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Bathymetric Reconstruction From Sidescan Sonar
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Abstract—In this article, we propose a novel data-driven ap-
proach for high-resolution bathymetric reconstruction from sides-
can. Sidescan sonar intensities as a function of range do contain
some information about the slope of the seabed. However, that
information must be inferred. In addition, the navigation system
provides the estimated trajectory, and normally, the altitude along
this trajectory is also available. From these, we obtain a very coarse
seabed bathymetry as an input. This is then combined with the
indirect but high-resolution seabed slope information from the
sidescan to estimate the full bathymetry. This sparse depth could
be acquired by single-beam echo sounder, Doppler velocity log,
and other bottom tracking sensors or bottom tracking algorithm
from sidescan itself. In our work, a fully convolutional network is
used to estimate the depth contour and its aleatoric uncertainty
from the sidescan images and sparse depth in an end-to-end fash-
ion. The estimated depth is then used together with the range to
calculate the point’s three-dimensional location on the seafloor. A
high-quality bathymetric map can be reconstructed after fusing the
depth predictions and the corresponding confidence measures from
the neural networks. We show the improvement of the bathymetric
map gained by using sparse depths with sidescan over estimates
with sidescan alone. We also show the benefit of confidence weight-
ing when fusing multiple bathymetric estimates into a single map.

Index Terms—Bathymetric mapping, data-driven, neural
network, sidescan sonar (SSS).

I. INTRODUCTION

S IDESCAN and multibeam echo sounder (MBES) are the
commonly used sonars for surveying the seabed. Sidescan

sonar (SSS) is used for obtaining detailed seabed images due
to its high resolution and wide swath coverage, while MBES
is used when constructing a bathymetric map due to its ability
to directly measure the seafloor’s 3-D geometry. The MBES
are normally mounted on ships or large autonomous underwater
vehicles (AUVs). Ones small enough for smaller AUVs will not
have sufficient resolution in the across track direction. They are
also relatively expensive compared to single array SSS. Since
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sidescans do not have any across track array, they can easily be
mounted on small and more affordable AUVs. The disadvantage
is that there is also no across-track angular resolution, and thus,
the sidescan gives a 2-D projection of the 3-D seabed. An esti-
mate of the depth coordinates would resolve the 3-D positions.
The sidescan intensities do contain some information about the
seafloor’s material and elevation changes: harder materials tend
to have higher return intensities; the nadir range in every ping
gives a single altitude reading; and, more importantly, the inten-
sity changes indicate the change of the incidence angle [1]. Even
though the unknown bottom material and other disturbances
make it difficult to estimate the depth from sidescan returns
analytically, data-driven methods [2] have shown promising
results in estimating depth contours from sidescan intensities.
Here, we will add sparse height constraints from the altimeter
readings along the trajectory to the neural networks estimated
depth approach. This will significantly improve the accuracy of
the method.

Over the last decades, deep learning has made a significant im-
pact on the computer vision field. Among the various computer
vision tasks, 3-D reconstruction from monocular camera images
can be seen as an analogous task to bathymetry from sidescan.
Early on, shape from shading techniques based on physical
principles were used in 3-D scene reconstruction, but recently
deep neural networks (DNNs) have become the state-of-the-art
methods. Usually, DNNs estimate the depth from monocular
images, and a pinhole model is used to reconstruct the 3-D point
clouds [3].

Similar to how neural networks have been used for estimating
depth from monocular camera images with sparse depth pro-
vided by low-resolution depth sensors such as LiDARs [4], we
train convolutional neural networks (CNNs) with sparse depth
provided from the altimeter to predict a dense depth image from
sidescan images, as shown in Fig. 1.

In theory, the sidescan intensities contain information on the
surface gradients. If we integrate the surface gradients, it will
inevitably drift further as we get far from the starting point at
the nadir. Our prior work [2] shows that the estimated errors
are most significant as one moves further from the sensor. As
a matter of fact, there are problems of treating sidescan images
more or less as camera images in a CNN. A convolutional filter
assumes that the interpretation is invariant to pixel position. For
sidescan images, that is not exactly the case. There is a changing
interpretation as one moves further away. The geometry shifts
and the per column change rate of the incidence angle are less
in the far than the close region.
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Fig. 1. Example of training image pairs. We divide the downsampled sidescan waterfall images into smaller windows in our network training step and associate
the depth to each pixel given bathymetry from the multibeam survey to form the ground truth. (a) Sidescan intensities input window with size 256 × 256. (b) Sparse
depth input window. (c) Uncertainty estimation output windows. (d) Interpolated depth window from the sparse depth data. (e) Predicted depth output window.
(f) Ground truth depth window.

