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The Promise of Clinical Decision Support
Systems Targetting Low-Resource Settings

Dani Kiyasseh , Tingting Zhu , and David Clifton

(Methodological Review)

Abstract—Low-resource clinical settings are plagued by
low physician-to-patient ratios and a shortage of high-
quality medical expertise and infrastructure. Together,
these phenomena lead to over-burdened healthcare sys-
tems that under-serve the needs of the community. Allevi-
ating this burden can be undertaken by the introduction of
clinical decision support systems (CDSSs); systems that
support stakeholders (ranging from physicians to patients)
within the clinical setting in their day-to-day activities. Such
systems, which have proven to be effective in the devel-
oped world, remain to be under-explored in low-resource
settings. This review attempts to summarize the research
focused on clinical decision support systems that either
target stakeholders within low-resource clinical settings or
diseases commonly found in such environments. When cat-
egorizing our findings according to disease applications,
we find that CDSSs are predominantly focused on dealing
with bacterial infections and maternal care, do not leverage
deep learning, and have not been evaluated prospectively.
Together, these highlight the need for increased research
in this domain in order to impact a diverse set of medical
conditions and ultimately improve patient outcomes.

Index Terms—Clinical decision support, low-resource.

I. INTRODUCTION

LOW-RESOURCE clinical settings are commonly charac-
terized by two phenomena. The first is low physician-to-

patient ratios which average around 0.3 physicians per 1000
patients, ten-fold less than that found in developed nations
[1], [2]. Fig. 1 illustrates this ratio for various countries since
1960. Secondly, such physicians, when accessible, operate in
an environment that lacks high-quality expertise and medical
infrastructure [3]. Combined, these phenomena lead to an over-
burdened healthcare system that under-serves the needs of the
community. This can manifest itself in the form of patients left
untreated or even worse, poorly treated. Over-burdened health-
care systems, however, are not limited to low-resource clinical
settings. Increasingly, health systems in developed nations such
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Fig. 1. Ratio of physicians per 1000 people in various countries since
1960. Note the significantly lower values exhibited by low and middle
income countries (China, India, and Thailand) compared to those found
in high-resource countries (Switzerland, United Kingdom) [1].

as the National Health Service (NHS) in the United Kingdom
are coming to terms with such a realization [4].

To alleviate the exigent burden, many researchers and health-
care professionals are increasingly turning their attention to-
wards systems that support healthcare professionals in their
day-to-day activities. For instance, the NHS Long Term Plan,
introduced at the beginning of 2019, underscored the importance
of digital systems and artificial intelligence in transforming their
existing service [5]. Such systems can be broadly grouped under
the term Clinical Decision Support Systems (CDSS).

One of the earliest CDSS, then known as Medical Diagnostic
Decision Support Systems was introduced in 1954 by Nash [6]
and consisted of a table that associated symptoms and diseases
together in order to aid medical students in classifying diseases.
A thorough review of such systems between the years 1954
and 1993 was performed by Miller just before the turn of
the 20th century [7]. That review was shortly followed and
complemented by that of Greenes [8] and Musen et al. [9].
In an effort to study the utility of CDSS, Kawamoto et al.
[10] discovered that they improved clinical practice in 68%
of studied randomized-control trials that incorporated them.
Recently, CDSS have experienced renewed interest partly due
to the burgeoning rise of medical data and artificial intelligence.
Prominent examples include algorithms capable of diagnosing
breast lesions based on mammograms [11], identifying patients
with low ejection-fraction based purely on electrocardiogram
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(ECG) recordings [12], and predicting the onset of acute kidney
injury among hospitalized patients [13].

Although the work revolving around CDSS and their imple-
mentation in high-resource clinical settings is abundant and im-
pressive, translating that success into low-resource settings is not
so straightforward. The difficulty in doing this was emphasized
by Wheeler et al. [14] who showed the inability of early warning
scores developed in high-resource settings to generalize to pa-
tients in Malawi. Nonetheless, there have been several successes
in India [15]. Artificial intelligence has recently been discussed
in the context of rural health applications [16] and global health
[17]. However, no-one, to the best of our knowledge, has ex-
plored the role of CDSS and outlined existing implementations
within low-resource clinical settings. Consequently, this review
aims to shed light on clinical decision support systems that target
stakeholders within low-resource clinical settings or diseases
commonly found in such environments.

II. CLINICAL DECISION SUPPORT SYSTEMS OVERVIEW

Clinical decision support systems are commonly considered
to be tools that assist clinicians in their decision-making. Ac-
cording to Musen et al. [9], they can be split into three types
based on their purpose; tools for managing information, focusing
attention, and providing recommendations. In this review, we
expand the definition of clinical decision support systems to
encompass tools that target and assist stakeholders within a
clinical setting including physicians, nurses, patients, and poten-
tially hospital administrators. Although such systems can take
on many forms [18], we group them primarily based on whether
they are manual or electronic. Within these two categories, the
studies are further clustered according to their medical applica-
tion. The motivation behind this categorization can be found in
Section III.

A. Manual vs. Electronic Systems

In the context of this paper, manual decision support systems
are those that require manual chart review, data entry, and
calculations to arrive at a particular output such as an early
warning score. Electronic systems, on the other hand, can range
from simple digitized versions of paper-based systems to more
complex models that capture non-linearities in the data.

B. Rule-Based Algorithms

Before the adoption of electronic health records (EHR), man-
ual CDSS manifested themselves in various forms. One form
was through the guidance of medical diagnosis and treatment
which remains, to this day, heavily dependent on logic-based
algorithms. For instance, decision tree algorithms were imple-
mented to properly manage Parkinson’s disease [19], discern
between patients with and wihout prostate cancer [20], and
determine which patients might be at risk of serotonin toxicity
[21].

This dependence is even greater in low-resource settings as
evident by a report published by the World Health Organiza-
tion in 2013. It predominantly contained rule-based algorithms

and decision trees deemed appropriate as medical interventions
for non-communicable diseases specifically in low-resource
settings [22].

C. Scoring Systems

Another form of CDSS still implemented within healthcare
systems is early warning scores (EWS); scores used to categorize
patients according to the severity of the condition based on the
values of certain physiological parameters. One of the earliest
of such scoring systems is the Modified Early Warning Score
(MEWS) which exhibited a high correlation with intensive care
unit (ICU) admission, death at 60 days, and other primary end-
points [23]. Since then, a plethora of early warning scores have
been introduced including, but not limited to the VitalPAC Early
Warning Score [24] for adult patient deterioration, National
Early Warning Score [25] for operation at a national scale within
the UK, and most recently, Targeted Real-Time Early Warning
Score [26] for septic shock.

D. Machine-Learning Based Systems

As times progressed, certain hospitals made the transition
towards electronic clinical decision support systems. Till this
day, however, their adoption rate remains low. Such low adoption
rates have not dissuaded academics, researchers, or even private
companies from developing more sophisticated algorithms that
rely on machine or deep learning. Deep learning, a domain that
depends on the use of neural networks to approximate functions
between inputs and their corresponding outputs, has experienced
recent successes in particular due to the rise in available medical
data and improvements in hardware capabilities. A high-level
review of deep-learning algorithms as they pertain to healthcare
can be found in [27].

III. METHODS

A. Search Strategy

A search was conducted up until June 30th 2020 using the
online databases (Google Scholar, PubMed). An expression with
the following keywords was used [(low resource OR resource
constrained OR developing country OR low and middle income
country (LMIC)) AND (decision support system OR algorithm
OR decision tree OR machine learning) AND (clinical OR
hospital)].

Given the paucity of data in this field, the search was not
limited to a particular range of dates. The search produced
520 results in total, 385 of which were excluded based on the
irrelevance of the title. After fully reading the remaining 135
articles, only 75 were included in this review.

The inclusion criteria for an article are the following:
1) It must describe, implement, or evaluate a system that

targets a stakeholder within a clinical setting as described
by Higginson et al. [28].

2) It must target individuals or medical conditions found in
low and middle-income countries as determined by the
Organization for Economic Co-operation and Develop-
ment [29].
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Fig. 2. Chart that illustrates how the current review delineates clinical
decision support systems (CDSSs) and how it presents the findings.
CDSSs are split according to whether they are manual or electronic.
Within the electronic system category, the findings are presented in
terms of their clinical application and in the order indicated by the arrows.
Throughout this stage, the diverse set of electronic systems are outlined.

Articles that involved mobile decision support systems or
those targetting rural non-clinical settings are beyond the scope
of this review. For such work, interested readers are directed
towards a recent review by Karageorgos et al. [30].

B. CDSS Application Categories

The publications are presented according to Fig. 2. After being
split according to whether they refer to manual or electronic
systems, they are further categorized according to the following
application areas:

1) Bacterial/Parasitic Infections
2) Antimicrobial Resistance
3) Viral Diseases
4) Non-Communicable Diseases
5) Operations
6) Miscellaneous

We decide to present the results categorized according to
application areas in order to make it more convenient for subject
matter experts to identify the state of the research in their domain.
This then allows them to either leverage existing technology or
identify gaps that they can fill. Moreover, it allows machine
learning and medical researchers alike to identify clinical do-
mains that may not be well addressed by current decision support
systems. Consequently, such domains will stand to benefit from
further research.

When discussing each study, we generally follow this multi-
step approach. 1) We outline the purpose of the study and the
location in which it was performed. 2) We then move on to
discuss the clinical parameters involved in the design of the
decision support system, examples of which include but are not

limited to heart rate, drug dosage, and nurse compliance. 3) We
identify the clinical decision support system itself and evaluate
its performance (if applicable). 4) Lastly, we critically appraise
any of the aforementioned points, 1–3, for their feasibility and
appropriateness before suggesting an action that may benefit the
study, e.g., conducting a prospective analysis, using different
evaluation metrics, and obtaining a larger cohort. We believe
that such an approach holistically summarizes the studies and
allows for easy comparison amongst them.

IV. RESULTS

Unlike in the developed world, low-resource settings exhibit
a paucity of decision support systems. The most recent review of
information technology in primary care settings in developing
countries was performed in 2004 by Tomasi et al. [31]. In one
section, they discuss clinical decision support systems imple-
mented between 1992 and 2002. Although the review is meant
to encompass developing countries, only 2 of the 20 CDSS
articles were based in such a country. Therefore, their review
actually summarized CDSS in the developed world and simply
acknowledged the difficulty of retrieving academic papers dis-
cussing the developing world and which are not registered in
international databases. This paucity in findings is juxtaposed
by the increasing interest in work at the intersection of decision
support, health, and low-resource settings. Recently, Wahl et al.
[32] evaluated the potential impact of artificial intelligence on
healthcare within low-resource settings.

A. Manual Systems

When medical infrastructure ranging from hospital monitors
to CT scanners is lacking in low-resource settings, the ability of
clinicians to accurately diagnose conditions is impaired. There-
fore, many attempt to adapt rules developed among patients in
the developed world to those in low-resouce settings. A summary
of such adapted scoring systems can be found in Table I.

Berkowitz et al. [33] acknowledge the absence of suitable
scoring systems and in the context of discerning between is-
chemic and hemorrhagic strokes simply recommend to over-
perscribe aspirin. Although their recommendation is based
on the likehlihood that a patient experiences a hemorrhagic
stroke, such a broad one-size-fits-all approach is reckless and
dangerous.

