losses. In order to reduce or clean the oil spill, one needs
to create a cost-effective oil spill detection system, including its
source, the spill extent, the quantity estimate, the range of probable
transport paths, and weather and sea conditions. Thermal and
polarimetric imagery are emerging sensing modalities that show
the potential for enhanced contrast in situations where conventional
imaging, such as microwave, hyper-spectral, and visible imaging,
has recently been researched. There is a need to compare existing
thermal and polarimetric images since there is little work and data
in this area. Current studies have shown some improvement in oil
spill technique development. Even with the additional availability
of new techniques, these steps are limited by cloud cover and lack
of contrast. This article will investigate thermal and polarimetric
cameras’ usage for tracking 3-D oil spills in the sea by developing
robust unsupervised oil sensing algorithms. It involves introducing:
1) an oil spill segmentation framework designed for thermal and
polarimetric imagery; 2) a multidensity oil spill region enhance-
ment and 3-D thickness visualization algorithm; and 3) a qualitative
and quantitative oil spill analysis approach. Comparisons with
existing algorithms demonstrate the effectiveness of the proposed
algorithms.

Index Terms—OQil density detection, oil spill, polarimetric image,
polarization, thermal imagery.

1. INTRODUCTION

HE oceans cover approximately (71%) of the total surface

area of Earth and are an essential component of Earth’s
ecosystem [1], [2]. With increased maritime traffic, sudden oil
spill disasters have become more common [3], [4], [5]. Similarly,
floating crude oil on ocean surfaces can harm marine and coastal
environments and fisheries [6]. According to the European Space
Agency (ESA), over five million tons of oil are spilled each
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year, with at least (45%) of that due to operational discharges
from ships. Furthermore, oil spills are significant incidents that
have long-term consequences for the maritime environment [7].
Furthermore, oil spill disaster management, such as the Mau-
ritius oil spill in 2020, which spilled 1200 tons of oil into the
ocean, has far-reaching and long-term consequences. The oil
may float on the sea surface for days or months, changing its
chemical composition due to weathering. Oil spill detection aims
to identify dark spots in images at any time, which is difficult
because the scattering areas associated with oil spills are subject
to change due to water surface movement. Sensing oil spill data
is critical for a variety of reasons, including oil spill mapping for
tactical and strategic countermeasures; gathering legal evidence;
law enforcement, including ship discharge monitoring; direct
support for oil spill countermeasures; and determining slick
trajectory [8]. It should come as no surprise that spilled oil causes
hydrocarbon pollution, which is toxic to all living things. Given
the importance of acquiring data on oil spills for proactive inter-
vention and pollution reduction in the environment and ecosys-
tems [9], this step necessitates additional information regarding
the slick’s location, type, size, and thickness [3]. However,
significant progresses have been made using cameras in visible
and infrared spectra. However, many critical data issues remain
unexplored because oil has no distinct spectral information that
distinguishes it from the water in which it floats [10]. Further-
more, [11] supports this interpretation by stating that technolo-
gies used to detect oil slicks range from laser floor sensors to
microwave sensors via optical remote sensing (ultraviolet and
others).

In practice, the most widely used and low-cost method uses
infrared sensors to some extent for optical remote sensing. This
article will demonstrate the various types of thermal infrared
sensors were used to determine their potential for measuring
oil film and identifying fuel. Oil spill monitoring technology
using infrared wavelengths, on the other hand, has grown in
popularity because it is widely accepted, portable, low-cost, and
easy to use [12]. It correctly detects the thickness of an oil spill
by detecting thermal infrared emissivity, as indicated in [13].
Furthermore, the authors make use of spectral emissivity’s mul-
ticollinearity. The thermal infrared emissivity properties of oil
films can be summarized as follows: 1) the emissivity changes
dramatically when the films are thin; 2) the emissivity varies as
oil film thickness increases; and 3) thermal imaging information
shows blurred boundaries between the oil film region and a water
surface.
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TABLE I

COMPARISON OF CONVENTIONAL THERMAL IMAGERY AGAINST POLARIMETRIC IMAGERY

Descriptions

Thermal

Polarimetric

Commercial Cost [36]

Image quality

Color content information

High
Relies on [8]:
e Focus of an infrared sensor
e Optics of a thermal imagery
o Spatial resolution (pixels + field
of view)
e Raw: gray-scale [14]

o Enhanced: color by a color-map

More expensive
Relies on [16]:
o Rotating element of division of
time
o Division of amplitude and aper-

ture

e Raw: gray-scale [37]

o Enhanced: color by a color-map

Record image through translucent obstacles [33] Yes
Visibility in low or no light [33] Yes
Distinguish objects at varying distances [38] No
Display surface temperatures of solid objects [38] Yes
Display surface temperatures of water [16] Yes

Presence of noise [38]

Existing tools for a solid segmentation [10] Limited
Consumer applications [38] Limited
Advantages [10]

Disadvantages [10]