Fig. 2. Example of sparse seabed bathymetry from data set 2. Brown represents
no data and the colored tracks are the lines of sparse data.

To address the increasing errors further from the sidescan
sensor, we utilize the sparse depth (see Fig. 2) and an estimate
of uncertainty to reconstruct a better bathymetry. We use the
sparse depth provided by navigating and altitude measurement,
as a constraint to the neural network, to reduce the drift errors.
We use the uncertainty estimation to form a probabilistic model
to fuse different estimations from different lines of the survey.

Our contributions are as follows.
1) We show that a novel framework to reconstruct bathymetry

with high resolution and high quality with sidescan and
sparse depth improves the accuracy over only using either
of those two inputs.

2) We show that an aleatoric uncertainty estimation as a
confidence measure for the depth estimation can improve
the bathymetric map formed by combining estimates from
overlapping survey lines.

A. Related Work

Woock and Frey [5] summarize the challenges of extracting
depth information from SSS, which requires knowledge of sed-
iment characteristics, surface and volume scattering properties,

sound absorption and dispersion, water currents, variations in
sound speed and the sonar transducer beam pattern. Assumptions
must be made to simplify the methods, such as isospeed sound
velocity profile (SVP).

Many attempts to reconstruct a shape from sidescan are based
on “Lambert’s cosine law.” Li and Pai’s work [6] is inspired by
shape-from-shading methods with camera images [7], determin-
ing a Lambertian sonar model to obtain the approximation of the
surface normals. However, the diffuse reflections assumptions’
work much better for light than for sound. Coiras et al. [8]
model the intensity as a function of bathymetry, the reflectance
and the incident energy. The authors model the bathymetry and
reflectance by splines and the incident energy by polynomials to
reduce the dimensionality and apply standard gradient descent
to the square error in modeled intensity versus measured. In [8],
quality and quantity validations are done on a pipe of known
diameter. Jones and Traykovski [9] collect data with a rotary
SSS, which is mounted on underwater frames and rotated 360° to
get a circular image. The authors exploit the shadows in sidescan
images to estimate the elevation of bedform in shallow water
and validate their methods on wave-orbital ripples and megarip-
ples comparing with the multibeam data. Usually sidescan data
are collected with overlapping swaths and this overlap can be
used to infer depth from the images. Burguera and Oliver [10]
exploit a physics-based SSS model to correct the raw data,
including beam corrections and motion estimation, leading to a
probabilistic framework to build a high-resolution bathymetric
map from sidescan data. Johnson and Hebert [11] initialize the
estimated bathymetry with the sparse direct measurements and
form the bathymetry estimation from a full survey line as a
global optimization. Bore and Folkesson [12] also perform a
global optimization to estimate the bathymetry, but they use
the sparse direct bathymetric measurements as constraints and
a neural network to represent the estimated bathymetry instead
of a grid or a mesh. Also, Bore and Folkesson [12] estimate
the bathymetry from many survey lines of SSS so that the
final bathymetric model is self-consistent. The authors in [11]
and [12] remove the SSS data corresponding to shadows since
the reflection model cannot model the shadows. Cuschieri and
Hebert [13], on the other hand, identify shadows in the SSS
data and use trigonometry to calculate the height of the objects
that cause the shadows. Subsequently, the authors integrate the
individual geometries to a full seafloor map. Zhao et al. [14] also
integrate the sparse bathymetry into the reconstruction, utilizing
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a bottom tracking algorithm as an altimeter to obtain an initial
seabed topography, which is then used as a constraint for the
reconstruction model based on Lambertian law. The evaluation is
done compared to the bathymetry constructed by a single-beam
bathymetric system.

