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Abstract—Recent years have witnessed widespread
adoption of machine learning (ML)/deep learning (DL) tech-
niques due to their superior performance for a variety
of healthcare applications ranging from the prediction
of cardiac arrest from one-dimensional heart signals to
computer-aided diagnosis (CADx) using multi-dimensional
medical images. Notwithstanding the impressive perfor-
mance of ML/DL, there are still lingering doubts regarding
the robustness of ML/DL in healthcare settings (which is
traditionally considered quite challenging due to the myriad
security and privacy issues involved), especially in light of
recent results that have shown that ML/DL are vulnerable to
adversarial attacks. In this paper, we present an overview
of various application areas in healthcare that leverage
such techniques from security and privacy point of view
and present associated challenges. In addition, we present
potential methods to ensure secure and privacy-preserving
ML for healthcare applications. Finally, we provide insight
into the current research challenges and promising direc-
tions for future research.

Index Terms—Adversarial ML, healthcare, privacy pre-
serving ML, robust ML, secure ML.

I. INTRODUCTION

W E ARE living in the age of algorithms, in which machine
learning (ML)/deep learning (DL) systems have trans-

formed multiple industries such as manufacturing, transporta-
tion, and governance. Over the past few years, DL has provided
state of the art performance in different domains—e.g., computer
vision, text analytics, and speech processing, etc. Due to the
extensive deployment of ML/DL algorithms in various domains
(e.g., social media), such technology has become inseparable
from our routine life. ML/DL algorithms are now beginning
to influence healthcare as well—a field that has traditionally
been impervious to large-scale technological disruptions [1].
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ML/DL techniques have shown outstanding results recently in
versatile tasks such as recognition of body organs from medical
images [2], classification of interstitial lung diseases [3], detec-
tion of lungs nodules [4], medical image reconstruction [5], [6],
and brain tumor segmentation [7], to name a few.

It is highly expected that intelligent software will assist radiol-
ogists and physicians in examining patients in the near future [8]
and ML will revolutionize the medical research and practice [9].
Clinical medicine has emerged as a exciting application area for
ML/DL models, and these models have already achieved human-
level performance in clinical pathology [10], radiology [11],
ophthalmology [12], and dermatology [13]. Some of these
studies have even reported that DL models outperform human
physicians on average. The aspect of better performance of DL
models in comparison with humans has led to the development
of computer-aided diagnosis systems—for instance, the U.S.
Food and Drug Administration (FDA) in 2018 has announced
the approval of an intelligent diagnosis system to detect certain
diabetes-related eye problems from medical images that will not
require any human intervention.1

The potential of ML models for healthcare applications is
also benefitting from the progress in concomitantly-advancing
technologies like cloud/edge computing, mobile communica-
tion, and big data technology [14]. Together with these technolo-
gies, ML/DL is capable of producing highly accurate predictive
outcomes and can facilitate the human-centered intelligent solu-
tions [15]. Along with other benefits like enabling remote health-
care services for rural and low-income zones, these technologies
can play a vital role in revitalizing the healthcare industry.

Notwithstanding the impressive performance of DL algo-
rithms, many recent studies have raised concerns about the
security and robustness of ML models—for instance, Szegedy
et al. demonstrated for the first time that DL models are strictly
vulnerable to carefully crafted adversarial examples [20]. Sim-
ilarly, various types of data and model poisoning attacks have
been proposed against DL systems [21] and different defenses
against such strategies have been proposed in the literature [19].
However, the robustness of defense methods is also question-
able and different studies have shown that most of the defense
techniques fail against a particular attack. The discovery of the
fact that DL models are neither secure nor robust hinders signifi-
cantly their practical deployment in security-critical applications

1[Online]. Available: https://tinyurl.com/FDA-AI-diabetic-eye
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TABLE I
COMPARISON OF THIS PAPER WITH EXISTING REVIEW AND SURVEY PAPERS ON SECURE, PRIVATE, ROBUST ML/DL FOR HEALTHCARE APPLICATIONS.

(COVERED:
√

; NOT COVERED: ×; PARTIALLY COVERED: ≈)

like predictive healthcare which is essentially life-critical. For
instance, researchers have already demonstrated the threat of
adversarial attacks on ML-based medical systems [17], [22].
Therefore, ensuring the integrity and security of DL models and
health data are paramount to the widespread adoption of ML/DL
in the industry.

Before moving further, we will elaborate upon the two key
terms on which this survey is focused—namely, security and
robustness—particularly in the context of ML/DL models. Se-
curity is concerned with the possible threats/attacks that can
be realized on an ML/DL system influencing it to get intended
behavior or outcome, whereas robustness defines the capability
of the ML/DL system to survive under such attacks. Security
is analyzed along two dimensions: (a) the attacks on ML/DL
systems attempting to get the control of the system or to get
the intended behavior/outcome; (b) the attacks trying to learn
about the training data, i.e., privacy attacks. On the other hand,
robustness is also analyzed along two axes: (a) the survivability
of ML/DL systems under attacks attempting to influence them
(i.e., robustness to attacks like adversarial ML attacks); (b) the
resistance to privacy attacks. Note that the robustness is a relative
term and the effectiveness of the system varies according to the
nature of the attack, i.e., an ML/DL system might be robust under
a particular attack but vulnerable to a different attack.

In this paper, we present a comprehensive survey of existing
literature on the security and robustness of ML/DL models
when used for building healthcare systems with a specific focus
on the above-mentioned dimensions. We note here that the
aim of this paper is to provide an in-depth survey of various
security challenges associated with the application of ML/DL
in healthcare systems and to provide a taxonomy of potential
solutions to overcome these issues. Along with discussing se-
curity and robustness challenges of using ML/DL models, we
also briefly elaborate on various general challenges and sources
of vulnerabilities that hinder the safe and robust application
of ML/DL in healthcare applications. In addition, potential

solutions to address security, privacy, and robustness challenges
are presented in this paper. In summary, the following are the
specific contributions of this paper.

1) We present an overview of diverse literature on appli-
cations of ML/DL techniques by categorizing it to four
major tasks in healthcare, i.e., prognosis, diagnosis, treat-
ment, and clinical workflow.

2) We formulate the ML pipeline for data-driven healthcare
applications and describe different sources of vulnera-
bilities at each stage that raises security and robustness
challenges.

3) We present an overview of various security and robust-
ness challenges associated with the adoption of ML/DL
models for healthcare applications.

4) We present a taxonomy of different solutions that can be
used for ensuring secure and robust application of ML/DL
techniques for healthcare applications.

5) Finally, we highlight various open research issues that
require further investigation.

A comparison of this paper with existing surveys and review
papers on the security of ML/DL models in healthcare systems
is also presented in Table I.

Organization of the Paper: The rest of the paper is organized
as follows. In Section II, various applications of ML and DL
techniques in healthcare are discussed. Section III presents the
ML pipeline in data-driven healthcare and various sources of
vulnerabilities along with different challenges associated with
the use of ML. Different potential solutions to ensure secure
and privacy-preserving ML are discussed in Section IV and
various open research issues are outlined in Section V. Finally,
we conclude the paper in Section VI.

II. ML FOR HEALTHCARE: APPLICATIONS

In this section, various prominent applications of ML in
healthcare are discussed.
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Fig. 1. The illustration of major phases for development of machine learning (ML) based healthcare systems.

A. ML in Healthcare: The Big Picture

The major phases for developing a ML-based healthcare
system are illustrated in Fig. 1 and major types of ML/DL that
can be used in healthcare applications are briefly described next.

1) Unsupervised Learning: The ML techniques utilizing
unlabelled data are known as unsupervised learning methods.
Widely used examples of unsupervised learning methods are a
clustering of data points using a similarity metric and dimen-
sionality reduction to project high dimensional data to lower-
dimensional subspaces (sometimes also referred to as feature
selection). In addition, unsupervised learning can be used for
anomaly detection, e.g., clustering [23]. Classical examples of
unsupervised learning methods in healthcare include the pre-
diction of heart diseases using clustering [24] and prediction
of hepatitis disease using principal component analysis (PCA)
which is a dimensionality reduction technique [25].

2) Supervised Learning: Such methods that build or map
the association between the inputs and outputs using labeled
training data are characterized as supervised learning methods.
If the output is discrete then the task is called classification
and for a continuous value output, the task is called regression.
Classical examples of supervised learning methods in healthcare
include the classification of different types of lung diseases (nod-
ules) [4] and recognition of different body organs from medical
images [2]. Sometimes, ML methods can be neither supervised
nor unsupervised, i.e., where the training data contains both
labeled and unlabelled samples. Methods utilizing such data
are known as semi-supervised learning methods. A systematic
review of supervised and unsupervised learning techniques can
be found in [26].

3) Semi-Supervised Learning: Semi-supervised learning
methods are useful when both labelled and unlabelled samples
are available for training, typically, a small amount of labelled
data and a large amount of unlabelled data. Semi-supervised

learning techniques can be particularly useful for a variety
of healthcare applications as acquiring a sufficient amount of
labelled data for model training is difficult in healthcare. Differ-
ent facets of semi-supervised learning using different learning
techniques have been proposed in the literature. For instance,
a semi-supervised clustering method for healthcare data is pre-
sented in [27] and a semi-supervised ML approach for activity
recognition using sensors data is presented in [28]. In [29], [30],
authors applied a semi-supervised learning method to medical
image segmentation.

4) Reinforcement Learning: Methods that learn a policy
function given a set of observations, actions, and rewards in
response to actions performed over time fall in the class of
reinforcement learning (RL) [31]. RL has a great potential to
transform many healthcare applications and recently, it has been
used for context-aware symptoms checking for disease diagno-
sis [32]. Furthermore, the potential of using RL for healthcare
applications can be seen through the recent example of the
Go game, where a computer using RL with the integration of
supervised and unsupervised learning methods defeated a human
champion player [33].

