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Abstracit—Fetal electrocardiography (fECG) is a promis-
ing alternative to cardiotocography continuous fetal mon-
itoring. Robust extraction of the fetal signal from the ab-
dominal mixture of maternal and fetal electrocardiograms
presents the greatest challenge to effective fECG monitor-
ing. This is mainly due to the low amplitude of the fetal ver-
sus maternal electrocardiogram and to the non-stationarity
of the recorded signals. In this review, we highlight key de-
velopments in advanced signal processing algorithms for
non-invasive fECG extraction and the available open access
resources (databases and source code). In particular, we
highlight the advantages and limitations of these algorithms
as well as key parameters that must be set to ensure their
optimal performance. Improving or combining the current
or developing new advanced signal processing methods
may enable morphological analysis of the fetal electrocar-
diogram, which today is only possible using the invasive
scalp electrocardiography method.

Index Terms—Fetal electrocardiography, noninvasive
fetal (foetal) monitoring, signal processing, electronic fetal
monitoring, fetal heart rate, morphological analysis.

|. INTRODUCTION

ETAL heart rate (fHR) monitoring in its early form was
based on the auscultation methods, i.e. intermittent ob-
servations of the fetal heart sounds [1]. Progress in electron-
ics and computers science brought to the introduction of the
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first fetal monitors based on phonocardiography in the middle
of the 20th century [2]. Yet these inventions were still chal-
lenged by the need to automatically distinguish between the
maternal and fetal heart sounds [3]. Consequently, in 1953, the
first attempt was made to continuously monitor fHR by means
of non-invasive fetal electrocardiography [4]. In the following
decade, invasive monitoring tools were introduced, including
the intrauterine catheter [5], fetal scalp electrode [6], and can-
cellation system [7], which are still in use. These innovations
brought to a better appreciation and understanding of a wealth
of information about the fetal health state that can be extracted
from the signals, such as fHR and uterine contractions [8], [9].
Based on these observations, in 1969, Huntingford and Pendle-
ton published the first classification system of fHR [10].

Almost simultaneous to the development of fetal electro-
cardiography (fECG), the ultrasonic fetal cardiotocography
(CTG),! a non-invasive method for simultaneous monitoring
fHR and uterine contractions was introduced [11]. The popular-
ity of this noninvasive method grew as it was accepted by the
medical community throughout the 1960s with the first com-
mercially available model (Hewlett-Packard 8020A) introduced
into delivery rooms in 1968 [12]. Some practitioners noted the
virtual disappearance of fetal death in labor following its intro-
duction [13]. However, despite great expectations, application
of CTG in clinical practice did not result in a rapid reduction
of undiagnosed fetal hypoxia or a decrease in the incidence of
cerebral palsy [14], [15]. This may be attributed to the fact that
the first monitors were rather unreliable and suffered from con-
siderable inter- and intra-observer disagreement since the data
were difficult to interpret [16].

Additionally, in late 1970s and 1980s, several studies [17]—
[23] suggested that CTG was one of the factors responsible
for the significant rise of Caesarian section (C-section) rates.
However, some authors have pointed out that introduction of the
CTG is only one of the factors causing this rise [24], [25]. Other
suggested causes [24], [25] were new obstetrical methodologies

'In English-speaking countries, particularly in the United States, the term
used instead of CTG is electronic fetal monitoring (EFM), the name given in the
1960s to describe this new technology. However, nowadays use of this term may
be misleading. Therefore in 2015, the consensus promoted by the International
Federation of Gynecology and Obstetrics agreed that cardiotocography is the
term that best describes this monitoring technique. In this paper, the term EFM
will only be used for the electronic fetal monitoring in general.

For more information, see http://creativecommons.org/licenses/by/3.0/


https://orcid.org/0000-0003-2054-143X
https://orcid.org/0000-0003-3346-6467
https://orcid.org/0000-0001-5204-4230
https://orcid.org/0000-0001-9629-3239
https://orcid.org/0000-0002-6026-0264
mailto:radana.kahankova@vsb.cz
mailto:radana.kahankova@vsb.cz
mailto:radek.martinek@vsb.cz
mailto:rene.jaros@vsb.cz
mailto:kb@uta.edu
mailto:adamm@itam.zabrze.pl
mailto:michal.jezewski@polsl.pl
mailto:jbehar@technion.ac.il

52

IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 13, 2020

introduced in the late 1970s, which added previous C-section or
obstructed labour to the indications for a C-section.

Fig. 1 shows the trend of the C-section rate (per 100 deliv-
eries) and perinatal mortality ratio (per 1000 live births) in the
US between 1965 and 2017 (based on [22], [26]-[29]). While
no causal effect is implied here, it can be noted that the rise in
the C-section rate was steepest after the introduction of CTG
to clinical practices. In parallel, perinatal mortality decreased
significantly after CTG was introduced. However, it has not sig-
nificantly decreased in the past 30 years, while the C-section
rate has continued to increase gradually. There is little evidence
of a positive correlation between C-section rates and perinatal
outcomes [30]. According to the World Health Organization
(WHO) Statement on Caesarean Section Rates [31], this rate
should be between 10-15%. Moreover, WHO states that rates
higher than 10% are not associated with reductions in maternal
and newborn mortality rates. It is therefore understandable why
Simsek et al. [32] found the current Cesarean birth rates alarm-
ingly high. Taken together, there remains a pertinent need for
precise automated systems that can interpret CTG traces or more
contextual information than the sole estimated fHR tracing [33].

More accurate fetal monitoring can be achieved by inter-
nal electronic fetal monitoring, where the fHR is determined
using signals measured by a fetal scalp electrode (FSE) [34].
Moreover, in 2007, the Swedish company Noeventa Medical
(Molndal, Sweden) introduced the innovative STAN S31, a
fECG device which is attached to the FSE and can trace the
changes in individual elements of the ECG waveform. In ad-
dition, it performs automatic ST segment analysis, which im-
proves the ability to identify fetal hypoxia [35].

Non-invasive fetal electrocardiography (NI-fECG) is among
the most promising alternative method for continuous fetal mon-
itoring, which may provide unique physiological information
for identifying fetal distress that cannot be obtained by the most
prevalent method of electronic fetal monitoring, CTG. The main
reason is that the fECG signal carries valuable information,
such as pathological states (myocardial ischemia, intrapartum
hypoxia, or metabolic acidosis) manifesting as changes in the
morphology of the fECG waveform (ST segment, QT interval),
that cannot be accessed from the CTG because of the nature
of its measurements. Moreover, both mother and fetus are not
exposed to any kind of radiation. Furthermore, uterine con-
tractions can be monitored by sensing the electrical activity on
the maternal abdomen [41]. This method is known as electro-
hysterography and it has a great potential for uterine activity
monitoring [42]. Therefore, NI-fECG is theoretically capable to
supersede CTG [43].

Over the last decade, the first commercially available de-
vices for fHR monitoring based on NI-fECG were approved by
the Food and Drug Administration (FDA), namely the Mon-
ica AN24 (2012) and Monica Novii Wireless Patch System
(2014) (Monica Healthcare Ltd., Nottingham, UK), MERID-
TIAN M110 Fetal Monitoring System (2017) (MindChild Med-
ical, Inc., North Andover, MA, USA), and PUREtrace (2017)
(Nemo Healthcare, Veldhoven, the Netherlands). In October
2018, Nemo Healthcare released the Nemo Fetal Monitoring
System, which is CE-certified and is now available for com-

Fig. 2. Examples of CE or FDA-certified commercially available NI-
fECG-based devices. a) Monica AN24, Monica Novii Wireless Patch Sys-
tem [37], MERIDIAN M110 Fetal Monitoring System; b) PUREtrace [38],
Nemo Fetal Monitoring System [39].

mercial sale and clinical use in Europe. The available NI-fECG
devices differ in the ways that they are physically applied on
the body and the number of electrodes they use (see Fig. 2).
While Monica AN24 uses five individual electrodes (4 sensing
and 1 common electrode), the other NI-fECG devices utilize a
disposable patch system, which incorporates electrodes that can
record both ECG and electromyography (EMG) signals.

The signal recorded on the maternal abdomen is composed of
amixture of fetal ECG signal, maternal ECG (mECG) and noise.
In addition, the amplitude of the maternal signal is usually much
stronger than the fetal one and both have a similar frequency
content, challenging the separation of the fetal and maternal
signals in both time and frequency domains. Thus, accurate
extraction for morphological analysis of the fECG waveform can
be challenging [36]. A number of researchers have been focusing
on finding the best method for fECG signal extraction. In this
paper, we aim to introduce the most promising signal processing
techniques used to improve the monitoring capabilities of NI-
fECG.

In contrast to adult ECG-related research, there exists a lack of
open access fECG databases for robust quantitative evaluation
of extraction algorithms. While several researchers introduced
synthetic signal generators to produce data for their experi-
ments [44]-[46], the results obtained often differ from those
obtained from signals from clinical practice.

While previous reviews on fECG have been published [47]-
[52], [47]-[52], this paper provides a critical review of recent
advances in NI-fECG signal processing techniques. In addition,
it reviews the most promising techniques and current challenges
in fECG signal processing and analysis, including practical
challenges, optimal system settings, and preprocessing require-
ments. An inventory of open-access databases and source codes
is also provided.

[l. CONTINUOUS FETAL MONITORING IN CLINICAL PRACTICE

The most common form electronic fetal monitoring (EFM) in
clinical practice, CTG, is based on concurrent measurement of
the fHR and uterine contractions, using a Doppler-based ultra-
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sound transducer and pressure sensor, respectively [1]. The tech-
nique, however, requires high physician skills and experience
in positioning the transducers. In addition, it is quite vulnerable
to both fetal and maternal motion and loses its sensitivity when
used with patients with a high body mass index (BMI) [53],
[54]. Moreover, since both sensors are attached to the maternal
abdomen by means of elastic belts, maternal mobility is limited
which is inconvenient especially during labor. Further, some
studies have reported low reliability of the technique [53]-[56].
For example, Sartwelle et al. [55] report on its problematic
false-positive profile, limiting its reliability, especially as legal
evidence. This is supported by other studies that investigated
the agreement in the decision-making about operative interven-
tion between expert obstetricians [57], [58]. Nonetheless, TG
remains the standard of care worldwide, partly due to lack of a
superior non-invasive monitoring technique [59], [60].