Deep learning approaches have been used in sidescan im-
ages for other tasks in recent years, such as object classifica-
tion [15], [16], object detection [17] and semantic segmenta-
tion [18], [19]. Dzieciuch et al. [15] show that a simple CNN
can be used for mine detection in SSS imagery and achieve com-
parable accuracy as human operators. Huo et al. [16] show that
with deep transfer learning, a CNN could achieve high accuracy
on the multiclass classification task on sidescan images. The
authors also propose a semisynthetic data generation method to
handle the imbalanced training data, which is a most common
case in the real sidescan data sets. Einsidler et al. [17] show that
deep transfer learning could also be used for underwater object
detection. The authors adapt the state-of-the-art object detection
algorithm, YOLO (You Only Look Once) [20], to sidescan im-
ages and achieve reasonable accuracy in anomaly detection after
some fine-tuning on the real sidescan data set. Rahnemoonfar
and Dobbs [18] propose a novel CNN architecture and illustrate
its performance on pothhole semantic segmentation of sidescan
images. Wu et al. [19] propose ECNet to perform semantic
segmentation on sidescan with much fewer parameters and much
faster speed, making it possible to be applied to real-time tasks
on embedded platforms.

Our previous work [2] shows promising results for the task
of depth estimation from sidescan images with deep learning
techniques. Inspired by deep learning methods to estimate depth
from single camera images [21], in [2], we propose a method to
extract 3-D information from 2-D sonar images with DNNs. In
this work, based on our prior one, we further exploit the sparse
depth as a constraint for the DNNs and propose a framework
of building a complete bathymetric map from sidescan. The use
of the sparse depth, namely, a deep regression network taking
the sidescan and sparse depth data as input, is inspired by Ma
and Karaman [4]. In [4], the authors demonstrate their proposed
framework outperforms the other depth fusion techniques on the
task of depth completion from camera images and the available
sparse depth. The uncertainty estimation in this work is closely
related to [22] and [23]. In [22], the authors propose a simple
framework to quantify predictive uncertainty in neural networks,
which is easy to adapt to most of the deep learning approaches.
They show that maximizing likelihood is a proper scoring
rule, which measures the quality of predictive uncertainty [24].
In [23], the authors demonstrate that the framework proposed
by Lakshminarayanan et al. [22] can also achieve reasonable
results on pixel-level applications, such as depth estimation.
And simply by filtering out the few extreme outliers with high
uncertainty, one can improve the overall performance of the 3-D
reconstruction.

The major difference between our work and the others to
reconstruct bathymetry from sidescan is that we use a data-
driven approach, whereas the prior works are model based. Our
motivation is that some effects are not plausible to model yet
the sidescan images do contain some information about them.

Fig. 3. SSS formation.

For example, an expert can tell if a sidescan image appears to
be hard or soft bottom, rocks appear often as part of a larger
geological formation and so on. It is not practical, however, to
have experts estimate all the sediment characteristics in every
sidescan images and model the surface scattering properties
accordingly. Thus, we exploit data-driven methods to leverage
deep learning’s advantages of learning from patterns in the data
distributions to compensate for those unmodeled effects.

B. Summary of the Proposed Method

Reconstructing the bathymetry from SSS is difficult. Many
properties that are hard to model have large impacts on estimat-
ing depth contours from sidescan. With a data-driven approach,
some of these can be partially compensated, but naturally there
will be errors. Besides the unmodeled properties of the seabed
and water column, the main source of errors is the navigation
error between lines of the survey that provide the sparse depth
information.

In this article, we develop a method that reconstructs the
bathymetry relying on SSS, vehicle position and the altimeter.
Such a data-driven method could, in principle, work with data
produced by most standard sidescan surveys. We utilize the
sparse depth to reduce the errors and propose a framework
to estimate the depth and uncertainty at the same time and a
probabilistic model to reconstruct the bathymetry.

II. METHOD

A. Sidescan Sonar Formation
Fig. 3 illustrates the top view and the rear view of an SSS with

its sensor originO at altitude h. Let p be a point in the ensonified
region on the bathymetric surface M ⊂ R3 with point altitude
hp, whose polar coordinates can be expressed in its slant range rs
and its grazing angle θs. The grazing angle θs can be calculated
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Fig. 4. CNN architecture. (a) Network architecture (ResNet architecture).
(b) Resblock (residual block).

as follows if we ignore ray bending effects and hp is known:

θs = arcsin

(
h− hp

rs

)
. (1)

The ground range rg is the projection of vector �op over the Y -
axis. The vertical beamwidth α, sometimes referred to as sensor
opening in the Y Z plane, is usually 40◦–60◦, and the horizontal
beamwidth φ, sometimes referred to as sensor opening in the
XY plane, is usually around 0.1◦ [25]. Due to the horizontal
beamwidth φ, the exact point position of p in the XY plane is
ambiguous over the arc q; however, the assumption is usually
that this fact can be neglected since φ is very small.