Low — Medium

Reveals details inside regions

Blurred edges due to heat radiation

Yes

Yes

No

Yes

Yes

Low — Medium
Limited

Limited

Provides strong regions

Fusing operators and angles of reflec-

tion

Optical polarization remote sensing, which has been used for
decades, may provide a new solution for oil spill detection. The
study shows that polarimetric sensors can extract more visual
information from light polarization [14]. So, by having one or
more polarimetric parameters [15], we can extract details from
a scene that are not readily apparent when using conventional
thermal imagers alone [16]. These measurements have the poten-
tial to provide polarization contrast due to material differences,
which we are utilizing here for oil-on-water detection [16].
To distinguish an object from the background, the commonly
used degree of linear polarization (DoLP) is oriented at 0° and
90°, and 45° and 135° (left-to-right and top-to-bottom). These
measurements, however, required large scientific instruments
that were not easily portable for handheld use in the past. The
most recent advancements in uncooled infrared sensor arrays
have resulted in a significant reduction in the size, weight,
and cost of high-performance polarimetric sensors. Chenault
et al. [16] demonstrated that polarimetric imaging can be an
effective target detection tool in complex environments by an-
alyzing the polarization property of the light emanating from
the objects rather than the intensity [16]. Polarimetric imagery
can be used to detect oil film [17], [18], [19]. For example, the
authors in [18] and [20] conducted laboratory experiments to
investigate the polarization properties of oil spills. Nonetheless,

their findings have yet to be validated on a satellite scale.
Zhou et al. [21] detected oil spills in sun glints based on the
degree of polarization using satellite images. However, only a
few satellite images are used for validation. The quality of a
DoLP image is determined by a number of important factors, as
shown in Table I.

Fig. 1 depicts the imaging characteristics of thermal single-
polarization and polarimetric images. Image segmentation and
image enhancement techniques indicate regions with varying
densities of oil films using different imaging properties. Fur-
thermore, when compared to thermal imaging, the quality po-
larimetric image demonstrates firm boundaries between oil films
and water surfaces, as shown in Fig. 1, marked as a shaded area
for thermal and polarimetric imaging on the figure’s top and
bottom right.

The primary goal of accessing oil spillages is to accurately
evaluate the oil film thickness, spill region, and spill density.
Thermal and polarimetric imaging are commonly used in oil
spill detection due to their unique abilities in nighttime searches
and complex weather conditions. However, the commonly used
radiation-based imagery is constrained by wind speed [19], [22].
It causes waves on the water’s surface. As a result, the oil
spill and seawater have a uniform contrast. According to some
evidence, segmenting oil film regions into highly homogeneous
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Fig. 1.

(b)

Comparison of oil spill imaging (enlarged area size: 100 x 100). (a) Thermal image and (b) a polarimetric image. Thermal and polarimetric images reveal

varying densities of oil films using different imaging properties. Polarimetric imaging outperforms thermal imaging in distinguishing firm boundaries between oil

films and water surfaces.

regions is difficult. This calls into question the validity of both
segmentation based on global thresholds. Following the standard
procedure for oil spill detection, this process is divided into
three stages—contrast enhancement, segmentation, and oil spill
classification [10]. This research even includes contrast enhance-
ment. Furthermore, the shortcomings of several commonly used
methods must be addressed, including: 1) finding a versatile
solution that can be applied to a large and constantly growing
number of different regions of interest (ROI); 2) dealing with
the vast variations in ROI properties; 3) dealing with the various
oil spill image modalities [16]; 4) issues related to changes in
signal homogeneity, primarily variability and noise for each ob-
ject [14]. However, this study includes a detailed segmentation,
which can be classified as manual, semiautomatic, or fully auto-
matic [18]. The first category is time-consuming, monotonous,
and can be influenced by intraobserver or interobserver vari-
ability. Semiautomatic methods are widely used and widely
available. However, these techniques necessitate user-coarse
initialization. Finally, fully automated procedures do not require
user intervention. It necessitates the use of additional appropriate
preprocessing algorithms, such as denoising, enhancements, and
so on. Each of these approaches has advantages and disadvan-
tages [23]. Our focus falls into this category because we strive
for oil-spill segmentation and detection using unsupervised
methods.

This article focuses on developing an automatic unsupervised
oil spill detection approach using thermal and polarimetric im-
ages because: 1) the presented method does not require large
data bases to train the algorithm parameters, which is critical for
neural networks; 2) it is computationally cheap with an average
1.06 s only to run a sample image; and 3) it is simple to design,
interpret, and use with low-power devices with limited memory,
computational power, and power supply, which is sometimes
more important (for example, for drone imaging and IoT). The
following are the major contributions.

1) We propose an efficient method for multilevel threshold-

ing using cross-entropy.

2) We develop an image drive-optimized enhancement algo-

rithm for thermal and polarimetric images.

3) We develop a nature-inspired optimized multithreshold

segmentation framework with 3-D visualization.

4) A comparison of the advantages and disadvantages of
thermal and polarimetric image performance on the same
oil spill data bases (the first work in this area).

The rest of this article is organized as follows. Section I
provides a high-level overview of the research gap in oil spill
segmentation. Section Il elaborates on the research problem. The
proposed oil spill segmentation for thermal and polarimetric
images is described in Section III. Section IV illustrates and
discusses the computer simulation results, and the final section
summarizes the advantages of the proposed method over the
state-of-the-art. Finally, Section V concludes this article.

II. BACKGROUND

This section will investigate the history of thermographic
and polarimetric technologies. The conventional oil spill sensor
approaches are compared in Table II. More detailed descriptions
of the benefits and drawbacks of oil spill remote sensing are
contained in [19]. We also examine the most commonly used
image segmentation and binarization methods. Finally, we will
demonstrate how binarization methods, both local and global,
can be used to classify oil spills.

