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David Sidoti , Krishna R. Pattipati , Fellow, IEEE, and Yaakov Bar-Shalom , Fellow, IEEE

Abstract—An iterative procedure to solve the nonlinear prob-
lem of fastest-path sailing vessel routing in an environment with
variable winds and currents is proposed. In the routing of a sailing
vessel, the primary control variable is the pointing (heading) of the
vessel (assuming that the sails are chosen and trimmed optimally).
Sailing vessel routing is highly nonlinear when considering environ-
mental factors, such as winds and currents, and the behavior of the
boat, given the weather conditions (i.e., polar diagrams that predict
how fast one can sail, given the vessel’s pointing relative to the true
wind and the wind speed). The key algorithmic contribution of this
article is a fastest-path algorithm for graphs with nonconvex edge
costs that depend on weather, current, and boat polars. An illustra-
tive scenario, with idealized weather attributes, and a real-world
scenario, with parameters generated by numerical weather and
current prediction models, are simulated and tested to compare the
proposed algorithm against open-source routing software validated
by active sailors. Preliminary results from the simulation setups
tested are as follows: 1) the proposed sailing boat path algorithm is
comparable to the open-source software available; and 2) exploiting
the often unused but significant impactor of surface currents and
incorporating leeway into sailing boat path planning enables higher
fidelity guidance and faster (i.e., shorter time) routes, in comparing
against the freely available baseline.

Index Terms—Dynamic programming, meteorology,
oceanography, optimal control, path planning, routing, sailing.

I. INTRODUCTION

COMPETITIVE sailing or yacht racing is a sport involving
multiple sailboats divided into different classes, racing

over a certain course (outlined by buoys) or over the open water
in long distance racing (e.g., the Newport to Bermuda Race [1]).
With yacht designs diversified, the capabilities of each boat had
to be considered, eventually culminating in the races seen today,
where a system of time allowances is now established to take into
account the strengths and weaknesses of various boat designs
and sails.
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To gain the competitive edge in such races, many skippers and
helmsmen use one or more software packages, web applications,
or routing services that utilize the observed and forecasted
meteorology and oceanography and accordingly route the sailing
vessel to complete the course in the shortest possible time.
The problem is well suited for dynamic programming [2], [3],
[4], [5], [6] and has more recently been viewed in the context
of autonomous robot sailing [7], [8], [9], [10], [11], [12]. In
most published approaches, the ocean’s currents are either not
addressed, deemed negligible, or are vaguely incorporated, but
the impact is neither explicitly nor directly integrated into the
optimization.

The impact and importance of tidal and ocean currents
in fastest-path sailing vessel routing is addressed by Kris-
tensen [13], who concluded that currents should and must be
taken into consideration if the problem is to be solved in its
entirety. By conducting sensitivity analyses with respect to the
use of forecasts of currents, he concluded that there are instances
when current can even be more impacting than wind on a sailing
vessel. Futch and Allen [14] recognize the impact of currents,
specifically the need to account for drift and leeway of objects
up to the scale of traditional manned sailboats, on search and
rescue operations.

Of the literature pertaining to fastest-path sailing vessel rout-
ing, Philpott and Mason [2] are often credited with the first foray
into such a problem. In [2], they formulate a stochastic dynamic
programming approach that minimizes the time between two
points under uncertain weather conditions. They mention the
impact of ocean currents; however, they do not incorporate it.
They instead define environmental impacts as Markov processes
solely a function of wind direction and speed. In a similar vein,
Tagliaferri et al. [5] formulate a stochastic shortest path problem
assuming tidal currents to be negligible; however, they include
the human’s perspective of sailing in an attempt to incorporate
risk propensity into their optimization. Wave resistances are
used in lieu of explicit meteorological feature incorporation
in [6]. The wave resistances are calculated via a blackbox model
derived from strip theory in [15], where hull resistance calcu-
lation is feasible given the knowledge of the wave frequency,
length, and amplitude, as well as hull characteristics of the ship.
The blackbox component outputs dynamic shear forces assum-
ing a ship to be advancing at a constant mean speed for a given
heading in regular sinusoidal waves. This approach increases the
fidelity of typical path optimization because of its consideration
of wave height/period/direction; however, surface currents are
not integrated, including corresponding impacts to leeway.

In the autonomous robot sailing literature, current is often
neglected entirely with the exception of [10], [11], and [12].
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Fig. 1. Free body diagram corresponding to a sailing vessel, while considering
wind and current vectors.

Wrede et al. [10] use velocity made good (VMG) and heel angle
to optimize objectives pertaining to a four-degree-of-freedom
robot sailing model. They utilize a hill-climbing algorithm that
takes into account the measurements of drift from currents,
but do not use the current forecast information explicitly. The
work [11] addresses current in their optimization, but not leeway.
In addition, they do not incorporate current on the inner level of
their optimization when selecting a heading. Akiyama et al. [12]
present one of the most recent approaches to autonomous robot
sailing and explicitly recognize surface currents as having sig-
nificant impact on the robot’s routes. The robot used in their
experiments had a hull and structure similar to that of a tradi-
tional human-operated sailboat and observed ocean conditions
impacting the trajectory taken by the vessel. However, the path
planning optimization did not directly incorporate surface cur-
rents, and the deviation from the trajectory was allowed under the
condition that the autonomous sailboat remained under control.

In this article, we formulate the fastest-path sailing vessel
routing problem as a finite-horizon shortest path problem with
nonconvex arc costs that incorporate the weather, current, and
boat polars (with the latter’s expanded table form that includes
leeway).1 We extend previous approaches by explicitly includ-
ing the current speed and direction information and propose
an iterative procedure (herein, referred to as the sailing boat
path (SBP) algorithm) that outputs the pointing of the vessel
(heading2) at each stage and state in the optimization. We
solve the single-source (starting point) single-sink (destination)
shortest path algorithm by decomposing the route into a trellis,
while adhering to constraints, such as the allowable bearings
(headings) at each waypoint (heading too close to the wind is
not allowed according to the polars).

The rest of this article is organized as follows. In Section II, we
formulate the fastest-path sailing vessel problem and decompose
it into two subproblems: that of the dynamic programming
equations governing the optimal arc selection, and that of the

1The polars are a graphical representation of the boat speed (relative to the
water) versus its angle to the true wind for different true wind speeds. The tables
corresponding to the polars also indicate the apparent wind and angle.