B. Sparse Depth Association

The idea is to use the set of points directly below the AUV
along with its altitude and pose reading to generate a set of sparse
depths, x, y, z. Then, for a waterfall image from any line in our
survey, we can compute the range from the sonar at each ping
to points from the sparse depth set that fall within its range and
beam angle. We then create a second sparse depth image where
the pixels correspond to the sidescan waterfall image but the
values are now depths relative to the depth of the sonar [see
Fig. 5(b)].

C. Uncertainty Estimation

Predicting depth from sidescan images can be seen as a
pixel-level regression problem that can be addressed using neu-
ral networks. We preprocess the data so that the network is
trying to estimate the point altitude hp. We set the final layers
of the neural network to output two values: mean μ(hp) and
variance σ2(hp). We do a variational fit of the point altitude
to a Laplacian distribution with the predicted mean μ(hp) and

TABLE I
DATA SETS’ DETAILS

variance1 σ2(hp). The loss using negative log-likelihood (NLL)
will be

− log pθ(hp,gt) =
‖hp,gt − μθ(hp)‖

σ2
θ(hp)

+ log σ2
θ(hp) + log 2

(2)

where θ represents the weights that parameterize the neural
network and hp,gt denotes the ground truth.

As a comparison, the mean absolute error (MAE) loss can
be seen as a special case of minimizing the above loss with a
constant variance σ2

θ = 1.2 We model the likelihood to follow
Laplacian distribution instead of Gaussian because we find L1
loss is more suitable than L2 loss for depth regression, as
observed in [23]. Therefore, the NLL averaged over each pixel
in sidescan images is considered as an aleatoric loss function for
training the neural network [23].

During the test phase, we can use

cp =
1

|σ2
θ(hp)|

as a confidence measure of the depth estimates, where σ2
θ(hp) is

the uncertainty output of the network. By fusing all confidence
estimates together, we are able to create a confidence map U ⊂
R3 for the corresponding reconstructed bathymetry M̂ ⊂ R3.

D. Bathymetry Reconstruction Model

For a sidescan waterfall image, let Ik,i denote the returned
intensity corresponding to ping number k and echo travel time
interval i, rk,is denote the corresponding slant range and rk,ig

denote the ground range. The slant range can be deduced from
the sound speed ck and the two-way travel time tk,i between the
SSS and the point at seafloor pk,i as follows:

rk,is =
ck · tk,i

2
. (3)

1Similar to [22], we enforce the positivity constraint on σ2(hp) by passing
it through the softplus function log(1 + exp(·)) and add a minimum constant,
e.g., 10−6, for numerical stability.

2The value of 1 is arbitrary but other choices would only scale the loss and
change the constant part and, thus, have no effect on the optimization.
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Fig. 5. Example of part of one sidescan waterfall image, the associated sparse depth and the estimated uncertainty from a survey line in data set 2. Rainbow
colormap is used to show the uncertainty. We can observe that the uncertainty is low (dark blue) at pixels where sparse depth is available. Also note that the
uncertainty does not increase with distance from the nadir as would be the case without sparse depths. (a) SSS waterfall image. (b) Sparse depth waterfall image.
(c) Uncertainty waterfall image.

Fig. 6. Distributions of the depth of the seafloor in two data sets. The altitude
distribution would be the same offset by the nearly constant depth of the sonar.

Note here we assume an isospeed SVP, which will introduce
additional errors that could be eliminated if the SVP were known.
The rotation Rk ∈ SO(3) and position sk of the sonar is given
by the navigation, and the point altitude hk,i

p can be estimated
from our neural network. If we assume that the arc parameterized
by rk,is has only one intersection with the seafloor surface, the
point position pk,i ∈ R3 can be calculated by simply solving
the following equation:

rk,is = ‖sk − pk,i‖2

=

√
(rk,ig )2 + (hk − hk,i

p )2. (4)