A. Polarimetric Imagery

In the 1990s, researchers began investigating oil spill detec-
tion using synthetic aperture radar sensors. Polarimetric images
have gained popularity in the last decade. Prematurely, Solberg
et al. [24] based oil spill detection (OSD) on texture analysis of
single polarimetric images. They used a Bayesian classifier to
extract (12) texture features from the dark spots of oil films. The
polarimetric synthetic aperture radar sensors can acquire many
details about the targets by measuring their complex scattering
matrices, which is useful for analyzing and interpreting the
scattering mechanism of oil slicks, look-alikes, and seawater,
as well as realizing oil slick extraction and detection [25].
Polarimetric imaging is one of the most effective techniques
for high-contrast imaging because it extracts visual information
from light polarization [14]. Polarimetric imagery detection is
a young and underdeveloped field [26]. The authors in [17] and
[27] proved that polarimetric SAR imagery can be used for
both spot oil slicks and distinguishing them from weak-damping
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TABLE II
COMPARISON OF CONVENTIONAL OIL SPILL SENSOR IMAGERY APPROACHES [10]

Imaging methods

Feature (Pros v' / Cons X)
Laser

Polarimetric [34]

Visible Thermal Microwave (Radar)

Imaging Modes: Active/ Passive v
Coastal recording: Offshore/ Onshore X
Image info: Day and Night/ Day only v
Cost: Not expensive/expensive X
Difficulty: Easy/ Difficult X
Weather independent: Yes/No X
Spectral signature: Yes/No X

Hybrid

NN
I IENENEVIENE
AN N N NN
NN NN

look-alikes of images captured under low-to-moderate wind
conditions and at intermediate incidence angles. Remote sens-
ing, computer sciences (object detection and classification), mi-
croscopic, planetary science, astronomy, military, surveillance,
and weather radar applications are already using it. It is useful for
distinguishing weak target signatures from their surroundings,
as well as creating new images by fusing them with polarimetric
or nonpolarimetric images.

B. Thermal Imagery

Not long ago, /IR cameras were primarily used empirically
for oil spill detection because they are low-cost, lightweight,
and can detect oil spills at night. Recent studies have shown
that 1) infrared sensors can detect oil films with (10-100 s)
um thickness; 2) the brightness of the infrared sensing-based
imagery is low or during the cloud and heavy fog for good
operation; 3) false-positive results can be obtained by misin-
terpreting the thermal radiation from seaweed; 4) oil spills can
be detected using some thresholding techniques in the near
infrared (NIR) spectrum (750-1000 nm), but this is prone to
false negatives [28]; 5) crude oil has a different reflectance
spectrum when compared to water in the short wave infrared
band (1000-1700 nm) [29]; 6) oil spill detection using machine
learning using a UAV IR image under controlled conditions
and achieving 89% accuracy on a data set created during the
experiment Thermal remote sensing detail reviews can also be
found in [30] and [31].

C. Oil Spill Thermal and Polarimetric Imagery

The concept of thermographic sensors, first introduced in
1956, refers to radiation detection in the electromagnetic
spectrum’s long-infrared range. The amount of radiation emitted
by a given object increases with temperature, warm objects
stand out well against cooler backgrounds, which become easily
visible day or night. Because it can provide spilling information
during the day/night and work in adverse weather conditions,
this technology enables us to detect oil spills and disaster
management projects [10]. Despite this, the image quality is
poor. They are noisy, blurry, and low-resolution. Furthermore,
the thermal image contrast between oil and water is frequently
so small that OSD becomes problematic and difficult. Finally,
infrared (IR) cannot be used to measure slick thickness, in
general, [8]. Polarimetric imaging, on the other hand, has distinct

advantages for a variety of detection and classification prob-
lems [32]. This sensor’s light reflects directly from the surface,
containing the most information on surface oil [17]. Even so,
oil in the water has a polarizing effect on light, so viewing oiled
water through polarized lenses may increase contrast and oil de-
tection. Furthermore, while advancing specific signatures related
to surface smoothness, orientation, and target composition [33],
the polarization of backscattered light is preserved. Recently,
the polarized patterns of some animals have influenced image
formation within their visual fields. As a result, it is natural to
adopt some of these behaviors in the world of computer vision for
a variety of biologically inspired applications. Polarimetric tech-
nology can produce more accurate results on high-density-based
oil spill segmentation and measurement cases than conventional
thermal imaging, which can be used to classify the thickness
of oil films. However, there is evidence that image quality is
primarily determined by angles, which result in under-exposed
and over-exposed illuminated regions. Tables I and II compare
the advantages and disadvantages of thermal and polarimetric
imagery sensors.

Image binarization is an important step in preprocessing,
particularly for data analysis. Binarization is the process of con-
verting grayscale or color images into two-tone images (black
or white regions). Binarization, on the other hand, presents
unique challenges that can take many forms. The most com-
mon tasks in remote sensing, however, are object detection
and recognition, classification, and analysis. Binarization is
used to: 1) separate the image into distinct regions containing
each pixel with similar characteristics; and 2) segment the
image. In practice, thresholding is one of the most basic and
widely used image segmentation techniques. In image bina-
rization, a threshold value is manually selected, and all pixels
with values greater than the threshold are classified as white,
while all other pixels are classified as black. The binarization
process is difficult due to image noise and degradation. The
problem is deciding on an appropriate image-driven thresh-
old. Numerous studies have recently focused on binarization
tools [18], [35].

D. Image Binarization

However, there is no agreement on the accuracy of the re-
sults because, in most cases, the sensors produce low-resolution
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images that are primarily noisy or blurry. Mustafa et al. [39]
discovered a method for evaluating the shortcomings of al-
gorithms for degraded image binarization. The authors pro-
pose a new algorithm that will improve image binarization
methods by employing a more reliable methodology. Further-
more, given the characteristics of the existing sensors, finding
a perfect oil spill image binarization solution is more diffi-
cult. According to [39], available binarization methods can
be classified into two broad categories: binarization based on
global or single threshold and local binarization based on
region.