There are also some practical issues that need to be kept
in mind when monitoring the fetus using NI-fECG. Although
the fetal heart can be heard without amplification and recorded
using NI-fECG as soon as the 20th weeks of gestation, the
commercially available devices, such as Monica Novii Wireless
Patch System, are only indicated for use from week 37. One of
the reasons for this is the gradual disappearance of the vernix
caseosa coat after week 37 [62], which has been reported to
reduce the effectiveness of NI-fECG recording [61].

For example, Keenan et al. showed that volume conductor
asymmetry results in significant changes in fECG waveform
amplitude and morphology (over 70% errors in the observed
T/QRS ratio) [64]. Therefore, this method is most effective in
the later stages of pregnancy, especially during the labor [50].

Fetal magnetocardiography (fMCG), an alternative method
for prenatal surveillance, involves registration of magnetic fields
arising from conduction currents generated by the fetal heart.
The morphology of the recorded signal is identical to that of the
fECG signal (i.e., QRS complex, P wave, and T wave) but has
better signal-to-noise ratio (SNR). Several studies proved that
fMCG is auseful tool for early diagnosis of fetal arrhythmias and
congenital heart defects [65], [66]. However, fMCG remains an

experimental method since it requires careful shielding, skilled
technical support, and expensive equipment, which is not widely
available [67].

A. Fetal Heart Rate Estimation

All of the currently used monitoring techniques utilize fHR
as the main parameter to assess the fetal health state during la-
bor. However, CTG only provides a time-averaged fHR. Other
methods, namely fECG, fetal phonocardiography (fPCG) and
fMCG, enable beat-to-beat heart rate variability analysis, pro-
viding more diagnostically significant information as compared
to CTG [68].

There are several factors that need to be considered when
monitoring fHR. The sampling frequency often varies based
on the technique used. NI-fECG sampling frequency is usually
relatively high (around 1 kHz) [69], [70]. Xuan ef al. investi-
gated the impact of the sampling frequency on the output signal
quality [71] and suggested that 900 Hz is a suitable sampling
frequency for fHR monitoring based on fECG. Similarly, Be-
har et al. [47] concluded that a minimum 1 kHz sampling fre-
quency should be used to ensure adequate quality. Indeed, most
of the available databases use this sampling frequency. Another
factor is the peak detector algorithm used and its influence on the
accuracy of the fHR variability. A variety of approaches to de-
tect fetal QRS complexes have been proposed, e.g., Christov’s
beat detection [72] and matched filtering [73], fetal RS slope
detection by a dedicated adaptive procedure [74], expectation
weighting [75], and echo state recurrent neural network [76].
Yet, no objective comparisons between the methods have been
conducted to date; to objectively compare the performance of
various fetal QRS detectors, the algorithms must be tested using
the same NI-fECG database.

B. Morphological Analysis

Morphological analysis of the fECG waveform in the clini-
cal setting is currently only possible using invasively recorded
fECG data. Morphological analysis of the fECG waveform in
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the clinical setting is currently only possible using invasively
recorded fECG data. Such analysis was first enabled by the
STAN S31, which traces the changes in individual elements of
the ECG waveform such as P wave, QRS complex, and T wave.
Using the individual R waves, the fHR is continuously calcu-
lated, subsequently also providing the beat-to-beat variability.
Moreover, this device can perform an ST analysis (STAN) us-
ing the acquired ST segment and T:QRS ratio. Other analysis
options include T-wave alternans (TWA) [77], or abnormal car-
diac repolarization analysis [66]. Zhao et al. [66] used fMCG to
detect and analyze fetal T-wave characteristics, such as QT in-
terval in the normal fetus, and subsequently, to define T-wave
abnormalities associated with fetal arrhythmia.

The drawbacks of this method are risk of infection, decreased
comfort of the patient, and the necessity for membrane rup-
ture and uterine penetration, limiting its use to the labor stage
only [78]. For these reasons, the method is often criticized and
its benefits are questioned [79]-[82].

These limitations can be overcome by the use of external
fECG monitoring. However, accurate fECG waveform needs
to be extracted in order to access equivalent morphological in-
formation as obtained using invasive monitoring. According to
authors’ best knowledge, a very few authors have achieved this
goal so far. Niknazar [83] et al. reconstructed the fECG wave-
form by extended state Kalman filtering from single-channel
recordings. Su et al. [84] successfully extracted fECG signal for
both fHR and morphological analysis using a novel algorithm
based on the optimal-shrinkage and the nonlocal Euclidean me-
dian under the wave-shape manifold model. Behar et al. [85]
extracted the complete fECG waveform using Bayesian filtering
framework based on the extended Kalman filter. The same au-
thor demonstrated accurate fECG extraction using an approach
introduced by Andreotti et al. [87] and proved the feasibility
of the NI-fECG as a supplementary method to diagnose fetal
arrhythmias [86].

Enabling fECG morphological analysis could open new di-
agnostic opportunities:

® Monitoring ECG for ST segment deviation is used in
adults to diagnose myocardial ischemia. In fact, at present,
it is the only practical method for continuous non-invasive
monitoring of ischemia episodes in adults [88]. In cur-
rent fetal monitoring, ST analysis scores biphasic ST seg-
ments, which may be an indicator of the severity of hy-
poxia [89]. Nonetheless, ST analysis is clinically carried
out using invasive monitoring by FSE. Interestingly, Clif-
ford et al. [90] compared the fHR and ST change extrap-
olated from FSE data with those recorded non-invasively
using abdominal electrodes and suggested that they are
clinically indistinguishable.

e It is known that the QT segment reflects ventricular re-
polarization, where shortening of the QT interval is as-
sociated with intrapartum hypoxia and metabolic acido-
sis in adult ECG [91]. Conversely, prolongation of the
QT interval is considered a risk factor for sudden cardiac
death [92], [93]. It is noted that this method is not without
challenges. Indeed, the manufacturer of a popular patient
monitor model [94] emphasizes that for ST segment mon-

itoring, their algorithm depends on determination of the
end point of the S wave. Therefore, any sudden change,
such as increased heart rate, can lead to shortening of the
QT interval and consequently generate erroneous ST seg-
ment values.

® The feasibility of NI-fECG as a supplementary diagnostic
method for fetal arrhythmias has been demonstrated [86],
[95]. However, the quality of the fECG extraction and P-
wave is critical for characterization of certain arrhythmias.

[ll. ASSESSMENT OF FETAL ECG EXTRACTION
PERFORMANCE

When applying any signal processing method for fECG, it is
essential to devise tests that provide an assessment of its per-
formance. In the following subsections, we introduce the most
commonly available methods for filtration quality assessment,
applicable to synthetic as well as real data, and provide a list of
available fECG signal databases.

A. Evaluation Methods

Undoubtedly, optimal evaluation of a fECG processing
method should use real data. However, simulated data are often
used for initial testing and evaluation of devised algorithms. This
enables testing of algorithm design assumptions [96]. Quality
evaluation using simulated data can therefore benchmark var-
ious algorithms, while the actual signal is used as the refer-
ence (or gold standard) later compared with the estimated data.
In contrast, the only way to measure true fECG signals is by
means of a FSE. However, this signal does not fully correspond
to the fetal component in the composed abdominal signal, since
it changes its properties due to the dispersion of the waveforms
that are sensed at different locations. For instance, this distortion
is manifested as dispersion of the QT interval or QRS complex.
Therefore, the FSE signal is considered a strong reference for
the fHR assessment and an acceptable one for morphological
parameters, sometimes denoted as a silver standard [47]. Prac-
tically speaking, the morphological features being investigated
in the FSE signal (ST segments, QT intervals) must be manu-
ally annotated by a panel of experts (ideally, at least three [91]).
In the following subsections, we introduce the most common
parameters used to evaluate the quality of the filtration.

1) Evaluation Using Real Data: Various evaluation and
scoring statistics have been used in research publications. Up
until 2013, there was no suitable large public databases or de-
fined quality assessment methodologies available. To address
these issues, the Oxford research team, led by Clifford and
Behar, initiated an international competition entitled ‘The Phy-
sioNet/Computing in Cardiology Challenge 2013’ (hencefor-
ward, ‘Challenge 2013”) [36]. This competition involved 91
open-source algorithms from 53 international teams and con-
tributed significantly to the development of methods for evalu-
ation of proposed algorithms.

Other researchers suggested the use sensitivity (Se), positive
predictive value (P PV), their harmonic mean F, and accuracy
(Acc). These parameters are defined by the classification of
the detected fetal QRS complexes: true positive (1'P), false
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positive (F'P), and false negative (F'N), i.e. correctly identified,
incorrectly detected (extra) and missed QRS complexes, see
Equations (1)—(4).

Se= Tiji—PFN' 0
TP

PPV = f s, )

Fl:2'551‘//—;—65622.2-TP+T15P+FN' )

Ace = TP+1:C}];+ FN' @

2) Evaluation Using Synthetic Data: The scoring statistics
defined in section III-A1l can be used for both synthetic and
real data. For synthetic data, there are also other evaluating
statistics available, which utilize the known reference fECG
signal that is available as a reference. These parameters include
statistics, such as signal to noise ratio (SNR) [97]-[99], root-
mean-square error (RMSE) [97], [100], and percentage root-
mean-square difference (PRD) [97], [100].

Besides the benefit of a more objective evaluation, the syn-
thetic data enable modelling of different stages of pregnancy,
fetal position based on the fetal vectorcardiogram, pathologic
states. Four of the artificial fECG signal generators were in-
troduced by Sameni et al. [101], Behar et al. [44], [45],
Martinek e al. [46], and Keenan et al. [64].