2While heading is the direction the vessel is pointing, course (over ground) is
the direction of its motion under the influence of the prevailing current and the
boat side slip (leeway).

calculation of the arc costs. In Section III, we detail our solution
approach and proposed an iterative procedure step by step.
Section IV contains the simulation setup proposed to validate
the algorithm in the presence of both current and wind vectors
(including a real-world scenario—Newport Bermuda race), and
we discuss our findings in Section V. Finally, Section VI con-
cludes this article. Appendix A provides the details of the SBP
algorithm and the performance tables it relies upon. Appendix B
shows some additional examples for SBP. Appendix C discusses
the dynamic programming optimization.

II. PROBLEM FORMULATION

For completeness, the formulation is divided into two sections
to decompose the general fastest-path sailing vessel routing
problem into that of a shortest path problem formulation, where
we detail the general cost function to be minimized given speci-
fied constraints, and a sailing vessel formulation, where we detail
the environmental impact on the vessel, and the relations among
the angles and vectors of interest used in the cost calculation.

A. Minimum Time Path Formulation With Dynamic
Programming

Let G = (N,E) be a directed acyclic graph, comprising a
traversable set of nodes N and a set of edges E. Given a start
location and a destination, a sailing vessel must adhere to the
graph G and traverse along edges e ∈ E, while visiting way-
points (nodes) n ∈ N . It is assumed we have perfect knowledge
of the bathymetry (water depth) pertaining to the area spanned by
G, and given the sailing vessel draft, the bathymetry is greater
than or equal to a specified depth ∀n ∈ N , ∀e ∈ E such that
safe traversal is guaranteed. The graphG is structured as a trellis
such that there are one or more groups of vertically aligned nodes
across the same horizontal3 position. The location and spacing of
waypoints is dually a function of the granularity of bathymetric
and/or weather/current4 data sources and user specification. Let
each vertical set of nodes be a stage s = 0, 1, . . . , S − 1, where
S is the total number of stages to get from the departure point
(denoted as 0) to the specified destination (denoted as S − 1).
In this manner, the graph G (illustrated later in Fig. 2) may be
constructed where all nodes inN correspond to waypoints, rep-
resented by geographic coordinates, i.e., latitudeφ and longitude
ψ

xj(s) = [φj(s) ψj(s)]
T (1)

x(s) = {x0(s) x1(s) . . .xj(s) . . .xns
(s)} (2)

for s = 0, . . . , S − 1; j = 1, . . . , ns, where ns is the number of
nodes (discretized states) in stage s.5

3In a real-world scenario, the nodes (waypoints) can be chosen on circles (or
polygons) centered at and progressively closer to the destination. The vertical
alignment and horizontal positioning is assumed for the ease of explanation in
the construction of a trellis across a region.

4The waypoints can be changed based on updated weather information and
need not be fixed for the duration of the transit from the start to the destination.

5T denotes transpose, so (1) is a column vector; {·} denotes a set.
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Fig. 2. Illustrative crosswind scenario. The environmental vectors at each possible state within each grid stage generated between the start and destination points.
The true wind vectors are illustrated with a single solid arrow, the apparent wind vectors are shown with a double solid arrow, and the current vectors are indicated
via a triple thin arrow. The boat velocity vectors in water (including leeway) are illustrated with a single thin arrow. The edges traversed by the sailing vessel
between waypoints are dotted with the direction of travel indicated. Note that while the wind is perpendicular to the start–finish line, the point of sail in the first
half is (see Table) a broad reach (βa = −96◦), while, in the second half, it is a close reach (βa = −56◦). The heading in the second half is around 84◦, so the
course is 45◦.

Given the current stage s and location (node) j,xj(s), we wish
to find the next nodexk(s+ 1) to traverse to in stage s+ 1,6 such
that the angle of the edge between xj(s) and xk(s+ 1), denoted
θe, is optimized to allow for maximally fast traversal to the
destination, while taking into consideration the wind and current
vectors forecast for each node n ∈ N . This process is repeated
for stages s = 1, . . . , S − 2 (from stage S − 1, the vessel will
head directly to the destination).

At each node n, wind and current vectors are considered,
along with the relative angles of the arcs connecting the node
to possible waypoints in the next stage s+ 1, to determine the
cost to traverse from one stage to the next. Let R be a vector of
cost-impacting environmental parameters to consider (namely,
wind and current)

R =
[
�Vt �Vc

]T
(3)

6For our illustrative scenario, we assume only forward (toward the destination)
traversal to be feasible. This can be changed by modifying the grid based on new
weather information and regeneration of the graph given the current location and
impending hazards, e.g., storms, where real-time regeneration of the graph, as
needed, is possible to allow backward or divert actions. The forward motion on
the illustrative grid is necessitated by the proposed algorithm’s programming
approach; it is the analog of time moving forward.

where �Vt and �Vc are the true wind and current vectors comprising
magnitudes Vt and Vc and angles θt and θc, respectively.

We denote the cost to traverse along an edge e, with cor-
responding bearing θe, while experiencing environment R as
c(e, θe,R), and assume it to be nonnegative. The cost, which
is the transit time, can be explicitly written as c[x(s),x(s+
1), θ(s),R], where θ(s) is the heading needed to follow the
course θe corresponding to the edge connecting xj(s) to
xk(s+ 1), i.e.,

θe = θe (xj(s),xk(s+ 1)) . (4)

The decision/control variables at each stage s, s = 0, . . . , S −
2, are as follows:

1) which node in x(s+ 1) to traverse to;
2) which pointing of the vessel, θ(s), to maintain while

traversing to a desired waypoint (node) in x(s+ 1), i.e.,
to achieve a course of θe(xj(s),xk(s+ 1)).

The minimum cost path to the destination nodex(S − 1) from
a departure point x(0), where cost is the traversal time, can be
recursively solved via dynamic programming. We assume the
goal node to have termination cost J(x(S − 1)) = 0 and use
dynamic programming [16] to proceed backward in time from
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TABLE I
SUMMARY OF NOTATIONS (FOR BOTH SBP AND CPN [20] ALGORITHMS)

end stage s = S − 1 to s = 0. The optimal cost from stage s is

J∗ (xj(s)) = min
xk(s+1),θ(s)

(c [xj(s),xk(s+ 1), θ(s),R]

+ J∗ (xk(s+ 1))) (5)

subject to

xj(s),xk(s+ 1) ∈ N (6)

θe (xj(s),xk(s+ 1)) ∈ E. (7)

Iteratively following (5)–(7) results in a complete path from
the current stage s to the destination. However, forecast en-
vironment information is imperfect. Following an open-loop
feedback policy [16], [17], [18], the algorithm can be repeatedly
executed for a given grid, each time using the most recently
available forecast information and assuming that no further
updates will be received. New information may be available
at the next stage (s+ 1) or, if the forecast computation run-
time is lengthy, after a finite number of stages. This will re-
quire the solution of a maximum of S − 2 optimal control
problems.