Others attempted to adapt the UK MEWS to surgical set-
tings in the developing world, more specifically in Cape Town,
South Africa [34]. This included changes to the thresholding
values for each physiological parameter and the addition of
qualitative components such as a binary response to the question
“looks unwell?” While promising, this Cape Town Ward MEWS
may not translate well to clinical settings in other developing
nations, let alone different clinical settings within the same
hospital. Such an early-warning score was then evaluated by
a randomized control trial [35]. Unfortunately, it was found
that when patients triggered the MEWS algorithm, the nurses
response was not different to that of those not dealing with the
MEWS system. More recently, the Practical Approach to Care
Kit (PACK) was introduced in [36] as a decision support system
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TABLE I
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON MANUAL SCORING SYSTEMS

for primary care clinicians in low and middle income countries
(LMIC). It is a 120-page book that succinctly summarizes one
symptom per page. Stemming from South Africa, PACK has
been implemented in Nigeria, Botswana, Ethiopia, and Brazil.
Most recently, however, PACK was translated into an electronic
decision support tool for use within South Africa [37].

Within the realm of respiratory conditions, several CDSS in
low-resource settings have existed such as the Silverman An-
derson Respiratory Severity Score (RSS) [43] and the Downes
Respiratory Distress Syndrome (RDS) Score. The first score was
recently evaluated in a prospective study on 140 neonates and
found to correlate well with partial pressure of carbon dioxide
and increased respiratory support [44]. Despite these promising
findings, these scores are limited in that they solely depend
on respiratory effort. Consequently, the TRY algorithm was
introduced as a rule-based system that determines which infants
should be placed on a Continuous Positive Airway Pressure
(CPAP) device. Decision support in this domain is essential as it
allows for efficient resource allocation of limited CPAP devices
in low-resource clinical settings. The TRY-CPAP algorithm was
evaluated by Crehan et al. [45] in a Malawian district hospital
achieving a high level of consistency between nurses’ and physi-
cians’ diagnoses. It also fared well (92% sensitivity) relative to
the reference diagnosis made by paediatricians not using the
TRY algorithm.

Olusanya et al. [46] propose a tool to assist clinicians in
deciding which patients afflicted with hyperbilirubinemia should
receive a treatment known as exchange transfusion. Their work
clearly illustrates the benefit of decision tools as its relates to
triaging patients in the absence of sufficient resources. To assist
with this triage, the tool categorizes infants at least 48 hours
old into three risk categories. Such classification is grounded in
thresholds placed on various clinical and biochemical param-
eters such as the total serum to plasma bilirubin ratio. Their
proposed framework, however, is not evaluated to determine the

impact on patient outcomes. Only then can one see if these rules
are applicable and generalizable to a clinical population.

Sepsis, which has garnered increased interest in the past
couple of years, disproportionately afflicts those in low-resource
settings (approximately 90% of all cases). Rudd et al. [40]
find that a higher quick Sequential Organ Failure Assessment
(qSOFA) score correlates well and better than the Systemic
Inflammatory Response Syndrome (SIRS) score in predicting
in-hospital mortality for patients in low-resource settings that
have sepsis. The value of this study lies in the generalizability
of its results given that it was performed across 17 hospitals
in 10 different low-resource countries. Their finding of a high
correlation implies that qSOFA can act as a tool to determine
the severity of a patient’s infection. As mentioned in [47], the
utility of such a score in low-resource settings is even higher
than scores that preceded it due to its simplicity; it only requires
the measurement of respiratory rate, systolic blood pressure, and
altered mental status via the Glasgow Coma Score (GSC).

Most recently, in 2019, Ramos et al. [41] reported on a
manual decision-aid tool designed to minimize the number of
inappropriate ICU admissions. This study was conducted in a
tertiary academic hospital in Sao Paulo, Brazil and compared
outcomes before and after the decision tool was introduced. In
this case, their system consisted of a simple decision tree that
depended on information and questions typically found in an
ICU admission form (usually completed by an ICU physician).
They divided their population into several priority levels based
on two sets of international guidelines regarding inappropriate
admissions. As a result, they were able to determine whether
improvements were made at certain priority levels. It was found
that their tool led to improvements among high priority patients,
however had a net negative effect when viewed in the aggregate.
In other words, it appeared to increase inappropriate admissions
among certain populations. This was not statistically significant,
however. On the other hand, the implementation of the tool
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coincided with an increase in the availability of ICU beds at
referral time.

Richard-Greenblatt et al. [42] suggest and evaluate the use
of a biomarker known as sTREM-1 to improve the identifica-
tion of febrile patients in Tanzanian clinics who are at risk of
death within 28 days. When incorporating sTREM-1 into the
traditional qSOFA and GSC, the AUC for predicting 28-day
mortality increased from 0.80 to 0.91 and 0.72 to 0.94 for the
respective scoring systems. Such an improvement is drastic and
can assist with the triage and treatment process of individual
patients. Given that this implementation is catered specifically to
low-resource settings, one must question the ease and cost with
which sTREM-1 can be obtained. If it requires a high degree
of expertise, then it may be difficult to incorporate into such
settings.

B. Electronic Systems

In addition to manual CDSSs in low-resource settings, there
has been an increasing number of electronic CDSSs. Before
discussing such systems in depth, it is worthwhile to mention
the work of Vuong et al. [65] who discuss the feasibility of
implementing AI systems in low-resource medical settings,
more specifically in Vietnam. They emphasize the importance
of financial and data infrastructure in facilitating research and
adoption of new technology. Although they mention several of
the studies included in this review, their list lacks technical detail
and is by no means exhaustive. Their paper does, however, illus-
trate the demand for the implementation of technology within
Vietnam’s clinical settings. Based on the studies identified, we
found it best to cluster them according to the medical condition
or disease which they address.

1) Bacterial Infections: Bacterial and parasitic infections
disproportionately affect those in low-resource settings [66].
Most publications in this space have focused on pulmonary
tuberculosis (PTB) and are summarized in Table II.

In the context of diagnosing PTB, the work in [48] spurred
a long line of research. One example is in [56] where Aguiar
et al. use two neural networks to classify PTB and patient risk,
respectively. This is performed using the data of 315 patients
in a hospital in Rio de Janeiro, Brazil. Their motive is that a
more accurate diagnosis can allow for better intervention and
thus reduce the rate at which the disease spreads. In 2018, Filho
et al. [62] perform the same dual task as above. Diagnosis is
performed using a fully-connected network with 2 layers fed
with binary variables such as age, gender, etc. Here, they achieve
an area under the receiver operating characteristic curve (AUC)
of 0.74. On the other hand, risk assessment is done with an
adaptive resonance model known as iART. The appropriateness
of the clustering is supported by the observation that patient
feature values were consistent with the assigned cluster. For
instance, fever and weight loss happened to be most common
in the high risk group. A more recent multi-layer perceptron
algorithm [61] manages to achieve high sensitivity (97%) for a
binary prediction of the disease despite a small cohort of 105
patients. This is promising given the low amount of electronic
health data that exists for patients in low-resource settings.

A similarly small cohort of 155 patients suspected of having
tuberculosis meningitis was analysed by Solari et al. [53] in
Peru. They used a logistic regression model based on enzyme
concentration and presence of a cough to classify patients into
three different risk groups. Such an output would assist physi-
cians when unsure of the disease status of their patient. The
PK-PD Compass [58], [67], although not explicitly designed
for low-resource clinical settings, is a mobile application aimed
at clinicians to guide the antimicrobial dosing regimens they
assign their patients. Extensive studies have been performed
with this application which takes as input patient variables,
their infection, and suspected pathogen. By exploiting updated
databases that contain patient responses to various drugs, the
application recommends various antibiotics and lists their cor-
responding uptake for that individual patient. While promising,
these studies do not emphasize how they are different from the
three extant tools on the market. Moreover, they claim to use
Bayesian methodologies to ‘personalize’ the suggestions. The
extent to which such suggestions are population-based and are
accurate is debatable as of yet.

Inspired by the use of crackle sounds to diagnose various
pathologies, Kosasih et al. [54] propose a wavelet-based ap-
proach to diagnose pneumonia among patients in low-resource
settings. In addition to traditional feature extraction, the wavelet
transform of auditory crackle sounds recorded via microphones
is obtained. Once the features are fused, they are input into a
logistic regression model using a leave-one-out cross validation
methodology. Given the dependence of a wavelet transform
on the particular wavelet function, the authors investigate six
different types and identify the Morlet as the ideal wavelet
function. When features were combined, the algorithm resulted
in a sensitivity and specificity of 0.9412 and 0.8750, respec-
tively. The simplicity of this work in that it solely depends on
two microphones paired with the high performing algorithms
is astonishing. Due to the rise and success of deep learning,
and in particular convolutional neural networks, many have
attempted to apply such techniques to diagnosing tuberculosis.
Santiago et al. [63] fine-tune a VGG16 convolutional network
[68] using grayscale images from a test known as Microscopic
Observed Drug Susceptibility. After minimal preprocessing
and a 5-fold cross-validation evaluation method, the authors
achieved an average sensitivity and specificity of 94.74% and
97.83%, respectively. While impressive, such an outcome only
barely outperforms a simple logistic regression model (96.9%
and 96.3% sensitivity and specificity, respectively) they imple-
mented. Therefore, the need for a more complex neural network
in this context is doubtful. Moreover, the authors claim that the
network has learned useful features that mimic those deemed im-
portant by medical professionals; a claim that is not-convincing
based on the blurry images shown in the paper. On the flip side,
the most promising component of this study was the apparent
robustness of the model to images of various quality levels, a
challenge all too common in low-resource countries.

Quinn et al. [57] propose a convolutional neural network to
diagnose malaria, tuberculosis and intestinal parasites based
on microscope images. They motivate the need for such a
system by the insufficient number of trained experts capable of
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TABLE II
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON BACTERIAL/PARASITIC INFECTIONS

reading these images. During the classification pipeline, they
experience class imbalance, a scenario in which the number
of negative cases significantly outnumber the positive cases.
This is alleviated by under-sampling the negative cases, during
training, to maintain a 1:100 ratio. When performing inference,
the model achieves an AUROC=1.00, 0.99, and 0.99 on the
malaria, tuberculosis, and hookworm classification tasks, re-
spectively. In the presence of severe class imbalance, AUROC
is not the preferred metric. Instead, the area under the precision

recall curve (AUPRC) should provide a better estimate of the
generalization performance. Their reported AUPRC results are
0.97, 0.93, and 0.93, respectively. This is impressive in light of
the class imbalance.

2) Antimicrobial Resistance: The high burden of bacte-
rial infections coupled with the poor diagnostic capabilities
of frontline healthcare workers usually leads to the over and
mis-prescription of antibiotics in low-resource settings [69].
Such behaviour contributes to the high rates of antimicrobial
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TABLE III
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON ANTIMICROBIAL RESISTANCE

resistance, leaving healthcare systems with fewer effective tools
to deal with bacterial infections, and thus exacerbating the
exigent burden. A summary of solutions for tackling this issue
can be found in Table III.