B. Applications of ML in Healthcare

Healthcare service providers generate a large amount of het-
erogeneous data and information daily, making it difficult for the
“traditional methods” to analyze and process it. ML/DL methods
help to effectively analyze this data for actionable insights.
In addition, there are heterogeneous sources of data that can
augment healthcare data such as genomics, medical data, data
from social media, and environmental data, etc. A depiction of
these sources of data is shown in Fig. 2. The four major applica-
tions of healthcare that can benefit from ML/DL techniques are
prognosis, diagnosis, treatment, and clinical workflow, which
are described next.
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Fig. 2. Illustration of heterogeneous sources contributing to healthcare
data.

1) Applications of ML in Prognosis: Prognosis is the pro-
cess of predicting the expected development of a disease in
clinical practice. It also includes identification of symptoms and
signs related to a specific disease and whether they will become
worse, improve, or remain stable over time and identification
of potential associated health problems, complications, ability
to perform routine activities, and the likelihood of survival.
As in clinical setting, multi-modal patients’ data is collected,
e.g., phenotypic, genomic, proteomic, pathology tests results,
and medical images, etc., which can empower the ML models
to facilitate disease prognosis, diagnosis and treatment [34].
For instance, ML models have been largely developed for the
identification and classification of different types of cancers,
e.g., brain tumor [35] and lung nodules [36]. However, the
potential applications ML for disease prognosis, i.e., prediction
of disease symptoms, risks, survivability, and recurrence have
been exploited under recent translational research efforts that
aim to enable personalized medicine. However, the field of
personalized medicine is nascent that requires extensive devel-
opment of adjacent fields like bioinformatics, strong validation
strategies, and demonstrably robust applications of ML thus to
achieve the huge and translational impact.

2) Applications of ML in Diagnosis:
a) Electronic Health Records (EHRs): Hospitals

and other healthcare service providers are producing a large
collection of electronic health records (EHRs) on a daily basis
and comprise of structured and unstructured data that contains
a complete medication history of patients. ML-based methods
have been utilized for the extraction of clinical features for
facilitating the diagnosis process [37]. For example, a semi-
supervised approach for the extraction of diagnosis information
from unstructured EHRs is presented in [38]. The use of ML for
the diagnosis of diabetes from EHRs is presented in [39]. In [40],

features robustness using EHRs data for the year of care for each
record is examined for two tasks, i.e., mortality prediction and
length-of-stay and authors showed that prediction performance
gets degraded when ML models are trained on historical data
and tested on unseen (future) data.

b) ML in Medical Image Analysis: In medical image
analysis, ML techniques are used for efficient and effective
extraction of information from medical images that are acquired
using different imaging modalities such as magnetic resonance
imaging (MRI), computed tomography (CT), ultrasound, and
positron emission tomography (PET), etc. These modalities
provide important functional and anatomical information about
different body organs and play a crucial role in the detec-
tion/localization and diagnosis of abnormalities. A taxonomy
of key medical imaging modalities is presented in Fig. 3. The
key purpose of medical image analysis is to assist clinicians
and radiologists for efficient diagnosis and prognosis of the
diseases. The prominent tasks in medical image analysis include
detection, classification, segmentation, retrieval, reconstruction,
and image registration which are discussed next. Moreover,
fully automated intelligent medical image diagnosis systems are
expected to be part of next-generation healthcare systems.

� Enhancement: Enhancement of degraded medical images
is an important pre-processing step that directly effects
the diagnosis process. There are many sources of noise and
disturbances encountered in the medical image acquisition
process which degrade the quality and significance of the
resultant images. For instance, generating MRI images
is a quite lengthy process that typically requires several
minutes to produce a good quality image and to acquire
detailed soft-tissue contrast, patients have to remain still
and straight as much as possible. Because movements can
cause false artifacts in image acquisition, the complete
process has to be repeated usually multiple times to pro-
duce significantly useful images. Also, depending on the
body area being scanned and the number of images to be
taken, patients might be asked to hold their breath during
short scans [42]. Therefore, any movement of the subject
can introduce artifacts in the acquired image. Moreover,
some sort of mechanical noise is also sometimes intro-
duced in the output image. In the literature, different DL
models are used for denoising medical images such as
convolutional denoising autoencoders [43] and GANs. In
addition, GANs have been successfully used for cleaning
motion artifacts introduced in multi-shot MRI images [14].
Super-resolution is yet another powerful and impactful
enhancement technique for medical images, e.g., MRI
denoising [44].

� Detection: The process of identifying specific disease pat-
terns or abnormalities (e.g., tumor, cancer) in medical im-
ages is known as detection. In traditional clinical practice,
such abnormalities are identified by expert radiologists
or physicians that often require a lot of time and effort.
Whereas, DL based methods have shown their potential
for this task and various studies have been presented in
the literature for the detection of diseases. For instance, a
locality-sensitive approach utilizing CNN for the detection
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Fig. 3. A typology of commonly used medical imaging modalities (adapted from [41]).

and classification of nuclei colon cancer in histopatholog-
ical images is presented in [45]. A hybrid method utilizing
handcrafted features and a CNN model for the detection
of mitosis in breast cancer images is presented in [46].

� Classification DL models in particular, convolutional neu-
ral networks (CNNs) have proven to give high perfor-
mance in medical image classification tasks when com-
pared with other state-of-the-art non-learning based tech-
niques. Modality classification, recognizing different body
organs, and abnormalities from medical images using
CNNs have been extensively studied in the literature.
In [2], an approach using CNN for multi-instance recog-
nition of different body organs is presented and a CNN
based method for classification of interstitial lung diseases
(ILDs) is presented in [3]. In another study, a CNN model
is trained for the classification of lung nodules [4].
Transfer learning approaches have also been used for
medical image classification [47]. In transfer learning, a
pre-trained DL model (typically trained on natural im-
ages) is fine-tuned on a comparatively small dataset of
medical images. The results obtained by this approach, as
reported in the literature, are promising; however, a few
studies have reported contradictory results. For instance,
results obtained by transfer learning in [48] and [49] are
contradictory.

� Segmentation: The segmentation of tissues and organs in
medical images enables quantitative analysis of abnormal-
ities in terms of clinical parameters, e.g., automatically
measuring the volume and shape of cancer in brain images.
In addition, the extraction of such clinically significant fea-
tures is an important and foremost step in computer-aided
detection and diagnosis systems that we discuss later in
this section. The process of segmentation deals with the
partitioning of an image into multiple non-overlapping
parts using a pre-defined criterion such as intrinsic color,

texture, and contrast, etc. Addressing the problem of seg-
mentation utilizing various DL models (e.g, CNN and
recurrent neural network (RNN) [50]) is widely studied
in the literature and the common architecture used for
segmentation of medical images is U-net [51]. Various
DL architectures are being proposed for the segmentation
of multi-modal images such as the brain, skin cancer,
CT images, etc. as well as segmentation of volumetric
images [52]. An overview of various DL models for seg-
mentation of medical images is presented in [53].

� Reconstruction: The process of generating interpretable
images from raw data acquired from the imaging sensor is
known as medical image reconstruction. The fundamental
problem in medical image reconstruction is to accelerate
the inherently slow data acquisition process, which is an
interesting ill-posed inverse problem in which we want
to determine the system’s input given its output. Many
important medical imaging modalities require a lot of time
for reconstructing an image from the raw data samples,
e.g., MRI and CT. Thus in medical image reconstruction,
we aim to reduce image acquisition time and storage space.
Research on medical image reconstruction using deep
models is drastically increasing and various DL models
such as CNNs [54] and autoencoders [6] have been exten-
sively used for the reconstruction of MRI and CT images.
Recently, generative adversarial networks (GANs) have
been widely used for the reconstruction of medical im-
ages and have produced outstanding results. For instance,
a GAN based MRI reconstruction method is presented
in [55] that also cleans the motion artifacts.

� Image Registration: Image registration is the process of
mapping input images with respect to a reference image
and it is the first step in image fusion. Image registra-
tion has many potential applications in medical image
analysis as described in detail by El-Gamal et al. [56],
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however, their use in actual clinical applications is very
limited [57]. To facilitate the surgical spinal screw implant
or tumor removal, image registration is usually applied
in spinal surgery or neurosurgery for the localization of
spinal bony landmark or a tumor, respectively. Various
similarity metrics and reference points are calculated to
align the sensed image with the reference image. In [58],
a framework for deformable image registration named
as Quicksilver is proposed that uses the large deforma-
tion diffeomorphic metric mapping (LDDMM) model for
patch-wise prediction strategy. Similarly, an unsupervised
learning based methods for deformable image registration
is presented in. In [59], a CNN based regression approach
for 2D/3D image registration is presented that addresses
two fundamental limitations of existing intensity-based
image registration methods, i.e., small capture range and
slow computation.

� Retrieval: The recent era has witnessed the revolution
of digital interventions from the large-scale image and
video collections to big data. This trend is true for medical
imaging as well, every hospital and clinic having radiology
services are producing thousands of medical images daily
in diverse modalities, resulting in the growth of large-scale
multi-modal medical image repositories. Thus making it
difficult to manage and query such huge databases. In
particular, it is more challenging for multi-modal med-
ical data. To facilitate the production and management
of multi-modal medical data, traditional methods are not
sufficient and various ML/DL techniques are proposed in
the literature [60], [61].
In routine practice, clinicians usually compare the current
cases with the previous ones, mainly to effectively plan the
diagnosis and treatment of the patient being examined. In
this regard, identifying modality (i.e., modality classifica-
tion discussed above) is of great significance as it serves as
an initial tool to facilitate the process of comparison and
an efficient modality classification system will reduce the
search space by only looking for relevant images in the
collections of the desired modality.