Despite the advantages provided by synthetic data, they fail
to compete with thorough performance evaluations using real
data. Nonetheless, when an algorithm is considered for practical
medical applications, it is necessary to prove the capability of
the algorithm in recovering the main clinical features used for
fetal monitoring, such as the fHR, ST and QT intervals, for
which reference annotations may be challenging or impossible
to obtain.

B. Available Fetal ECG Signal Databases

Before the Challenge 2013, the following databases were
available: A database for identification of systems (DAISY),
Non-Invasive Fetal Electrocardiogram Database [102]
(NIFECGDB), Abdominal and Direct Fetal Electrocardiogram
Database [103] (ADFECGDB). The DAISY was the first
database, constructed to increase the reproducibility of the
results reported in scientific papers, includes data of various
categories. The fetal recordings are included in the Biomedical
Systems section of the database and categorized as “Cutaneous
potential recordings of a pregnant woman”. The recordings
consist of five abdominal and three chest channels from a single
fetus, with duration of 10 s, which were sampled at 250 Hz. The
dataset contains the recording of only one fetus, the sampling
frequency is low, the length of the segments is insufficient, and
the NI-fECG is relatively easy to separate.

2Code is available online at: http://www.fecgsyn.com

Following Challenge 2013, a new dataset consisting of one-
minute recordings sampled at 1 kHz, was made available by
PhysioNet [104]. Each recording includes four abdominal sig-
nals. The data were contributed by different institutions and
are divided into two sets: Set A and Set B. Since then, a num-
ber of researchers who have participated in the Challenge 2013
evaluated their algorithms using the following protocol. New
algorithms should be trained on Set A (training set) and evalu-
ated using Set B (validation set) to ensure objective assessment
and comparison with other results. The final algorithms were
evaluated on the hidden test-c, which was not made available to
participants. It is still possible to carry out the evaluation on the
hidden test-c.> However, the dataset has some limitations, e.g.,
each record is only 1 minute-long and the chest leads are not in-
cluded, rendering it useless in evaluation of adaptive extraction
systems.

The algorithms must be tested on as much data as possible.
Following are databases publicly available on PhysioNet [104]:

e The Abdominal and Direct Fetal ECG Database (AD-
FECGDB) [103] includes a total of 5 recordings from
5 different subjects in labor (38—41 weeks of gesta-
tion) recorded using the KOMPOREL fetal monitor-
ing system (ITAM, Zabrze, Poland). Each record in-
cludes four abdominal signals and one signal form
FSE, which serves as the reference for fQRS annota-
tions. The length of each signal is 5 minutes, totaling
25 minutes of data sampled at 1 kHz. The unique advan-
tage of this database is that it has the reference scalp ECG
available [105].

e The Non-Invasive Fetal Electrocardiogram Database
(NIFECGDB) contains a total of 55 recordings from a
single subject (21-40 weeks of pregnancy). Each record
includes four abdominal and two thoracic signals of vari-
able length (minimum length is 1 minute and 54 seconds,
while maximum is 46 minutes and 20 seconds). Record-
ings were sampled at 1 kHz [104].

e The 2013 PhysioNet/Computing in Cardiology Challenge
Database consists of 447 min of data from five different
databases, which are divided into the following sets in
PhysioBank ATM:

— Challenge 2013 Training Set A (Challenge/2013/set-
a) consists of 25 recordings, each including four ab-
dominal ECG signals sampled at 1 kHz. The fQRS
annotations are publically available.

— Challenge 2013 Test Set B (Challenge/2013/set-b),
which includes 100 recordings of abdominal ECGs
sampled at 1 kHz. Unlike training Set A, test Set B
is not publically available [36].

® The Fetal ECG Synthetic Database (FECGSYNDB) [87]
includes synthetic signals generated generated using the
FECGSYN simulator [45]. The dataset includes simulated
signals from 10 different pregnant subjects. For each sub-
ject, there are 5 different noise levels, 7 different noise

3In case of interest, the algorithms should be sent to Challenge organizers
(challenge @physionet.org).
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TABLE |
EXISTING PUBLICLY AVAILABLE DATABASES OF NI-FECG RECORDINGS

Average Number of Reference Number
18 Fs (Hz) . Signals R peak of
duration recordings .
annotations fetuses
. 5 aECGs,
DalSy [102] 10 s 250 1 3 mECGs No 1
ADFECGDB [103] 5 min 1000 5 4 fEl;%gs Yes 5
Sgage'[‘f;] 2013 1 min 1000 75 4 aECGs Yes unknown
g;agegg;] 2013 1 min 1000 100 4 aECGs No unknown
; 4 aECGs, ®
FECGSYNDB [87] 1 min 1000 5 1 mECG Yes 10
. 4 aECGs,
NIFECGDB [104] 1.9 to 46.3 min 1000 55 2 mECGs No 1
NIFEADB [86] 10to 13 min 500 or 1000 26 4 or 5 aBCGs, No 26
1 mECG
“synthetic signals, 10 simulated pregnancies
aECGs - abdominal ECG signals
mECGsS - chest (maternal) ECG signals
FSE - reference signals from fetal scalp electrode
cases (e.g., uterine contraction, fetal movement, etc.), 800
and five recordings (repetitions) for each combination of g 700
. . . . . 2 600
settings available, totaling 1750 synthetic fECG signals. S 0
Moreover, the database contains the reference chest and 3400
noise signals [87]. 5 300
. . . =]
e The Non-invasive Fetal ECG Arrhythmia Database g 200
. . . z
(NIFEADB) provides a series of recordings from 26 fe- 103  mm
tuses; 12 arrhythmic and 14 normal (based on the fetal 1940-  1950-  1960- 1970-  1980- 1990-  2000-  2010-
echocardiography, which was used as a reference diag- 19301960 1970 198°Yeml”° 2000 2010° 2020
nostic method). For each recording, a set of 4 or 5 abdom-
inal channels and 1 chest maternal channel were recorded.  Fig. 3. Number of publications on fetal electrocardiography in the US

The average length of each NI-ECG record is 13 minutes
3 seconds and 10 minutes 6 seconds arrhythmic and nor-
mal rhythm cases, respectively. The sampling frequency
is either 500 Hz or 1 kHz. Detailed diagnosis informa-
tion as well as gestational age of each fetus can be found
in the companion reference [86]. The database is suit-
able for testing algorithms designed for automatic de-
tection of abnormal rhythm events. Data were recorded
using the Cardiolab CS software (KhAI Medica, Ukraine)
[106], [107].

Table 1 summarizes the available open-access databases.
Overall, the total length of available data is modest and thus,
construction of a large NI-fECG database following the stan-
dards of big data remains one of the major unmet needs in
the field [108]. Such a database must include signals from
both abdominal and chest electrodes. In case of recording per-
formed during labor, reference recordings by means of FSE
might be necessary, in particular for the purpose of the mor-
phological analysis of the NI-fECG signal. The length of the
signals should be at least 5 minutes and preferably more as
the heart rate variability of adults is traditionally analyzed
over 5 minute windows [109]. The sampling frequency is
recommended to be at least 1 kHz and with quantization of
16 bits. Ideally, to enable tests of automated analysis of fECG

National Library of Medicine.

recordings, the database should document the health outcomes
at delivery.

IV. ALGORITHMS FOR FECG SIGNAL EXTRACTION

According to PubMed (US National Library of Medicine),
3301 articles focusing on fECG (both invasive and noninvasive)
have been published since 1940 (see Fig. 3).

In this review, the algorithms are divided into two categories:
algorithms that require only abdominal electrodes (Abdominal
electrode-sourced (AES) methods) and algorithms that require
both abdominal and chest electrodes (Combined source (CS)
methods). The principles of this categorization are illustrated in
Fig. 4. This terminology was selected in order to minimize the
confusion and inconsistency caused by different nomenclature.

The CS system, which includes an adaptive algorithm, re-
quires a minimum of one abdominal electrode and one for chest
recording. Adaptive noise cancelling methods are based on the
theoretical assumption that abdominal and chest channels con-
tain the same noise. Practically, this is true for the mECG (which
is considered the main source of noise) but less accurate for
electromyography noise, which might be location-dependent.
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Fig. 4. lllustration of a multi-lead extraction system. The Combined
Source (CS) methods, are the systems that require the chest lead to
learn the maternal ECG signal in order to subtract it from the composite
abdominal ECG (aECG) signal, usually, via an adaptive filtering tech-
nique. Conversely, Abdominal Electrodes Sourced (AES) methods only
use abdominal leads.

Adaptive techniques are well suited for the maternal component
cancellation, which is the main and most challenging contami-
nant in the abdominal mixture [110].

A. Abdominal Electrodes Sourced Methods

One category of AES methods involves designs working in the
time domain and reliance on quasi-periodic, time-uncorrelated
fECG and mECG signals, which are used to generate an mECG
template which is subsequently subtracted from the abdominal
ECG signal. These techniques include a variety of template sub-
traction methods [111], [112], Kalman filtering [113] or wavelet
transform [114].

A second category of AES methods can be classified as spa-
tial techniques. This approach is based on separating fetal sig-
nal by using the information about the spatial distribution of
the source signals. The most well-known and most frequently
used spatial methods, traditionally denoted blind source sep-
aration (BSS) methods, include principal component analysis
(PCA) [115], independent component analysis (ICA) [116], or
nonlinear state-space projections [117]. Their advantage lies in
their ability to detect and extract typical ECG-patterns, e.g. ex-
tra systoles [116], is a crucial factor in medical diagnosis and
treatment. At the same time, they usually require a large number
of abdominal channels, which causes discomfort to the mother
and thus makes their clinical utilization challenging. Conversely,
the temporal methods are much easier to implement in clinical
practice [118], [119].

1) Template Subtraction Methods: In fECG extraction,
the template subtraction (TS) method is a generic name that
is broadly applied to approaches that extrapolate fetal ECG by
subtracting the template (maternal component) from the input
signal mixture (aECG recording). The main drawback of this
technique is that its the accuracy significantly depends on the
quality of the mQRS detection [120], [121]. One of the chal-
lenges is accurate location of the fetal R waves overlapping
with the maternal ones to avoid the amplitude and phase dis-
tortion. For implementation in clinical practice, it is crucial that

unexpected ECG-patterns be detectable [122]. Therefore, the
parametric formulation of the quasi-periodicity of aregular heart
rate pattern would hamper the detection of events such as extra
systoles [116].