If the forecast consists of more than one value for each
stage (with a probability distribution), the algorithm can be
generalized to stochastic dynamic programming [19].

B. Sailing Formulation

The notation used in the remainder of this article is listed in
Table I. All angles are assumed to be positive clockwise from
magnetic North.

A free body diagram of the sailing vessel is shown in Fig. 1,
where vectors are drawn in accordance with the vector arrow
key in Table II.

In sailing, one only has control over the pointing of the
sailing vessel, denoted as θ. The boat speed (magnitude of the
velocity vector in the water) is a tabulated function of the vessel
pointing and the (apparent, i.e., relative to the boat) wind vector.
This function, given by the sailing vessel’s polar curves (also
tabulated), assumes optimal choice of sails and trimming. In
sailing, what is of primary interest is the apparent wind angle
relative to the vessel. The apparent wind in the tabulated function
(based on the polar curves) yields the vessel speed in the water.
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TABLE II
VECTOR ARROW KEY

Let θa denote the apparent wind angle with respect to mag-
netic North, and let βa denote the apparent wind angle with
respect to the boat centerline. The minimum rotation required to
point the vessel into the wind is the circular difference between
the control variable θ (heading) and the apparent wind angle θa.
To calculate this difference for magnetic bearings (i.e., for angles
θ, θa ∈ [0, 360), where 0◦ corresponds to magnetic North, with
positive values clockwise)

βa = fu (θa, θ)

�
{
θa − (θ − 180◦) θa − (θ − 180◦) ≤ 180◦

θa − (θ + 180◦) θa − (θ − 180◦) > 180◦ (8)

where βa takes on positive values for starboard tack,
θ ∈ [0, 180), and negative values for port tack, θ ∈ [180, 360).
Starboard and port tack refer to which side of the sailing vessel
the wind is coming from, where starboard refers to the right-hand
side of the vessel when facing forward, and port refers to the left-
hand side. The sign of βa serves as the basis for determining the
actual pointing of the vessel in the presence of wind. However,
the angle of the velocity vector of the sailing vessel in the water
does not coincide with the boat’s heading due to another factor
called leeway. Leeway, denoted by λ, is associated with drift
motion behavior (side slip) and is the angular difference between
the centerline (the heading) and the velocity angle

θv = θ − λ sgn(βa) (9)

where “sgn” is a function that takes the value 1 if βa > 0 and
−1, otherwise.

A current vector �Vc impacts the sailing vessel’s velocity over
ground as

�Vg = �V + �Vc (10)

where the velocity over ground �Vg is simply �V when no current
is present.

III. SOLUTION APPROACH: ARC COST EVALUATION AND PATH

OPTIMIZATION WITH DYNAMIC PROGRAMMING

The objective of the fastest-path sailing vessel routing prob-
lem is to minimize the time to destination. To do so, in the
manner discussed in [19], we create the grid G consisting of
arcs and waypoints, or marks, to steer along and toward to

incrementally progress toward the goal node. At each way-
point xj(s), j = 1, . . . , ns in stage s, s = 0, . . . , S − 2, the cost
c[xj(s),xk(s+ 1), θ(s),R] must be calculated using a head-
ing θ to traverse at course θe(xj(s),xk(s+ 1)) to waypoint
xk(s+ 1) making use of the observed or forecast environment
information R.

To determine the estimated transit time from one node to the
next, first, the Great Circle (geodesic) distance7 is calculated as

d [xj(s),xk(s+ 1)]=2r arcsin

×
(√

sin2
(
Δφ

2

)
+cosφj(s) cosφk(s+1) sin2

(
Δψ

2

))

(11)

where, without loss of generality, r is Earth’s overall mean radius
or the mean radius between latitudes φj(s) and φk(s+ 1), and

[Δφ Δψ]T = xk(s+ 1)− xj(s). (12)

are the latitude and longitude increments between waypoints k
and j.

Once the distance d[xj(s),xk(s+ 1)] is calculated, the speed
at which the sailing vessel can traverse between these waypoints
must be determined. The apparent wind is needed to obtain
the velocity in water and, from it, the velocity over ground. In
iteration i = 0, the apparent wind vector is set to the (known)
true wind vector

�V 0
a = �Vt = Vt/θt (13)

and we calculate the initial circular angular difference with the
vessel’s centerline (pointing) as

β0
a = fu (θt, θ) . (14)

Then, we follow an iterative procedure with these initializations
from iteration i = 1 onward. It is assumed that the sailing vessel
comes with tabulated information that describes its behavior,
namely, speed and leeway versus apparent wind vector8 (e.g.,
see Appendix A-B and [21]). Using an initial assumption of
apparent wind magnitude V i−1

a and apparent wind angle mag-
nitude relative to the centerline of the sailing vessel |βi−1

a |
V i = V

(
V i−1
a ,

∣∣βi−1
a

∣∣) (15)

λi = λ
(
V i−1
a ,

∣∣βi−1
a

∣∣) (16)

where (15) and (16) may be calculated using an interpolation
method, such as a cubic spline or a radial basis function. The
interpolated velocity magnitude (15) and the associated leeway
(16) yield (9) at iteration i, rewritten as

θiv = θ − λi sgn(βi−1
a ) (17)

which completes the necessary information to calculate �V i
a . The

next iterated boat velocity vector in water is

�V i = V i/θiv (18)

7A great circle route is the shortest distance between two points located on
the surface of a sphere.