3) Applications of ML in Treatment:
a) Image interpretation: As discussed above, medi-

cal images are widely used in the routine clinical practice and the
analysis and interpretation of these images are performed by ex-
pert physicians and radiologists. To narrate the findings regard-
ing images being studied, they write textual radiology reports
about each body organ that was examined in the conducted study.
However, writing such reports is very challenging in some sce-
narios, e.g., less experienced radiologists and healthcare service
providers in rural areas where the quality of healthcare services is
not up to the mark. On the other side, for experienced radiologists
and pathologists, the process of preparing high-quality reports
can be tedious and time-consuming which can be exacerbated
by a large number of patients visiting daily. Therefore, various
researchers have attempted to address this problem using natural
language processing (NLP) and ML techniques. In [62], a natural
language processing based method is proposed for annotating
clinical radiology reports. A multi-task ML based framework

is proposed for automatic tagging and description of medical
images [63]. In a similar study [64], an end-to-end architecture
developed with the integration of CNN and RNN is presented
for thorax disease classification and reporting in chest X-rays.
In [65], a novel multi-modal model utilizing CNN and long short
term memory (LSTM) network is developed for automatic report
generation.

b) ML in real-time health monitoring: Real-time
monitoring of critical patients is crucial and is a key component
of the treatment process. Continuous health monitoring using
wearable devices, IoT sensors, and smartphones is gaining in-
terest among people. In a typical setting of continuous health
monitoring, health data is collected using a wearable device and
smartphone and then transmitted to the cloud for analysis using
an ML/DL technique. Then the outcomes are transmitted back to
the device for appropriate action(s). For instance, a framework
having a similar system architecture is presented in [66]. The
system is developed by integrating mobile and cloud for mon-
itoring of heart rate using PPG signals. Similarly, a review of
different ML techniques for human activity recognition with
application to remote monitoring of patients using wearable
devices is presented in [67]. The sharing of health data with
clouds for further analysis raises many privacy and security
challenges that we discuss in the next section.

4) Applications of ML in Clinical Workflows:
a) Disease prediction and diagnosis: The early

prediction and diagnosis of diseases from medical data are
one of the exciting applications of ML. Various studies have
highlighted the potential of using predictive healthcare for the
timely treatment of diseases. For instance, the case of cardiovas-
cular risk prediction using different ML algorithms with clinical
data is studied in [68] and the study concluded that ML tech-
niques improved the prediction efficacy. A survey of various ML
techniques for the detection and diagnosis of different diseases
(such as diabetes, dengue, hepatitis, heart, and liver) is presented
in [69]. The potential of using ML-based methods for prediction
and prognosis of cancer is highlighted in [70].

b) ML in computer-aided detection or diagnosis:
The computer-aided detection (CADe) or computer-aided di-
agnosis (CADx) systems are being developed mainly for the
automatic interpretation of medical images that would assist
the radiologist in their clinical practice. The system works by
utilizing different functionalities including ML/DL, traditional
computer vision and image processing techniques and relies
heavily on the performance of these techniques. IBM’s Watson
is a classical example of CADx system developed by integrating
various techniques including ML. However, any task in medi-
cal image and signal analysis automated by the application of
ML/DL models can be deemed as a CADe or CADx systems,
e.g., automation detection of fatty liver in ultrasound kurtosis
imaging [71].

c) Clinical reinforcement learning: In reinforce-
ment learning, the key objective is to learn a policy function
for making precise decisions in an uncertain environment to
maximise accumulated reward. In clinical medicine, RL can be
used for providing optimal diagnosis and treatment for patients
with distinct characteristics [72]. The performance evaluation
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of different RL techniques (i.e., Q-value iteration, tabular Q-
learning, fitted Q-iteration (FQI), and deep Q-learning) for the
treatment of sepsis in ICU using real-world medical dataset is
presented in [73]. Sepsis is a severe infection involving organ
dysfunction and is a leading cause of mortality due to expensive
and suboptimal treatment. The dataset contains trajectories of
a patient’s physiological state and the provided treatments by
clinicians at each time, along with the outcome (i.e., survival
or mortality). The study concluded that simple and tabular
Q-learning can learn effective policies for sepsis treatment and
their performance is comparable with a complex continuous
state-space method, i.e., deep Q-learning.

d) ML for clinical time-series data: One of the tasks
in clinical workflows is the modeling of clinical time-series data.
Applications of clinical time-series modeling include prediction
of clinical interventions in intensive care units (ICUs) using
CNN and LSTM [74], mortality prediction in patients with
traumatic brain injury (TBI) [75], and estimation of mean arterial
blood pressure (ABP) and intracranial pressure (ICP) which
are important indicators cerebrovascular autoregulation (CA)
in TBI patients. In a recent study, attention models are used for
the management of ICUs forecasting tasks (such as diagnosis,
estimation, and prediction, etc.) by integrating clinical notes with
multivariate and time-series measurements data [76]. In a similar
study, the problem of unexpected respiratory decompensation
using ML techniques is investigated in [77].

e) Clinical natural language processing: Clinical
notes are a widely used tool by the clinicians to communicate
patient state. The use of clinical text is crucial as it often contains
the most important information. The progress in clinical NLP
techniques is envisioned to be incorporated in future clinical
software for extracting relevant information from unstructured
clinical notes for improving clinical practice and research [78].
Clinical NLP offers unique challenges such as the use of
acronyms, language disparity, partial structure, and quality vari-
ance, etc. The challenges and opportunities of clinical NLP for
languages other than English along with a review of clinical
NLP techniques is presented in [79]. In [80], authors presented
a toolkit named CLAMP that provides different state of the art
NLP techniques for clinical text analysis.

f) Clinical speech and audio processing: In the
clinical environment, clinicians have to do a lot of documen-
tation, i.e., preparing clinical notes, discharge summaries, and
radiology reports, etc. According to Dr. Simon Wallace, clin-
icians spend 50% of their time on clinical documentation and
are highly demotivated due to clinical workload, administra-
tive tasks, and lack of leisure time [81]. Typically, they spend
more time in preparing clinical documentation as compared to
interacting directly with patients. To overcome such challenges,
clinical speech and audio processing offer new opportunities
such as speech interfaces for interaction less services, automatic
transcription of patient conversations, and synthesis of clinical
notes, etc. There are many benefits for using speech and audio
processing tools in the clinical environment for each stakeholder,
i.e., patients (speech is a new modality for determining pa-
tient state), clinicians (efficiency and time-saving), and health-
care industry (enhance productivity and cost reduction). In the

literature, speech processing has been used for the identification
of disorders related to speech, e.g., vocal hyperfunction [82]
and as well as disorders that manifest through speech, e.g., de-
mentia [83]. Alzheimer’s disease identification using linguistic
features is presented in [84]. In clinical speech processing, disflu-
ency and utterance segmentation are two well-known challenges
of clinical speech processing.

III. SECURE, PRIVATE, AND ROBUST ML FOR HEALTHCARE:
CHALLENGES

In this section, we analyze the security and robustness of
ML/DL models in healthcare settings and present various as-
sociated challenges.

A. Sources of Vulnerabilities in ML Pipeline

ML application in healthcare settings suffers from various
privacy and security challenges that we will thoroughly discuss
in this section. In addition, the three major phases of ML model
development along with different potential sources of vulnera-
bilities causing such challenges in each step of the ML pipeline
are depicted in Fig. 4.

1) Vulnerabilities in Data Collection: Training of ML/DL
models for clinical decision support requires the collection of
a large amount of data (in formats such as EHRs, medical
images, radiology reports, etc.), which is in general often time-
consuming and requires significant human efforts. Although
in practice, medical data is carefully collected to ensure the
effectiveness of the diagnosis, however, there can be many
sources of vulnerabilities that can affect the proper (expected)
functionality of the underlying ML/DL systems, a few of them
are described next.

Instrumental and Environmental Noise: The collected data
often contains many artifacts that arise due to instrumental and
environmental disturbances. Let’s consider the example of one
of the widely used imagining modalities used to acquire high-
resolution medical images, i.e., multishot MRI. This modality
is highly sensitive to motion, and even slight movement of the
subject’s head or respiration can cause undesirable artifacts in
the resultant image [14], thereby increasing the risk of misdiag-
nosis [85].

Unqualified Personnel: Healthcare ecosystems are extremely
interdisciplinary and comprise of technical and non-technical
personnel and often lack qualified workers that can develop
and maintain ML/DL systems. As for the efficient application
of data-driven healthcare, workers with strong statistical and
computational backgrounds are required, e.g., engineers and
data scientists. On the contrary, the clinical usability of ML/DL
based systems is extremely important. Considering this aspect,
hospitals tend to rely solely on physician-researchers who lack
computational expertise to develop such systems [86].

2) Vulnerabilities Due to Data Annotation: Most applica-
tions of ML/DL in healthcare systems are supervised ML tasks
which require an abundance of labelled training data. The pro-
cess of assigning labels to each data sample (e.g., medical image)
is known as data annotation. Ideally, this task shall mostly be
performed by experienced clinicians (physicians or radiologists)
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Fig. 4. The pipeline for data-driven predictive clinical care and various sources of vulnerabilities at each stage.

to prepare domain-enriched datasets which are crucial to the
development of useful ML/DL models in healthcare systems.
The literature has revealed that training ML/DL models without
a sound grip of the domain could be disastrous [87]. However,
clinicians like expert radiologists are rare professionals and hard
to engage in secondary tasks like data annotation. As a result,
trainee staff (with little domain expertise) or ML/DL automated
algorithms are usually employed during data labelling, which
often leads to many problems such as coarse-grained labels, class
imbalance, label leakage, and misspecification. Some specific
data annotation-based vulnerabilities are discussed as below:

Ambiguous Ground Truth: In medical datasets, the ground
truth is often ambiguous, e.g., medical image classification
task [22] and even expert clinicians disagree on well-defined
diagnostic tasks [88]. This problem becomes more adverse with
the presence of malicious users who want to perturb data, making
the diagnosis difficult and causing difficulties in detecting its
influence even with a human expert review.