In the past couple of years, antimicrobial resistance has
become the focus of the World Health Organization. This is
exacerbated by the over-prescription of antibiotics to infants
with febrile illnesses, especially in low-resource settings. In
attempt to reduce these over-prescriptions, electronic CDSSs
that accurately diagnose febrile illnesses have a played a vital
role. In this context, Keitel et al. [74] review 6 different systems
that have been implemented within low-resource primary-care
settings. The most recent example is ALMANACH (Algorithm
for Management of Acute Childhood Illnesses) [71] which is
developed by the Swiss Tropical and Public Health Institute. It
uses a decision tree based on data from rapid diagnostic tests
to detect certain conditions and has been evaluated in basic
health centres in Afghanistan and Tanzania [76]. Preliminary
results indicate that the introduction of the CDSS significantly
improved the percentage of correct examinations and treatments
administered to patients. This occurred with a simultaneous
reduction in antibiotic prescription (63% to 21.8%) [75]. It must
be noted, however, that the cost-effectiveness of such an imple-
mentation and whether suggestions made by the system are taken
into consideration have not been evaluated. An electronic tool
that emulates the Integrated Management of Childhood Illness
(IMCI) guidelines put forth by the WHO was introduced in 2008
by Derenzi et al. [78]. Although the tool, piloted in primary care
settings in Tanzania, was found to improve adherence to various
essential medical tasks, it appeared to increase the amount of
time spent by the healthcare professional with each patient.
Bessat et al. [77] build on the extenstive amount of work in

the space of electronic IMCI decision support. They attempt to
evaluate the impact of the tool on the behaviour of primary health
workers in Burkina Faso. Results were primarily based on inter-
view responses and contained several takeaway messages; the
tool lacked certain treatment recommendations, helped justify
their prescription of antibiotics, and seemed to be overly cautious
when diagnosing infants. Although the authors claim to quantify
the impact on antibiotic prescription, this evaluation is weak and
not patient-centred. Nonetheless, this work can be viewed as a
proof-of-principle that requires significant improvement.

3) Viral Diseases: Although there exists a spectrum of viral
diseases such as Hepatitis, Human-Papilloma Virus, and Human
Immunodeficiency Virus (HIV) that afflict populations in low-
resource settings [86], the latter continues to demand the greatest
attention. A summary of studies focusing on such infectious
diseases can be found in Table IV.

Within sub-Saharan Africa, tackling HIV is still ongoing.
To determine whether healthcare professionals should alter an
AIDS patient’s treatment, Mitchell et al. [79] introduce and trial
an electronic CDSS that takes as input the answers to various
medical questions. Based on these responses, the decision to
refer the patient to a consultant is made. The gold-standard
binary decision of referral is made by physicians who respond
to a questionnaire at the end of their daily clinical shift. Unfortu-
nately, the results of this study are not published. To better deal
with HIV patients, the Academic Model Providing Access to
Healthcare (AMPATH) was introduced with its most prominent
activity occurring within Kenya. Patient data manually recorded
on paper are input into a medical record system created by
AMPATH, known as the AMPATH Medical Record System
(AMRS) [87]. This system, which is built on the Open Medical
Record Systems [88] then generates patient-specific summaries
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TABLE IV
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON VIRAL DISEASES

which are presented to the clinicians. Such summaries are vital
in clinical settings that are burdened by large patient popula-
tions. Several limitations of AMRS, however, are mentioned
in [81]. Most notable of these critiques is the potential lag and
inaccuracies that arise from inputting the data into the electronic
system. Consequently, Anokwa et al. have devised Open Data
Kit (ODK) Clinic, a mobile-phone based application that works
in conjunction with AMRS to overcome its existing challenges.
Similar to AMRS, the system provides patient summaries and
generates alerts and reminders as necessary. While they do limit
the number of alerts shown, their accuracy is not evaluated.
Furthermore, what drives these reminders is not explicitly stated,
but is assumed to be thresholds on clinical data stored within
the application. It also allows clinicians to edit and input extra
patient data through the application, therefore mitigating the
previously mentioned lag and inaccuracies. Although it aug-
ments AMRS, ODK Clinic does not completely solve the issue
of missing or inaccurate patient data. It also expects clinicians
to be comfortable using the device and be capable of altering
erroneous information after it has already been input. Finally,
the decision support is quite primitive and manifests itself in
the form of reminders to order certain medication tests. Most
recently, Tadesse et al. [85] proposed a multi-modal approach
to diagnose tetanus and hand foot and mouth disease (HFMD).
They first convert electrocardiogram and photoplethysmogram
time-series data to their spectrogram counterparts. These spec-
trograms are then fed into a pre-trained Inception neural network
for feature extraction and classification of disease severity. They
illustrate the superiority of transfer learning with multi-modal
inputs as compared to an SVM with a single modality (e.g. ECG),
achieving an F1=0.957 and 0.860, respectively. Such strong
performance in addition to the use of widely-available wearable
sensors suggests that this approach has the potential to benefit
resource allocation and patient outcomes within low-resource
settings. To quantify this benefit, further evaluation on a larger
and more diverse patient cohort would be required.

4) Non-Communicable Diseases: Non-communicable
diseases such as hypertension, diabetes, and cardiovascular
diseases are becoming increasingly important in low-resorce
countries. More specifically, as high as 80% of all deaths caused
by such diseases occur in low and middle-income countries
[89]. Although there appears to be a significant amount of
work focusing on mobile-health solutions for such diseases,
research on clinical-decision support systems is less common.
A summary of the latter can be found in Table V.

Electronic CDSSs can come in the form of mobile devices
such as tablets. This is increasingly true in low-resource settings
where high costs are a barrier and infrastructure is little to non-
existent. In the domain of non-communicable diseases, Jindal
et al. [94] introduce and assess ‘mWellcare’, a mobile-health
post-diagnosis CDSS, in low-resource primary care settings in
India. This was a holistic approach that involved devices such as
blood-pressure apparatus and the training of physicians. The
recommendations provided by the system agreed with those
of the physicians’ 61% and 70% of the time for hypertension
and diabetes, respectively. While still nascent, mWellcare with
higher agreement rates has the potential to alleviate the burden
on currently overwhelmed physicians. Adepoju et al. [106]
discuss several relevant CDSS implementations. For instance,
Decision Support and Integrating Record Keeping is a 3-part
system that stores data, contains a rule-based algorithm focused
on diagnosing hypertension, and allows for historical patient
data viewing. Deployed to target patients in Kenya, the system
is offered through a tablet and is distributed to nurses in rural
clinical settings. Unfortunately, this work does not go beyond a
feasibility study, and thus its impact is not evaluated quantita-
tively [92].

A clinical decision support system focused on diagnosing and
treating various components of hypertension is introduced by
Anchala et al. [91]. Given the implementation of the algorithm
in India, the authors’ algorithm was a rule-based one grounded in
the India Hypertension II guidelines. The algorithm performed
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TABLE V
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON NON-COMMUNICABLE DISEASES
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the following tasks for 60 hypertensive patients: determining
the staging of blood pressure and the patient’s risk category,
drug management, and lifestyle advice, in addition to other
events. This is an ambitious goal that exceeds those expressed
by other studies. The ground-truth values for all these categories
were determined by two independent physicians not directly
involved with the primary healthcare centres used in the study.
When the algorithm outputs were compared to this reference
value, the agreement percentage ranged from 83.33% to 91.67%,
suggesting strong results. Moreover, the former achieves an
AUC of 0.848 when evaluated based on drug management.
Unfortunately, the aforementioned results can be interpreted as
optimistic since only hypertensive patients were enrolled in this
study. Consequently, expecting strong performance by such an
algorithm on a more general audience is debatable.

In addition to the importance of cardiovascular diseases, the
significance of maternal health was emphasized by the recent
WHO publication that aims to reduce, by 2030, the global
maternal mortality rate (MMR) to below 70 deaths per 100,000
births [107]. Placing this number into context, currently some
low-resource countries face an MMR value of around 600 [108].

Agarwal et al. [109] discuss the impact of their introduction
of ThalCare, an ICT-based tool that, among other things, assists
nurses and doctors in dealing with and treating thalassemia
patients. It is capable of storing patient information and allows
for the monitoring of patient status in a periodic manner through
weekly and monthly reports. Moreover, the application coordi-
nates with blood banks in order to speed up deliveries and ensure
faster treatment. Lastly, patients can access this information if
they wish in order to remain updated on their health status.
They release their tool to 5 different clinical centres in India
and attempt to evaluate its effect in various ways. For instance,
patient visits increased from “a mean of 0.7 visits per month to
1.1”. Barring the limitation that the significance of this change
was not commented on, such a result can be interpreted as
positive since it may indicate increased patient commitment
to their health. More noteworthy was the management of iron
by patients, where 53% of drug dose changes were a result of
the system’s alerts. Although this indicates that the alerts were
guiding clinicians, it does not illustrate whether such guidance
led to improved patient outcomes. This appears to be a promising
tool that can streamline the treatment of thalassemia in a scalable
manner among patients in LMIC.

Khan et al. [98] design a portable ultrasound machine and an
algorithm that attempts to derive the mean abdominal diameter
(MAD) of a fetus. In this case, the ground truth values were
obtained via manual annotations of the ultrasound images. Using
such images, the authors performed two main tasks; fetal ab-
domen detection and diameter derivation. The former was done
in a somewhat traditional manner using image gradient methods
such as the first-order Sobel derivative. Once the fetal abdomen
was detected, a Kalman-based algorithm was used to determine
the actual MAD. In this regression task, the authors managed
to achieve an impressive R2 value of 0.96 when comparing the
predictions to the ground truth. The errors, however, ranged from
−26.74 to 26.26 mm. Since the acceptable error range from a

clinical perspective is not mentioned, the aformentioned error
values cannot be evaluated properly.

Balaji et al. [99] discuss the prospects of implementing
Artemis, an established decision support system used in the
‘West’, in a low-resource setting. More specifically, they plan
to implement this software in neonatal and pediatric intensive
care units (NICUs and PICUs) in Belgaum Children’s Hospital
in India. Even though they only suggest a study outline, their
work reiterates the scarcity of resources in such regions and the
importance of low-cost, durable, and sustainable solutions.

Dealing with the issue of neonatal rescuscitation, Duffy
et al. [100] design and trial an application catered to midwives
in hospital settings in order to improve their ability to perform
such rescuscitation. The application guides the users through
a decision tree, asking them to perform necessary procedures
on the neonate, such as checking their heartbeat, recording the
Apgar score, and so forth. A 6-month implementation of the
program at Kitovu Hospital in Uganda indicated a substantial
increase in the percentage of necessary procedures performed.
Although the ‘necessary’ procedures were selectively chosen,
they do seem based on clinical reasoning. Nonetheless, it would
have been interesting to observe how consistently other ac-
tivities were performed. Moreover, their focus on the percent
completion of activities detracts from two important points;
the quality with which those procedures were performed and
the impact of the device on neonatal outcomes. More recently,
Huevel et al. [102] attempt to detect fetal heads and estimate their
circumference and thus gestational age by using state-of-the-art
neural network architectures such as VGG [68] and U-Net [114]
architecture reduced in the number of parameters. The obstetric
sweep protocol was performed to obtain high quality ultrasound
images. To emulate conditions in low-resource settings where
equipment quality and expertise is low, the authors investigate
the impact of poor-quality images on the network’s accuracy.
Promisingly, their fetal head detection network seems robust
to images downsampled even by a factor of 20. Accuracy
for this task ranges between 95% and 98% depending on the
downsampling factor. Unfortunately, the more challenging task
of circumference estimation was less robust to image quality
and, at its worst, produced a mean absolute difference of 30mm.
Such mis-estimation could lead to under or over-estimating the
gestational age of the fetus by up to 2 weeks. Furthermore, the
study is weakened by the significant amount of filtering per-
formed on the data before inputting it into the model. Although
pre-processing is an important step in machine learning, the
eradication of datapoints that would most probably represent
the norm in settings with poorly-trained professionals is not
realistic.