8This is a more detailed version of the polar curves.
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TABLE III
ALGORITHM I: SBP ALGORITHM: FOR A GIVEN HEADING θ, TRUE WIND, AND CURRENT, THIS SHOWS HOW TO OBTAIN

THE APPARENT WIND AND THEN THE VELOCITY OVER GROUND

with the velocity vector over ground is

�V i
g = �V i + �Vc = V i

g /θ
i
g (19)

yielding the new apparent wind vector as

�V i
a = V i

a/θ
i
a = �Vt − �V i

g (20)

and apparent wind angle

βi
a = fu

(
θia, θ

)
(21)

where the procedure, detailed in programmatic form in Table III,
repeats until the convergence criterion is met. We assume a
specifiable threshold

ε >
∣∣θia − θi−1a

∣∣ (22)

and a maximum number of iterations, to protect against slow
or nonconvergence, that, once either is satisfied, terminates the
algorithm. Upon termination, �Vg is known. However, the output
θg will not necessarily coincide with a desired θe. The feasibility
of arc traversal is not guaranteed (e.g., in situations where there
is significant cross current or if the desired course is into the
wind).

To address the issue of achieving a desired θg equal to a certain
θe, assuming that it is feasible, we iterate over a discretized
range of feasible headings θ given the desired course θe. We can
denote the velocity over ground vector angle as a function of
the proposed (candidate) pointing θ(s) in stage s. The accepted
pointing is

θ∗(s) = min
θ(s)∈Θ(s)

|θg [θ(s)]− θe| (23)

where Θ(s) is the set of allowable discretized pointing angles
at stage s. The pointing corresponding to the minimum error in

traversing from xs to xs+1 at course θe in (23) is then used with
(11) to calculate the stage transition cost.

We make the assumption that the grid G is sufficiently dense
to guarantee the optimum traversal to the destination.

For conciseness, we rewrite

Vg = fg (θ,R) (24)

where fg is the speed obtained according to the iteration shown
in Table III.

The transit time, which is the arc cost from waypoint j to k,
is

c [xj(s),xk(s+ 1), θ(s),R] =
d [xj(s),xk(s+ 1)]

fg (θ(s),R)
(25)

and we select the optimal outgoing arcs from each node that
provide passage for the sailing vessel to the next stage based on
the minimum of (25) over all headings all the way to the desti-
nation. For stages s = 0, . . . , S − 2, the optimal arc selection is
driven by the dynamic programming optimization (5), which is
rewritten with (25) as

J∗ (xj(s)) = min
xk(s+1),θ(s)

(
d [xj(s),xk(s+ 1)]

fg (θ(s),R)

+ J∗ (xk(s+ 1))

)
(26)

for s = S − 1, . . . , 0 and subject to

xj(s),xk(s+ 1) ∈ N (27)

θe (xj(s),xk(s+ 1)) ∈ E. (28)

The dynamic programming equation (26) yields, together
with the next stage waypoint x∗k(s+ 1), the optimal θ∗.s For
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details concerning possible implementation improvements, see
Appendix C.

IV. SIMULATION SETUP

To demonstrate and validate the proposed SBP algorithm
combined with dynamic programming, we consider one illus-
trative scenario and one real-world scenario. The utility of the
illustrative scenario was to assess the algorithms in an ideal set-
ting and to evaluate if the solutions coincided with our intuition.
Real-world forecasts can quickly become difficult to understand
due to the stochastic, correlated, and nonconvex nature of many
weather parameters. The real-world scenario serves as a means to
demonstrate the benefit of the proposed algorithm, when applied
using real-world weather forecasts, and to evaluate the solution
quality given the prevailing conditions of that specified time for
the given hull and sails.

In each scenario, we assumed a 36-ft fast cruising boat,
specifically a Beneteau First 36.7-Racing Keel,9 with behavior
and speeds, as detailed in [21], where, given the wind speed and
the magnitude of the true wind angle relative to the centerline
of the vessel, a table lookup scheme was available and input to
the software discussed in [19] to obtain the vessel’s speed in the
water versus the apparent wind and the corresponding leeway
as part of the iterative procedure in Table III. Details regarding
the tabulated functions for the vessel’s speed and leeway for a
true wind speed at various true wind angles are summarized in
Appendix A-B.

A. Illustrative Scenario

We consider, for the sake of illustration, a fictional “cross-
wind” scenario with a graph,G, comprisingS = 9 stages, where
every node has successor nodes located 4 nmi10 away at a corre-
sponding course of either 45◦ or 135◦ (with respect to magnetic
North). We assume each successor node to be located in the
subsequent stage s+ 1. Each stage leading up to the middle
stage s = 4 has incrementally one more waypoint node than the
previous and, for each stage thereafter, has decrementally one
less waypoint node than the previous until the final stage. In
this manner, we construct a uniform gridG, illustrated in Fig. 2,
for evaluation, where stages s = 0 and s = S − 1 in (5) contain
solely the start and destination nodes, respectively.

To validate and compare the route generated by our proposed
SBP algorithm against that which was output by an open-source
sailing software [20], we set up a simple weather scenario on
the grid G. We assumed a true wind speed of Vt = 4 kn with an
angle of θt = 180◦ (northerly, i.e., the wind came from angle 0◦,
with its vector pointing south, i.e., 180◦) at each node n ∈ N .
We assumed the current speed (in knots) is

Vc =

{
0, s < 4
5, otherwise

(29)

9The specifications of the boat are as follows: overall length, 35’11”, draft
7’2”, sail area 655 ft2, and displacement/ballast 12 800/3750 lb.

10For a practical problem, a higher density graph would be needed.

where, when Vc > 0, the corresponding angle with respect to
magnetic North is θc = 0◦. In assuming such a weather sce-
nario,11 we were able to visually validate whether the path
and headings suggested by the proposed SBP algorithm were
intuitive. In the first half of the graph, the algorithm needed to
solely consider the wind, while in the second half, it needed to
appropriately consider both the wind and current.

We set a threshold ε = 10−3 for our convergence criterion and
a maximum number of iteration of 10 loops to protect against
slow or nonconvergence.

Two additional illustrative scenarios (downwind and upwind)
are discussed in Appendix B.

B. Real-World Scenario

For our real-world scenario, we use the date, start time, and
weather available before the beginning of the 2018 Newport
Bermuda Race, the year coinciding with the version of the
open-source software used as a baseline for comparison in our
numerical experiments. The scenario used a graph, G, compris-
ing S = 16 stages, where every stage is inserted approximately
36 nmi after the previous, and successor nodes are located at
varying distances located between 36 and 600 nmi away at a cor-
responding minimum and maximum courses of approximately
60◦ and 240◦ (with respect to magnetic North), respectively.
We assume each successor node to be located in the subsequent
stage s+ 1. Each stage leading up to the middlemost stage has
incrementally one or more waypoint nodes, wherein each stage
after has decrementally one or less waypoint nodes until the final
stage. In this manner, we construct a variable grid G, illustrated
in Fig. 3, for evaluation, where stages s = 0 and s = S − 1
contain solely the start and destination nodes, respectively.