Improper Annotation: The annotation of data samples pro-
cess for life-critical healthcare applications should be informed
by proper guidelines and various privacy and legal considera-
tions [89]. Most widely used healthcare datasets are annotated
for coarse-grained labels whereas real-life utility of ML/DL is to
highlight rare, fine-grained and hidden strata within the clinical
environment. This inability to perform labelling appropriately
can lead to various efficiency challenges that are discussed next.

Efficiency Challenges: The collections of healthcare data
on which ML/DL models are built suffer from various issues
that arise several efficiency challenges. A few major problems
impacting the quality of data are described next.

a) Limited and Imbalanced Datasets: The size of datasets
used for training ML/DL models is not up to the re-
quired scale. In particular, one major limitation of the
efficient application of DL approaches in healthcare is
the unavailability of large-scale datasets, as health data
is often small in size. Notably, most life-threating health
conditions are naturally rare and diagnosed once in many
(thousands to millions) patients. Therefore, most ML/DL
algorithms can not be efficiently trained and optimized
for such life-threatening healthcare task.

b) Data Augmentation: To circumvent the problem of avail-
ability of large scale medical datasets, one commonly
followed method is data augmentation in which various
techniques (such as cropping, filliping, rotation, and trans-
lation, etc.) are used for diversifying the training data and
increasing its size. In addition, different transformation
techniques are used for augmenting training datasets,
e.g., use of Gaussian for data augmentation [90], [91].
However, the use of data augmentation might reduce
the robustness of the developed ML/DL based system,
for example, it is highly likely that the distribution of
transformed data diverges from the underlying actual dis-
tribution of the training data which is unknown generally
and there are no statistical and probabilistical guarantees
for having same distribution of the training data. The
literature suggest that Guassain data augmentation does
not improves the adversarial robustness of the models
against iterative attacks [92].

c) Class Imbalance and Bias: Class imbalance is yet another
problem that arises in the supervised ML/DL which refers
to the fact that the distribution of samples among classes
is not uniform. If a class imbalanced dataset is used
for training of the model then it will be reflected in the
model’s outcomes in terms of bias to certain categories.
Biases in models’ predictions in healthcare settings will
have profound consequences and should, therefore, be
mitigated. Various approaches have been proposed in the
literature to address class imbalance problems. These
approaches are discussed in the next section.

d) Sparsity: Data sparsity, i.e., missing values are common
in real-world data that arise due to various reasons (e.g.,
unmeasured and unreported samples, etc.). Missing val-
ues and observations significantly affect the performance
of ML/DL techniques.

3) Vulnerabilities in Model Training: The vulnerabilities
regarding model training include improper or incomplete train-
ing, privacy breaches, model poisoning and stealing. Improper
or incomplete training refers to the situations when the ML/DL
model is trained with improper parameters, e.g., learning rate,
epochs, batch size. Moreover, ML/DL models have been found
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strictly vulnerable to various security and privacy threats such
as adversarial attacks [20], model [93] and data poisoning at-
tacks [94], etc. The vulnerabilities of ML/DL systems hinder
their efficient deployment for security-critical applications (such
as digital forensic, bio-metrics, etc.) and as well as life-critical
applications (such as self-driving cars and healthcare, etc.).
Therefore, ensuring the security and integrity of the ML/DL
systems is of paramount importance for such critical applica-
tions. Various security threats associated with ML/DL systems
are thoroughly described in the next section.

4) Vulnerabilities in Deployment Phase: The deployment
of ML/DL techniques in a clinical environment essentially in-
volves human-centric decisions. Therefore, ensuring the robust-
ness of the system while considering fairness and accountability
is necessary for the deployment phase. The following are the
major vulnerabilities that can be encountered in the deployment
phase of ML/DL systems. Whereas, security issues (e.g., adver-
sarial attacks) are discussed in the next section.

Distribution Shifts: Distributions shifts are very much ex-
pected in realistic healthcare settings, for example, let’s consider
different imaging centers and DL models trained on images
of one domain (imaging center) are subsequently deployed on
different domain images. In such settings, the performance of
the underlying DL model degrades significantly. Moreover, in
predictive healthcare, ML models are developed using historical
patient data and are usually tested on the new patients which raise
questions about the efficacy of the ML predictions. Moreover,
such differences can be exploited for generating adversarial
examples [95].

Incomplete Data: In realistic settings, data collected for pro-
viding patient care may contain missing observations or vari-
ables, e.g., EHRs. The simplest way to avoid missing values is
to ignore them completely while doing analysis but it cannot be
done without knowing their relationships with already observed
or unobserved data. Using the missing observations for training
ML/DL models, on the other hand, leads to two well-known
problems, i.e., false positives (a healthy person is diagnosed with
a disease) and false negatives (a patient is identified as healthy).
Both problems can have severe outcomes in actual healthcare
settings, therefore, the healthcare data should be complete and
compact in all aspects to ensure accurate predictions of out-
comes.

5) Vulnerabilities in Testing Phase: Vulnerabilities in the
testing phase are concerned with the interpretation of the results
from the underlying ML/DL systems that include misinterpreta-
tion, false positive, and false-negative outcomes. False-positive
and false-negative outcomes are due to incomplete/inefficient
training of the model or due to incomplete data fed for the infer-
ence that we have discussed in the earlier section. Finally, the true
essence of ML empowered healthcare is not just about turning
a crank but it demands the cautious application of analytical
methods [96].

B. The Security of ML: An Overview

In this section, we provide an overview of ML security partic-
ularly from the perspective of healthcare and highlight various
associated security challenges with the use of ML.

Fig. 5. A taxonomy of different security threats on ML/DL models.

1) Security Threats: The security threats on ML systems
can be broadly categorized into three dimensions, i.e., influence
attacks, security violations, and attack specificity [97]. A tax-
onomy of these security threats on ML systems is depicted in
Fig. 5.

a) Influence: Influence attacks can be of two types: (1)
causative: the one that attempts to get control over training
data; (2) exploratory: the one that exploits the miss-
classification of the ML model without intervening the
model training.

b) Security Violation: It is concerned with the availability
and integrity of the services and can be categorized into
three types: (1) integrity attack: It attempts to increase the
false-negative rate of the deployed model (classifier) when
the model is given harmful inputs; (2) availability attack:
Unlike integrity attack, it tries to achieve an increase in the
false-positive rate of the classifier in response to benign
inputs; (3) privacy violation attack: It is concerned with
the unveiling of sensitive and confidential information of
the training data, trained model or both.

c) Attack Specificity: The specificity of an attack can be
defined in two ways: (1) targeted attack: whether the
attack is intended for a specific input sample or a group
of samples; (2) indiscriminate attack: it causes the ML
model to fail indiscriminately.

The first axis in the taxonomy of the attacks on ML/DL
systems (as shown in Fig. 5) defines the capabilities of the adver-
saries, e.g., whether they are able to modify training process by
injecting poisoned data or not (i.e., attempting access to training
data). If the attacker does not have access to the training data, the
attacker can realize an exploratory attack, e.g., consider a disease
classification problem, the adversary can exploit query-response
pairs to get intended behavior (i.e., misclassification in this case).
The second dimension of attacks is concerned with the type of
security violations that an adversary can perform, e.g., trying to
learn about the privacy of users in training data or attempting
to increase the false-negative or false-positive rate of the classi-
fier. Each type of security violation is severely problematic for
healthcare applications, i.e., preserving the privacy of users is a
matter of high concern, and models with minimum uncertainty
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are highly desirable. The third dimension describes the specific
objectives of the adversary. The attacker might be interested in
attempting a targeted attack, e.g., forcing the classifier to classify
a given input sample to a target class (e.g., bypassing disease
detection system by influencing the detector to identify the input
as benign), or, he might intend to break down the classifier in an
indiscriminate manner.

2) Adversarial Machine Learning (ML): Adversarial at-
tacks are the result of recent efforts for identifying vulnerabilities
in ML/DL models training and inference. Adversarial attacks
have appeared as one of the biggest security threats to ML/DL
systems [20], [98]–[101]. In adversarial attacks, the key goal
of an adversary is to generate adversarial examples by adding
small carefully crafted (unnoticeable) perturbation into the ac-
tual (non-modified) input samples to evade the integrity of the
ML/DL system. In general, there are two types of adversarial
attacks that are described next.

a) Poisoning Attacks: Adversarial attacks affecting the
model training, i.e., manipulating the training data to
mislead the learning of ML/DL model are known as
poisoning attacks [93].

b) Evasion Attacks: Adversarial attacks on the inference
phase of the training process are known as evasion at-
tacks [102]. In such attacks, an attacker manipulates the
test data to compromise the integrity of the ML/DL model
to harmful inputs.

In healthcare applications, poisoning attacks are highly rel-
evant because direct manipulation of the training data may be
difficult or even impossible in some cases. Alternatively, the
addition of new samples might be relatively easy, however, any
such consequences hinder the applicability of the ML/DL sys-
tems. Therefore, the detection of poisoning attacks is critical for
the robust application of ML/DL in healthcare applications. For
instance, systematic poisoning attacks against six conventional
ML models that were developed for hypothyroid diagnosis are
presented in [103], where the objective of the attacker was to
prevent hypothyroid diagnosis.