Kwizera et al. [104] retrospectively perform mortality pre-
diction on 949 children admitted to a hospital in Rwanda. To do
so, they input six different parameters including age, respiratory
rate, altered mentation, capillary refill time, temperature, and
heart rate into a Random Forest classifier. By exploiting all
six of these parameters and evluating their model via 5-fold
cross validation, the authors achieved an AUROC of 0.79. The
advantage of this approach over existing comparable methods is
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TABLE VI
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON OPERATIONAL ACTIVITIES

its dependence on simple parameters that can be easily measured
within a low-resource clinical setting. Moreover, the authors
remind us that their model’s achieved performance is similar to
that achieved by qSOFA when implemented amongst adults in
high-income countries. Despite such a finding, the generaliz-
ability of such an algorithm is called into question by the small
cohort size. Rittenhouse et al. [105] propose to exploit maternal
and fetal parameters in order to determine whether neonates can
be classified as pre-term births. They performed the analysis on
1450 pregnant women from a hospital in Lusaka, Zambia. After
implementing the SuperLearner algorithm [115] using 10-fold
cross-validation, the authors were able to achieve an AUROC of
0.98 on the binary classification task. Such strong performance
causes one to believe that such a task might have been too trivial
and thus not clinically-useful. On the other hand, in settings
where expertise is lacking, such an algorithm may allow for
a reduction in the number of misclassifications. This can be
identified via a prospective trial, something that would be rela-
tively feasible in this scenario given the minimal harm imposed
on the patient by the decision of the algorithm. Most recently,
Evans et al. [116] convened 22 neonatal experts in order to gauge
their agreement on algorithms used for the diagnosis of various
neonatal conditions in low-resource settings. These conditions
included neonatal sepsis, hypoxic ischaemic encephalopathy,
respiratory distress, and hypothermia. Conducting such a pro-
cess is vital given the lack of transferability of algorithms
designed in high-resource settings to low-resource settings. By
arriving at diagnostic criteria that the majority of participating
experts agree to, one can begin to design more reliable diagnostic
algorithms. In fact, the research team is planning to incorporate
these findings into a neonatal digital platform entitled NeoTree.

5) Operations: Operations research revolves around opti-
mizing a multi-variate system subject to various constraints
such as transportation routes, stock management, and resource
allocation. A summary of studies working on operations research
within a low-resource clinical context can be found in Table VI.

Improving resource allocation is tackled by Ahmed et al.
[110] who focus on doing so in a government hospital in Kuwait.
They design a simulation optimization problem to increase the
number of patients seen per unit time subject to constraints on

financial budgets and patient waiting times. Experimentation
is performed with processes, modelled as Poisson distributions
with a time-varying rate parameter, in order to obain an op-
timal set of parameters for the hospital at hand. In achieving
a turnover rate of approximately five patients per hour, the
authors claim that the algorithm reduces patient waiting time
by 40%. Although significant, these results are quite specific to
the studied emergency department and may not generalize to
other emergency departments or even to the same one at some
point in the future. Nonetheless, this work acted as a springboard
for others in low-resource settings. Most recently, Yousefi et al.
[113] implement a constrained-optimization problem in order
to reduce the average length of stay (ALOS) of patients in an
emergency department in Brazil. Their base model is a recurrent
neural network which is optimized using a genetic algorithm
where inividual ‘chromosomes’ are deemed ‘unfit’ based on
whether they violate the pre-defined constraints. Interestingly,
the authors illustrate the graded effect of the availability of
doctors and nurses on the ALOS. More specifically, a threefold
increase in the number of doctors and nurses will, on average,
reduce the ALOS by 50%. Such outcomes can help guide
specific workforce allocation within hospital settings in order
to improve efficiency.

6) Miscellaneous: In addition to the publications that were
categorized based on application, a number of studies that were
diverse in application and did not fall under the pre-defined
categories are mentioned here. A summary of such studies can
be found in Table VII.

In 2017, Elsevier, the publisher of scientific journals, an-
nounced that it would make ClinicalKey [118], a search-engine
catered to clinicians at the point-of-care, available to healthcare
professionals in low-resource settings [124]. Although it appears
similar to MD consult and UpToDate, its creators are confident
of its superiority. At the end of the day, it is simply a database
that can provide clinicians with information in a convenient and
quick way. The efficacy of such a system within low-resource
settings, however, has yet to be evaluated.

Others have used machine learning to predict patient mortality
post-discharge in both resource-rich and low-resource settings
[125]. The SuperLearner algorithm uses patient demographic



KIYASSEH et al.: PROMISE OF CLINICAL DECISION SUPPORT SYSTEMS TARGETTING LOW-RESOURCE SETTINGS 365

TABLE VII
SUMMARY OF CDSS IN LOW-RESOURCE SETTINGS FOCUSED ON MISCELLANEOUS ACTIVITIES

data, medical history, vital sign measurements, and treatment
in order to derive its output. After being evaluated on trauma
patients from the United States, South Africa, and the Cameroon,
the algorithm achieves an area under the curve of 96% rela-
tive to standard scoring systems currently in use such as the
Trauma Injury Severity Score (∼92%) and Global Alignment
and Proportion (∼87%). The interesting outcome of this paper
is the generalizability of the results to trauma cohorts from other
countries. Such a finding lends support to the notion of transfer
learning. On the other hand, it is important to note that this is a
high-level retrospective study and although mortality prediction
has the potential to guide clinical decisions, the effectiveness of
the algorithm at the individual patient level is not evaluated.

Machine learning was used by Vissoci et al. [121] to generate
a binary prognosis of patients who experienced traumatic brain
injury (TBI). Data over a three year period corresponding to
patients entering an emergency centre with TBI was collected
and used for analysis. After inputting demographic information,
the Glasgow coma score, and other factors such as whether ICU
beds were available into a Bayesian generalized linear model, a
prognosis was arrived at. A sensitivity and specificity of 0.890
and 0.713, respectively was achieved. The utility of such a
prognostic model lies in its ability to help clinicians allocate
resources efficiently to the patients that need them most. Some
of the same authors build on this work in [122] and explicitly
elucidate the benefit of such an algorithm to triaging patients. As

it pertains to the prognosis labels, they are very crude and their
clinical utility is not evaluated. One would assume that more
specific prognoses with temporal information would further
increase the efficiency of a TBI triage system.

The National Institutes of Health recently set up the Afford-
able Health Technologies program in effort to reduce the burden
of cancer in low and middle income countries. The work by
Pearlman et al. [126] sheds light on promising cancer detection
and diagnosis work already taking place globally. Hunt et al.
[123] conducted a prospective randomized trial evaluating the
performance of al algorithm designed to identify neoplastic
processes from microscopic pathology images. Impact of the
algorithm on diagnostic follow-ups was evaluated relative to
the standard of care procedure; colposcopy. For all cases, the
ground-truth diagnosis was confirmed via a biopsy, an invasive
procedure that excises a piece of tissue for further analysis. When
comparing the microscopic images approach to colposcopy, the
former achieves a sensitivity and specificity of 96% and 65%,
respectively. The latter approach performs similarly with a sensi-
tivity and specificity of 94% and 60%, respectively. It can be seen
that both methods are overly cautious and result in a high degree
of false-positives. Hu et al. [127] use a region-based convolu-
tional neural network to classify cervical images as cancerous.
This network first locates the cervix in cervigram images before
outputting the probability of a positive case. Although the au-
thors report superior AUROC performance (0.91) relative to the
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standard of care (0.69), a better evaluation metric would be the
AUPRC. This is because the AUROC is less sensitive to changes
in the number of false positives due to the presence of a large
number of negative cases. Moreover, the authors acknowledge
the limitations associated with depending on cervicography, as
it is an obsolete method. Nonetheless, their overall approach is
promising for pushing forward cervical cancer diagnosis. Most
recently, Pelle et al. [128] convened 39 experts across a variety
of domains in order to draft what is known as a target product
profile (TPP). This TPP outlines the recommended minimum
and optimal requirements surrounding the implementation of
clinical decision support algorithms in low-resource settings.
As it pertains to these algorithms specifically, their findings
emphasized the importance of evidence-based algorithms and
those that are human interpretable. Although the experts agreed
upon the significance of abiding by data privacy regulations,
such as the European Union’s General Data Protection Regula-
tion, they fail to mention potential solutions that are specific
to low-resource settings. This suggests that greater focus on
data privacy and regulation is necessitated. As it stands, this
TPP simply acts as broad guidance for the community and does
not delve into the technical requirements of a clinical decision
support system.

V. FUTURE RESEARCH DIRECTIONS

A. Deep Learning

Under 10% of the studies we identified involved deep learning
methodologies yet globally researchers have been successful in
applying such techniques to tackle complex healthcare issues.
These include the diagnosis of breast lesions [129], the classifi-
cation of dermatological conditions [130], and the identification
of optimal medication doses for hospitalized sepsis patients
[131]. Although promising, most of this work has exclusively
been performed in the developed world where medical expertise
and infrastructure are in abundance relative to that found in
low-resource settings. Consequently, the latter regions arguably
stand to benefit the most from the potential of deep learning.
To leverage the full potential of deep learning in low-resource
clinical settings, advancements need to be made on both a social
and technical level. We first outline some social factors then
transition to deep learning research avenues.

1) Social Factors:
� Medical Infrastructure - the availability of hospital mon-

itors and physiological sensing devices such as wearable
sensors are critical to monitoring and recording the phys-
iological condition of patients within a hospital setting.
This generates significant amounts of data that can be fed
to notoriously data-hungry algorithms.

� Transition to Digital Platforms - there needs to be a way
to store and manage the troves of data generated by the
healthcare industry in order to streamline the downstream
decision support pipeline.

� Trust and Confidence - engendering trust in CDSS is
a global challenge [132] that is more prominent in low-
resource settings. This is due to the decreased exposure of

medical professionals to such systems during their medical
training and in their direct environment.

2) Technical Factors:
� Transfer Learning - involves training a neural network

on a task that consists of large amounts of labelled training
data then transferring those parameters to a downstream
task with minimal data. Since low-resource clinical set-
tings are characterized by a paucity of data, this approach
can improve the generalization performance of algorithms
trained on rare medical conditions. Transfer learning has
arguably been the cornerstone of modern computer vision
applications, allowing models in the medical imaging do-
main to achieve stong performance [133]–[135]. Recently,
however, doubt has been cast on the utility of transfer
learning for medical imaging [136].