The mother template can be estimated using different ap-
proaches. Behar et al. [123] used Martens [112] approach
(therein denoted as TS,,) and built the mECG template cy-
cle centered on the mother R-peak, with a duration of 200 ms
for the P wave, 100 ms for the QRS complex, and 400 ms for
the T wave. This approach, however, suffers from discontinu-
ities since the choice of these interval durations is empirical. It
was suggested that variable interval lengths, dictated by mater-
nal heart rate, would significantly improve the efficacy [123].
The improved TS,, addresses this need by scaling the aver-
age mECG complex for each individual mECG cycle with a
multiplication constant to decrease the mismatch between the
template and the mECG complex.

In another approach described by Vullings ez al. [124], and re-
ferred to as weighted averaging of mECG segments (WAMES),
the mECG signal is dynamically divided into separate segments,
generating an individual estimate for each mECG segment. The
estimation is carried out using the linear combination of offset-
compensated, time-shifted, and scaled corresponding segments
in preceding mECG complexes. The authors built the template
ECG by weighting the 7 previous cycles, where the weights are
selected to minimize MSE between the estimate and the actual
mECG complex. To ensure adaptation to the non-stationary na-
ture of the mECG morphology, the template is updated every
cycle.

Finally, Kanjilal [125] used a PCA-based TS approach which
obtains the principal components using singular value decom-
position (SVD) along with the analysis based on the singular
value ratio spectrum. To separate the mECG component, the
data matrix is designed so that each row corresponds to one
mECG cycle and the maternal R-peaks occupy the same column.
mECG suppression is achieved through selective separation of
the decomposed components. When the maternal component is
suppressed, the residual signal contains the fetal component and
the noise. For extraction of the fetal component, the data ma-
trix is designed so the consecutive rows contain the fetal ECG
cycle with the peak value lying in the same column. The SVD
is then performed on this matrix and the principal component
corresponding to the fECG is obtained.

Moreover, Lee et al. [126] used this method, denoted as
T'Spc 4, along with the total variation denoising. The algorithm
first filters the aECG using total variation denoising. Then, the
mECG is subtracted by means of T'Spc 4, and finally, total
variation denoising is applied to the residual signal and fECG
is estimated. These additional steps significantly improved per-
formance.

Additionally, in the method introduced by Liu et al. [127],
the fetal R wave was detected by a single abdominal lead by
combining the template matching approach and the RR time-
series smoothing.

2) Kalman Filtering: The standard KF approach is built for
linear systems. However, many practical systems have a non-
linear nature. The KF can be applied to a linearized version of
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Fig. 5. Kalman Filtering. a) An example of the abdominal ECG signal

composed from both maternal and fetal component; b) mother template
to be subtracted from the composite signal; c¢) residual signal containing
fetal component and some noise. Adapted from from Behar et al. [123].

these systems with loss of optimality. The extension to non-
linear systems is known as extended Kalman filter (EKF), and
can be used to filter the maternal component by considering
fECG as noise [113]. The maternal component is subsequently
subtracted from the abdominal mixture and subsequently, the
residual signal will contain the fetal ECG and some noise, as
illustrated in Fig. 5. Of note, the EKF method is an advanced
type of TS approach since the estimated mECG cycle is sub-
tracted from each individual heart beat [128]. As in the case of
other TS approaches, EKF has the same drawback of requiring
precise mQRS detection, which is associated with susceptibility
to noise in the chest or abdominal mECG recording. However,
in contrast to the other TS techniques which cancel the mECG
cycle within a given window length, the EKF places limitations
on the lengths of P, QRS and T waves. Therefore, it continuously
attempts to estimate the mECG.

Vullings et al. [129], compared the performance of EKF to
that of KF with fixed process noise covariance, which needs to
be estimated a priori. This requires detailed information on the
ECG signal dynamics [129]. The comparison showed that when
the process noise covariance is chosen optimally for fixed KF, its
performance is equivalent to the adaptive EKF. Moreover, EKF
is capable of quickly adapting the noise estimation to match the
filter’s output to the new input. This is suitable for long-term
monitoring [129]. Conversely, due to less flexible estimation of
the Kalman gain, the fixed Kalman filter needs some time to
adjust its output.

Before implementing the filter, one must choose the prop-
erties of covariance matrices, and means of estimation of the
Gaussian parameters. Sameni et al. [113] built process and ob-
servation noise covariance matrices (Qy and Ry, respectively)
as a compromise between the convergence rate and stability,
based on the level of nonstationarity of the input signal. While
for stationary noises the diagonal elements of Qy are relatively
small, for highly nonstationary noises, they are large. As for Ry,
it should be chosen by considering the desired output noise vari-
ance. Moreover, since noise sources are assumed not to corre-
late with each other, both matrices can be simplified to diagonal.
Behar ez al. [128] proposed to multiply the Ry and Qi covariance
matrices by gain terms. The values of Gg and G, are determined
by searching for optimum performance from a training dataset.

The Gaussian parameters can be automatically estimated by
randomly initializing the Gaussian parameters to the identified
P, QRS and T waves of the template data. Sameni [113] used a
non-linear curve fitting approach to find the Gaussian parame-
ters minimizing the root mean squared error (RMSE) between
the template and the cardiac cycle mapped by the Gaussian
functions. Behar ef al. [128] used the RMSE as the stopping
criterion; this process was repeated until reaching the best set
of Gaussian parameters. Another parameter that influences the
performance of the KF method is the number of Gaussian pa-
rameters used. An evaluation using synthetic data showed that
the more functions used, the better the mean fitting error, but at
a cost of computation time [128].

Zaunseder et al. [118] compared EKF effectiveness with the
template subtraction method based on an event synchronous
canceller which performs coherent averaging of the cardiac cy-
cles to construct a time varying beat template. The authors con-
cluded that the EKF-based system achieves significantly higher
accuracy. Andreotti et al. [130] and [131] used a KF-based
method based on EKF followed by a backward smoothing stage,
labeled as extended Kalman smoother (EKS). The system pro-
cesses the signal as follows: average maternal beat is obtained
by wrapping the single beat and is subsequently approximated
by Gaussian kernels. Finally, in order to obtain acceptable esti-
mations, the Kalman gain is then used to correct the observed
signals on a sample basis, considering the system dynamics. The
algorithm was presented at Challenge 2013 and won the one of
the closed-source events.

The advantage of EKF is that when subtracting the evaluated
maternal signal, no discontinuity is generated due to the phase
mapping. On the other hand, using the EKF can be problematic
in cases when maternal and fetal beats overlap because of the
adaptive nature of the filter. Therefore, when performing the
subtraction, the fetal beats will be partially cancelled along with
the maternal component.

3) Wavelet Transform: Wavelet transforms (WT) have re-
ceived a lot of attention in the areas of signal and image pro-
cessing like data compression or noise reduction [132]. In com-
parison with the traditional noise reduction methods based on
Fourier analysis, wavelet based analysis offers time-frequency
representation of signals and thus can be applied even in the
cases where the frequency spectrum of useful signal and noise
overlap, such as fECG (“signal”) and mECG(*“noise”). There
are several wavelet denoising techniques, which vary accord-
ing to the application and type of input signal, such as discrete
(Daubechies) wavelet transform (DWT), complex wavelet trans-
form (CWT), stationary wavelet transform (SWT), pitch syn-
chronous wavelet transform (PSWT), and undecimated wavelet
transform (UWT) [133].

In some cases, especially for simple synthetic data, the extrac-
tion can be carried out using WT decomposition alone. However,
in case of real data, this approach is limited due to significant
cross-over between the useful signal and the noise in the spec-
tral domain [36]. Thus, WT methods are usually combined with
other methods such as adaptive filtering [134], or blind source
separation methods [134]. Additionally, since the energy of the
maternal component in aECG signal is significantly higher than
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the fetal component and can be estimated more precisely us-
ing DWT, the estimation of fECG is performed by subtracting
mECG from the abdominal signal [135]. Moreover, WT was
also successfully utilized in wavelet transform based QRS de-
tectors [136], [137].

Since the wavelet transform is widely used for fECG signal
processing, we provide some fundamental information about
WT-based system settings derived from fECG processing lit-
erature. For WT-based fECG signal processing, the following
parameters must be selected carefully:

o Suitable Wavelet Basis

The choice of mother wavelet is very important since it has
a significant impact on the results of filtration. Usually, it
is recommended to choose a wavelet base which is mor-
phologically similar to the processed signal, as it allows to
filter the higher frequencies of the signal. For fECG sig-
nal processing, following wavelet bases have been used
frequently in the literature:

— Daubechies (e.g., [138]-[141]),

— Symlet (e.g., [142], [143]),

— Quadratic Spline (e.g., [114], [144]),

— Complex Frequency B-Spline (e.g., [145]),

— Biorthogonal (e.g., [146], [147]).
Besides the above-mentioned wavelets, Daamouche et al.
[148] introduced a wavelet design method which adopts
the polyphase representation and formulates the optimiza-
tion problem within a Particle Swarm Optimization (PSO)
framework. The presented results have demonstrated that
the method is more accurate in comparison with two other
commonly used wavelets (i.e., Daubechies and Symlets),
but significantly more computationally demanding. Con-
trary, for fPCG extraction, the more suitable wavelet fam-
ily may be the coiflets, particularly coif4, according to a
study in 2009 by Chourasia [149]. This wavelet family
has also been used in case of fECG processing, but only
for the high frequency noise reduction [144].