In this article, accurate short- and medium-range weather pre-
dictions are used for the real-world scenario. Primary impacting
weather data used in our real-world numerical experiment was
limited to surface winds and currents, since the SBP algorithm
directly relates such weather parameters to a recommended
sailing boat pointing. In the numerical weather prediction of
the wind and ocean currents, u (vector component towards
East) and v (vector component towards North) components are
the sufficient means to calculate the speed and direction of
these weather parameters in the SBP and OpenCPN algorithms.
The u and v surface wind components were ingested from the
Navy Global Environmental Model (NAVGEM) [22]. The u
and v surface current components are according to the Global
Hybrid Coordinate Ocean Model (HYCOM) [23]. A reference
forecast12 date and time of June 15, 2018 and 1200Z (UTC),
coinciding with the most recent information that would have
been available before the start of the race of that year, was used
by the algorithms for routing across the region spanned by the

11While wind speeds on the open ocean (when calm) are generally on the
order of 10–15 kn, a much smaller magnitude was chosen (4 kn) to emphasize
the effect of currents in the fictional scenario.

12A reference time is the date-time when a model creates a new forecast in
its moving horizon. The process consists of assimilation and initialization based
on observations up until the computation start time.
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Fig. 3. Real-world scenario. The graph G is displayed using the Lambert conformal conic projection. The lattice structure shown is unidirectional with travel only
permitted toward the destination of Bermuda, i.e., traversing backward is not feasible. Each stage s has successor nodes only in stage s+ 1, and each incremental
stage has subsequently more candidate nodes until the middlemost stage is reached, wherein the number of candidate nodes decreases until the final destination
node is the only one viable in the final stage.

lattice in Fig. 3. The corresponding surface wind barbs13 and
surface current contours/vectors are illustrated in Fig. 4 for a
tau14 of 0 h.

V. RESULTS AND DISCUSSION

To demonstrate the benefit of the proposed algorithm, we
used the freely available open-source sailing vessel routing op-
timization software, termed OpenCPN [20] (open-source Chart
Plotter Navigation). The results from OpenCPN were obtained
using the weather routing optimization plug-in packaged with
OpenCPN version 4.6.1, and as translated from C++ into Python.
To compare the proposed and baseline algorithms fairly, only the
high-level algorithm procedure was translated since OpenCPN
relies on the isochrone15 method for trajectory propagation. The
details of the high-level algorithmic procedure contained within
OpenCPN are listed in Table IV. Though much of the published
literature overlooks the current, the OpenCPN algorithm (herein,
referred to as Algorithm II or CPN algorithm) directly considers

13Wind barbs are a means of indicating wind direction and intensity. Long
and short barbs indicate wind speed, rounded to the nearest 5 kn, while calm
wind is displayed as a large open circle. The shaft is used as a tool to visualize
the wind angle, pointing to the direction where the wind is coming from.

14Tau is a meteorological expression that refers to the number of hours
postgeneration time of the forecast. A June 15, 2018 forecast reference time
of 12Z and tau of 0 h refers to what the weather forecast looks like at 12Z on
June 15, 2018. A tau of n hours then refers to n hours after 12Z. In this manner,
meteorologists can refer to the exact forecast time, given a reference time. In
the example provided, a tau of 3 h refers to the 3-h later forecast of the weather,
i.e., 15Z, given the forecast generation time of June 15, 2018 at 12Z.

15Isochrone refers to a grid construction method that propagates traversal
times out spatially and creates points (or contour lines) that take equal time to
arrive at.

it in its vector addition operations. The benefit of this method is
that the algorithm is fast, taking only one iteration to converge
when ocean current is not present.

The proposed SBP algorithm itself takes approximately 1.9 s
to obtain an initial trajectory from the origin to the destination,
excluding weather ingest routines. If weather ingest routines are
included (for surface winds and surface currents), the algorithm
runtime increases to approximately 14 s. These runtimes were
observed on an Intel CoreTM i7-6650 U CPU Processor 4× at
2.2 GHz with 16-GB RAM. As the proposed method is coupled
with algorithm A∗, the worst case complexity of an unbounded
search space (i.e., a maximum of S stages to consider) results
in O(nθnSs ), where nθ is the number of discretized bearings to
consider at each waypoint en route to the destination andns is the
branching factor (the average number of candidate successors
per state). The space complexity of the proposed method is
roughly the same as that of other graph search algorithms, as it
keeps all generated nodes in memory; however, it differs in that
the storage is multiplied by the number of discretized bearings to
consider at each waypoint, and the number of forecasts that are
applicable to a waypoint (e.g., if there are various ways to reach
a waypoint that are at least differing by 6 h regarding the time
of arrival, then this constitutes at least two weather forecasts to
keep in memory).

A. Illustrative Scenario

Fig. 2 details the path suggested by both the baseline and
proposed new algorithms in the illustrative crosswind scenario.
The current and true wind vectors at each waypoint are illustrated
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TABLE IV
ALGORITHM II: CPN ALGORITHM (BASELINE): OPENCPN ITERATED VELOCITIES AND HEADING CALCULATION

using the arrow key detailed in Table II, along with the appar-
ent wind vector calculated at each traversed waypoint. Each
algorithm proposed the same path in this scenario; however,
the differences between the two methods were in the pointing
of the vessel in transit between the chosen waypoints. Note that
OpenCPN does not take into consideration the leeway of a vessel,
while our proposed method includes it in the optimization. As
such, the path suggested by OpenCPN did not strictly adhere
to the grid G. To overcome this and more fairly compare the
algorithms, we added an outer loop onto the OpenCPN algorithm
to iterate over a feasible range of pointings given a node and
a candidate waypoint node, at each step in the optimization.
This alteration then accounted for leeway and resulted in the
OpenCPN algorithm’s recommended route being aligned with
the grid G.

As seen in Fig. 2, the current impacted the optimization
significantly, allowing for faster traversal across the edges in the
second half of the problem space s ≥ 4 and, in turn, impacting
the apparent wind encountered. The apparent wind magnitude
encountered in the first half of the stages was 3.56 kn, while
in the second half of the stages, it more than tripled to 12.0 kn
(partially due to the fair current). This is also illustrated in detail
in the free body diagrams, shown in Fig. 5, which also serve
a dual purpose as a visual for how the environmental vectors
are added or subtracted with respect to the sailing vessel in the
scenario considered.