Similarly, a few researchers have highlighted the threat of
these attacks to ML/DL models in healthcare settings and
we provide insights from such articles in this section. Unlike
adversarial examples created for evading ML/DL models in
other settings, the concept of adversarial patients for healthcare
applications is introduced in [17]. The authors argue that rather
than intentional adversarial examples, the caution should be for
unintentional adversarial patients that can lead to severe ethical
issues. They identified a subgroup of adversarial patients and em-
pirically validated that patients with identical predictive features
can have significantly different individual treatment effects. In
recent studies, white box and black box adversarial attacks have
been demonstrated against three clinical applications; namely,
fundoscopy, dermoscopy, and chest X-ray analysis [22], [104].
Furthermore, in [104], authors highlighted various potential
incentives for adversaries via adversarial attacks in clinical trials
that will rise with the increasing use of ML in the future,
particularly, with the emergence of computer-aided diagnosis
and decision support systems.

Adversarial ML is a major dilemma for the security and
privacy of ML/DL models deployed in healthcare biometrics

applications and can lead to sever unintended circumstances.
Biometrics can provide many advantages, e.g., fraud detection,
protection of confidential medical records, and securing medical
facilities and equipment, etc. In this regard, different biometrics
technologies such as palm vein readers, fingerprint, ECG, and
iris scanners [105], and face recognition have great potential
to be deployed in healthcare systems. It is very common to
use ML/DL techniques for building healthcare biometric sys-
tems, which are themselves vulnerable to security and privacy
attacks [106]–[108]. For example, an adversary can easily evade
a face recognition system that is deployed in a restricted area to
restrain unintended access for security purposes.

C. ML for Healthcare: Challenges

In this section, we discuss various challenges which hinder
the applicability of ML/DL systems in practical healthcare ap-
plications.

1) Safety Challenges: Excellent performance in a con-
trolled lab environment (which is a common ML community
practice) is not evidence of safety. Safety of ML/DL is the de-
termination of how safe the ML/DL system is for patients. There
should be a constant thought of safety throughout the ML/DL
lifecycle. Majority of routine clinicians tasks are mundane, and
patients they encounter have common health conditions. It is
their role of diagnosing rare, subtle, and hidden health conditions
which occur once in millions. Enabling ML/DL to performing
well on hidden strata, outliers, edge, and subtle cases is key to
ensure the safety of current AI systems.

2) Privacy Challenges: Privacy is one of the major chal-
lenges in data-driven healthcare which is concerned with the use
of users’ data by the ML/DL systems for making predictions.
The users (i.e., patients) expect that their healthcare service
providers are following necessary safety measures to safeguard
their inherent right to the privacy of their confidential infor-
mation, e.g., age, sex, date of birth, and health data. Potential
privacy threats can be of two types, i.e., unveiling confidential
information and malicious use of data (potentially by unautho-
rized agents).

Privacy depends upon the characteristics and nature of the
data being collected, the environment it has been created in,
and patients’ demographics. Therefore, mitigation of privacy
breaches using the appropriate technique(s) is critical as such
breaches can directly harm the patients. The confidential data
should be anonymized to prevent privacy breaches such as
(re-)identification of the individuals [109]. Moreover, necessary
attention should be paid to understand privacy concerns at each
stage of data processing and the transfer of data among different
departments within a hospital should be communicated in a
secure environment.

Privacy challenges also arise with adoption of ML/DL tech-
niques for building biometric healthcare systems either offline
(e.g., face or fingerprint recognition based system to protect
medical facilities and equipment [110]) or online systems, e.g.,
real-time medical systems [111] and use of biometrics for au-
thentication of medical IoT devices [112], etc. The security and
privacy of such systems are of utmost importance; therefore,
worst-case robustness test should be performed for biometrically
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secure healthcare systems. Worst-case testing is a powerful tool
that can provide enough evidence about systems robustness and
can distinguish from a system that never fails and a system that
fails once in billion trails.

3) Ethical Challenges: In user-centric applications of ML
such as healthcare, it is important to ensure the ethical use of data.
Explicit measures should be taken to understand the targeted
user population and their sociological aspects before collecting
data for building ML models. Moreover, understanding how
data collection can harm a patient’s well-being and dignity is
an important consideration in this regard. If ethical concerns are
not taken into account then the application of ML in realistic
settings will have adverse results. Furthermore, to ensure fair
and ethical operation of automated systems, it is imperative to
have a clear understanding of the AI system in uncertain and
complex scenarios [113].

4) Causality is Challenging: Understanding causality is
important in healthcare because most of the crucial healthcare
problems require causal reasoning, i.e., “what if?” [114]. For
example, asking a question about what will happen if a doctor
prescribed treatment A instead of treatment B. Such questions
cannot be exploited through classical learning algorithms and
to answer them we need to analyze the data from the lens of
causality [115]. In healthcare, learning is often solely based on
observational data and asking causal questions by learning from
observational data is quite challenging which requires building
causal models.

DL models are black-box which lacks fundamental underly-
ing theory and these models essentially work by exploiting pat-
terns and correlations without considering any causal link [116].
In general, this cannot be deemed as a limitation since prediction
does not require any causal relation. In predictive healthcare,
the absence of causal relation can raise questions about the
conclusions that can be drawn from outcomes of DL models.
Furthermore, fairness in decision making can better be enforced
through the lens of causal reasoning [117], [118]. The estimation
of the causal effect of some variable(s) on a target output (e.g.,
target class in multi-class classification problem) is important to
ensure fair predictions.

5) Regulatory and Policy Challenges: The full potential
of ML/DL systems (which essentially constitutes software as
a medical device) in actual healthcare settings can only be
realized by addressing regulatory and policy challenges. The
literature suggests that the regulatory guidelines are needed for
both medical ML/DL systems and their integration in actual clin-
ical settings [131]. Therefore, the integration of AI-empowered
ML/DL systems in the actual clinical environment should be in
compliance with the policies and regulations defined by the gov-
ernment and regulatory agencies. However, existing regulations
are not suitable for certifying systems which are ever-evolving
such as ML/DL empowered systems because yet another key
challenge with the use of ML/DL algorithms in clinical practice
is to determine how these models should be implemented and
regulated since these models will incorporate learning from
the new patient data [132]. In addition, the objective clinical
evaluation of ML/DL systems for particular clinical settings
is crucial to ensure safe, effective, and robust operation that

does not harm the patients in either way. Data scientist and
AI engineers should be employed in hospitals for assessing AI
systems regularly to ensure it is still safe, relevant, and working
fine.

6) Availability of Good Quality Data: The availability of
representative, diverse and high-quality data is one of the ma-
jor challenges in healthcare. For instance, the amount of data
available to the research community is very small in size and
limited in scope as compared to the heterogeneous collections
of large-scale multi-modal patient data being generated on daily
basis by different small and large size healthcare institutions.
However, the development of good quality data that resembles
real clinical settings is on the other very challenging and requires
resources for management and maintenance. The availability of
high-quality data can effectively serve the intended purpose of
disease prediction and decision making for planning treatment.

The data collected in practice suffer from different issues such
as subjectivity, redundancy, and bias. As the ML/DL models
perform inferences by solely learning the latent factors of the
data on which they are trained, therefore, the effect of data
generated by the undesirable past practices of hospitals will be
reflected in the outcomes of the algorithm. For example, most
people with no health insurance are denied healthcare services
and if AI learns from that data, it will do the same. It has been
shown that a model could depict racial bias by producing varying
outcomes for different subpopulations [133] and the training
data can also introduce its own modeling challenges [134], [135].

7) Lack of Data Standardization and Exchange: Medical
ML/DL system shall facilitate a deep understanding of the
underlying healthcare task, which (in most cases) can only be
achieved by utilising other forms of patients data. For example,
radiology is not all about clinical imaging. Other patient EMR
data is crucial for radiologists to derive the precise conclusion
for an imaging study. This calls for the integration and data
exchange between all healthcare systems. Despite extensive
research on data exchange standards for healthcare, there is
a huge ignorance in following those standards in healthcare
IT systems which broadly affects the quality and efficacy of
healthcare data, accumulated through these systems. There are
numerous guidelines to perform specific medical interventions
like imaging studies (i.e., with define exposure and positioning)
to ensure the significance of the data clinically. However, current
healthcare IT systems largely ignore standards and clinicians
barely follow well-established guidelines. As a result, data in-
tegration and exchange efforts across different specialities and
organisations fail. Data integration to match diverse patients’
medical records is crucial to deliver high-value patient care. The
lack of appetite to implement data exchange standards in wider
healthcare industry hinders the efficacy of ML/DL systems as
multi-modal data is vital to ensure the deep understanding of
algorithms, and will undoubtedly enhance the performance of
physicians towards clinical decisions using data driven insights.

8) Distribution Shifts: The problem of data distribution
shifts is yet another major challenge and perhaps one of the most
challenging problems to solve [136]. In clinical practice, training
and testing data distributions can diverge due to many reasons,
e.g., medical data is generated by different institutions using
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TABLE II
SUMMARY OF THE STATE OF THE ART DATA SECURE AND PRIVACY PRESERVING METHODS IN HEALTHCARE SETTINGS

different devices for patients having complicated cases. Due
to this issue, ML/DL models developed using available public
databases (by the scientific community and academicians) do not
give expected performance when deployed in an actual clinical
environment. Distribution shifts are frequent in the medical
domain, in particular, medical imagining where different proto-
cols and parameter choices can result in images of significantly
different distributions. ML models are typically trained under the
principle of empirical risk minimization (ERM) which provides
good learning bounds and guarantees if its assumptions are satis-
fied. For instance, one of the foremost and strong assumptions is
that both the training and test datasets are derived from a similar
domain (i.e., data distributions). However, this assumption is not
valid in practice, and models trained under such an assumption
fail to generalize to other domains In contrast, the life-critical
nature of clinical applications demands a smooth and safe oper-
ation of ML/DL techniques.

9) Updating Hospital Infrastructure is Hard: Healthcare
IT systems are mostly proprietary and operate in silos, which
results in the revision, fixing, and update of software being costly
and time-consuming. It has been reported in the literature that in
2013, the majority of hospitals were using the ninth version of
the international classification of disease (ICD) system—even
though a revised version (i.e., ICD-10) was released as early
as 1990 [22]. The difficulties in updating hospital software
infrastructure can raise many vulnerabilities with the use of
modern tools like ML/DL systems.