1) Global Threshold-Based Binarization (GTB): The goal of
global threshold-based binarization (GTB) on the other hand is
to find the global threshold for the entire image and binarize
it using a single threshold. Using image-driven global charac-
teristics parameters, a global binarization concept divides the
image’s entire dynamic range into two classes. For example,
Otsu automatically determines the threshold value based on
global and between-class variance [40]. Kapur et al. [41] pro-
posed cross-entropy-based algorithms. However, when images,
including thermal and polarimetric images, are contaminated
with noise or poor quality, these methods do not guarantee
the best threshold selection process because no spatial corre-
lation is taken into account. The GTB methods can be used
for a variety of image processing tasks, including image en-
hancement [42] and uniform-illuminated image segmentation.
In general, global methods either lose or suppress the image’s
local variance, which may contain important information or
content.

2) Local Binarizations (LB): Class divides an image into
regions where the local threshold is calculated, and then eval-
uates a single threshold using their local thresholds. Because
of various types of local property, cutting-edge binarization
methods work with small block tiles and local information.
Interestingly, some studies show that noisy details in local blocks
result in classifying regions. As shown in Table III, the LB
methods can be applied to a wide range of practical image-
processing applications. Niblack [43] observes the threshold
value using information from the local standard deviation and
mean. The metric includes thresholds based on local information
for various target tiles, such as Feng’s method [39], Bradlay’s
method [44], Sauvola’s method [45], Nick’s method [46], and
Mustafa’s method [47]. KM et al. [48] recently pioneered
multiscale local tiles by combining different local thresholds
with weights. After that, Oulefki et al. [10] expanded Sauvola’s
local metric [45] to introduce the local threshold metrics for
oil spill segmentation. The resulting regions were given various
shapes based on the acceptable error of the regions and the
distance between the center and the boundaries. Table III shows
the main limitations of commonly used methods. This variety
of approaches: 1) has used filters to reduce noise from the
image, but the use of the guided filter (best edge-preserving
filter) has not been found, which is a factor that can increase
the accuracy of the available binarization methods; and 2) con-
trast enhancement is done either by traditional methods or not.
More research on preprocessing is required and warrants further
investigation.

III. PROPOSED METHOD

This section proposes a high-density oil spill segmentation
framework based on thermal and polarimetric images using local
threshold segmentation. The proposed framework’s significant
steps are: 1) region initialization by identifying the initial regions
of the oil spill; and 2) oil spill segmentation by creating a
multithreshold using the PSO method.

A. Region Initialization

We divide the segmentation framework into three major steps
to identify the initial regions of the oil spill, followed by asso-
ciation operators. The operators provide information about the
oil spill’s segmented areas.

1) Multithreshold Determination Using the Particle Swarm
Optimization (PSO): In this section, we present the determina-
tion of threshold numbers using PSO for calculating a threshold
constant. The PSO algorithm simply uses the objective function
to evaluate the candidate number of thresholds. For each kth
iteration, the position of the threshold (t) is denoted by z¥.
Threshold (t) moves in the space according to its velocity (vF).
The position of each threshold is updated by

ap ™ = af 4ot (10)

Threshold position ¥+ is the updated version of the last local

best position plus threshold’s velocity. It is estimated by five
acceleration parameters (¢, ¢2, 71, T2, w) of the last velocity and
runs the optimization process and is updated using the following:

of T = wof + e (pf — 2f) + cara(gf — af) (11)

where p¥ and g represent the local best position and the global
best position of the threshold () at the k' iteration. The learning
factors (c1, co) control the local best position’s relative impact
and the global best part on a threshold’s velocity. A small number
of learning factors allow each threshold to move far away from
already uncovered satisfactory locations. A large number of the
learning factors stimulate a more intensive search of a location
close to satisfactory locations. The social factors (71, 7) ensure
that the algorithm is randomly determined whereas r; and 75
belong to [0,1]. An inertia weight factor is represented by w,
which controls the search performance in both global and local
positions. The small number of inertia weight increases the local
search performance, and the large number encourages global
search performance.

Algorithm 1 describes all the steps of the modified PSO
search algorithm. It initializes the threshold (¢) or multithreshold
(t,,) position first, then runs the algorithm to find the global
best threshold position. In each iteration, the local and global
best vectors are updated to estimate the velocity vector of
each threshold. This process is iteratively calculated until the
stopping condition is found. In this article, we used the corre-
lation number C'(I; ;, J; ;) of a logarithmic image (/; ;) and a
threshold-segmented image (.J; ;). It can be calculated by

L i) = 1 1 L& Liyi —pr\ [ Liy; — 1o
©d ol _N—lM—lzZ ar g

i=1 j=1
(12)




978

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 48, NO. 3, JULY 2023

TABLE III
COMPARISON OF DIFFERENT LOCAL THRESHOLD SEGMENTATION METHODS

Method

Threshold Description

Parameter

Feng et al. [39]

Bradlay et al. [44]

Sauvola et al. [45]

Nick et al. [46]

Mustafe et al. [47]

Sos et al. [48]

Oulefki et al. [10]

Proposed

o
Tijj = pij (1 — @) +2a (pi,j — Imaa) ( };’J) + 30 Imaz M

s

Hij=a local mean, 0; ; = a local standard deviation, a = a coefficient, I1q2 = a minimum

number of grayscale levels, Rs = the dynamic range of grayscale standard deviation.

k
Tij = pi,j (1 = ﬁ) )

14,7 = a local mean, and k=a constant, by default k=12.