The convergence of the SBP algorithm is demonstrated in
Fig. 6, where we invoked the proposed procedure assuming
that we intended to travel at a course of 135◦ to the next
waypoint, while assuming the true wind Vt to be 4 kn at

an angle of 180◦ (coming from 0◦) with no current vectors.
The procedure converged relatively fast due to the radial basis
function approximation [24] and took a negligible amount of
time to complete. In Fig. 6, iteration 6 was not carried out
but rather, upon satisfying the threshold condition (that is, θa
remained the same or was calculated to be within ε from the
value computed from the previous iteration), terminated the
iteration and returned the necessary values to continue with the
optimization.

Since we assumed a uniform graph with waypoints generated
at fixed distances, there were only two sets of headings gen-
erated corresponding to the two possible conditions—without
ocean currents (s = 0, . . . , 4) and with (s = 5, . . . , 8). The exact
calculations for each of the angles and velocity magnitudes are
shown in Table V. A comment on the way the results of a path
optimization algorithm are used is as follows: a modern navi-
gation chartplotter is used by setting a waypoint (and steering
so that �Vg points to it—assuming that the wind and current are
constant in a leg) rather than following a heading. This way
the error due to sideslip/leeway is eliminated in getting to the
desired waypoint. Thus, in this illustrative example, the times
for both algorithms will be the same. In the illustrative scenario
experiment, the CPN algorithm returned the same path (set of
waypoints) as the SBP algorithm; hence, they both achieved an
estimated route time of 7 h, 7 min, and 33 s from departure to
arrival at the destination (e.g., the finish line). Had a sailing boat
traversed via Great Circle as approximated by a set of rhumb
line segments, the estimated route time would have been 9 h,
48 min, and 13 s. This illustrates the importance of considering
environmental impacts, since a Great Circle route is the shortest
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TABLE V
STAGE VELOCITIES (KNOTS) AND ANGLES (DEGREES); ILLUSTRATIVE SCENARIO

Fig. 4. Lattice waypoints overlayed on top of the real-world scenario’s wind
and current forecast for the region considered for the 2018 Bermuda Race. Wind
barbs and current contours/vectors are illustrated with the Lambert Conformal
Conic projection for June 15, 2018, with a forecast reference time of 12Z and a
tau of 0 h. Surface wind u and v components are ingested from the NAVGEM
and surface current u and v components are according to the Global HYCOM.
(a) Real-world scenario wind. (b) Real-world scenario current.

Fig. 5. Free body diagrams corresponding to the proposed SBP algorithm
(Algorithm I) for stages s = 0, . . . 7. Stage S − 1 = 8 only contained the
destination, so, therefore, no further controls were necessary to route the sailing
vessel. (a) Stages 1–4. (b) Stages 5–8.

Fig. 6. Convergence of θa given the desired mark is at a bearing of 135° (with
respect to magnetic North) from the current node and assumingVt/θt = 4/180◦

and Vc/θc = 0, ∀θc.
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Fig. 7. Real-world scenario. The graph G is displayed using the Lambert con-
formal conic projection. The lattice structure shown is unidirectional with travel
only permitted toward the destination of Bermuda, i.e., traversing backward is
not feasible. The edges recommended by the SBP algorithm are shown in yellow
(light), while the edges recommended by the CPN algorithm are shown in deep
sky blue (darker), with the direction of travel indicated.

Fig. 8. Recommended routes output by the CPN and SBP algorithms over-
layed on top of the surface wind barbs and current contours/vectors using the
Lambert conformal conic projection. The surface winds are shown as forecasted
with a reference date and time of June 15, 2018, at 12Z with a tau of 30 h. Surface
wind u and v components are ingested from the NAVGEM. Surface current u
and v components are according to the Global HYCOM. (a) Real-world scenario
surface winds. (b) Real-world scenario surface currents.

Fig. 9. Comparison of the estimated traversal times of the corresponding paths
recommended by Algorithms I and II for the real-world scenario. The total
time calculated to travel along the path suggested by Algorithm I, given the
recommended waypoints, was ≈ 84.9 h, while the corresponding estimated
travel time to sail the route recommended by Algorithm II was ≈ 96.7 h.

route between two waypoints, but not necessarily the fastest
when there is weather and currents.

Owing to the simplicity of the scenario explored, we did
not demonstrate how changing weather condition impacts the
optimization. To investigate weather impacts on each algo-
rithm’s recommended solution paths, we posed a second sce-
nario involving real-world meteorological and oceanographic
data, with discussion of our findings in Section V-B.

B. Real-World Scenario

Fig. 7 details the paths suggested by the baseline and proposed
algorithms in the real-world scenario. Each algorithm recom-
mended the same path up until the sixth stage; however, they then
deviated in the sequence of waypoints suggested until the final
destination was reached. To fairly compare the algorithms in
this real-world scenario, we augmented the OpenCPN algorithm
to adhere to the grid G by iterating over a range of proposed
headings per waypoint candidate and choosing the heading that
guaranteed arrival at the candidate node, given the anticipated
leeway.

The primary distinction between the two routes begins at the
sixth stage, and thus, to better investigate this difference, we plot
the surface wind and current forecasts at the time of arrival at
the waypoint corresponding to this stage in Fig. 8(a) and (b).
As illustrated, the majority of the remaining SBP algorithm-
recommended route is aligned with the current vectors from
this stage onward, expediting the sailing boat’s transit toward
the destination. The SBP algorithm is able to prolong sailing
distance in advantageous surface current regions, i.e., aligned
with the destination. Exploiting this surface current information,
in concert with prevailing surface winds in the region, enables
the SBP algorithm to achieve a faster overall anticipated race
time.

The results pertaining to the estimated transit time from stage
s = 0 to s = 16 are shown in Fig. 9. The CPN algorithm returned
a solution that estimated the time to destination to be 4 days,
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42 min, and 21 s in duration, while the SBP algorithm recom-
mended a route with a concomitant, estimated duration time
of 3 days, 12 h, 52 min, and 40 s—a difference of roughly
11 hours, 49 min, and 41 s of elapsed time in arriving at Bermuda
(i.e., the finish line). In comparing the two algorithms, the
different headings and deviations in waypoint recommendations
of the proposed iterative procedure (SBP algorithm) amounted
to more than 12% improvement over the baseline algorithm’s
recommended route, a relatively large margin of victory in yacht
racing.