We can now fuse all estimates pk,i = (pk,ix , pk,iy , pk,iz ) from
the neural network from every survey line. We add them in a

probabilistic fusion model to form a bathymetric mesh M̂ using
the confidence estimates ck,ip . So a fused depth for point pz on

the reconstructed bathymetry grid M̂ is

p̂z =

∑
p∈P pk,iz ck,ip∑

p∈P ck,ip

(5)

where P ⊂ R3 is the set of points that fall within the grid cell.
The fused confidence map U can be obtained by averaging
ck,ip over P

ĉ =

∑
p∈P ck,ip

|P| . (6)

E. Sidescan Draping and Data Set Generation

1) Sidescan Geographic Referencing: To generate ground
truth for the training and validation data sets, we need to as-
sociate sidescan intensities Ik,i to its georeferenced coordinates
pk,i on a bathymetric meshM ⊂ R3, which is also referred to as
sidescan draping [26]. To do so, the MBES is used to form such
mesh, and the SVP is needed to determine the sound speed of the
water layer. Also, the sensor position sk ∈ R3 and the rotation
matrix Rk ∈ SO(3) of the sidescan must be known. Using this,
we find the intersection of each SSS arc with the mesh.

2) Data Set Generation: The two data sets (see Table I)
we used in this article were both collected with MMT Ping, a
survey vessel equipped with a hull-mounted sidescan Edgetech
4200MP and RTK GPS to ensure high accuracy positioning.
For both data sets, we have the high-resolution multibeam
bathymetry collected with Reson 7125, treated as the ground
truth. For every survey line, we divide each side of the waterfall
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Fig. 7. Bathymetry on data set 1, produced by the altimeter, multibeam and sidescan respectively. (a) Bathymetry from linear interpolation of 57 lines of
altimeter readings. (b) Absolute error map between (a) and the ground truth. (c) Ground truth bathymetry produced with multibeam data. (d) Bathymetry from six
sidescan survey lines. (e) Absolute error map between (d) and (c). (f) Normalized confidence map for the bathymetry produced from sidescan, color red indicating
high-confidence low uncertainty.

Fig. 8. Zoomed-in section of Fig. 7 where the area of interest contains a hill with multiple boulders. (a) Bathymetry from linear interpolation. (b) Error map—linear
interpolation. (c) Bathymetry from MBES. (d) Bathymetry from SSS. (e) Error map—SSS. (f) Normalized confidence map—SSS.

Fig. 9. Another example of image pairs from data set 1, where multiple rocks are observable from sidescan. (a) Sidescan intensities input window. (b) Sparse
depth input window. (c) Interpolated depth window. (d) Predicted depth output window. (e) Ground truth depth window.
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image into smaller windows with height H = 256 and width
W = 256 downsampled from ∼6000 bins. The selection of H
and W is chosen to fit the CNNs and, at the same time, ensure
the sidescan’s across-track resolution higher than the bathymetry
resolution.

F. CNN Model

The model takes the sidescan intensities window [see
Fig. 1(a)] and sparse depth window [see Fig. 1(b)] directly
concatenated together as the input and output the estimated depth
and uncertainty. The loss function is the NLL averaged over each
valid pixel in the window

L =
1

|Dk,i|
∑

d∈Dk,i

(‖dgt − μθ(d)‖
σ2
θ(d)

+ log σ2
θ(d)

)
(7)

where σ2
θ(d) is ensured to be positive and Dk,i is the set of all

valid depth points by masking out the nadir area and missing
data.

The neural network architecture is a fully convolutional
network (FCN) based on our prior work [2] with some
minor modifications to adapt the sparse depth and uncertainty
estimation, shown in Fig. 4(a). For the normalization, we choose
instance normalization (IN), and for the activation functions,
we use rectified linear unit (ReLU). The downsampling
layers consist of three convolutional modules in the form of
convolution-IN-ReLU. These are followed by the seven residual
blocks, as shown in Fig. 4(b). The residual blocks consist of
several layers with no change in the image dimension, the
output of which is summed with the input and fed to the next
residual block. By feeding the input directly to the output, one
gets a direct link across all the blocks that facilitate propagation
of the gradient. The residual blocks are followed by two
upsampling layers with two transposed convolution layers and
the convolution operation in the end.