Limitation: illumination problem

Ty =iy (1-k(1- 7)) 3)
14,5 = a local mean,o; ; = a local standard deviation, k& = a constant, by default £ = 0.1, and
R = a gray-scale level, by default R = 128 for an 8-bit image. Limitation: When the contrast
between the foreground and the background is small, missing low-contrast objects, keeping textured
text as it is, handling badly various object sizes, spatial object interference.

Tij=pigt+k “

14,5 = a local mean, I; ; = an image, N =the size of an image, and k = a constant, by default

k= —0.13.
Limitation: if the contrast is too small or the text is in thin pen stroke text.

= S [ (- %)

{z,y} = the maximum intensity of an input image, ;+ = a global mean, o; ; = a local standard

deviation, k = a constant, and R= a gray-scale level, by default R=128 for an 8-bit image.
Tij = vt (L+C6) + 72 (6)

6':7'11',]' +0'i,j(]-_7—) 7

7 = a weight, 71 andy2 = the intensity characteristics of an input image (I;,;), p;,; = a local

mean, C' = a constant, and o; ; = a local SD.

(e
=4 (1= 57=) Y

p = a global mean luminance number, o = a global standard deviation number, L = the total

luminance level, and o = a constant.

2\/N¢,j +mN3J —2N; ;D j
1+ -1 9
so Lim=1) (©))

Tij = Nij

where N; ; represents a normalized image, s¢ represents an optimal threshold constant, D; ;
represents a denoised image, m represents the size of a multi-threshold, and L represents a grayscale

level, by default L=128 for an 8-bit image.

Manually an input
parameter and a
window size

Manually  input

parameters

Manually  input

parameters

Manually  input

parameters

Manually  input

parameters

Manually  input

parameters

Manually  input

parameters

Automatic
Image-Dependent

Threshold

where p; and o represent the mean and the standard de-
viation of a logarithmic image (I; ;). us and o; represent
the mean and the standard deviation of a threshold-segmented
image (J;;), respectively. N and M are the sizes of an
image.

The threshold-segmentation method is one of the most com-
mon methods for the segmentation of images into bilevel or
more levels. It is a simple and popular method in the digital
image processing field. Bilevel threshold methods encourage
binarization, and the result after segmentation is a binary image.
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TABLE IV
POLARIMETRIC-BASED IMAGES CREATED BY THE SENSOR WITH THE SPECIFICATION [55]

Uncooled Vox Microbolometer array

Detector

Waveband (microns) 7.5-13.5
Pixel pitch (microns) 17
Resolution 400 %300
Resolution 640%x512
Frame rate (Hz) 7.5 or 30 Hz
Full frame pixel operability 99.9%

Image products
Sensitive material Vanadium
Typical NETD (mK) Less than 30
Less than 250

Less than 15

Power consumption (mW)
Weight (grams)

Operating temperature

Radiance, S1, S2, DoLP, Orientation, ColorFuse, 14-bit raw

—40°C' ~ +85°C'

Algorithm 1: Find the Number of Thresholds Using PSO.

Input: Initialize multi-threshold (¢,,), inertia weight (w), and stop condition C'(I; ;, J; ;), learning

factors (cq, ¢q), each threshold position and velocity randomly

Read an image (X, ;)
+ Map the input image into a logarithmic domain, I; ; =
2 for all threshold positions do
3 for all input training threshold sets do
4 Apply input training threshold sets to the input image

Replace the mean number into each separated region
Calculate a correlation number C (I; ;, J; ;)
Update a correlation number

5 if Correlation number > Local best value then

6 | Update a local best value and a local best vector
7 else

8 | Increase the number of thresholds

9 for All threshold positions do

10 Update a global best to the maximum correlation number
Update a global vector

Update a threshold velocity vector

Update a threshold position vector

log (X;; +1)

Calculate the mean number of regions, separated by training threshold sets

1 Calculate the number of pixels in the separated regions (I;; < t, and I;; > t,)

12 Calculate the threshold constant (s)

Multilevel threshold methods are a low-computational com-
plexity. It is suitable for multilevel segmentation, but a major
drawback is determining the number of thresholds. In this article,
the number and position of thresholds are used to calculate a
threshold constant. It can be used for local segmentation and
will be described in the next subsection. For the calculation of
a threshold-segmented image, it can be computed by

1 N
Ny Ziu'l:l
1 N.
N i it S Ly <to
R 5% SIi,j <tp

N”L
gy ligotn <Ly <L —1

Ii’j,O < Ii,j <t

(13)

where t,, represents the multilevel threshold position. L repre-
sents the total number of a permitted intensity range. N rep-
resents the total number of pixels in each multilevel threshold
segmentation and [, ;) denotes an input image.

2) Calculation of an Optimal Threshold: Binarization meth-
ods are commonly used for image segmentation. By a global
threshold, the classical binarization method suffers from intri-
cate details, which contain foreground details close to back-
ground details. Sauvola’s binarization method [45] for doc-
ument images has some advantages. It works well on noisy
and blurry images. Also, it is low-computational. However, it
suffers from several limitations like low-contrast, texture texts or
regions, spatial object interference, for instance [45], [49]. In this
subsection, we are considering the calculation of an optimal
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Algorithm 2: The Initialization of Oil Spill Regions.

Input: Threshold-segmented image (.J;;), optimal threshold constant (sq), the size of the

multilevel threshold (n)
3 Generate the size of a filter, m = 2n + 1.