VI. CONCLUSION

An iterative procedure to obtain the recommended pointing
of a sailing vessel given the ocean current and true wind vectors,
paired with a fastest-path algorithm, was derived and shown to be
superior to an open-source baseline software. Using observed or
forecast weather conditions as input, we presented an iterative
procedure that takes into consideration the primary impacting
factor in fastest-path sailing vessel routing (the wind), while also
taking into consideration a major, but often unused, impactor
(the ocean current).

In addition to the proposed iterative procedure, two algorithm
comparison test cases were presented that validated the goodness
of the proposed procedure, while using open-source software
as a baseline for solution quality. An illustrative crosswind
scenario was posed to demonstrate the utility and intuition
guiding the proposed procedure in an idealized setting, while
a real-world scenario was explored to validate the proposed
algorithm’s improvement in route recommendation over that
of the baseline’s. The SBP algorithm was able to exploit both
real surface current and wind forecast information to achieve a
faster anticipated race time over the CPN algorithm, which could
only use surface wind information. Our findings indicate that,
if they require a high-fidelity fastest-path recommendation that
considers leeway motion of the vessel, the proposed procedure
will precisely get the sailing vessel from one waypoint to the
next, while recommending a sequence of waypoints leading to
the desired destination. The key to practicality is the feature of
rerunning the SBP algorithm to 1) match the starting time since
the optimization runs backward from the end point (finish line)
at an initially assumed end time (needed for the weather forecast
along the way) and 2) to incorporate updated weather and current
data while on the way.

APPENDIX A
SBP ALGORITHM ADDITIONAL INFORMATION AND INPUT DATA

A. Algorithm Overview

In this section, we present an overview of the SBP algorithm,
detailed in Table III. Assuming that a sufficiently dense grid G
is available, we invoke multistage dynamic programming (see
Appendix C for details) and, in turn, examine the candidate node
xk(s+ 1), chosen from the set of neighbor nodes (possible
marks) connected by an edge e ∈ E to the current location
xj(s), with the corresponding edge course θe(xj(s,xk(s+ 1)).
The required course is known and used in conjunction with

a tolerance ε, i.e., the allowable deviation off course when
traversing from stage s to stage s+ 1.

The SBP algorithm is used over a range of angles enveloping
the desired course θe. This range amounts to the possible angles
to point the vessel to align the velocity over ground angle with
that of θe. Each proposed pointing θ in this range is input to
the algorithm, along with the true wind �Vt, the current �Vc, and
a table of performance prediction (“polars”; see Appendix A-B
and [21] for an example).

The apparent wind vector at iteration 0, �V 0
a , is initialized to

the true wind vector �Vt, namely,

V 0
a /θ

0
a = �V 0

a ← �Vt = Vt/θt. (30)

Then, the apparent wind with respect to the centerline of the
sailing vessel, β0

a, is computed as a function of θ0a and the
proposed pointing θ as follows:

β0
a ← fu

(
θ0a, θ

)
. (31)

This completes the initialization.
The iteration begins with interpolation of the vessel speed V

and the associated leeway λ from the performance prediction
tables

V i ← V
(
V i−1
a ,

∣∣βi−1
a

∣∣) (32)

λi ← λ
(
V i−1
a ,

∣∣βi−1
a

∣∣) . (33)

The real vessel pointing is calculable once the leeway is known.
This information is used to find the vessel’s velocity vector �V

θiv ← θ − λi sgn(βi−1
a ) (34)

�V i ← V i/θiv (35)

where “sgn” is a function that takes the value 1 ifβi−1
a is positive,

and −1, otherwise. Since the velocity vector of the current and
the vessel velocity vector in the water are known, the velocity
over ground �Vg is their sum

V i
g /θ

i
g = �V i

g ← �V i + �Vc. (36)

The apparent wind vector �Va is calculable as the difference
between the true wind �Vt and �Vg as follows:

V i
a/θ

i
a = �V i

a ← �Vt − �V i
g . (37)

Finally, the apparent wind angle with respect to the centerline
of the vessel is computable via fu once �Va is known, namely,

βi
a = fu

(
θia, θ

)
(38)

where fu is defined in (8). The procedure then repeats until
|θia − θi−1a | < ε or a number of iterations threshold is reached.

Upon termination, �V , �Vg , and �Va are returned. Based on the
associated θg and the desired course θe, we can accept or reject
the solution. If we reject the solution, we try another feasible
pointing within the range generated around θe. If we accept the
solution, we move on to compute the next node available from
the set of neighbor nodes not yet visited.
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TABLE VI
PREDICTED BOAT SPEED V AND LEEWAY λ FOR TRUE WIND SPEED Vt = 4 KN

B. Performance Prediction Table

Assuming a 36-ft fast cruising boat, specifically a Beneteau
First 36.7-Racing Keel, the vessel characteristics detailed in
Table VI were assumed and used as input for both the algorithms.
This table, which is more comprehensive than the polars, also
shows the apparent wind for the various angles of the true wind
and the VMG, i.e., the velocity of the vessel against the wind,
as well as the leeway. All values are for the best choice of sails
(a spinnaker for downwind) and optimal sail trim.

APPENDIX B
ADDITIONAL SCENARIOS FOR EVALUATION OF SBP

A. Downwind Scenario

We present an illustrative scenario to demonstrate the fea-
sibility of our approach for the case when the bearing of the
destination node relative to the origin node is approximately
equal to that of the direction of the true wind, θt. In downwind
sailing, aligning the vessel pointing with that of the true wind
is not optimal due to the physics of a sail. A sailing vessel will
travel faster when using a spinnaker “pulled” by the wind.

Instead of a “dead run” with the wind, it is favorable to switch
between port and starboard tacks to allow the wind to “pull” the

Fig. 10. Downwind scenario. The environmental vectors at each possible state
within each grid stage generated between the start and destination points for the
scenario of traversing downwind with no current and no leeway. The true wind
vectors are illustrated with a single solid arrow, and the apparent wind vectors
are shown with a double solid arrow. The edges traversed by the sailing vessel
between waypoints are dotted with the direction of travel indicated.