® Thresholding Rules and Parameters

The most important types of thresholding are the hard
thresholding and the soft thresholding defined by Equa-
tion (5) and (6), respectively. The hard thresholding sets
the samples lower than the threshold to zero and the rest
of the values remain unchanged whereas for soft thresh-
olding, the non-zero coefficients are decreased towards

Z€10.
0 forw < A,
RH(W) = w for w > A’ (5)

0 forw < A,
Bs(w) = signum(w)(w — A) forw > 1’ ©

where A is the thresholding constant size defined by the
threshold rules; w represents the wavelet coefficients; Ry
and Ry is the resulting signal from hard and soft threshold
function, respectively. Four different thresholding rules
can be selected in Matlab Wavelet Toolbox (by Math-
Works, Natick, Massachusetts, USA):

— rigrsure — based on the principle of Stein’s Unbiased
Risk Estimate (SURE).
— sqtwolog — Fixed (Universal) threshold defined as

A= /2 TogN, ™)

where N is the signal length.

— heursure — defined as combination of SURE and fixed
threshold.

— minimaxi — based on minimax principle.

logn;
log2’

A =0.3936 + 0.1829 - (8)
where j is the level of decomposition, and n; is the
coefficient vector length at each decomposition level j.
For fECG pre-processing, it is recommended using the
Matlab Wavelet Toolbox wavelet sym4 with adaptive
threshold and hard thresholding [150]. The thresholding
rules and parameters can be combined and modified such
as by Casillo et al. [140].
e [Level of Decomposition
Generally, determining the levels that a signal should be
decomposed to depends on several attributes or character-
istics of the signal such as whether the signal is biolog-
ical or synthetic, signal length, and sampling frequency.
Hence, the researchers have opted for different decom-
position levels, based on their assessment of the signal
attributes.
For instance, Hassanpour et al. [138] suggested using sec-
ond level of decomposition to extract fECG and mECG,
and consequently, a Savitzky-Golay smoothing filter to re-
duce the remaining noise. Contrary, Chouakri et al. [142]
used decomposition at Level 4 by Symlet wavelet. More-
over, Castillo et al. [140] removed the baseline wandering
based on following equation:

L = logy(Fy) 9

where Fj is the maximum frequency component of the
signal. This expression for the calculation of the level of
decomposition L is based on the detailed analysis carried
out by Sharma et al. [151].

Fig. 6 shows an example of wavelet decomposition applied
on the real aECG signal (aECG3, recording r01, ADFECGDB
[103]) using the wavelet Db4 and the five levels of decompo-
sition. It can be noticed that the approximation coefficient a5
corresponds to the maternal component in the input aECG sig-
nal. In case of the detail coefficients, the last two of them (d,
and d5) include the fetal component. Thus, fECG estimate could
be obtained by minimizing the noisy detail coefficients at levels
1, 2, and 3 by means of the thresholding methods in the recon-
structed signal. It should be noted that the morphology of such
fECG signal will be deformed and thus could not be used for
morphological analysis.

The wavelet transform is a useful tool for fECG signal
processing. The main advantage of the WT-based techniques
over the conventional Fourier methods is the use of localized
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Fig. 6. An example of the wavelet decomposition applied on the aECG
signal from ADFECGDB using db4 wavelet on 5 decomposition lev-
els resulting in depicted detail coefficients d; — d5 and approximation
coefficent a;.

basis functions and the faster computation speed. The spa-
tially localized basis function allows analyzing of the real sit-
uations in which the signal contains discontinuities and sharp
spikes. However, it causes deformation of the signal morphology
(P and T waves) and thus, it is more suitable for the fHR moni-
toring rather than morphological analysis.

4) Blind Source Separation Methods: Using blind source
separation (BSS) methods, fetal ECG is obtained by means of
the estimation of independent sources for fetal cardiac bioelec-
tric activity [48]. These methods are used to extract unobserved
signals (sources). Sources are assumed to be statistically inde-
pendent and the mixture to be linear and instantaneous [152].

In fetal ECG processing, a set of n individual source sig-
nals s(t) = (s1(t),s2(t), ..., sn(t))T represents the source sig-
nals of the fetal and maternal hearts which linear mixtures
are sensed on the maternal abdomen (aECG) and denoted
x(t) = (v1(t), 22(t), ..., 2 (t))" defined as

x(t) = A-s(t), (10)

where A is the mixing matrix. In most cases, such as in Fig. 7, n
equals m. The input signals can be recovered using un-mixing
matrix B, where the output signals (estimated input signals)
3(t) = (51(t), 82(t),...,3,(t))" can be calculated as

i(t) = B x(t), (11

where B is the un-mixing (transfer) matrix. It should be noted
that the transfer coefficients are subject to a large uncertainty
[116]. Therefore, using BSS methods, one can only obtain a
rough estimate of the signals.

The BSS methods can be divided into various approaches
based on statistical techniques deployed to extract the signal, e.g.
ICA [153], [154], and methods based on second-order statistics,
such as SVD [125], PCA [154]. Some authors have proposed
semi-blind source separation approaches such as periodic com-
ponent analysis (7CA) [155], [156].

ICA is among the most applied methods for non-adaptive
fECG extraction since its first utilization in this context by De
Lathauwer [116]. In general, ICA cannot identify the actual
number of source signals, nor a uniquely correct ordering of
the source signals, and nor a proper scaling (including sign)
for the source signals. Many ICA-based techniques have been
proposed as FastICA algorithm [157], joint approximate diag-
onalization of eigen-matrices (JADE) algorithm [158], multi-
dimensional ICA (MICA) algorithm [159], nonparametric ICA
(NpICA) algorithm [160], minimum Renyi’s mutual informa-
tion (MeRMald) algorithm [161], and orthogonal-group ICA
(OgICA) neural algorithm [162], etc.

The performance of BSS-based methods in extraction of
fECG from the abdominal mixture depends on several factors
such as the number of electrodes, noise, or stationarity of the
signal [163]. If the fECG extraction system is designed properly,
the BSS algorithms can extract fECG with very good accuracy.
The following parameters play a critical role in ensuring a good
source:

® Number of Input Channels

Su et al. [84] introduced a very promising single channel
blind source separation (scBSS) algorithm. The algorithm
contained three steps. In the first step, the maternal HR is
estimated based on the de-shape short-time Fourier trans-
form. Based on that, the aECG is divided so each part
contains one maternal cardiac cycle. In the second step, a
metric is designed to compare those individual parts. The
proposed algorithm utilizes the optimal shrinkage tool. Its
advantage is that the immunity to information not related
to the maternal cardiac cycles, such as fECG and noise.
With this metric, for each piece, we find other pieces with
similar maternal cardiac cycles. Finally, the median of all
similar maternal cardiac cycles is evaluated in order to re-
cover the mECG. The fECG is then recovered by repeating
these three steps for all parts.

However, most of the BSS-based techniques use multi-
ple abdominal signals as the inputs to estimate the fECG
component in the composed abdominal signal [159]. Con-
versely, Camargo et al. [159] introduced a slightly differ-
ent approach using an estimated chest ECG signal (esti-
mated using PCA from the aECG signals) as the inputs to
MICA algorithm along with the abdominal signals. The
authors conclude that this approach increases the effec-
tiveness of the MICA method.

ICA assumes that components are statistically indepen-
dent and requires as many electrodes placed on maternal
abdomen as the number of independent signal sources.
Some authors suggested that the estimation is more ac-
curate when using higher number of electrodes [52]. An-
dreotti et al. [87] introduced a pre-processing step based
on eliminating the components with low energy (low
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eigenvalue) using a dimensionality reduction by means
of PCA.

® Number of Output Components
PCA and ICA methods decompose the original signal into
their source components. PCA finds the principal compo-
nents, i.e. the statistically most significant components in
the input signal. The first principal component has the
largest possible variance and thus corresponds to the ma-
ternal component [116]. In contrast, ICA decomposes the
signal into statistically independent components in no par-
ticular order.

® Norm of the Iterative Step
Norm of the iterative step or convergence criterion is the
temporal distance between the previous sample and the
current sample. The lower the value of the convergence
criterion, the greater the accuracy. However, that results
in greater computational demands. The convergence cri-
terion is normally set to 1075, Any lower value does not
lead to significantly better results [154].

The advantage of ICA is that it follows the blind identifica-
tion approach and thus there is no need of prior mQRS position.
Moreover, in the fECG extraction, ICA has shown to be supe-
rior to PCA [154], [164]. The lower power ratio of the weak
source to the strong source, the lower is the performance of the
PCA [116]. The key factor for greater ICA performance is the
number of input channels to enable the reconstruction of dif-
ferent statistically independent source signals. The higher the
number of the inputs, the more precise the method is. However,
the higher the dimensionality and computational costs [165].

B. Methods Using a Reference Chest Channel

Combined source (CS) methods have been successfully used
in reducing noise in variety of the applications such as noise
reduction in speech signals or telecommunication [166]. These
systems are effective in reducing the noise that can be identified

and recorded and thus are used as the reference input to the
adaptive system. In case of the fECG signal, the signal consid-
ered as the noise is the maternal ECG, which can be recorded by
means of electrodes placed on the mother’s chest. This signal
is assumed to contain no fetal component. The maternal ECG
recorded on the abdomen has a lower amplitude and a different
morphology than the one recorded on the chest. Therefore, it
is not possible to simply subtract it from the abdominal ECG
(aECG) signal. An adaptive method (AM) is able to estimate the
maternal component contained in the aECG by adjusting the co-
efficients of the FIR filter based on the error signal e(n), which
is the difference between the current output of the FIR filter
y(n) and the desired signal given by the reference chest signal.
By subtracting this estimated mECG signal, the estimated fECG
signal can be obtained as illustrated by Fig. 8.

The general limitation of this method for clinical practice is
a need of at least one additional chest electrode that can be dis-
comforting for the patient. The quality of the reference chest
signal also strongly influences the results of the fECG extrac-
tion. Additionally, the efficacy of these methods is significantly
dependent on the configuration of the system [99]. The filter
settings must be chosen carefully, since they have a significant
impact on the results.