Generate a filter sizing m — by —m

Generate a denoised image (D; ;) by applying the filter to the segmented image (J; ;)

Generate a normalized image, N; ; = D; ;/m?
if sp # 0 then

N

16 else
7 L Define the local threshold metric, T; ; = N; ;

threshold metric (7 ;)
Output: Initial oil spill region metric (B; ;)

5 t Calculate the local threshold metric (7} ;) by using the optimal threshold constant (sq)

s Generate initialized oil spill regions by binarizing the segmented image (J;;) with the local

Algorithm 3: Oil Spill Segmentation.

Input: logarithmic image (I; ;), initial oil spill region metric (B; ;)

19 Initialize: Cost Function (C'F = 0)
Cardinality of Region, R = card {B; ;}

20 while CF < a set point (k) do

21 while 1, <1 do

2 Calculate [N ;]

represents a binary weight.

2 Update a local mean (y,,) of [N; ],

Update n, n=n+1

2« | Calculate a CF number
Output: Segmented image — oil spill regions, (Y; ;)

= [Nijl, + o1 [Nierjal, + a1z [Nici ], +- .+ sz [Nigy 4], where
{Ni,j} = {Nij € By j, i }, nrepresents the order number of regions B; ;, o

threshold regarding thermal and polarimetric image segmenta-
tion.

Algorithm 1 describes the initialization of oil spill regions by
using an optimal threshold. In each iteration n~*", the multilevel
threshold is shifted to the next level threshold, then calculate the
optimal threshold (S¢) until the stopping criteria (Sy > k) are
met in the end of a threshold (¢,,). For the calculation of the
optimal threshold, it can be written as

card {Ii,j ‘ Ii,j < tn}
card {Ii,j ‘ Ii,j > tn}

(14)

where card{ e } represents a cardinality operator.

3) Initialization of Oil Spill Regions: In this section, we are
defining initialized oil spill regions. The region initialization
requires dividing the entire image into small tiles, then calcu-
lating a local threshold metric. In this case, the local threshold
binarization method is suitable for the local region segmentation.
However, it requires modifying some calculations for oil spill
segmentation as shown in Algorithm 2.

Take note that (11) contains some Sauvola’s parameters [45],
[47], [49], if N; ; represents a mean number, sg represents a
user-defined constant, L(m — 1) represents a gray level con-
stant, and 2(NV; ; + mNZ%j - 2Ni7jDi7j)1/2 represents a stan-
dard deviation number. The local threshold metric is used to
binarize a threshold-segmented image (.J; ;). Initial oil spill

regions (B; ;) can be conditionally binarized as

0,J;; <Tj;

where J; ; represents a threshold-segmented image and 7; ;
represents a local threshold metric. The calculation of this is
presented on the last line of Table III.

B. Oil Spill Segmentation

In this section, the approach to oil spill region segmentation
considers the surrounding pixels of initial oil spill regions (B; ;)
and calculates the surrounding pixels. If those surrounding pixels
contain an intensity close to initial oil spill regions, they can
be added to the same region. For a technical description, it is
described in Algorithm 3.

C. Cost Function (CF)

A cost function measures the accuracy of the segmented image
compared with the ground truth. In this article, we proposed the
segmentation framework for an oil spill application. It requires a
special cost function. The segmentation optimization processes
can stop processing when the accuracy is close to the ground
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CALCULATE AN OPTIMALLY LOCAL THRESHOLD
METRIC USING THE OPTIMAL NUMBERS OF
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BINARIZE THE INPUTTED IMAGE USING THE
OPTIMALLY LOCAL THRESHOLD METRIC

3

GENERATE A BINARIZED IMAGE AS INITIAL

REGIONS

I
I
I
| v
I
I
I

TAKE AN INITIAL REGION (n)

I REGION INITIALIZATION

L

|-

COMBINE THE CURRQ

Fig. 2. Pipeline of the proposed oil spill detection.

truth [50]. The details of ground truth segmentation be found
in [51].

Let X; ;, Y;;, and G ; be an original image, a segmented
image, and ground truth, respectively. The cost function is
intruded as the combination of the ratio of region size (p4)
and the ratio of region details (pg). The cost function can be
described as

Es
= —— ¢ —
Ag

CF
Eq

(16)

where A, and A, respectively, denote the size of segmented
and ground truth regions; A, = card{Y;; | VY;; =1} and
Aq = card{G,; |VG;; =1}, E, and Eg represent the en-
hancement value related to segmented and ground truth regions,

| |
| I
I I
I CALCULATE SURROUNDING Z. I
I INTENSITIES [N;;], REGION WITH THE @) I
I PREVIOUS REGION ;‘ |

I CALCULATE THE MEAN OF A I ﬁ
| LOCAL REGION [u], CALCULATE THE Z. I

NUMBER OF A COST =
I FUNCTION (CF) > I

QO
I v = |
| CONSIDER THE NEXT ; |
| REGION 9 |

ADD THE SURROUNDING o
I INTENSITIES INTO THE LOCAL =2 |
REGION [~ |

I
I OUTPUT OIL SPILL False True |
REGIONS |
I

respectively. It can be calculated as

M,N
Eg = Z {EME,; ;|VY;; =1} 17
i,7=1,1
Imam ;'njn - Im“’t :n”
EME; ; = | In’f,n | I7;f,n
II'HL(I,.’I)]Z',J' + II"I/”:’"/Ii,j
maa:II‘TL/In - I]m”‘LImn + 1
x log T T (18)
I—Z—marIi,j + [LninIiJ + 1

where [I ,,,,(,,,,,/.]?fjf " represents a local maximum intensity,
7 mm]znyn represents a local minimum intensity, m and n repre-
sent the size of a local tile, ¢ and j represent the pixel location
of an original image, card{ e } represents a cardinality operator,
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Resolution in

Data N° Type of Images Images N°  Equipment Sample
Pixels
1 Thermal 300 x 100 496 FLIR -
2 Thermal 300 x 100 383 FLIR
3 Polarimetric 300 x 100 120 Polaris
4 Polarimetric 300 x 100 100 Polaris

Fig. 3. Data set description.

and /M E; ; represents the enhancement metric by entropy [52],
[53], [54]. To recap this section, Fig. 2 describes the methodol-
ogy that has been developed. It gives insight into how the region
segmentation is calculated and initiated.