III. EXPERIMENTS

The method is evaluated on two data sets from different areas.
Data set 1 is divided into training, validation and test sets, while
data set 2 is only used for testing. The details are given in
Table I. Using sidescan draping described in Section II-E, we can
associate the waterfall images to corresponding depth images
and the sparse depth available from the altimeter reading along
the trajectory (see Fig. 5). For each side of the waterfall image,
we divide it into smaller windows with height H = 256 and
width W = 256 downsampled from ∼6000 bins. The square
images with size 256 × 256 make it easier to adapt the architec-
ture of the mainstream neural networks for computer vision. To
generate more training data, we augment the data by allowing
the windows to overlap by 75% and flipping the windows in the
along-track direction to simulate the sonar to move exactly the
opposite direction.

The network is trained on the training set with 4352 windows
from data set 1 with different hyper-parameters. The validation
set is used to select the three best models, whose results will
be used for ensemble in the testing phase later to make better

estimation of the predictive uncertainty from the neural network.
The six lines from validation set, data set 1 and the six lines from
test set, data set 1 are evenly distributed across the whole area
but orthogonal to each other. The purpose of this is to test the
generalization of the network when the sidescan images are from
90◦ angles. The whole data set 2 from totally another place is
also used as the test set to test the generalization of the network
when coming to different environments.

To evaluate the methods, we compare the bathymetric map
generated from the network and the one from the MBES
pings. The bathymetric map is generated by solving the reverse
problem of sidescan draping with the methodology described
in Section II-E. Due to sidescan’s wide swath coverage and
high resolution, for most of the points on the seafloor, there
are usually many estimates. During the bathymetry fusion, we
first discard the extreme outliers with uncertainty larger than
a certain threshold, and then use the confidence measurement
ck,ip as weights for the corresponding depth estimates, as (5) in
Section II-D. The threshold is selected empirically by increasing
the threshold to be just large enough for the final bathymetric
map to have enough coverage.

To compare the result, we use the same resolution (0.5 m)
as the bathymetric map from the MBES data, where in theory
the resolution is not integral to the method, meaning one could
choose much higher resolution to build a super-resolution bathy-
metric map based on sidescan data. The potential challenge is
the lack of super-resolution bathymetry to evaluate and the GPU
power to train the network.

IV. RESULTS

A. Reconstruction Results

Fig. 6 shows the seafloor depth distribution of two data sets.
We can notice that data set 1 covers a large range of 9–21 m,
whereas data set 2 mainly concentrates on the range of 10–14 m.

1) Data set 1: Fig. 7 shows the reconstructed bathymetry
with six sidescan survey lines on the test data from data set 1,
with an MAE 0.059 m. Looking at Fig. 7(a), we observe that the
reconstructed bathymetry reproduces the seafloor topography
on a large scale. It also highlights one advantage of sidescan
over multibeam wider swath coverage. Only six survey lines can
cover around 60% of the surveyed area. The MBES from these
six lines would only cover about 35% of the area, indicating
that the proposed method could in theory significantly improve
the survey efficiency. Fig. 7(c) shows the corresponding confi-
dence map where clearly the bottom right of the map has low
confidence, high uncertainty. In Fig. 7(d), we see that the areas
with the highest errors have high predicted uncertainty. In the
zoomed-in Fig. 8, we can observe that the low-confidence area
contains a huge hill with many boulders where the network’s
prediction performs worst. The network manages to recover
the contour of the hill and some boulders but the details are
less accurate. One possible explanation is that this is an area
with many topography variations, and a small error in depth
prediction will cause a relatively large error in its position in the
map based on the trigonometry calculation described in (4).
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Fig. 10. Example of image pairs from a relatively flat area in data set 2, where the density of sparse depth is reduced. (a) Sidescan intensities input window.
(b) Sparse depth input window. (c) Interpolated depth window. (d) Predicted depth output window. (e) Ground truth depth window. Here, we can note that at the
bottom of (a) and (e), there is a rock whose shape cannot be reconstructed only through interpolation as in (c) but can be reconstructed with a NN as in (d). However,
the height of reconstructed rock is about 20 cm, whereas from the “ground truth” from MBES data, it should be around 1 m high.

One interesting finding is that, in Fig. 9, the shape of some
rocks appeared in SSS is correctly reconstructed by the network,
as seen in Fig. 9(c). The network accurately infers the elevation
rising in front of the shadows, which indicates the necessity
and importance of sidescan data. However, not all rocks in
Fig. 9(a) and (d) are shown as prominent in the prediction.
This issue could possibly be addressed in the future work by
adding constraints on the gradients of the sidescan intensities
and increasing the sidescan’s across-track resolution.