1) Least Mean Squares and Recursive Least Squares
Algorithms: The least mean squares (LMS) filter was first in-
troduced by Widrow and Hoff in 1960 and since then has been
successfully used for a number of applications, mainly for the
purpose of adaptive noise cancelling [166]. The aim is to min-
imize the mean square error between the filter output and the
desired signal y(n). Conversely, recursive least squares (RLS)
algorithm minimizes the fotal squared error between those sig-
nals. Whereas LMS only considers the current error value to
adapt its coefficients, the RLS algorithm considers also the
previous samples, i.e. the history of the signal.

For fECG extraction, these algorithms were used, for exam-
ple, by Swarnalatha et al. 2010 [167]. In their study, the authors
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An example of a multi-lead fECG extraction system using combined source (CS) methods. Chest electrode (ChE) records reference mECG

(red). Adaptive system, consisting of CS methods, estimates the maternal component and subtracts it from the abdominal signal (aECG) recorded
by means of abdominal electrode (AE) in order to obtain estimated fECG signal (green) and some residual noise. Adaptive system contains an
adaptive method (AM) which adjusts the coefficients of the FIR filter based on the error signal e(n).

introduced a novel method called multi-stage adaptive filtering.
For fECG extraction, LMS-based algorithms (standard LMS
and normalized LMS) and RLS algorithm were combined and
the signal was filtered by the cascade connection of those al-
gorithms. According to the authors, the most effective method
for fECG extraction is to use the combination of RLS and LMS
algorithm. Another example of the LMS algorithm utilization in
this field was introduced by Wu ef al. 2013 [147]. Its effective-
ness was enhanced by combining it with wavelet decomposition
and the spatially selective noise filtration algorithm [168]. How-
ever, these experiments were performed using synthetic data.

Other works such as Behar et al. [110], Camps et al. [169],
Kahankova et al. [170], and Martinek et al. [171] have tested the
performance using real data and shown that this method is not
suitable for fECG extraction unless optimized. The optimization
of the algorithms lays in choosing the most suitable filter set-
tings. However, not only the optimal setting might vary through
the pregnancy, but also it may vary during a single recording.
The factors influencing the filtration, and thus the choice of the
parameters, include the gestation age [98], fetal position [171],
electrode placement [99], sampling rate, etc.

Many authors [99], [169]-[171] have been studying the op-
timization of the adaptive algorithms. According to majority of
the available literature [99], [110], [169]-[171], the main pa-
rameters that need to be considered when designing an LMS or
RLS-based extraction system are:

® Filter Length
Filter length (M) or filter order (N), where N =M — 1,
influences the number of coefficients and also the com-
putational cost. Moreover, it is a function of the signal
sampling frequency [110].

e Step Size
Step Size or Convergence Coefficient . is an important
parameter for LMS-based algorithms which controls the
stability and convergence rate. The value of the parame-
ter should be chosen carefully. Setting a high value may

result in obtaining a very fast optimal solution. However,
it is more likely to obtain inaccurate estimates in the case
of the occurrence of a large error in the direction of the
gradient. Conversely, choosing a small value of p guar-
antees high stability of convergence but at the same time,
increases the inaccuracy of signal filtering in unsteady
environments [99].

e Forgetting Factor A
This parameter applies for RLS algorithm and defines the
proportion of past values to be used for filter coefficients
update calculation. Forgetting factor ranges from O to 1,
the lower value of forgetting factor, the more RLS algo-
rithm considers the recent data (forgets the past ones) and
for A = 1, all past data contribute equally. In the fECG
signal processing literature, the forgetting factor is set in
the range between 0.8 and 1 [110]. The results show that
the closer to the value 1, the better [99], [110], but that, of
course, comes with the increased computational burden.

The optimal parameters can be found by heuristic methods
(usually by manual search) or by the grid search. Another op-
timization method called the random search was introduced
by Bergstra et al. [172]. This method significantly reduces the
computational cost and performs similar or better than the grid
search [172], [173].

Adaptive methods offer a relatively high performance if opti-
mized and thus are a great example of the system optimization
issue. Fig. 9 shows an example of 3D optimization graph in-
troduced by Martinek et al. [99] showing the output SNR as a
function of changes in the values of filter order /N and the step
size fi.

2) Adaline: Adaptive linear network (ADALINE) is an
adaptive method for fECG extraction, also known as adaptive
linear element. It utilizes neural networks adaptable to nonlinear
time-varying properties of the ECG signal.

The main parameters for ADALINE system and suggested
settings according to [174]-[177] are:
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In 2010, Jia et al. tested the method based on ADALINE
for fECG extraction and provided improvement of the network
structure which increases its performance [175]. The authors
claim that the ADALINE-based system achieves better results
while using smaller amount of data for fECG extraction in com-
parison with the conventional adaptive filtering methods based
on LMS or RLS algorithms.

3) Additional Linear Adaptive Methods: In 2010,
Zheng et al. [178] introduced a single-lead fECG estimation
method based on combining R-peak detection, resampling, and
a comb filter. A comb filter, with “’teeth” that coincide with the
harmonics of the mECG, is applied to the resampled signal.
The maternal ECG signal, which is then subtracted from the
abdominal signal, is obtained by resampling this filtered signal
again; the sampling rate is determined empirically [175]. The
result of the subtraction is considered to be a primary estimate
of the fECG signal. The performance of the Zheng et al. method
on both real (MIT-BIH PhysioBank) and synthetic data was
compared with two single-lead-based methods, namely singular
value decomposition and nonlinear state-space projection [178].

Wei et al. [179] describe a simple algorithm for fECG ex-
traction based on adaptive comb filter (ACF) that is able to
adjust to changes in the base frequency band that may occur
over the recording time. Hence, it is suitable for estimation of
the quasi-periodic signals. The experiments showing a high ef-
ficacy of the fECG extraction were carried on both synthetic
and real signals (DAISY fetal ECG data and Non-Invasive Fetal
Electrocardiogram Database from PhysioNet).

Shadaydeh et al. [180] presented a new fECG extraction
method using adaptive Volterra filters (AVFs). This method uses
one chest and one or several abdominal signals. This kind of fil-
ter is able to imitate the non-linear relation between the maternal

chest and abdominal signals. In case of using several aECG sig-
nals, the algorithm utilizes linear combination to create the base
signal from all of the recorded abdominal signals. Moreover, to
increase the quality of the output signal, a RLS algorithm was
used along with the linear combiner and Adaptive Volterra filter.

4) Artificial Neural Networks: Artificial neural networks
(ANNS) include soft computing methods that imitate the be-
havior of a neural network of living organisms. In 2001,
Camps et al. [169] introduced an interesting variation of the
FIR neural network. The same authors in 2004 [181] presented
an improved model for the elimination of interference using
dynamic neural networks based on both numerical (correla-
tion coefficients) and statistical (ANOVA, variance analysis)
methods. In the noise cancellation design, FIR and gamma neu-
ral networks are included to provide highly nonlinear dynamic
properties to the model. Neural networks were compared with
classical adaptive methods (LMS, normalized LMS) on both
real and synthetic data. According to this work, neural networks
have demonstrably higher efficiency than classical methods,
while the best compromise between complexity and efficiency
is using the FIR neural network.

Adaptive Neuro-Fuzzy Inference System

Adaptive neuro-fuzzy inference system (ANFIS) represents
one of the most popular hybrid neural networks which is used
for fECG extraction. It is an adaptive network based on Sugeno
fuzzy inference system implemented into five-layered forward
artificial neural network. This hybrid combination improves the
ability of system to adapt to non-linearity and uncertainty. El-
ementary ANFIS structure includes two inputs and one output
and utilizes a neuro-adaptive learning algorithm (hybrid or back
propagation) to determine the relationship between input and
output data set [182]. In case of fECG extraction, systems inputs
are represented by mECG and aECG signals, while the output
signal is the estimated mECG, which subsequently serves as a
reference signal for fECG estimation.
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Numerous researches including [183]-[186] tuned ANFIS
structure by PSO. Due to high level of research using AN-
FIS tuned by PSO, this combination now seems to be a
golden standard in non-linear fECG extraction. Another pos-
sible combination is ANFIS and wavelets [133]. In 2010
Swarnalath er al. [187], tested three different filtering meth-
ods including basic ANFIS and two different combinations of
ANFIS and wavelets. The wavelets were positioned before (pre-
processing) or after (post-processing) ANFIS and compared
with basic ANFIS structure. Research has shown that ANFIS
in combination with wavelet in post-processing reached better
quality of filtration. In most of researches, fuzzy inference sys-
tem Takagi Sugeno type 1 is used in ANFIS structure. Hajar
Ahmadieh and Babak Mohammadzadeh [188] reached better
results with fuzzy inference system Takagi Sugeno type 2 in en-
vironments with high uncertainty. Current research also involves
ANFIS in telemetry systems. For example, Kumar et al. [189]
used orthogonal frequency division multiplexing (OFDM), AN-
FIS and wavelet transformation for telemetry, where mECG
and aECG signals are transmitted by OFDM techniques, then
the ANFIS and WT are applied on received signals to extract
fECG.

The ANFIS-based fECG extraction system requires following
parameters to be optimized:

® Number of Epochs The higher number of epochs, the better
the filtration results. However, with high values, the ex-
traction becomes extremely computationally demanding.
Therefore, it is important to find a compromise between
these two factors to achieve sufficient results in real time
or near real time.

® Number of Membership Functions (Rules)
Assaleh et al. [190] used 4 membership functions corre-
sponding to 16 fuzzy rules, 53 nodes, 48 linear parameters,
and 24 non-linear parameters. However, in the paper au-
thors chose the parameters heuristically. More objective
approach of the optimization is missing in the literature.

o Shape (Type) of the Membership Function
Different Types of membership functions can be used for
fECG elicitation such as bell shaped, triangular, Gaussian
or trapezoidal. According to [191], the best extraction
is achieved using Gaussian or bell-shaped membership
functions.