IV. SECURE, PRIVATE, AND ROBUST ML FOR HEALTHCARE:
SOLUTIONS

In this section, we present an overview of various proposed
methods to ensure secure, private, and robust ML for healthcare
applications. A summary of articles focused on the topic of

“secure and privacy-preserving ML for healthcare” is presented
in Table II and various approaches for secure, private, and robust
ML are described next. In addition, a taxonomy of commonly
used approaches for secure, private, and robust ML is presented
in Fig. 6 and described individually next.

A. Privacy-Preserving ML

Preserving the privacy of the user in healthcare is paramount,
as it is a user-centric application and involves the collection of
personal data and any breach of privacy can lead to unavoidable
consequences. Preserving privacy means that ML model training
and inference should not reveal any additional information about
the subjects from whom data was collected. In general, ML/DL
requires training data stored on a central repository (e.g., cloud)
that may include the users’ private data which raises various
threats and to address such concerns data anonymization tech-
niques are used. However, it has been reported in the literature
that meaningful information can be inferred about individuals’
private data even when the data is anonymized [137].

Various efforts in the literature have addressed the privacy
issues with the use of ML. Three different protocols for the
two-server model are presented in [138], where the private data is
distributed among two non-colluding servers by the data owners
and then those servers train the ML models on the joint data by
following secure two-party computation (2 PC). Furthermore,
different techniques have been proposed to perform secure
arithmetic operations in the secure multi-party computational
environment and alternatives to nonlinear activation functions
used in ML models such as softmax and sigmoid are also
proposed. Similarly, various techniques for privacy-preserving
ML such as cryptographic and differential privacy approaches
are discussed in [109]. Here we briefly discuss the widely used
methods for preserving privacy.
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Fig. 6. A taxonomy of commonly used approaches for secure, private, and robust ML.

1) Cryptographic Approaches: Cryptographic approaches
are used in the scenarios where the ML model requires encrypted
data (for training and testing purposes) from multiple parties.
The widely used methods include homomorphic encryption,
secret sharing, garbled circuits, and secure processors which
are briefly described next.

a) Homomorphic Encryption: It enables computations on
encrypted data with operations such as addition and mul-
tiplication which can be used as a basis for computing
complex functions. Typically, the data is encrypted using
ciphertext and public keys of the original data owners.

b) Garbled Circuits: Garbled circuits are used in cases where
two parties (let’s assume Alice and Bob) want to get
results computed using their private data. Alice will send
the function in the form of the garbled circuit along with
her input. After obtaining the garbled version of his input
from Alice in oblivious fashion, Bob will use his garbled
input with the garbled circuit to get the result of the
required function and can share it with Alice, if required.
The use of homomorphic encryption and garbled circuits
to build cryptographic blocks for developing three classi-
fication techniques; namely, Naïve Bayes, decision trees,
and hyperplane decision is presented in [144], where the
goal is to protect ML models and new samples submitted
for inference.

c) Secret Sharing: The strategy of distributing secret among
multiple parties while holding a “share” of the secret
is known as secret sharing. The secret can only be re-
constructed when all individual shares are combined;
otherwise, they are unuseful. In some settings, the secret
is reconstructed using t shares (where t is a threshold
value) that will not require all shares to be combined. A se-
cret sharing paradigm for computing privacy-preserving
parallelized principal component analysis (PCA) is pre-
sented in [125]. In a similar study [142], a protocol is
developed using the “secret sharing” strategy for ag-
gregating model updates received from multiple input
parties, the updates are used for training of the ML model.
A privacy-preserving emotion recognition framework is
presented in [143]. Authors used a multi-secret sharing
scheme for transmitting audio-visual data collected from
users using edge devices to the cloud where a CNN and
sparse autoencoder were applied for feature extraction
and support vector machine (SVM) was used for emotion
recognition.

d) Secure Processors: Secure processors were originally
developed by rogue software to ensure the confidentiality
and integrity of sensitive code from unauthorized access
at higher privilege levels. However, these processors are
being utilized in privacy-preserving computation, e.g.,
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Intel SGXprocessor. For instance, Ohrimenko et al. devel-
oped an SGX-processor-based data oblivious system for
k-mean clustering, decision trees, SVM, and matrix fac-
torization [146]. The key idea was to enable collaboration
between multiple data owners running the ML task on an
SGX-enabled data center. All types of communications
between the data owners and the enclave were performed
by establishing independently a secure channel (i.e., an
individual channel for each data owner).

2) Differential Privacy: Differential privacy refers to the
mechanism of adding perturbation into the datasets to protect
private data. The idea of adding adequate noise in the database
for preserving privacy was first introduced by C. Dwork in
2006 [153]. Differential privacy constitutes a strong standard
for guaranteeing privacy for algorithms performing analysis on
aggregate databases and it is defined in terms of the application-
specific concept of neighbor datasets [154]. Differential privacy
is particularly useful for applications like healthcare due to its
several properties such as group privacy, composability, and
robustness to auxiliary information. Group privacy implies el-
egant degradation of privacy guarantees when datasets contain
correlated samples. Whereas, composability enables modularity
of the algorithmic design, i.e., when individual components are
differentially private. Robustness to auxiliary information means
that the privacy of the system will not be affected by the use of
any side’s information that is known to the adversary. To avoid
privacy breaches, the researchers can also explore encrypted
and noisy datasets for building ML empowered healthcare
applications [155].

Various approaches for differential privacy have been
proposed in the literature, e.g., private aggregation of teacher
ensembles (PATE) for private ML [156], differentially private
stochastic gradient descent (DP-SGD) algorithm [154],
moments accountant [157], hyperparameter selection [158],
Laplace [159] and exponential noise differential privacy
mechanisms [160], [161]. For instance, privacy-preserving
distributed DL for clinical data using differential privacy that
incorporates the idea of cyclical weight transfer is presented
in [127].

3) Federated Learning: The idea of federated learning (FL)
has been recently proposed by Google Inc. [162]. In FL, a shared
ML model is built using distributed data from multiple devices
where each device trains the model using its local data and
then shares the model parameters with the central model with-
out sharing its actual data. An FL-based decentralized scheme
using iterative cluster primal-dual splitting (cPDS) algorithm
to predict hospitalization requiring patients using large-scale
EHR of heart-related diseases is presented in [151]. In [152],
simple vanilla, U-shaped, and vertically partitioned data-based
configurations for split learning DL models are presented. The
proposed framework is named SplitNN that does not require
sharing of patients’ critical data with the server. A frame-
work of federated autonomous deep learning (FADL) using
distributed EHR is presented in [130]. A comparison of differ-
ent privacy preserving techniques discussed above is presented
in Table III.

B. Countermeasures Against Adversarial Attacks

In the recent literature, countermeasures against adversarial
attacks are categorized into three classes: (1) modifying model;
(2) modifying data; and (3) adding an auxiliary model(s) [163].
A taxonomy of such methods is presented in Fig. 7 and are
discussed next.

1) Modifying Model: The modifying model includes meth-
ods that modify the parameters or features of the trained ML
model, widely used methods include the following:

1) Defensive Distillation: The distillation of neural networks
was first introduced by Hinton et al. as a method for trans-
ferring the knowledge from a larger model to a smaller
one [164]. The notion of network distillation was then
adopted by Papernot et al. to defend against adversarial
attacks, also known as defensive distillation [165]. The
authors used the predicted labels of the first model as
the labels of the input sample to the original DL model.
This strategy increases the robustness of the DL model
to considerably small perturbations. However, in a later
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Fig. 7. Taxonomy of Adversarial Defenses (Modified from [163]). Defenses are categorized into three categories: (1) Modifying Data; (2) Modifying
Model; and (3) Adding Auxiliary Model(s).

study, Carlini and Wagner demonstrated that their pro-
posed adversarial attack (named as C&W attack) evaded
the defensive distillation method [166].

2) Network Verification: The techniques verifying certain
properties of DL models in response to input samples are
known as network verification methods. The key goal is
to restrain adversarial examples while checking whether
the input satisfied or violated certain properties. In [167],
such a method is proposed that uses ReLU activation and
satisfiability modulo theory (SMT) to make deep models
resilient against adversarial attacks.

3) Gradient Regularization: The idea of using input gra-
dient regularization for defending adversarial examples
was proposed by Ross et al. [168]. They trained the
differentiable models by regularizing the variation in the
results with respect to the change in the input due to which
small adversarial perturbations were not able to affect the
output of DL models. However, this method increases the
complexity of the training process by a factor of two.

4) Classifier Robustifying: In this method, classification
models are developed that are robust to adversarial attacks
rather than building a detection strategy for such attacks.
In [169], authors exploited the uncertainty around the
adversarial examples and proposed a hybrid model by

utilizing Gaussian processes (GPs) with RBF kernels on
top of DNNs to make them robust against adversarial
attacks. In a similar study, a robust model is proposed
for MNIST classification that uses analysis by synthesis
through learned class-conditional data distribution.

5) Interpretable ML: It includes those methods that aim
at explaining and interpreting the outcomes of ML/DL
models for robustifying them against adversarial attacks.
An approach utilizing the interpretability of deep models
for the detection of adversarial examples for face recog-
nition task is presented in a recent study [170]. The key
aspect of this method is that it identifies critical neurons
for the individual task by initiating a bi-directional cor-
respondence reasoning between the model’s parameters
and its attributes. The activation values of the identified
neurons are then increased to augment the reasoning part
and activation values of other neurons are decreased to
mask the uninterpretable part. However, Nicholas Car-
lini demonstrated that the aforementioned method uti-
lizing the interpretability of deep models is not resilient
to untargeted adversarial examples generated using L∞
norm [171].