IV. COMPUTER SIMULATION RESULTS

The experimental results of the proposed oil spill segmenta-
tion process are presented in this section. To begin, the proposed
achieves cutting-edge results on an oil spill data set in both
thermal and polarization-based imaging. Second, we show the
3-D visualization and the detected oil spill region. A

A. Data Set Descriptions and Algorithm Configurations

We have created four publicly available thermal and polari-
metric oil spill image data sets [47]. Those data sets contain
several hundred images captured by thermal and polarimetric
sensors. The data sets descriptions are described in Fig. 3.

All experiments are conducted on an iMac with a 3.30-GHz
Intel CPU, AMD Readon R9 M290 graphical processing unit
(GPU), and 8 GB of RAM. We have set the learning factor
of ¢c; =2 and cp = 2, the inertia weight of w =5, and the
set points in Algorithms (2 and 3) of k£ = 0.90 and k£ = 0.85,
respectively. The constant numbers of compared methods were
set independently, and the best results were selected for each
method. The primary condition adapted was to see if the oil
spill region was detected, and the cost function number was
close to the ground truth. In the classical PSO algorithm, ¢;
represents a cognitive constant, co denotes a social constant,
and w refers to an inertial factor. These parameters are used as
mainly controlling parameters. If c; is set as 0, the particle has
no cognitive ability, if cs is set as 0, there are no shared details
between particles. In contrast, arelatively high value of the social
and cognitive components may lead particles to rush prematurely
toward the optimal area. Much research has suggested setting
either of the acceleration coefficients at 2 to make the mean of
both stochastic factors. For the w-paramter, if w is set as 0, the
velocity of a particle depends on its current position. If w > 0,
the particle tends to explore new space. We have set w = 5

to reduce the time complexity in segmenting processes. The last
parameter, k, is set to exit the oil spill segmentation. If & = 0.85,
the segmentation performance must be more than 85%. Testing
the proposed segmentation with the PSO algorithm trades off
between the segmentation performance and time complexity. For
k = 0.85 ~ 0.90, the results can be illustrated in a while. The
proposed qualitative performance (visual assessment), as shown
in Fig. 5 outperforms the state-of-the-art segmentation methods.

B. 0Oil Spill Segmentation on Thermal and Polarimetric
Data Sets

This section will begin by outlining a visually comparative
evaluation, as shown in Fig. 4. The most advanced segmentation
methods depict the oil spill regions, but the results are inaccurate
and contain a lot of background noise. These methods perform
poorly in separating considered oil spill regions. This is not
the case with the proposed method; the proposed segmentation
images include oil spill regions but no noisy background in-
formation. The oil spill zones are well-defined and separated.
We will use the polarimetric images generated by the sensor
described in [55]. Table IV presents a detailed specification of
the polarimetric sensor used in this study, including the sensor’s
spatial resolution, operating frequency, and polarimetric mode.

1) Multidensity Oil Spill Segmentation and 3-D Visualiza-
tion: According to the illustrative oil spill segmentation re-
sults in Fig. 5, all optimized regions can be reconstructed as
multidensity segmented regions. Hence, we conducted the ini-
tialization by using the first slice S;. Thus, all-region numbers
gradually grow based on the set point of an acceptable segmenta-
tion error. When the error increment, the optimization generates
more and more slices until it reaches the set point. The last slice
partially contains the lowest oil spill density region because its
region error is close to its region set point. On the other hand, the
first slice partially provides the highest oil spill density region
due to its least region error.

The last column of Fig. 4 shows the average execution time.
For the parameters used, each method’s expected execution time
is worse. In contrast, the proposed algorithm performs better, in
terms of computational time. This proves that this new paradigm
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Thermal Imagery

Original

GT

Oulefki

Bradlay

Feng

Mustafa

Nick

Sauvola

Proposed

Fig. 4.

of spill detection is capable of a reduction of energy consumption
and completion time.

Fig. 5 depicts a visual representation of the proposed results
using thermal and polarimetric synthetic aperture radar (Pol-
SAR) images. Because traditional thermal imagery depicts an
oil spill based on reflected and emitted heat radiation, it is simple
to reveal various oil spill densities on the water surface, as
shown in Fig. 5. Another angle-based thermal image, known as
polarimetric thermal imagery, depicted oil spill regions on grid
polarizes and was aligned at 0°, 45°,90°, and 135° and projected
on a vertical and horizontal plane. Mathematical operations are
used to complete the calculation of a Pol-SAR image. An image
depicts vital regions with narrow visual luminance levels, but
some details within radiated areas may be washed out. It trades
off between region correction and region details. Therefore,
using Pol-SAR imagery to generate a multidensity image is
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Polarimetric Imagery Time in (s)

.r.—

—

05.39

08.83

07.23

14.97

06.24

04.32

01.06

Comparison of existing segmentation methods visually and by average execution time.

more complicated than a classical thermal image, as presented in
Fig. 5(b) Pol-SAR.