Echo States Networks

Echo state networks (ESNs) are powerful for time series pre-
dictions where current state of the reservoir depends on the
previous states [192]. For fECG noise cancelling, the reservoirs
are initially randomly generated using recurrent neural networks
(RNNs). Generally, ESNs are used for RNN training to make pa-
rameter estimation for nonlinear dynamical system modelling.
The ESN works as a nonlinear medium for the reference sig-
nals (mECGs and aECGs) to propagate through. The ESN ap-
proach can utilize an adaptive algorithm (such as RLS [110]) as
areadout layer, which calculates the output weights of the high-
dimensional dynamical response (so-called “echo response”)
of the reservoir. Subsequently, the reservoir is fixed while the
weights of the output neurons are learned and updated. This
way, the maternal component contained in the abdominal signal

is estimated and can be subsequently subtracted from the origi-
nal signal to obtain the residual containing fECG component. In
non-adaptive approach, the weights are fixed after determining
them using an initial training set.

The benefit of the ESN is that it does not require any prior
information about the mQRS location, unlike some template-
based approaches and at the same time, they can work with
some level of uncertainty contrary to linear adaptive algorithms.
Moreover, it enables significantly easier parameter estimation
than in the case of using RNNs alone. In the context of fECG
extraction, ESNs were used by Behar et al. [110].

In Fig. 10 W is a random M x M sparse matrix with ap-
proximately ¥ x M x M uniformly distributed non-zero en-
tries, and W is the sparsity of the reservoir. The ESN reservoir
connections and input weights are randomly initialisated for in-
dividual abdominal signal and thus these ESN parameters stay
constant.

The output of the illustrated ESN based extraction system is
the the residual signal $(n), which contains the fECG signal.
The input is the chest signal u(n) and the abdominal signal
y(n), which is used as the farget signal. The adaptive algorithm
changes the weights in order to obtain the estimated abdominal
mECG signal 7j(n), which is then subtracted from the abdominal
signal y(n) and the residual signal §(n) is obtained.

The following parameters should be optimized to ensure a
high quality estimation:

e Size (number) of Units (Neurons) of the Reservoir Weight
Matrix M
This parameter defines the values of the weights. If the
value is too large, the system becomes unstable in case
of small deviations from the state defined by the training
algorithm. Moreover, this parameter is a function of the
signal sampling frequency. Therefore, in case of resam-
pling the data, it should be modified as well.

e Sparsity of the Reservoir W
This parameter describes the connectedness of the nodes
and the reservoir. It was not optimized in the fECG liter-
ature and was set to 20% in [110].

e Spectral Radius of the Reservoir Connection Matrix W
This parameter affects the stability of the reservoir acti-
vations and defines how much the input data influence
the reservoir values with respect to time. The higher the
spectral radius, the less is the output dependent on recent
input data. For fECG extraction, it is recommended to use
lower values (0, 0.4) of the spectral radius to ensure better
results [110].

e Input Scaling of the Input Weight Matrix
The input scaling defines the reservoir responses degree
of non-linearity. The smaller the value, the more linear
the system dynamics. In most of the literature, the authors
use the value 1 as the input scale, while Behar ef al. [173]
mention that this parameter is not as important as the
others.

® [eakage Rate (Forgetting Factor)

The leakage rate determines the significance of the pre-
vious state of the neurons. The parameter ranges be-
tween 0 and 1, in the latter case the neurons only keep the
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An example of the fECG extraction system based on ESN. The input is the chest signal u(n) and the abdominal signal y(n); the adaptive

algorithm updates the weights in order to obtain the estimated abdominal mECG signal 7j(n), which is subtracted from the abdominal signal y(n)

to get the residual signal §(n) containing the fECG signal.

information about the most recent state. Behar ef al. [110]
tested the influence of this parameter on filtration per-
formance and concluded that the optimal value for this
data is 0.4. For both extremes, the system performance
decreased, especially for values around 0.

C. Hybrid Methods

In the previous subsections, the most common methods for
fECG extraction were introduced. Each of the method has its
strengths and weaknesses (for more detail, see Section V. Dis-
cussion). The most recent literature on this topic suggests that
the performance can be improved by combining different tech-
niques. Examples of such research have been presented by
Jaros et al. [193], where so-called hybrid methods based on
combination of both CS and AES algorithms appear to be the
most effective methods. This subsection thus introduces some
examples of the promising hybrid methods for fECG extraction.

As part of the Challenge 2013, Behar ef al. [194] tested sev-
eral approaches and their combinations. The author concluded
that the algorithm denoted as FUSE outperformed the rest of the
tested methods. The FUSE algorithm was defined as the com-
bination of methods based on ICA, TS and their combinations
(ICA-TS, ICA-TS-ICA, TS-ICA). It is important to note that
this approach obtained the best scores for events 1 and 2 of the
Challenge.

Liu et al. introduced an adaptive integrated algorithm based
on ICA, ensemble empirical mode decomposition (EEMD), and
wavelet shrinkage (WS) denoising, denoted as ICA-EEMD-
WS [195]. The EMD is an adaptive technique for analyzing
nonlinear and non-stationary signals used for denoising through
decomposing the signal into a finite number of intrinsic mode
functions (IMFs) [196]. In the first stage, FastICA algorithm
separated the noisy fECG from the aECG signal. In the sec-
ond stage, the noise in this fECG estimate was reduced in three
steps. First, the EEMD algorithm decomposed the signal to in-
dividual IMFs, which were then sorted using the significance
test on noise dominant, useful, and trend IMFs. In the third

step, the noise dominant IMFs were denoised using WS and
then used along with the useful IMFs to reconstruct the fECG
signal.

Another interesting approach was used by Castillo et al. [197].
The novel algorithm introduced therein was compared with var-
ious approaches including [110], [126], [131], [140], [198] and
demonstrated high efficiency of the proposal. The fECG extrac-
tion system included three stages: 1) One-step wavelet-based
preprocessing; 2) novel clustering-based method for fECG ex-
traction; 3) False positive and false negative correction. The base
of the fECG extraction was carried out by means of the novel
algorithm, which was comprised of four steps. In the first step,
the signal features (amplitude distance between the max-min
points and number of samples) were extracted by searching for
min-max points, which were assumed as the RS peak since it can
be defined as a local maximum followed by a local minimum
in the fECG waveform. In the second step, the signal features
were selected. The max-min points were subsequently classified
into three clusters based on the selected features. The third step
involved the clustering classification using which the R peaks
were detected. In the final step, the classification was improved
by applying some limits on the amplitude and time distance of
the data classified as fetal RS-peaks in order to decrease the
number of false positive results.

Panigrahy et al. [198] tested various combinations of meth-
ods such as EKF, EKS, ANFIS, and the differential evolution
(DE). The best results were achieved using EKS-DE-ANFIS
combination. The algorithm performs five steps to obtain the
fECG signal: preprocessing, phase assignment, template esti-
mation, and fECG estimation using DE and EKS with ANFIS
logic. The DE algorithm is used to select the optimized mECG
parameters. These parameters are necessary to develop the state
and measurement equation of the EKS framework, which then
estimates the maternal component from the aECG signal. The
ANFIS is used to recognize the non-linear relationship between
maternal and component in the aECG signal and the mECG
signal. The fetal ECG is obtained by subtracting the ANFIS
output from the pre-processed aECG signal.
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TABLE Il
COMPARISON OF THE FECG EXTRACTION TECHNIQUES

Strength  Limitation Compzl(:zslttlonal Performance

ICA, PCA Stable NoE Medium Medium
ESN Precise PS High High

LMS Fast ChE Medium Medium
RLS Stable ChE Medium Medium
ADALINE Stable ChE Medium Medium
ANFIS Stable ChE High High

EKF Stable MPD Medium Medium
WT Fast Unprecise Low Low

TS Simple MPD Medium Medium

ChE: Additional chest electrode needed, effectiveness is influenced by the quality of
this signal

NoE: number of electrodes, signals from at least four electrodes recorded simultane-
ously are needed

PS: parameter setting, the number of parameters to be set is high and the performance
is low if set incorrectly

MPD: maternal peaks (QRS) detection significantly influences the overall performance

Finally, Jaros et al. [199] combined the ICA method with two
different adaptive approaches (RLS and ANFIS) and WT. These
two hybrid algorithms, therein denoted as ICA-RLS-WT and
ICA-ANFIS-WT, combine the advantages of individual meth-
ods, i.e. provide accurate fECG estimates using low number of
abdominal electrodes. The algorithm performs following three
steps: first, ICA is used to estimate the maternal component
from the input aECG signals; secondly, the maternal estimate is
used as the reference input of the adaptive algorithm, producing
the fECG estimate; finally, the output signal is processed by WT
to ensure accurate fHR determination. The study on data from
clinical practice (extended ADFECGDB database) as well as
on Challenge 2013 Set A. The comparison of the fHR wavefors
determined using the estimated fECG signals, the FSE refer-
ence, and Challenge 2013 annotations proves its accuracy for
the non-invasive fHR variability monitoring.

V. DISCUSSION

The comparison of the published methods is challenging since
the datasets and evaluation criteria may differ from one publica-
tion to another. An objective comparison between algorithms is
possible for those who entered the Challenge 2013; the results
are summarized in [36]. However, other authors used similar
techniques and datasets, such as Fy, Acc, PPV or Se, so it
is possible to compare them as well. For example in [197],
the authors compared their novel algorithm with a number of
other methods (e.g. [110], [126], [131], [140], [198]) either
published within the Challenge 2013 framework or after 2013,
and demonstrated high efficiency of the proposal. According to
Silva et al. [200], the hybrid methods (such as [123] and [131])
paticipating in the Challenge outperformed the others that were
based on a single method only.

In this section, we aim to summarize the individual methods
so that researchers willing to design a new hybrid algorithm
understand the strengths and weaknesses of the different ap-
proaches.

Table II shows the comparison of all investigated methods. It
provides their most significant strength and weakness, compu-

tational cost, overall performance of the fHR estimation based
on the results reviewed, and the ability to provide fHR analysis.
The parameters can be described as follows:
® Performance is classified as high, medium, and low. Based
on that the methods can be described as follows:

— High — these methods enable a very accurate determi-
nation of fHR, i.e. the performance parameters (Se,
PPV, Acc, and Fy) > 95%.