6) Masking ML Model: In a recent study [172], a method
for secure learning is presented in which the problem of



QAYYUM et al.: SECURE AND ROBUST MACHINE LEARNING FOR HEALTHCARE: A SURVEY 171

adversarial ML is formulated as learning and masking
problem. The masking of the deep model was performed
by introducing noise in the logit output which successfully
deafened attacks with low distortions.

2) Modifying Data: It includes those methods that aim at ei-
ther modifying the data or its features, commonly used methods
are described next:

1) Adversarial (Re-)training: This is a very basic method
that was originally proposed by Goodfellow et al. for
making deep models robust to adversarial examples [98].
In this method, the ML/DL models are trained (or re-
trained) using an augmented training set that includes ad-
versarial examples. Various studies have used this method
for evaluating the robustness of DL classifiers using dif-
ferent datasets, e.g., MNIST [173] and ImageNet [167].
However, it has been reported in the literature that this
method fails to defend against iterative adversarial per-
turbation generation methods like basic iterative method
(BIM) [174].

2) Input Reconstruction: The method of transforming ad-
versarial examples into legitimate ones by cleaning the
adversarial noise is known as input reconstruction. The
transformed samples have no harmful effect on the infer-
ence of deep models. In [175], denoising autoencoder is
used for the cleaning of adversarial examples.

3) Feature Squeezing: Xu et al. [176] proposed feature
squeezing as a defense method against adversarial exam-
ples by squeezing the input feature space that an adversary
can exploit to construct adversarial examples. To reduce
the available feature space to an adversary, authors com-
bined heterogeneous feature vectors in the original feature
space into a single space. The feature squeezing was
performed at two levels: (1) smoothing the spatial domain
using local and non-local operations and (2) minimizing
color bit depth. Moreover, the performance evaluation of
the proposed defense was performed using eleven state of
the art adversarial perturbation generation methods using
three benchmark datasets (i.e., CIFAR10, MNIST, and
ImageNet). However, in a later study, the aforementioned
defense method was found to be less effective [177].

4) Features Masking: The method of feature masking was
proposed by Gao et al. [178] that aims at masking the
most sensitive features of the input that are susceptible to
adversarial perturbations. The authors added a masking
layer right before the classification layer (i.e., softmax)
that sets the corresponding weights of the sensitive neu-
rons to zero.

5) Developing Adversarially Robust Features: To develop
adversarially robust features, the connections between
the metric of interest and natural spectral geometrical
property of the dataset has been leveraged in [179].
Furthermore, the authors provided empirical evidence
about the effectiveness of using a spectral approach for
developing adversarially robust features.

6) Manifold Projection: The method of projecting input
samples on the manifold learned by the generative mod-
els is known as manifold projection. Song et al. [180]
used generative models to clean adversarial noise

(perturbations) from the adversarial images then the
cleaned images are used as the input to the non-modified
model. In a similar study [181], generative adversarial
networks (GANs) are used for cleaning of adversarial
noise.

3) Adding Auxiliary Model(s): In these methods, additional
auxiliary ML/DL models are integrated to robustify the main-
stream model, commonly used methods that fall into this class
are described in the following paragraphs:

1) Adversarial Detection: In this method, an additional
binary classifier is trained to distinguish between the
adversarial and original samples that can be regarded
as the detector model [182], [183]. In [184], a simple
DNN based detector model is used for the detection of
adversarial examples. Similarly, an outlier class has been
introduced during the training of a deep model that helps
the model to detect the adversarial examples belonging
to the outlier class.

2) Ensembling Defenses: The literature suggests that ad-
versarial examples can be constructed in multi-faceted
fashion. Therefore, to develop an efficient defense method
against such adversarial examples, multiple defense
strategies can be integrated sequentially or in paral-
lel [185]. The PixelDefend method is an excellent ex-
ample of an ensemble defense method in which authors
used an ensemble of two methods, i.e., adversarial de-
tection and input reconstruction [180]. However, it has
been shown that the ensemble of weak defenses does
not necessarily increase the robustness of DL models to
adversarial attacks [177].

3) Using Generative ML Models: The idea of defending
against adversarial attacks by utilizing generative models
was firstly presented by Goodfellow et al. [98], however,
in the same study the authors presented an alternative
hypothesis of ensemble training and articulated that gen-
erative training is not sufficient. In [186], adversarial
examples are cleaned using GAN that was trained on
the same dataset. In a similar study [187], a framework
named Defense-GAN is presented that is trained on the
distribution of legitimate samples. Defense-GAN finds
similar output during the testing phase without adversarial
perturbations that are given as input to the original DL
model. A summary of the state of the art defense methods
for making DL models resilient to adversarial attacks is
presented in Table IV.

C. Causal Models for Healthcare

Asking causal questions in healthcare is a very challenging
yet important approach and ideally, causal inferences require
experiments. But it in healthcare this not always possible, e.g.,
if we want to figure out what will happen if a person takes drug
A instead of B, we can not experiment it directly on the patient
which is unethical and can have unintended consequences. Al-
ternatively, retrospective observational data is leveraged to train
models for making counterfactual predictions of what we would
have observed if we had run an experiment [189]. Causality can
be deemed in two foundational ways, i.e., potential outcomes
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TABLE IV
SUMMARY OF STATE-OF-THE-ART DEFENSE METHODS FOR MITIGATING ADVERSARIAL ATTACKS

and causal graphical models that require manipulating reality.
In predictive healthcare, potential outcomes can be treatment,
action, and interventions. If the total number of possible treat-
ments is T then we can have T possible outcomes and the unit of
observation will be a patient who gets one of the T treatments.

In the literature, different approaches have been presented for
providing causal inferences and reasoning in healthcare using
classical models. For instance, the Gaussian processes based
counterfactual causal model has been presented in [189] and in
a similar study, authors introduced the counterfactual Gaussian
process (CGP) for predicting counterfactual future progression
and argued that counterfactual model can provide reliable de-
cision support [114]. The use of probabilistic graphical mod-
els to analyze causality in health conditions for identification
sleep apnea, Alzheimers disease, and heart diseases is presented
in [190]. A comprehensive review of graphical causal models
can be found in this recent study [191].

D. Solutions to Address Distribution Shifts

To cater with data distribution shift problem various tech-
niques have been proposed in the literature (e.g., transfer learn-
ing and domain adaptation), which are described next.

1) Transfer Learning: The requirement of the availability
of a large-scale dataset for training DL models capable of
providing high performances can be partially mitigated using
transfer learning. Transfer learning is a technique in which a
model trained on a larger dataset is re-trained (fine-tuned) on
the application-specific dataset (relatively smaller in size to the
first one). The aim is to transfer knowledge learned by the model
from one domain (data distribution) to the other domain [192].
However, transfer learning can be problematic for healthcare
applications due to the requirement of sufficiently large data for
first training and good quality data annotated by expert clinicians
such as radiologists for domain-specific training.

2) Domain Adaptation: Domain adaptation is the method
of learning a DL model by considering a shift between the train-
ing (often called as source domain) and test (often called as target
domain) data distributions, i.e., source domain and target domain
distributions are different. Domain adaptation is a special case
of transfer learning that can be particularly useful for medical
image analysis tasks such as MRI segmentation [136], [193],
chest X-ray classification [194], and multi-class Alzheimer dis-
ease classification [195], etc. Different facets of domain adap-
tation have been proposed in the literature and can be broadly
categorized as supervised, unsupervised, semi-supervised, and
self-supervised domain adaptation methods which are described
below. Please note that the definition of domain adaptation is
ambiguous since it may refer to labeled data being available in
the source or target domains and the definitions provided below
for each method are mostly used in the literature [196].

a) Supervised Domain Adaptation: This method is similar
to a supervised learning strategy with the only difference
of different distributions for source domain and target
domain data. Supervised domain adaptation is particu-
larly useful when a labeled data is available for the target
domain and generally, the source domain also has labeled
data.

b) Unsupervised Domain Adaptation: In unsupervised do-
main adaptation, source domain data is labeled and target
domain data is unlabeled. An unsupervised domain adap-
tation method using reverse flow and adversarial train-
ing for generating synthetic medical images is presented
in [197]. In addition, the authors used self-regularization
for preserving clinically-relevant features.

c) Semi-supervised Domain Adaptation: In semi-supervised
domain adaptation, labeled source data and partial labeled
target domain.

d) Self-supervised Domain Adaptation: Self-supervised do-
main adaptation methods aims at learning visual models
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without manual labeling by training generic models using
auxiliary relatively simple tasks (known as pretext tasks).
The supervision is provided by modifying the original
visual content (e.g., a set of images) according to known
transformations (e.g., rotation) and then the model is
trained to predict such transformations that serve as labels
for the pretext tasks [198].

E. Towards Responsible ML

In this section, we provide different methods for ensuring
responsible ML and we start by enlisting general responsible AI
practices.

1) General Responsible AI Practices: The following are
some recommended AI practices to ensure effective and reliable
AI systems.2

1) Consider human-centered design approach: To have a
large impact on the system being developed, it is impor-
tant to consider the characteristics of the users for true
recommendations.

2) Evaluate training and monitoring using suitable metrics:
Instead of using multiple metrics for evaluation of model
training, ensure that the metric is appropriate for the
context and goals of the systems and consider users’
feedback in terms of surveys.

3) Examine your raw data: The biases and abnormalities in
the datasets (e.g., missing values, class imbalance, and
incorrect labels) are directly reflected by the learned ML
models. To ensure the efficacy of the learning process,
careful examination of the raw dataset is necessary while
respecting the privacy concerns.

4) Understand limitations of the model and dataset: It is
crucial to understand the capability and limitations of the
ML model and dataset, e.g., a model trained for detecting
correlations cannot be used for inferences.