Fig. 11. Free body diagrams corresponding to the proposed SBP algorithm
for tacking when sailing downwind (�Vg = �V because the current and leeway
are assumed to be zero). (a) Port tack. (b) Starboard tack.

vessel. The path16 recommended by the SBP algorithm (assum-
ing for simplicity Vc = 0, λ ≈ 0, i.e., �Vg = �V ), which consists
of broad reach legs, is illustrated in Fig. 10. The corresponding
free body diagram for each recommended tack in the simulation
is detailed in Fig. 11.

The control values and relevant angles and speeds of the vessel
are tabulated in Table VII.

Since the algorithm does not penalize tacking, the path has
more tacking than a good sailor would do. Penalizing tacking
would reduce their frequency in the recommended path. Also,
a more dense grid would yield a faster time to the destination.
However, given the simplified grid, the traversal time from start
to end and with tacking was approximately 11 h, 18 min, and
33 s, while without tacking (i.e., a “dead run”) the calculated
course time was roughly 15 h, 38 min, and 13 s.

16The optimum VMG downwind is at 140◦, while Figs. 10 and 11 show the
path at 135◦ with a VMG 2% below the optimum. To get the optimum, the grid
has to be about ten times more dense.
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TABLE VII
VELOCITIES (KNOTS) AND ANGLES (DEGREES) ON PORT AND STARBOARD TACK WHEN THE DESTINATION IS DEAD AHEAD

TABLE VIII
TACK VELOCITY COMPONENT COMPARISON WHEN TRAVELING UPWIND

Fig. 12. Illustrative upwind scenario. The environmental vectors at each
possible state within each grid stage generated between the start and destination
points for the scenario of traversing upwind with no current and no leeway. The
true wind vectors are illustrated with a single solid arrow, and the apparent wind
vectors are shown with a double solid arrow. The edges traversed by the sailing
vessel between waypoints are dotted with the direction of travel indicated.

B. Upwind Scenario

In addition to a downwind sailing scenario, we present a
sample path recommended by the SBP algorithm when sailing
upwind, i.e., when the difference between the bearing of a
destination node relative to the origin node and the angle of
the true wind, θt, is approximately 180◦. In upwind sailing, it
is physically impossible to point the vessel in the direction of
oncoming winds and proceed toward a mark. Depending on the
vessel characteristics, the minimum angle to sail into the wind
may vary. For the class of sailing vessel studied in this article,
the vessel pointing must differ by at least 30◦ relative to the
oncoming true wind, as detailed in Table VI. The best true wind
angle for maximum VMG is around 45◦.

Pointing the vessel into the wind is referred to putting the
vessel “in irons,” so, unlike the downwind scenario, tacking is the
only option, switching between port and starboard tacks to allow

Fig. 13. Free body diagrams corresponding to the proposed SBP algorithm
for tacking when sailing upwind. (a) Port tack. (b) Starboard tack.

the wind to “pull” the vessel with maximum VMG to its goal. The
path recommended by the SBP algorithm (again, assuming for
simplicity Vc = 0, λ ≈ 0, i.e., �Vg = �V ) is illustrated in Fig. 12.
The corresponding free body diagram for each recommended
tack in the simulation is detailed in Fig. 13.

The control values and relevant angles and speeds of the vessel
are tabulated in Table VIII.

APPENDIX C
MULTISTAGE PATH SELECTION VIA DYNAMIC PROGRAMMING

FOR PATH OPTIMIZATION

Dynamic programming is an iterative procedure that, when
followed and given certain assumptions, will provide an optimal
solution (in this case, the fastest path). We assume the following.

1) The problem space is discretizable (the path is within a
grid).

2) The cost function is additive.
For the basic multistage dynamic programming problem with

S stages, we apply S controls (decisions) to go from the initial
stage, denoted x(0) to the end stage x(S − 1). To proceed from
stage s to s+ 1, we must apply a control θ(s). In doing so, we
incur a cost c[x(s),x(s+ 1), θ(s),R], defined in Section II-A.
From our second assumption (i.e., the cost function is additive),
the optimal total cost is thus

cS [x(S − 1)] +

S−2∑
s=0

c[x∗(s),x∗(s+ 1), θ∗(s),R] (39)
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where cS [x(S − 1)] is the terminal cost of the end stage (if
any), x∗(s) and x∗(s+ 1) are the optimally chosen states in
the respective stages s and s+ 1, and θ∗(s) is the pointing of
the vessel that takes it (given the prevailing wind and current)
fromx∗(s) tox∗(s+ 1). By “optimal” in the fastest-path sailing
vessel routing problem, we mean the shortest overall transit time.
The transit time from one stage to the next is given by (25). Using
backward dynamic programming, we know the goal stage to be
x(S − 1), which contains a single state, that is, the goal node.
Hence, x∗(S − 1) is known. Proceeding backward, we find that
the minimum cost over all traversable states in the previous stage
is

x∗(S − 2) = argmin
j
c[xj(S − 2),x∗(S − 1), θ∗(S − 2),R].

(40)
The optimal node is selected for each stage by

x∗(s) = argmin
j
c[xj(s),x

∗(s+ 1), θ∗(s),R]

s = S − 2, . . . , 0 (41)

and

x∗(S − 1) = 0. (42)

Knowing the optimal cost from one node to the next stage,
we aim to solve for the optimal path over all stages. To do so,
we can condense the problem to that of finding the best cost
from each node to the next stage and calculating the optimal
“cost-to-go” J∗ from there onward. The problem then reduces
to (5), reproduced as follows:

J∗ (xj(s)) = min
xk(s+1),θ(s)

(c [xj(s),xk(s+ 1), θ(s),R]

+J∗ (xk(s+ 1))) (43)

= min
xk(s+1),θ(s)

(
d [xj(s),xk(s+ 1)]

fg (θ(s),R)

+ J∗ (xk(s+ 1))

)
(44)

where fg is defined in (24).
In practical applications of dynamic programming, there are

sometimes opportunities to reduce the problem space further
by exploiting domain-specific information to estimate the costs
to go. In lieu of (44), we may use an approximating function
J̃(xk(s+ 1)), which we assume to be both positive and opti-
mistic, to estimate the true cost to go J∗(xk(s+ 1)) from the
next node xk(s+ 1)

Ĵ (xj(s))= min
xk(s+1),θ(s)

(
d [xj(s),xk(s+1)]

fg (θ(s),R)
+J̃ (xk(s+1))

)
.

(45)
The approximation of (26) as (45) amounts to the utilization
of algorithm A∗ [25], [26] to aid in solving the fastest-path
sailing vessel problem for the minimum time path planning.
This algorithm limits the search for the sake of speedup.
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