— Medium — these methods allow moderately accurate
detection of fHR, i.e. the performance parameters (Se,
PPV, Acc,and Fy) > 80%. It may be advantageous to
combine these methods with others to achieve higher
accuracy.

— Low — the methods are not able to remove artifacts and
noise sufficiently to enable the continual fHR monitor-
ing, i.e. the performance parameters (Se, PPV, Acc,
and F ) <80%; these methods need to be used in com-
bination with other methods.

Computational cost is a crucial factor in designing the
extraction system for the continual fetal monitoring since
it influences the ability of the system to function in the
real time and also long-term. Therefore, one must find
a compromise between the performance the method pro-
vides and its computational cost. Indeed, methods such
as ANFIS and ESN can be problematic in this matter. It
is therefore advantageous to combine the methods com-
putationally less demanding with more precise methods
in order to create a precise extraction system feasible for
clinical practice.

Strength and Limitation — the Table II includes the main
drawback and advantage of each method that will be dis-
cussed in detail and illustrated using the examples of out-
put signals of different algorithms below.

Table IIT summarizes the parameters to be set for a conven-
tional sampling rate (1000 Hz) and electrode placement. Last
column of the table provides the sources of codes to implement
the fECG extraction system. Based on Table IT and Table III, it is
evident that each method has its own strengths and weaknesses
and thus, the most promising direction seems to be towards
hybrid systems that combine multiple algorithms, as suggested
in [167], [194].

As mentioned in Table II, the limitation of the TS method
is that its overall performance is influenced by the quality of
the QRS detection — as measured by the accuracy of detecting
R-peaks — since the maternal template is constructed based on
the detected R waves. Any false positive or false negative of the
maternal QRS detector will affect the fECG estimation and thus
need to be adjusted. Fig. 11 shows an example of such a case.

The performance of the BSS methods strongly correlates with
the number of the input channels. Fig. 12 shows the influence
of number of the input channels on the performance of the ICA
method. It can be noted that the higher number of input channels,
the more effective the fECG extraction. It is also important
to choose reasonably high number of output components. In
case of fECG extraction, one should select ideally three or a
minimum of two output components to ensure capturing the
fetal one [173]. The correspondence of the output channels to
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TABLE IlI
DEFINITION OF THE MOST IMPORTANT PARAMETERS FOR FECG SIGNAL PROCESSING METHODS, CORRESPONDING OPTIMAL SETTINGS, AND LINKS FOR
THE ALGORITHM SOURCE CODES AVAILABLE ONLINE

Optimal

Parameters Description Sources
values
Input Number of input channels Minimally 3
ICA, PCA Output Number of outputs components Minimally 3 fecgsyn*
Iterations Norm of the iterative step 10-6
oY Input scaling of the input weight matrix 1
p Spectral radius of the reservoir matrix [0, 1]
a Leakage rate [0, 1] ®
ESN A Forgetting factor of RLS algorithm 0.999 fecgsyn
v Sparsity of the reservoir 20%
M Size of the reservoir [1, 100]
M/N Filter length / Filer order (N=M-1) [1, 100] *
LMS o Step size (convergence constant) [0.001, 0.01] fecgsyn
A Forgetting factor [0.9, 1] -
RLS M/N Filter length / Filer order (N=M-1) [1, 100] fecgsyn
m Momentum [0.5, 1]
n Learning rate [0.001, 0.02]
ADALINE w; Initial weights Small non-zero (2011
p Input space [20, 30]
Epochs Number of epochs [10, 20]
ANFIS Mf Number membership functions 6 [202]
Shape Type of the Membership function Gaussian/bell-shaped
m Number of Gaussian kernels (functions) [5, 9]
EKF Qw. Ry Process noise covariance matrix and measurement noise Estimated from fecgsyn*

covariance matrix, size (3m + 2) X (3m + 2), diagonal

the ECG signal

“fecgsyn algorithms are available online at: http://www.fecgsyn.com

— Preprocessed ch4 — Preprocessed ch4
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Fig. 11. Influence of the inaccurate mQRS detection on the residual

signal reproduced from Behar et al. [123]: a) Preprocessed aECG sig-
nal (channel 4) with mQRS complexes without adjustment; b) residual
signal after the subtraction of maternal template constructed based on
the R waves without adjustment — note the maternal residua marked;
c) preprocessed aECG signal (channel 4) with mQRS complexes with
adjustment; d) residual signal after the subtraction of maternal template
constructed based on the adjusted R waves.

fECG is not provided by the algorithm, hence, one cannot be
sure which output corresponds to which component. This makes
automated detection based on ICA challenging.

The additional chest electrode records maternal ECG directly,
so there is a lower chance of signal misinterpretation. How-
ever, the efficiency is strongly affected by the quality of the
chest signal. Fig. 13 shows how insufficient quality of maternal
reference signal can influence the fECG extraction. It is noted
that the fHR detection would be difficult and strongly affected
by the significant amount of maternal residue.

It is also important to note that most of the currently available
techniques are able to determine only fetal heart rate. However,
this parameter is currently monitored in the clinical practice
using CTG. The NI-fECG is capable to provide more clinical
information associated with morphological analysis of the fECG
waveform, as mentioned in Section II-B. Enabling fECG mor-
phological analysis of clinically significant parameters (such
as QT segment and ST level) could thus open new diagnostic
possibilities (such as ST analysis and T:QRS ratio), now only
possible using the invasive method [203].

Few authors have achieved good results in this matter.
Niknazar et al. [83] extracted the fECG by extended state
Kalman filtering from single-channel recordings. Su et al. [84]
were able to extract fECG for both fHR and morphological anal-
ysis using a novel algorithm based on the optimal-shrinkage and
the nonlocal Euclidean median under the wave-shape manifold
model. Another successful attempt to reconstruct the NI-fECG
was introduced by Behar ef al. [85] using a Bayesian filtering
framework based on the extended Kalman filter.

However, one should keep in mind the fact that the NI-
fECG waveform differs from the one recorded by means of
FSE. The reason for this is the signal dispersion caused by the
fECG signal propagating from the fetus towards the abdominal
electrodes through the maternal volume conductor, which con-
sists of vernix caseosa, amniotic fluids, muscle layers, fat and
skin [62]. Clearly, this effect is observable by the changes in
the frequency content of fECG as the maternal volume conduc-
tor acts as a high-pass filter [61], [204]. Specifically, it affects
low frequency features of the fECG waveform, such as the
T-wave [62]. According to the experimental results provided
by Vullings et al. [62], these amplitude and frequency changes
only affect the accuracy of the assessed T:QRS ratios; hence,
the abdominal electrodes are sufficient.
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Fig. 12.  Application of ICA on four abdominal channels. a) examples of the input abdominal channels aECG1 — aECG4 with the f{QRS annotations
(+); b) four independent components acquired with ICA using four inputs; c), d), e) output signals corresponding to the main fECG component
extracted using ICA from 2, 3, and 4 input channels, respectively. Note that the more input channels, the higher quality of the estimated signal.
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Fig. 13. Influence of the quality of MECG reference input of the adaptive system (filter) using the LMS algorithm; a) an abdominal signal; b) clean
mECG reference input; ¢) a noisy mECG reference input; d) the filter output signal when using a clean mECG reference [as shown in b)]; e) the
filter output signal when using a mECG signal of a poor quality [as shown in c)].
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Fig. 14. Examples of the deployment of the measurement electrodes
(abdominal — white, and chest — purple), common reference (blue), and
the active ground (black): a) from left to right: commercially available
device Monica AN24, positioning used in publically available databases
ADFECGDB and NIFEADB; b) from left to right: Vullings [62] and Tay-
lor [206].

Finally, we stress the need to unify the electrode placement.
There are significant differences in electrode deployment among
the databases, different researchers, and also the commercially
available devices as illustrated in Fig. 14. While the position-
ing of the measurement electrodes only influences the magni-
tude or polarity of the signal, the placement of common ref-
erence electrode (blue) and the active ground (black) causes
significant changes in the recorded signals since it may help
in minimizing both the polarization potential and the maternal
component [205]. Therefore, it may significantly influence the
performance of the extraction algorithms. The optimal number
of electrodes may also differ for each extraction algorithm since
BSS methods (such as ICA or PCA) performs better with high
number of abdominal inputs, whereas a multi-lead system using
an adaptive algorithm requires low number of abdominal elec-
trodes, but at least one chest reference electrode. This review
reveals that both theoretical and experimental studies should be
performed in order to create a recommendation for electrode
placement according to the stage of pregnancy, fetal position,
number of fetuses, and the algorithm used for the extraction.

VI. CONCLUSION

This review paper presented (I) an overview of the advances
and current challenges in fetal heart monitoring; (IT) a thor-
ough review of promising signal processing techniques for NI-
fECG extraction; (III) a detailed description of the open access
databases in this field; (IV) highlight of the strengths and limita-
tions of fetal ECG extraction algorithm; and finally (V) a list of
the most important parameters for the state of the art algorithms
and the corresponding optimal settings.

In this paper, we introduced the most commonly used fe-
tal ECG extraction methods and presented their strengths and
weaknesses that make them suitable for different scenarios and
types of signals. Based on the up-to-date literature presented in
this paper, we may conclude that combining different techniques
and creating hybrid systems for fECG extraction might be the
most promising direction in reaching an accurate fetal heart rate
estimation.

However, it is challenging to see clear into the relative per-
formance of the algorithms to decide which is the most suitable
for the needs of fECG extraction. One of the reasons is that for
objective assessment of the extraction system performance, it
is necessary to provide a large open access database of signals
for the tests. However, the currently available databases offer
only a limited set of data and they do not follow the same pro-
tocol in terms of electrode placement or pre-processing stage.
Thus, in most of the papers available, the evaluation provided
is insufficient. One of the main challenges is to create a uni-
fied and sufficiently large dataset following the standards of big
data. Moreover, the evaluation of the algorithms should follow
the same protocol, be accessed using the same parameters, and
tested on the same dataset.
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