2) Data Set 2 and Generalization: Fig. 11 shows the com-
parison between the reconstructed bathymetry and the ground
truth from data set 2 and the corresponding confidence map.
From Fig. 11(a) and (b), we can again observe that the recon-
structed bathymetry captures most of the seafloor topography.
The bottom of Fig. 11(a) shows a distinguishing sidescan’s
characteristic that there is no measurement in the nadir area,
hence no estimates about the terrain. Fig. 11(c) presents the
confidence map of the prediction, where we can clearly see
that the confidence is high along the sonar’s trajectory (see
Fig. 2) while relatively low near to the boundary of the surveyed
area. The reasons that the periphery has high uncertainty are
the uncertainty of the depth estimation is naturally high as one
moves away from the sonar [see Fig. 1(c)] and there is no longer
sparse depth available to reduce the drifting errors. Another
observation is that in the middle of the surveyed area, there
are two places with sudden low confidence, where they are two
boulders. If we zoom in there, as seen in from Fig. 12(a), we
can see that the two boulders are not as sharply shown as in
Fig. 12(b).

Data set 2 covers a relatively flat area with a different depth
distribution in the seafloor. The reconstructed bathymetry has a
0.043 m absolute error, indicating a good generalization ability
on the unseen data of a different natural environment. This
indicates that one could train a network using SSS and MBES.
Thereafter, use it on many AUVs equipped only with the same
SSS. However, since we do not apply any geometric correction
to the SSS images, if we want to use the trained CNN on the
SSS data from another sensor setup, some techniques, such as
domain adaption, have to be applied to address this.

B. Effects of Sparse Depth

Another interesting observation is that the quality and quantity
of the sparse depth are critical for our proposed method to

reconstruct a good bathymetry. The provided sparse depth acts
as a boundary constraint in the optimization, so if the quality
of the input sparse depth is low, i.e., the measurements being
corrupted, the depth estimation will have large errors. As seen
in Fig. 13, when the provided sparse depth is inaccurate, the
shape of the predicted depth contour is more or less right but
with an offset due to the errors in sparse depth. Several reasons
could cause inaccurate sparse depth measurement, e.g., errors
from the altimeter sensor, affecting the quality of reconstructed
bathymetry. Not only the quality of the sparse depth but also
the quantity affect the prediction accuracy. In Tables II and III,
we compare the MAE and the standard deviation of the errors
on the bathymetric map generated by the neural network with
the baseline bathymetric model obtained through interpolation
with different numbers of survey lines to provide sparse depth
as constraints. As we can see in the tables, when all of the survey
lines are utilized, the prediction accuracy is the highest, and as
the quantity of provided sparse depth decreases, the prediction
accuracy decreases.

In practice, for example, data set 2, one could certainly use less
than 36 survey lines for the sidescan to cover the whole area. We
mentioned in Tables II and III that the reconstructed error is still
relatively low even with 30% sparse depth provided, indicating
70% efficiency improvement. So one could carefully plan the
sidescan survey to cover a much larger area within one mission
to construct a high-quality bathymetric map with the proposed
method. Note that when 100% sparse depth is used, the baseline
method, linear interpolation through the altimeter readings,
can achieve slightly better results (MAE and STD) than the
proposed method. However, when fewer lines of the altimeter
readings are used, the proposed method outperforms the baseline
significantly on data set 1, where the terrain has more topography
variations. Even when the terrain is rather simple such as data
set 2, the proposed method still shows its advantages over linear
interpolation of altimeter readings when there are interesting
features between the altimeter readings, as shown in Fig. 10.

C. Effects of Uncertainty Estimation

Uncertainty estimation is useful when fusing the estimated
bathymetry from each sidescan line. We use data set 1
to illustrate that uncertainty could improve the quality of
the reconstructed bathymetry. Assuming we lack uncertainty
estimation and fuse the bathymetry estimation simply averaging
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Fig. 11. Bathymetry on data set 2, produced by sidescan and multibeam. (a) Bathymetry from 36 sidescan survey lines, covering about 0.16 km2 area. (b) Ground
truth bathymetry produced with multibeam data. (c) Normalized confidence map for the bathymetry produced from sidescan. (d) Absolute error map between (a)
and (b).