� Active Learning - involves the acquisition and labelling of
unlabelled datapoints during training in order to improve
performance while being sample-efficient [137]. Such an
approach is useful when large sets of unlabelled data are
present. This can be common in low-resource clinical set-
tings as labelling is an expensive and time-consuming pro-
cess that requires a certain level of expertise. The generic
role of active learning in biomedical data classification
was explored in [138].

� Self-supervised Learning - is a branch of unsupervised
learning that creates auxiliary tasks based solely on the
input data. For instance, tasks can be set up to predict
the rotation of images [139] and the arrow of time in
videos [140]. Such an approach is an alternative method
for exploiting large sets of unlabelled data and can allow
networks to learn useful representations. These represen-
tations have the potential to improve the classification of
downstream tasks that lack suffcient data [141].

B. Applications

The diversity of medical conditions covered in this review
is limited compared to the scope of diseases that afflict low-
resource settings. Over 50% of the studies we identified were
either related to bacterial/viral infections or maternal and fetal
health. Therefore, we identified an increased need for decision
support systems that target the plethora of under-treated diseases
that continue to significantly burden low-resource settings. Some
of these conditions are outlined below.

1) Sepsis: Sepsis, a serious infection that affects more than
30 million people worldwide, is estimated to disproportionately
affect those in low-resource settings [142]. Its potentially fatal
nature is exacerbated by the high rates of antimicrobrial resis-
tance found in such regions. Despite this issue, the burden of
sepsis remains to be understudied [143] and not fully understood
given the high variability of the condition itself and of the regions
that experience it. Although algorithms focusing on tackling
sepsis exist [144], their implementation within a clinical setting
and among diverse patient populations has not been evaluated.

2) Diabetes: Despite the large impact of non-
communicable diseases on low-resource settings, the number
of algorithms and clinical decision support systems focused on
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this issue are lacking. For instance, 70% of diabetes patients
are found in low and middle income countries [145]. While the
generalizability of algorithms designed in the developed world
to global regions has been discussed [146], most of the research
either discusses remote interventions (outside of the clinical
setting) or are manual in nature. The introduction of electronic
predictive algorithms can help alleviate the burden placed on
healthcare systems by non-communicable diseases and thus
reduce costs and improve patient outcomes.

3) Cardiovascular Disease: Non-communicable diseases,
and in particular cardiovascular disease (CVD), disproportion-
ately afflict those living in low-resource settings [147], [148]. It
is estimated that approximately 80% of global CVD cases can be
found in low and middle-income countries [149]. Cardiovascular
disease consists of various disorders such as coronary heart dis-
ease, peripheral arterial disease, and the presence of pulmonary
emboli. Although existing mobile-based algorithms have filled
a gap, they are not a sustainable solution for healthcare set-
tings. To achieve this long-term impact within a clinical setting,
more research is needed on CDSS that directly tackle CVD.
These can take on the form of patient monitoring, diagnosis
of cardiac conditions, and personalized prediction of adverse
events. For instance, prediction scores for pulmonary emboli are
in the process of being validated in Cameroon [150]. Moreover,
the extension of the American Heart Association hypertension
guidelines to low-resource settings is also being explored [151].
The focus on CVD as a whole, however, is vital for two reasons.
Firstly, we would like to emphasize the equal importance of
disorders that fall within the CVD umbrella. Secondly, the design
of setting-specific CVD risk scores will allow for an easier
comparison to existing scores such as the Joint British Societies
2 and QRisk2 scores [152].

C. Clinical Implementation

Few clinical algorithms and support systems have been trans-
lated into clinical practice. To increase this translation rate,
algorithms need to be assessed for their reliability on various
patient populations and evaluated in a prospective manner.

1) Reliability: Algorithms identified in this review were pre-
dominantly evaluated on a specific subset of patients from a
certain division within the clinical setting e.g. intensive care unit.
Consequently, we identified the need for increased evaluation of
such models in their ability to generalize. Reliable models can
be thought of as those that perform equally well (generalize) on
diverse patient populations from different clinical settings but
also those that remain robust over time. In other words, they
also perform equally well among the same patient population at
different timepoints in the future. From this perspective, there is
a scarcity of algorithms in the literature, both in the developed
and developing world, that are evaluated according to the afore-
mentioned notions of generalizability. For instance, Wiens et al.
[153] attempt to leverage data from multiple hospitals to make
hospital-specific predictions, whereas Oh et al. [154] attempt to
predict infection rates at two large hospitals. The importance of
generalizability was recently emphasized by the Food and Drug

Administration’s white paper on regulating machine learning
based systems [155].

2) Prospective Evaluation: Our findings illustrated that de-
cision support systems were predominantly evaluated retrospec-
tively. To determine the utility of such systems, they would
need to be evaluated prospectively. Globally, few initiatives are
attempting to do so. For instance, Wong et al. [156] prospectively
evaluate the impact of a medication decision support system
within an ICU setting by measuring the rate of patient adverse
drug reactions due to recommendation over-rides by physicians.
Another example is GP at Hand, a system that has partnered
with the NHS to help connect patients with physicians through
a mobile-application and provides them with a medical history to
make informed decisions [157]. In tackling acute-kidney injury,
Connell et al. [158] evaluated Streams, a mobile-application
focused on streamlining the treatment process within a hospital
setting, citing reduced time to recognize the injury. Several of the
aforementioned examples are mobile-applications, potentially
lessening the need for expensive medical infrastructure within
a clinical setting. This would be ideal for implementation in
low-resource settings.

VI. CONCLUSION

This review has summarized the publications focused on
clinical decision support systems targetting stakeholders and
medical conditions within low-resource clinical settings. De-
spite the significant burden of a wide array of diseases on
such regions, the majority of the publications discuss systems
aimed at dealing with bacterial infections and maternal/fetal
care. This implies that greater emphasis needs to be placed on
under-treated diseases such as sepsis and non-communicable
diseases. Furthermore, very few of the support systems reviewed
were evaluated prospectively and in randomized-control trials,
the gold-standard for determining clinical utlity. By elucidating
these shortcomings, this review hopes to encourage the future
development and evaluation of algorithms in low-resource clini-
cal settings with the overall aim of improving patient outcomes.

ACKNOWLEDGMENT

The views expressed are those of the authors and not neces-
sarily those of the NHS, the NIHR or the Department of Health.

REFERENCES

[1] World Health Organization, “Physicians (per 1000 people),” World
Health Organization’s Global Health Workforce Statistics, OECD, sup-
plemented by country data, 2020. [Online]. Available: https://data.
worldbank.org/indicator/SH.MED.PHYS.ZS?locations=XO

[2] N. W. Schluger et al., “Creating a specialist physician workforce in low-
resource settings: Reflections and lessons learnt from the East African
training initiative,” Brit. Med. J. Global Health, vol. 3, no. 5, 2018, Art.
no. e001041.

[3] S. Murthy and N. K. Adhikari, “Global health care of the critically
ill in low-resource settings,” Ann. Amer. Thoracic Soc., vol. 10, no. 5,
pp. 509–513, 2013.

[4] British Medical Association, “Pressure points in the NHS,” 2020.
[Online]. Available: https://www.bma.org.uk/advice-and-support/nhs-
delivery-and-workforce/pressures/pressure-points-in-the-nhs

[5] “The NHS Long Term Plan,” 2019. [Online]. Availavle:

https://data.worldbank.org/indicator/SH.MED.PHYS.ZS{?}locations$=$XO
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/pressure-points-in-the-nhs


368 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 15, 2022

[6] F. Nash, “Differential diagnosis: An apparatus to assist the logical facul-
ties,” Lancet, vol. 266, no. 6817, pp. 874–875, 1954.

[7] R. A. Miller, “Medical diagnostic decision support systemspast, present,
and future: A threaded bibliography and brief commentary,” J. Amer.
Med. Informat. Assoc., vol. 1, pp. 8–27, 1994.

[8] R. Greenes, “Clinical decision support: The road ahead,” in Clinical
Decision Support: The Road Ahead. New York, NY, USA: Academy
Press, 2007.

[9] M. A. Musen, B. Middleton, and R. A. Greenes, “Clinical decision-
support systems,” in Biomedical Informatics. Berlin, Germany: Springer,
2014, pp. 643–674.

[10] K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving
clinical practice using clinical decision support systems: A systematic
review of trials to identify features critical to success,” Brit. Med. J.,
vol. 330, no. 7494, p. 765, 2005.

[11] D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai, “Detecting and
classifying lesions in mammograms with deep learning,” Sci. Rep., vol. 8,
no. 1, 2018, Art. no. 4165.

[12] Z. I. Attia et al., “Screening for cardiac contractile dysfunction using an
artificial intelligence–enabled electrocardiogram,” Nature Med., vol. 25,
no. 1, pp. 70–74, 2019.

[13] N. Tomasev et al., “A clinically applicable approach to continuous
prediction of future acute kidney injury,” Nature, vol. 572, no. 7767,
pp. 116–119, 2019.

[14] I. Wheeler, C. Price, A. Sitch, P. Banda, and J. Kellett, “Early warning
scores generated in developed healthcare settings are not sufficient at
predicting early mortality in Blantyre, Malawi: A prospective cohort
study (vol 8, e59830, 2013),” PLOS One, vol. 9, no. 2, 2014.

[15] E. A. Friedman, “Computer-assisted medical diagnosis for rural sub-
saharan africa,” IEEE Technol. Soc. Mag., vol. 28, no. 3, pp. 18–27,
Sep.–Dec. 2009.

[16] J. Guo and B. Li, “The application of medical artificial intelligence
technology in rural areas of developing countries,” Health Equity, vol. 2,
no. 1, pp. 174–181, 2018.

[17] N. Schwalbe and B. Wahl, “Artificial intelligence and the future of global
health,” Lancet, vol. 395, no. 10236, pp. 1579–1586, 2020.

[18] S. T. Adams and S. H. Leveson, “Clinical prediction rules,” Brit. Med.
J., vol. 344, 2012, Paper d8312.

[19] C. W. Olanow and W. C. Koller, “An algorithm (decision tree) for the
management of parkinson’s disease: Treatment guidelines,” Neurology,
vol. 50, no. 3 Suppl 3, pp. S1–S1, 1998.

[20] Y. Qu et al., “Boosted decision tree analysis of surface-enhanced laser
desorption/ionization mass spectral serum profiles discriminates prostate
cancer from noncancer patients,” Clin. Chemistry, vol. 48, no. 10,
pp. 1835–1843, 2002.

[21] E. Dunkley, G. Isbister, D. Sibbritt, A. Dawson, and I. Whyte, “The hunter
serotonin toxicity criteria: Simple and accurate diagnostic decision rules
for serotonin toxicity,” QJM, vol. 96, no. 9, pp. 635–642, 2003.

[22] World Health Organization, “Implementation tools package of essential
noncommunicable (PEN) disease interventions for primary health care
in low-resource settings,” 2013, pp. 1–210.

[23] C. Subbe, M. Kruger, P. Rutherford, and L. Gemmel, “Validation of a
modified early warning score in medical admissions,” QJM, vol. 94,
no. 10, pp. 521–526, 2001.