5) Repetitive Testing: Once developed, ML systems should
be tested again and again to ensure that they are working
as intended. Rigorous tests should be performed to under-
stand how the individual components of the ML system
interact with each other. Other similar tests include testing
for input drifts, using gold standard datasets, incorpo-
rating a larger sample base, and using quality checking
mechanisms.

6) Continuous Monitoring and Updating: To ensure the
efficient performance of the ML systems deployed in
real-time settings, continued monitoring and updating are
required to identify and fix various issues encountered in
realistic settings.

2) Responsible ML for Healthcare: ML/DL techniques
have a great potential for clinical applications (e.g., radiologist-
level pneumonia detection [11] and dermatologist-level clas-
sification of skin cancer [13], etc.) but their limited adoption
in actual clinical settings indicates that these methods are not
yet optimal and not ready for clinical deployment. In a recent

2[Online]. Available: https://ai.google/responsibilities/responsible-ai-
practices/

TABLE V
EXAMPLES FOR INTERDISCIPLINARY TEAMS HAVING DIFFERENT

STAKEHOLDERS FROM MULTIPLE DOMAINS. (ADOPTED FROM [199])

study [199], Wiens et al. have provided a roadmap towards
safe, meaningful, and responsible ML for healthcare and argued
that ML deployment in any field should be carried out by an
interdisciplinary team that may include different stakeholders
from multi disciplines, i.e., knowledge experts, decision-makers,
and users. Examples for an interdisciplinary team having dif-
ferent stakeholders in the healthcare ecosystem are presented in
Table V. In addition, the authors also identified critical steps to be
followed/considered when designing, testing, and deploying ML
solutions for healthcare applications that include: (1) choosing
the right problems; (2) developing a useful solution; (3) consid-
ering ethical implications; (4) rigorously evaluating the model;
(5) thoughtfully reporting results; (6) deploying responsibly; and
(7) making it to market.

F. Tools and Libraries for Secure and Private ML

The main strength of ensuring secure ML relies on the devel-
opment of security tools and algorithms. To ensure the security
and privacy of ML models and data, various tools and libraries
have been released so far. For example, TensorFlow Federated,3

which is an open-source framework for distributed ML/DL that
enables training of a global shared model in a federated environ-
ment without sharing clients’ local data. CrypTen4 is a frame-
work for secure and privacy-preserving ML built on PyTorch
that provides secure computing techniques for ML/DL model
training and inference using encrypted data and PyTorch-DP5–a
framework of PyTorch for training DL models with differential
privacy. Similarly, OpenMined6–an open-source community of-
fers various tools and libraries for building privacy-preserving
ML models which are briefly described below.

1) PySyft7 is python library for encrypted and privacy pre-
serving ML. It extends PyTorch, TensorFlow, and Keras
and supports differential privacy, federated learning,
multi-party computation, and homomorphic encryption.

3[Online]. Available: https://www.tensorflow.org/federated
4[Online]. Available: https://github.com/facebookresearch/CrypTen
5[Online]. Available: https://github.com/facebookresearch/pytorch-dp
6[Online]. Available: https://www.openmined.org/
7[Online]. Available: https://github.com/OpenMined/PySyft

https://ai.google/responsibilities/responsible-ai-practices/
https://www.tensorflow.org/federated
https://www.openmined.org/
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2) PyGrid8 is a platform built on PySyft that provides a peer-
to-peer network to collectively train ML models.

3) SyferText9 is a privacy preserving framework for NLP
tasks.

V. OPEN RESEARCH ISSUES

In this section, various open research issues related to the
domain of secure, robust, and private ML for healthcare that
require further research attention are presented.

A. Interpretable ML

Although the advancement in ML/DL research has provided
significant performance improvements over the previous state
of the art methods in terms of performance metrics such as
accuracy, precision, recall, and f1-measure, these advancements
have made the learning process of modern models very com-
plex and are usually deployed as a black-box. These black-box
methods fail at providing rational or insights as well as at ex-
plaining their learning behavior and thought process for making
predictions [200]. The aforementioned problem is termed as the
interpretability problem of ML in the literature, which is defined
as the ability to describe the internal processes of an ML system
in a human-understandable manner.

Moreover, interpretability of ML/DL techniques is required
to ensure algorithmic fairness, robustness, and generalization
based on potentially dispersed data collected from a hetero-
geneous population. This can eventually help in the smooth
deployment and functionality of ML/DL systems in realistic
settings. For a critical application like healthcare, the ML/DL
model is expected to be highly accurate and understandable
at the same time. Moreover, it has been argued that clinical
integration of AI models will require interpretability [201]. To
perform an interpretation of ML models, questions about the
fairness of model’s predictions, transparency, and accountability
are considered and interpretation is performed using explanation
methods for justifying predictions of the model using visual,
textual, or features information. For instance, Bach et al. pre-
sented a pixel-wise explanation method that uses layer-wise
relevance propagation for interpreting the predictions of non-
linear classifiers [202]. Similarly, for interpretation of classifiers’
predictions, Ribeiro et al. presented a framework named LIME
and proposed two methods for interpretability, i.e., learning a
local model around the predictions and representing predictions
and their explanations in a non-redundant way using a submod-
ular optimization approach. In [203], the use of reinforcement
learning (RL) is proposed to build interpretable decision support
systems for heart patients and it learns what is interpretable to
each user by their interactions. One yet common method for in-
terpreting/explaining deep models, in particular, CNN is the use
of saliency maps [204], [205]. These methods are particularly
focused on general applications, however, more research that
is specifically focused on the interpretation of ML/DL systems
used in healthcare applications is required.

8[Online]. Available: https://github.com/OpenMined/PyGrid
9[Online]. Available: https://github.com/OpenMined/SyferText

B. Machine Learning on the Edge

The advancements in ML research have revolutionized tra-
ditional healthcare (as discussed in earlier sections). Healthcare
services will increasingly adopt the utilization of IoT devices and
wearable sensors in the future, particularly with the evolution of
smart cities and portable medical devices, e.g., portable MRI
scanner. With such proliferation, there is a pressing need for
pushing ML models training and inference on edge devices.
This introduces unique challenges such as limited hardware and
processing capabilities, etc. Moreover, this is crucial for portal
medical devices that are utilized for patients in critical care as
they cannot be moved to fixed medical equipment in the hospital.
The research on enabling ML on edge devices (a.k.a fog) is in
the early stages of development and requires further attention
from the research community. The development of this field
will enable to monitor patients in a critical situation and even-
tually enable continuous behavioral monitoring for improving
individuals’ life-style and timely detection of diseases.

C. Handling Dataset Annotation

To increase the performance of ML/DL models, one natural
strategy is to acquire more labeled training data. This requires
that radiologists and medical experts spend their valuable time
manually annotating medical data, e.g., medical images, signals,
and reports. Another important aspect is devising true validation
sets that will evaluate the performance of the ML/DL models
and expose the limitations of these models. Therefore, manual
annotation of samples into respective categories is time consum-
ing, costly, and a tidy process. Automatic approaches should be
developed to address this issue and one such technique is active
learning which can be used to annotate unlabelled data samples.

Data from multiple sources should be considered when per-
forming annotation for specific clinical applications because
single-source data might lack precise structured labels [115].
The integration of multiple source data is an important appli-
cation of ML in healthcare [206], which is known as pheno-
typing [207]. NLP techniques and recurrent deep models can
be used for extracting and integrating rich information from
unstructured clinical notes to augment the capacity of data
annotators.

D. Distributed Data Management and ML

In healthcare settings, the data is generated in a distributed
fashion, i.e., across different departments within a hospital and
even across different hospitals. This necessitates the efficient
management and sharing of distributed data for clinical anal-
ysis purposes, particularly using ML/DL models. In general,
for developing ML/DL models, it is assumed that complete
training and validation datasets are centrally available and easily
accessible. Therefore, there is an increasing demand to develop
methods for distributed data management and ML.

E. Fair and Accountable ML

The literature on analyzing the security and robustness of
ML/DL approaches reveals that the outcomes of these models



QAYYUM et al.: SECURE AND ROBUST MACHINE LEARNING FOR HEALTHCARE: A SURVEY 175

lack fairness and accountability [163]. Whereas ensuring the
fairness and accountability of predictions in life-critical applica-
tions like healthcare are of paramount importance, the fairness
property ensures that the ML model should not favor certain
cases over others. Such discrimination mainly arises due to
biases in the training data. On the other hand, accountability
property is concerned with the interpretation of the predictions.
Fairness and accountability will assist in developing models
robust to biases and imperfections such as past clinical practices

F. Model-Driven ML

Although ML, AI, and big data are immensely useful tools
for healthcare, these tools are not panacea and it is important
to be aware of the associated caveats and pitfalls [200]. Failing
to realize this, one can easily fall prey to the dangerous dogma
that data once available in abundance must and will speak for
itself and can handle hypothesis generation as well—which in
clinical terms would mean that data mining is sufficient and
independent of the need of clinical interpretation, external vali-
dation, and understanding of data’s provenance [208]. To avoid
the various problems that can arise from improper use of ML in
healthcare, it is important to combine data-driven methods with
hypothesis-driven or model-based methods (based on subject
matter knowledge) and to bring scientific rigor in these studies.
Properly designed experiments are also necessary for deriving
causal explanations. Avenues for developing secure and robust
ML solutions for healthcare that are scientifically robust and
rigorous requires further attention from the community.

VI. CONCLUSION

The use of machine learning (ML)/deep learning (DL) mod-
els for clinical applications has great potential to transform
traditional healthcare service delivery. However, to ensure a
secure and robust application of these models in clinical settings,
different privacy and security challenges should be addressed.
In this paper, we provided an overview of such challenges by
formulating the ML pipeline in healthcare and by identifying
different sources of vulnerabilities in it. We also discussed
potential solutions to provide secure and privacy-preserving
ML for security-critical applications like healthcare. Finally, we
presented different open research problems that require further
investigation.
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