Fig. 12. Zoomed-in section of Fig. 11 where the area of interest contains two
boulders. (a) Bathymetry from SSS. (b) Bathymetry from MBES. (c) Normalized
confidence map. (d) Error map.

each estimate, we can generate a bathymetry with absolute error
0.071 m, while using uncertainty as described in (5), we can
achieve 0.059 m error. Besides that, the fusion without using
uncertainty performs much worse in the areas that are supposed
to be highly uncertain. Fig. 14 shows the same place as Fig. 8
but without using the uncertainty estimation. We can clearly
observe from Fig. 14(a) that the bathymetric map is much worse
when uncertainty is not used.

D. Bathymetry With Higher Resolution

When reconstructing the bathymetry from SSS, we use the
grid size 0.5 m because our bathymetric map from MBES (data
set 1) has 0.5 m resolution, which is used to generate the training
data. Nevertheless, for data set 2, we do have a bathymetric map
from MBES with 0.25 m resolution, which can be used as ground
truth to compare the bathymetry from sidescan with a grid size
of 0.25 m, as shown in Fig. 15. To generate such map, we use the
same outputs from the neural network but only use a smaller grid
size when constructing the bathymetry from predicted depth
windows. We can clearly observe the effects of ship turning on
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Fig. 13. Effects of sparse depth quality: Here, we plot one row of the network’s input and output; one ping of ground truth depth in blue, one ping of the depth
prediction in orange and the provided sparse depth as input in red. (a) Sparse depth provided is corrupted, thus not aligned with the ground truth depth, leading the
prediction of the network off by a lot. (b) Sparse depth provided is accurate, leading the prediction aligned much better with the ground truth.

Fig. 14. Zoomed-in section of bathymetry for data set 1, without using the uncertainty estimation in (a). The same Fig. 8(a), bathymetry reconstructed with
uncertainty in (c). (a) Bathymetry from SSS without uncertainty. (b) Bathymetry from MBES. (c) Bathymetry from SSS with uncertainty. (d) Error map between
(a) and (b).

sidescan swaths from the bottom right of Fig. 15, where the
portions in the inside corners overlap while the portions in the
outside corners have incomplete coverage for this fine scale grid.
We can also note that the coverage is low in Fig. 15 at the perime-
ter partially due to sidescan’s narrow horizontal beamwidth.

There exist research studies [27] investigating how to improve
the coverage without increasing the error for wide and narrow
aperture sonars. The absolute error compared to the ground
truth is 0.042 m, very close to the error with 0.5-m grid size
in Table III.
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TABLE II
EFFECTS OF SPARSE DEPTH QUANTITY—DATA SET 1

TABLE III
EFFECTS OF SPARSE DEPTH QUANTITY—DATA SET 2

Fig. 15. Bathymetry reconstructed from sidescan with 0.25-m grid size for
data set 2.

V. CONCLUSION

In this article, a novel approach to reconstruct high-resolution
bathymetry from sidescan data using a neural network is pre-
sented. The neural network is trained in an end-to-end fashion
to predict the depth and uncertainty from sidescan intensities
and sparse depth. The predicted depth and uncertainty, modeled

as following a Laplacian distribution, are fused to construct
the bathymetry. In the qualitative and quantitative analysis, we
showed that the generated bathymetry has high quality and low
errors below the decimeter level. We also showed the important
role both the sparse depth and the confidence estimate plays
on the accuracy of the fused map. In this article, we rely on
accurate navigation positioning, the absence of which will limit
the reconstruction results, depending on how well the navigation
errors can be reduced.

The current network architecture generates independent depth
windows from sidescan data between a fixed time period without
incorporating the sequential nature of the sidescan pings. In
future work, we would like to better address this by using a
recurrent FCN model conditioned on the previous pings.

Another interesting direction is to use sidescan measurements
with a higher across-track resolution to fully utilize the advan-
tages of the sidescan and generate a bathymetry with a higher
resolution than the one generated from the multibeam. One
challenge here will be the lack of ground truth to analyze the
performance quantitatively. Another challenge is that with a
higher across-track resolution, the larger the width of images will
be. One may use super-resolution CNN model [28] to address
such challenge, or one may treat the sidescan ping by ping so
that higher resolution would not be too computational heavy.
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