[24] D. R. Prytherch, G. B. Smith, P. E. Schmidt, and P. I. Featherstone,
“Viewstowards a national early warning score for detecting adult inpatient
deterioration,” Resuscitation, vol. 81, no. 8, pp. 932–937, 2010.

[25] G. B. Smith, D. R. Prytherch, P. Meredith, P. E. Schmidt, and P. I.
Featherstone, “The ability of the national early warning score (news)
to discriminate patients at risk of early cardiac arrest, unanticipated
intensive care unit admission, and death,” Resuscitation, vol. 84, no. 4,
pp. 465–470, 2013.

[26] K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted real-
time early warning score (trewscore) for septic shock,” Sci. Translational
Med., vol. 7, no. 299, 2015, Paper 299ra122.

[27] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: Review, opportunities and challenges,” Briefings Bioinf.,
vol. 19, no. 6, pp. 1236–1246, 2017.

[28] I. J. Higginson and A. J. Carr, “Using quality of life measures in the
clinical setting,” Brit. Med. J., vol. 322, no. 7297, pp. 1297–1300, 2001.

[29] Wellcome Trust, “Low and middle income countries,” 2020. [On-
line]. Available: https://wellcome.ac.uk/grant-funding/guidance/low-
and-middle-income-countries

[30] G. Karageorgos et al., “The promise of mobile technologies for the health
care system in the developing world: A systematic review,” IEEE Rev.
Biomed. Eng., vol. 12, no. 12, pp. 100–122, Sep. 2018.

[31] E. Tomasi, L. A. Facchini, and M. D. F. S. Maia, “Health information
technology in primary health care in developing countries: A literature
review,” Bull. World Health Org., vol. 82, pp. 867–874, 2004.

[32] B. Wahl, A. Cossy-Gantner, S. Germann, and N. R. Schwalbe, “Artificial
intelligence (AI) and global health: How can AI contribute to health in
resource-poor settings?,” Brit. Med. J. Global Health, vol. 3, no. 4, 2018,
Art. no. e000798.

[33] A. L. Berkowitz, “Managing acute stroke in low-resource settings,” Bull.
World Health Org., vol. 94, no. 7, pp. 554–556, 2016.

[34] U. Kyriacos, J. Jelsma, M. James, and S. Jordan, “Monitoring vital signs:
development of a modified early warning scoring (mews) system for
general wards in a developing country,” PLOS One, vol. 9, no. 1, 2014,
Art. no. e87073.

[35] U. Kyriacos, J. Jelsma, M. James, and S. Jordan, “Early warning scoring
systems versus standard observations charts for wards in South Africa:
A cluster randomized controlled trial,” Trials, vol. 16, no. 1, 2015,
Art. no. 103.

[36] R. Cornick et al., “The practical approach to care kit (pack) guide:
Developing a clinical decision support tool to simplify, standardise and
strengthen primary healthcare delivery,” Brit. Med. J. Global Health,
vol. 3, no. Suppl 5, 2018, Art. no. e000962.

[37] M. Yau et al., “e-pc101: An electronic clinical decision support tool
developed in South Africa for primary care in low-income and middle-
income countries,” Brit. Med. J. Global Health, vol. 3, no. Suppl 5,
2019.

[38] E. D. Riviello et al., “Hospital incidence and outcomes of the acute
respiratory distress syndrome using the Kigali modification of the Berlin
definition,” Amer. J. Respiratory Crit. Care Med., vol. 193, no. 1,
pp. 52–59, 2016.

[39] A. Merriel, B. T. Murove, S. W. Merriel, T. Sibanda, S. Moyo, and
J. Crofts, “Implementation of a modified obstetric early warning system
to improve the quality of obstetric care in zimbabwe,” Int. J. Gynecol.
Obstetrics, vol. 136, no. 2, pp. 175–179, 2017.

[40] K. E. Rudd et al., “Association of the quick sequential (sepsis-related)
organ failure assessment (qSOFA) score with excess hospital mortality
in adults with suspected infection in low-and middle-income countries,”
J. Amer. Med. Assoc., vol. 319, no. 21, pp. 2202–2211, 2018.

[41] J. G. R. Ramos et al., “A decision-aid tool for ICU admission triage is
associated with a reduction in potentially inappropriate intensive care
unit admissions,” J. Crit. Care, vol. 51, pp. 77–83, 2019.

[42] M. Richard-Greenblatt et al., “Prognostic accuracy of strem-1-based
algorithms in febrile adults presenting to tanzanian outpatient clinics,”
Clin. Infectious Diseases, vol. 70, no. 7, pp. 1304–1312, 2019.

[43] W. A. Silverman and D. H. Andersen, “A controlled clinical trial of effects
of water mist on obstructive respiratory signs, death rate and necropsy
findings among premature infants,” Pediatrics, vol. 17, no. 1, pp. 1–10,
1956.

[44] A. B. Hedstrom, N. E. Gove, D. E. Mayock, and M. Batra, “Performance
of the silverman andersen respiratory severity score in predicting PCO
2 and respiratory support in newborns: A prospective cohort study,” J.
Perinatol., vol. 38, no. 5, pp. 505–511, 2018.

[45] C. Crehan, T. Colbourn, M. Heys, and E. Molyneux, “Evaluation of
‘try’: An algorithm for neonatal continuous positive airways pressure
in low-income settings,” Archives Disease Childhood, vol. 103, no. 8,
pp. 732–738, 2018.

[46] B. Olusanya, I. Iskander, T. M. Slusher, and R. Wennberg, “A decision-
making tool for exchange transfusions in infants with severe hyper-
bilirubinemia in resource-limited settings,” J. Perinatol., vol. 36, no. 5,
pp. 338–341, 2016.

[47] N. K. Adhikari and G. D. Rubenfeld, “qSOFA score for patients with sep-
sis in low-and middle-income countries,” J. Amer. Med. Assoc., vol. 319,
no. 21, pp. 2175–2177, 2018.

[48] A. A. El-Solh, C.-B. Hsiao, S. Goodnough, J. Serghani, and B. J. Grant,
“Predicting active pulmonary tuberculosis using an artificial neural net-
work,” Chest, vol. 116, no. 4, pp. 968–973, 1999.

[49] M. C. Steinhoff, C. F. Walker, A. W. Rimoin, and H. S. Hamza, “A
clinical decision rule for management of streptococcal pharyngitis in
low-resource settings,” Acta Paediatrica, vol. 94, no. 8, pp. 1038–1042,
2005.

[50] P. R. Smeesters, D. Campos, L. Van Melderen, E. de Aguiar, J. Vanderpas,
and A. Vergison, “Pharyngitis in low-resources settings: A pragmatic
clinical approach to reduce unnecessary antibiotic use,” Pediatrics,
vol. 118, no. 6, pp. e1607–e1611, 2006.

[51] L. Joachim, D. Campos, and P. R. Smeesters, “Pragmatic scoring system
for pharyngitis in low-resource settings,” Pediatrics, vol. 126, no. 3,
pp. e608–e614, 2010.

https://wellcome.ac.uk/grant-funding/guidance/low-and-middle-income-countries


KIYASSEH et al.: PROMISE OF CLINICAL DECISION SUPPORT SYSTEMS TARGETTING LOW-RESOURCE SETTINGS 369

[52] A. Soto et al., “Algorithm for the diagnosis of smear-negative pulmonary
tuberculosis in high-incidence resource-constrained settings,” Tropical
Med. Int. Health, vol. 18, no. 10, pp. 1222–1230, 2013.

[53] L. Solari, A. Soto, and P. Van der Stuyft, “Development of a clinical
prediction rule for tuberculous meningitis in adults in Lima, Peru,”
Tropical Med. Int. Health, vol. 23, no. 4, pp. 367–374, 2018.

[54] K. Kosasih, U. R. Abeyratne, V. Swarnkar, and R. Triasih, “Wavelet
augmented cough analysis for rapid childhood pneumonia diagnosis,”
IEEE Trans. Biomed. Eng., vol. 62, no. 4, pp. 1185–1194, Apr. 2014.

[55] C. Catalani et al., “A clinical decision support system for integrating
tuberculosis and HIV care in Kenya: A human-centered design approach,”
PLOS One, vol. 9, no. 8, 2014, Paper e103205.

[56] F. S. Aguiar, R. C. Torres, J. V. Pinto, A. L. Kritski, J. M. Seixas, and
F. C. Mello, “Development of two artificial neural network models to
support the diagnosis of pulmonary tuberculosis in hospitalized patients
in Rio de Janeiro, Brazil,” Med. Biol. Eng. Comput., vol. 54, no. 11,
pp. 1751–1759, 2016.

[57] J. A. Quinn, R. Nakasi, P. K. Mugagga, P. Byanyima, W. Lubega, and
A. Andama, “Deep convolutional neural networks for microscopy-based
point of care diagnostics,” in Proc. Mach. Learn. Healthcare Conf., 2016,
pp. 271–281.

[58] C. C. Bulik et al., “PK–PD compass: Bringing infectious diseases phar-
macometrics to the patients bedside,” J. Pharmacokinetics Pharmacody-
namics, vol. 44, no. 2, pp. 161–177, 2017.

[59] R. C. Owens Jr, C. C. Bulik, and D. R. Andes, “Pharmacokinetics–
pharmacodynamics, computer decision support technologies, and antimi-
crobial stewardship: The compass and rudder,” Diagnostic Microbiol.
Infectious Disease, vol. 91, no. 4, pp. 371–382, 2018.

[60] M. F. Alcantara et al., “Improving tuberculosis diagnostics using deep
learning and mobile health technologies among resource-poor commu-
nities in Peru,” Smart Health, vol. 1, pp. 66–76, 2017.

[61] A. D. Orjuela-Cañón, J. E. C. Mendoza, C. E. A. García, and
E. P. V. Vela, “Tuberculosis diagnosis support analysis for precari-
ous health information systems,” Comput. Methods Programs Biomed.,
vol. 157, pp. 11–17, 2018.

[62] J. B. d. O. e Souza et al., “Screening for active pulmonary tuberculosis:
Development and applicability of artificial neural network models,”
Tuberculosis, vol. 111, pp. 94–101, 2018.

[63] S. Lopez-Garnier, P. Sheen, and M. Zimic, “Automatic diagnostics of
tuberculosis using convolutional neural networks analysis of mods digital
images,” PLOS One, vol. 14, no. 2, 2019, Paper e0212094.

[64] M. Górriz, A. Aparicio, B. Raventós, V. Vilaplana, E. Sayrol, and
D. López-Codina, “Leishmaniasis parasite segmentation and classifi-
cation using deep learning,” in Proc. Int. Conf. Articulated Motion
Deformable Objects, 2018, pp. 53–62.

[65] Q.-H. Vuong et al., “Artificial intelligence vs. natural stupidity: Evaluat-
ing ai readiness for the vietnamese medical information system,” J. Clin.
Med., vol. 8, no. 2, p. 168, 2019.

[66] S. Ombelet et al., “Clinical bacteriology in low-resource settings: Today’s
solutions,” Lancet Infectious Diseases, vol. 18, no. 8, pp. e248–e258,
2018.

[67] G. Tillotson, “PK–PD compass: A novel computerized decision support
system,” Lancet Infectious Diseases, vol. 17, no. 9, p. 908, 2017.