2) Alternative Polarimetric Image (Thermal-to-Pseud-
opolarimetric): Increasing the local contrast of thermal images
is another option for converting them to polarimetric images.
It creates a strong boundary between regions while also
emphasizing local details. It is an excellent choice for oil spill
applications that require polarimetric imaging. This section
employs remote sensing enhancement algorithms to convert
thermal images into pseudopolarimetric images [56], [57].

Fig. 6 shows a comparison of a conventional thermal image
and its enhanced image. The improved thermal image includes
a critical edge feature, similar to a polarimetric image. The 3-D
representation confirms the sharp distinction between oil and
nonoil regions. It also provides local information for both oil
spill and nonoil spill areas. Some low-density areas, however,
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The proposed segmentation in a 3D plane

Fig. 5.

The proposed multi-density segmentation images

=

0 The original images in 3D plane
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(b) Pol-SAR images

Multidensity segmentation and 3-D visualization using the proposed segmentation on thermal and polarimetric images.

TABLE V
COMPARING THE PROPOSED SEGMENTATION PERFORMANCE WITH STATE-OF-THE-ART SEGMENTATION METHODS; THE BEST
RESULTS HIGHLIGHTED WITH RED COLOR

Quality metrics

Segmentation Methods | Accuracy  Sensitivity

F-Measure

Precision MCC Dice Jaccard  Specificity

Proposed

0.91

0.98

0.95

0.92

0.69

0.95

0.9

0.65

Oulefki [10]

0.78

0.15

0.21

0.83

0.14

0.21

0.14

0.91

Bradlay [44]

0.76

0.85

0.85

0.86

0.30

0.85

0.74

0.47

Feng [39]

0.76

0.93

0.86

0.81

0.05

0.86

0.76

0.09

Mustafe [47]

0.74

0.92

0.85

0.80

0.09

0.85

0.74

0.01

Nick [46]

0.74

0.87

0.84

0.83

0.12

0.84

0.73

0.21

Sauvola [45]

0.80

0.92

0.88

0.86

0.34

0.88

0.79

0.4

have been abandoned. The polarimetric alternatives reveal high-
density oil spill regions.

C. Quantitative Assessments

The comparison with relevant approaches would be unfair
due to the lack of general approaches, as no current method
approaches the oil spill segmentation in the same way. Nonethe-
less, we used the accuracy, sensitivity, F-measure (F-M), pre-
cision, specificity, MCC, Dice, and Jaccard to ensure that the
model matched the data. More information on segmentation
performance metrics is contained in [S0]. In our case, Table V

compares the proposed methods against Oulefki [10], Feng [39],
Bradlay [44], Sauvola [45], Nick [46], and Mustafe [47] over
thermal and polarimetric imagery data sets. The table depicts
the distribution probability of the data at various values.

The better the segmentation performance illustrates, the
higher the values obtained for accuracy, sensitivity, F-Measure,
precision, MCC, Dice, Jaccard, and specificity. Except for the
accuracy and specificity metrics, where Oulefki segmentation
approaches outperform the proposed one, the proposed approach
provides higher values of sensitivity, F-measure, precision,
MCC, Dice, and Jaccard metrics than state-of-the-art methods.
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Original Thermal Images

Fig. 6.

Comparison of a thermal image with an enhanced thermal image: (first column) input images; (second column) multidensity representation; (third column)

Inputted images in a 3-D plane; (fourth column) proposed segmentation in a 3-D plane.

V. CONCLUSION

Oil spill surveillance constitutes an essential component of oil
spill disaster management since it can happen during oil trans-
portation or storage and can be highly dangerous since wind,
waves, and currents can scatter a large oil spill over a wide area
within a few hours in the open sea. A study illustrated that 2475
spills released over 800 000 liters of oil in Toronto and surround-
ing regions between 1988 and 2000. This article introduced a
new oil spill detection and visualization approach using thermal
and polarimetric images for maritime applications. The appli-
cation’s novelty relies on: 1) the fact that the proposed method
reveals oil spill regions while no human-provided parameters are
initially required; 2) offering an efficient method for multilevel
thresholding by using the minimum cross-entropy; 3) a nature-
inspired optimized multithreshold segmentation framework
with a 3-D visualization of the multidensity oil spill method;
4) creating an image drive-optimized enhancement algorithm
applicable to both thermal and polarimetric images; and
5) offering simulation results for better understanding of the
strengths and limitations of oil spill detection using thermal and
polarimetric sensors images, which may help to improve the use
of these sensors for protecting the environment and reducing
economic losses and contingency planning. The proposed al-
gorithm dramatically improves the detection of various types of
weathered oil spills on the ocean surface, significantly advancing
the current state of the practice with accuracy. The results show
that the proposed solution could be used to detect oil films on
the water surface. The proposed method illustrates the oil-spill
detection performance. The effectiveness of the proposed oil

spill segmentation and visualization method was evaluated on
two types of data—thermal and polarimetric data sets. The
statistical assessment is determined using accuracy, sensitivity,
F-measure, precision, specificity, Mathew correlation coefficient
(MCCQ), Dice, and Jaccard, respectively: 0.91; 0.98; 0.95; 0.92;
0.69; 0.95; 0.9; 0.65. A long-term goal is to develop a day/night
heat transfer model to determine oil spill thickness. We plan to
propose an algorithm combining the developed method with the
deep learning approach to classify various types of weathered oil
spills efficiently. We believe that the developed model, combined
with the presented method, may permit oil spill responders to
measure oil spill thickness with existing, commercially available
thermal radiometric cameras and has great potential for multiple
applications in maritime surveillance.
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