[68] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[69] L. M. Bebell and A. N. Muiru, “Antibiotic use and emerging resistance:
How can resource-limited countries turn the tide?,” Global Heart, vol. 9,
no. 3, pp. 347–358, 2014.

[70] C. Rambaud-Althaus, A. F. Shao, J. Kahama-Maro, B. Genton, and
V. dAcremont, “Managing the sick child in the era of declining malaria
transmission: Development of almanach, an electronic algorithm for
appropriate use of antimicrobials,” PLOS One, vol. 10, no. 7, 2015,
Art. no. e0127674.

[71] A. F. Shao et al., “Can smartphones and tablets improve the management
of childhood illness in tanzania? A qualitative study from a primary health
care workers perspective,” BMC Health Serv. Res., vol. 15, no. 1, p. 135,
2015.

[72] A. F. Shao et al., “New algorithm for managing childhood illness using
mobile technology (ALMANACH): A controlled non-inferiority study
on clinical outcome and antibiotic use in Tanzania,” PLOS One, vol. 10,
no. 7, 2015, Paper e0132316.

[73] C. Rambaud-Althaus et al., “Performance of health workers using an
electronic algorithm for the management of childhood illness in Tanzania:
A pilot implementation study,” Amer. J. Tropical Med. Hygiene, vol. 96,
no. 1, pp. 249–257, 2017.

[74] K. Keitel and V. D’Acremont, “Electronic clinical decision algorithms
for the integrated primary care management of febrile children in low-
resource settings: Review of existing tools,” Clin. Microbiol. Infection,
vol. 24, no. 8, pp. 845–855, 2018.

[75] A. Bernasconi et al., “The almanach project: Preliminary results
and potentiality from Afghanistan,” Int. J. Med. Informat., vol. 114,
pp. 130–135, 2018.

[76] A. Bernasconi et al., “The almanach project: Preliminary results
and potentiality from Afghanistan,” Int. J. Med. Informat., vol. 114,
pp. 130–135, 2018.

[77] C. Bessat, N. A. Zonon, and V. DAcremont, “Large-scale implementation
of electronic integrated management of childhood illness (eIMCI) at the
primary care level in Burkina Faso: A qualitative study on health worker
perception of its medical content, usability and impact on antibiotic
prescription and resistance,” BMC Public Health, vol. 19, no. 1, 2019,
Art. no. 449.

[78] B. DeRenzi et al., “E-IMCI: Improving pediatric health care in low-
income countries,” in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
2008, pp. 753–762.

[79] M. Mitchell, N. Lesh, H. Cranmer, H. Fraser, I. Haivas, and K. Wolf, “Im-
proving care–improving access: The use of electronic decision support
with aids patients in South Africa,” Int. J. Healthcare Technol. Manag.,
vol. 10, no. 3, pp. 156–168, 2009.

[80] W. E. Allison et al., “Development of a clinical algorithm to prioritise
HIV testing of hospitalised paediatric patients in a low resource mod-
erate prevalence setting,” Archives Disease Childhood, vol. 96, no. 1,
pp. 67–72, 2011.

[81] Y. Anokwa, N. Ribeka, T. Parikh, G. Borriello, and M. C. Were, “Design
of a phone-based clinical decision support system for resource-limited
settings,” in Proc. 5th Int. Conf. Inf. Commun. Technol. and Develop.,
2012, pp. 13–24.

[82] T. Oluoch et al., “The effect of electronic medical record-based clinical
decision support on HIV care in resource-constrained settings: A system-
atic review,” Int. J. Med. Informat., vol. 81, no. 10, pp. e83–e92, 2012.

[83] T. Balcha et al., “A clinical scoring algorithm for determination of the
risk of tuberculosis in HIV-infected adults: A cohort study performed at
ethiopian health centers,” in Open Forum Infectious Diseases, London,
U.K.: Oxford Univ. Press, 2014.

[84] G. Wang et al., “Application of a long short-term memory neural network:
A burgeoning method of deep learning in forecasting HIV incidence in
Guangxi, China,” Epidemiol. Infection, vol. 147, 2019, Art. no. e194.

[85] G. A. Tadesse et al., “Multi-modal diagnosis of infectious diseases in
the developing world,” IEEE J. Biomed. Health Informat., vol. 24, no. 7,
pp. 2131–2141, Jul. 2020.

[86] W. A. Gebreyes et al., “The global one health paradigm: challenges
and opportunities for tackling infectious diseases at the human, animal,
and environment interface in low-resource settings,” PLOS Neglected
Tropical Diseases, vol. 8, no. 11, 2014, Art. no. e3257.

[87] B. W. Mamlin and P. G. Biondich, “Ampath medical record system
(AMRS): Collaborating toward an EMR for developing countries,” in
Proc. AMIA Annu. Symp. Proc., 2005, vol. 2005, pp. 490–494.

[88] B. W. Mamlin et al., “Cooking up an open source EMR for developing
countries: OpenMRS—A recipe for successful collaboration,” in Proc.
AMIA Annu. Symp. Proc., 2006, vol. 2006, pp. 529–533.

[89] A. S. Daar et al., “Grand challenges in chronic non-communicable
diseases,” Nature, vol. 450, no. 7169, pp. 494–496, 2007.

[90] S. Mendis, S. C. Johnston, W. Fan, O. Oladapo, A. Cameron, and
M. F. Faramawi, “Cardiovascular risk management and its impact
on hypertension control in primary care in low-resource settings: A
cluster-randomized trial,” Bull. World Health Org., vol. 88, pp. 412–419,
2010.

[91] R. Anchala, E. Di Angelantonio, D. Prabhakaran, and O. H. Franco,
“Development and validation of a clinical and computerised decision
support system for management of hypertension (DSS-HTN) at a primary
health care (PHC) setting,” PLOS One, vol. 8, no. 11, 2013, Paper e79638.

[92] R. Vedanthan et al., “Usability and feasibility of a tablet-based decision-
support and integrated record-keeping (DESIRE) tool in the nurse man-
agement of hypertension in rural western kenya,” Int. J. Med. Informat.,
vol. 84, no. 3, pp. 207–219, 2015.

[93] S. El-Sappagh, M. Elmogy, and A. Riad, “A fuzzy-ontology-oriented
case-based reasoning framework for semantic diabetes diagnosis,” Artif.
Intell. Med., vol. 65, no. 3, pp. 179–208, 2015.

[94] D. Jindal et al., “Development of mWellcare: An mHealth intervention
for integrated management of hypertension and diabetes in low-resource
settings,” Global Health Action, vol. 11, no. 1, 2018, Art. no. 1517930.



370 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 15, 2022

[95] A. Blank et al., “Quality of prenatal and maternal care: Bridging the
know-do gap (qualmat study): An electronic clinical decision support
system for rural Sub-Saharan Africa,” BMC Med. Informat. Decis. Mak-
ing, vol. 13, no. 1, pp. 1–16, 2013.

[96] V. Horner, P. Rautenbach, N. Mbananga, T. Mashamba, and H. Kwinda,
“An e-health decision support system for improving compliance of health
workers to the maternity care protocols in South Africa,” Appl. Clin.
Informat., vol. 4, no. 01, pp. 25–36, 2013.

[97] N. Mensah et al., “Impact of an electronic clinical decision support system
on workflow in antenatal care: The QUALMAT eCDSS in rural health
care facilities in Ghana and Tanzania,” Global Health Action, vol. 8, no. 1,
2015, Art. no. 25756.

[98] N. H. Khan, E. Tegnander, J. M. Dreier, S. Eik-Nes, H. Torp, and G. Kiss,
“Automatic measurement of the fetal abdominal section on a portable
ultrasound machine for use in low and middle income countries,” in Proc.
IEEE Int. Ultrasonics Symp., 2016, pp. 1–4.

[99] S. Balaji, M. Patil, and C. McGregor, “A cloud based big data based
online health analytics for rural nicus and picus in India: Opportunities
and challenges,” in Proc. IEEE 30th Int. Symp. Comput.-Based Med.
Syst., 2017, pp. 385–390.

[100] S. Duffy, E. MacLaren, D. Phillips, and P. Letchworth, “MedNav - help-
ing midwives manage neonatal resuscitation in resource poor settings,”
Future Healthcare J., vol. 4, pp. 178–183, Oct. 2017.

[101] L. Vesel et al., “Implementing the INTERGROWTH-21st gestational dat-
ing and fetal and newborn growth standards in peri-urban Nairobi, Kenya:
Provider experiences, uptake and clinical decision-making,” PLOS One,
vol. 14, no. 3, 2019, Art. no. e0213388.

[102] T. L. van den Heuvel, H. Petros, S. Santini, C. L. de Korte, and B. van
Ginneken, “Automated fetal head detection and circumference estimation
from free-hand ultrasound sweeps using deep learning in resource-limited
countries,” Ultrasound Med. Biol., vol. 45, no. 3, pp. 773–785, 2019.

[103] H. B. Amoakoh et al., “The effect of an mhealth clinical decision-making
support system on neonatal mortality in a low resource setting: A
cluster-randomized controlled trial,” EClinicalMed., vol. 12, pp. 31–42,
2019.

[104] A. Kwizera et al., “A machine learning-based triage tool for children
with acute infection in a low resource setting,” Pediatric Crit. Care Med.,
vol. 20, no. 12, pp. e524–e530, 2019.

[105] K. J. Rittenhouse et al., “Improving preterm newborn identification in
low-resource settings with machine learning,” PLOS One, vol. 14, no. 2,
2019, Paper e0198919.

[106] I.-O. O. Adepoju, B. J. A. Albersen, V. De Brouwere, J. van Roos-
malen, and M. Zweekhorst, “mHealth for clinical decision-making in
Sub-Saharan Africa: A scoping review,” JMIR mHealth uHealth, vol. 5,
no. 3, p. e38, 2017.

[107] World Health Organization, “Strategies toward ending preventable ma-
ternal mortality (EPMM),” Department of Reproductive Health and
Research, 2015. [Online]. Available: https://apps.who.int/iris/bitstream/
handle/10665/153540/WHO_RHR_15.03_eng.pdf?sequence=1

[108] E. Ezugwu, P. Agu, M. Nwoke, and F. Ezugwu, “Reducing maternal
deaths in a low resource setting in Nigeria,” Nigerian J. Clin. Pract.,
vol. 17, no. 1, pp. 62–66, 2014.

[109] R. K. Agarwal et al., “Information technology–assisted treatment plan-
ning and performance assessment for severe thalassemia care in low- and
middle-income countries: Observational study,” JMIR Med. Inf., vol. 7,
Jan. 2019, Paper e9291.

[110] M. A. Ahmed and T. M. Alkhamis, “Simulation optimization for an
emergency department healthcare unit in Kuwait,” Eur. J. Oper. Res.,
vol. 198, no. 3, pp. 936–942, 2009.

[111] B. D. Bradley, S. R. Howie, T. C. Chan, and Y.-L. Cheng, “Estimating
oxygen needs for childhood pneumonia in developing country health
systems: A new model for expecting the unexpected,” PLOS One, vol. 9,
no. 2, 2014, Paper e89872.

[112] H. Maharlou, S. R. Niakan Kalhori, S. Shahbazi, and R. Ravangard,
“Predicting length of stay in intensive care units after cardiac surgery:
Comparison of artificial neural networks and adaptive neuro-fuzzy sys-
tem,” Healthcare Informat. Res., vol. 24, no. 2, pp. 109–117, 2018.

[113] M. Yousefi, M. Yousefi, R. P. M. Ferreira, J. H. Kim, and F. S. Fogliatto,
“Chaotic genetic algorithm and adaboost ensemble metamodeling ap-
proach for optimum resource planning in emergency departments,” Artif.
Intell. Med., vol. 84, pp. 23–33, 2018.

[114] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[115] M. J. Van der Laan, E. C. Polley, and A. E. Hubbard, “Super learner,”
Statistical Appl. Genetics Mol. Biol., vol. 6, no. 1, 2007.

[116] M. Evans, M. Corden, C. Crehan, F. Fitzgerald, and M. Heys, “Refin-
ing clinical algorithms for a neonatal digital platform for low-income
countries: A modified delphi technique,” medRxiv, 2020.

[117] B. J. Cowling et al., “Clinical prognostic rules for severe acute respiratory
syndrome in low-and high-resource settings,” Archives Internal Med.,
vol. 166, no. 14, pp. 1505–1511, 2006.

[118] E. Vardell, “Clinicalkey: A point-of-care search engine,” Med. Reference
Services Quart., vol. 32, no. 1, pp. 84–92, 2013.

[119] N. Puttkammer et al., “Development of an electronic medical record
based alert for risk of hiv treatment failure in a low-resource setting,”
PLOS One, vol. 9, no. 11, 2014, Art. no. e112261.

[120] F. Haque et al., “Evaluation of a smartphone decision-support tool
for diarrheal disease management in a resource-limited setting,” PLOS
Neglected Tropical Diseases, vol. 11, no. 1, 2017, Art. no. e0005290.

[121] J. R. N. Vissoci, T. A. H. Rocha, C. Elahi, M. M. Haglund, and C. Staton,
“Pw 2468 development of a predictive modeling approach to analysis of
patient outcomes related to traumatic brain injury at a emergency center
in a low income country,” Injury Prevention, vol. 24, no. Suppl. 2, 2018,
Art. no. A191.

[122] T. A. H. Rocha et al., “A traumatic brain injury prognostic model to
support in-hospital triage in a low-income country: A machine learning–
based approach,” J. Neurosurgery, vol. 1, no. aop, pp. 1–9, 2019.

[123] B. Hunt et al., “Diagnosing cervical neoplasia in rural Brazil using a
mobile van equipped with in vivo microscopy: A cluster-randomized
community trial,” Cancer Prevention Res., vol. 11, no. 6, pp. 359–370,
2018.

[124] Elsevier, “Elsevier adds clinicalkey to research4life access program
for developing countries,” Press Release, May 25, 2017. [Online].
Available. https://www.elsevier.com/about/press-releases/corporate-
social-responsibility/else-vier-adds-clinicalkey-to-research4life-access-
program-for-developing-countries

[125] S. A. Christie et al., “Machine learning without borders? An adaptable
tool to optimize mortality prediction in diverse clinical settings,” J.
Trauma Acute Care Surgery, vol. 85, no. 5, pp. 921–927, 2018.

[126] P. C. Pearlman et al., “The national institutes of health affordable cancer
technologies program: Improving access to resource-appropriate tech-
nologies for cancer detection, diagnosis, monitoring, and treatment in
low-and middle-income countries,” IEEE J. Translational Eng. Health
Med., vol. 4, pp. 1–8, Sep. 2016.

[127] L. Hu et al., “An observational study of deep learning and automated
evaluation of cervical images for cancer screening,” JNCI: J. Nat. Cancer
Inst., vol. 111, no. 9, pp. 923–932, 2019.

[128] K. G. Pellé et al., “Electronic clinical decision support algorithms incor-
porating point-of-care diagnostic tests in low-resource settings: A product
profile,” Brit. Med J. Global Health, vol. 5, no. 2, 2020, Art. no. e002067.

[129] J.-Z. Cheng et al., “Computer-aided diagnosis with deep learning archi-
tecture: applications to breast lesions in us images and pulmonary nodules
in CT scans,” Sci. Rep., vol. 6, 2016, Art. no. 24454.

[130] A. Esteva et al., “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[131] M. Komorowski, L. A. Celi, O. Badawi, A. C. Gordon, and A. A. Faisal,
“The artificial intelligence clinician learns optimal treatment strategies
for sepsis in intensive care,” Nature Med., vol. 24, no. 11, 2018, Art.
no. 1716.

[132] S. Khairat, D. Marc, W. Crosby, and A. Al Sanousi, “Reasons for physi-
cians not adopting clinical decision support systems: Critical analysis,”
JMIR Med. Informat., vol. 6, no. 2, p. e24, 2018.

[133] Z. Jiang, H. Zhang, Y. Wang, and S.-B. Ko, “Retinal blood vessel
segmentation using fully convolutional network with transfer learning,”
Computerized Med. Imag. Graph., vol. 68, pp. 1–15, 2018.

[134] H. Shan et al., “3-D convolutional encoder-decoder network for low-dose
CT via transfer learning from a 2-D trained network,” IEEE Trans. Med.
Imag., vol. 37, no. 6, pp. 1522–1534, Jun. 2018.

[135] P. M. Cheng and H. S. Malhi, “Transfer learning with convolutional neural
networks for classification of abdominal ultrasound images,” J. Digit.
Imag., vol. 30, no. 2, pp. 234–243, 2017.

[136] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Under-
standing transfer learning for medical imaging,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 3342–3352.

[137] B. Settles, “Active learning literature survey,” Dept. of Comput. Sci.,
Univ. of Wisconsin-Madison, Madison, WI, USA, Tech. Rep. TR1648,
2009.

https://apps.who.int/iris/bitstream/penalty -@M handle/10665/153540/WHO_RHR_15.03_eng.pdf{?}sequence$=$1
https://www.elsevier.com/about/press-releases/corporate-social-responsibility/elsevier-adds-clinicalkey-to-research4life-access-program-for-developing-countries


KIYASSEH et al.: PROMISE OF CLINICAL DECISION SUPPORT SYSTEMS TARGETTING LOW-RESOURCE SETTINGS 371

[138] R. S. Bressan, G. Camargo, P. H. Bugatti, and P. T. M. Saito, “Exploring
active learning based on representativeness and uncertainty for biomed-
ical data classification,” IEEE J. Biomed. and Health Informat., vol. 23,
no. 6, pp. 2238–2244, Nov. 2019.

[139] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in Proc. Int. Conf. Learn. Rep-
resentations, Feb. 2018.

[140] D. Wei, J. J. Lim, A. Zisserman, and W. T. Freeman, “Learning and using
the arrow of time,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 8052–8060.

[141] H. Banville, I. Albuquerque, A. Hyvrinen, G. Moffat, D. Engemann, and
A. Gramfort, “Self-supervised representation learning from electroen-
cephalography signals,” in Proc. IEEE 29th Int. Workshop Mach. Learn.
Signal Process. (MLSP), 2019, pp. 1–6.

[142] World Health Organization, “Key facts: Sepsis,” Apr. 19, 2018.
[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/
sepsis

[143] K. E. Rudd et al., “The global burden of sepsis: Barriers and potential
solutions,” Crit. Care, vol. 22, no. 1, pp. 1–11, 2018.

[144] A. Raghu, M. Komorowski, and S. Singh, “Model-based reinforcement
learning for sepsis treatment,” 2018, arXiv:1811.09602.

[145] Y. B. Esterson, M. Carey, J. D. Piette, N. Thomas, and M. Hawkins, “A
systematic review of innovative diabetes care models in low-and middle-
income countries (LMICs),” J. Health Care Poor Underserved, vol. 25,
no. 1, pp. 72–93, 2014.

[146] M. M. Agarwal, B. Weigl, and M. Hod, “Gestational diabetes screen-
ing: the low-cost algorithm,” Int. J. Gynecol. Obstetrics, vol. 115,
pp. S30–S33, 2011.

[147] D. O. Abegunde, C. D. Mathers, T. Adam, M. Ortegon, and K.
Strong, “The burden and costs of chronic diseases in low-income and
middle-income countries,” Lancet, vol. 370, no. 9603, pp. 1929–1938,
2007.

[148] S. Yusuf et al., “Use of secondary prevention drugs for cardiovas-
cular disease in the community in high-income, middle-income, and
low-income countries (the pure study): A prospective epidemiological
survey,” Lancet, vol. 378, no. 9798, pp. 1231–1243, 2011.

[149] K. Teo et al., “The prospective urban rural epidemiology (pure) study:
Examining the impact of societal influences on chronic noncommunica-
ble diseases in low-, middle-, and high-income countries,” Amer. Heart
J., vol. 158, no. 1, pp. 1–7, 2009.

[150] A. Esiéné, P. O. Etoundi, J. N. Tochie, J. A. M. Metogo, and
J. Z. Minkande, “Validity of four clinical prediction scores for pulmonary
embolism in a Sub-Saharan African setting: A protocol for a cameroonian
multicentre cross-sectional study,” Brit. Med J. Open, vol. 9, no. 10, 2019,
Art. no. e031322.

[151] J. Skeete, K. Connell, P. Ordunez, and D. J. DiPette, “The American col-
lege of cardiology/american heart association 2017 hypertension guide-
line: Implications for incorporation in Latin America, the Caribbean, and
other resource-limited settings,” J. Clin. Hypertension, vol. 20, no. 9,
pp. 1342–1349, 2018.

[152] S. N. Ofori and O. J. Odia, “Risk assessment in the prevention of
cardiovascular disease in low-resource settings,” Indian Heart J., vol. 68,
no. 3, pp. 391–398, 2016.

[153] J. Wiens, J. Guttag, and E. Horvitz, “A study in transfer learning:
Leveraging data from multiple hospitals to enhance hospital-specific
predictions,” J. Amer. Med. Informat. Assoc., vol. 21, no. 4, pp. 699–706,
2014.

[154] J. Oh et al., “A generalizable, data-driven approach to predict daily risk
of clostridium difficile infection at two large academic health centers,”
Infection Control Hospital Epidemiol., vol. 39, no. 4, pp. 425–433, 2018.

[155] U.S. Food and Drug Administration, “Proposed regulatory framework for
modifications to artificial intelligence/machine learning (AI/ML)-based
software as a medical device (SaMD),” 2019. [Online]. Available: https:
//www.fda.gov/media/122535/download

[156] A. Wong et al., “Prospective evaluation of medication-related clinical
decision support over-rides in the intensive care unit,” Brit. Med J. Qual.
Saf., vol. 27, no. 9, pp. 718–724, 2018.

[157] T. Burki, “GP at hand: A digital revolution for health care provision?,”
Lancet, vol. 394, no. 10197, pp. 457–460, 2019.

[158] A. Connell et al., “Evaluation of a digitally-enabled care pathway for
acute kidney injury management in hospital emergency admissions,” NPJ
Digit. Med., vol. 2, no. 1, pp. 1–9, 2019.

https://www.who.int/news-room/fact-sheets/detail/penalty -@M sepsis
https://www.fda.gov/media/122535/download


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


