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Breathing Rate Estimation From the
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Abstract—Breathing rate (BR) is a key physiological
parameter used in a range of clinical settings. Despite its
diagnostic and prognostic value, it is still widely measured
by counting breaths manually. A plethora of algorithms
have been proposed to estimate BR from the electrocar-
diogram (ECG) and pulse oximetry (photoplethysmogram,
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PPG) signals. These BR algorithms provide opportunity for
automated, electronic, and unobtrusive measurement of
BR in both healthcare and fitness monitoring. This paper
presents a review of the literature on BR estimation from the
ECG and PPG. First, the structure of BR algorithms and the
mathematical techniques used at each stage are described.
Second, the experimental methodologies that have been
used to assess the performance of BR algorithms are
reviewed, and a methodological framework for the assess-
ment of BR algorithms is presented. Third, we outline the
most pressing directions for future research, including the
steps required to use BR algorithms in wearable sensors,
remote video monitoring, and clinical practice.

Index Terms—Biomedical signal processing, breathing
rate (BR), electrocardiogram (ECG), photoplethysmogram
(PPG), respiratory rate.

I. INTRODUCTION

BREATHING rate (BR) is a key physiological parameter
used in a range of clinical settings for identification of

abnormalities. Despite this, it is still widely measured by count-
ing breaths manually. This approach is both labor intensive and
unsuitable for use in unobtrusive monitoring devices for early
detection of deteriorations. Recently, a plethora of algorithms
have been proposed to estimate BR from the electrocardiogram
(ECG) and pulse oximetry (photoplethysmogram, PPG) signals.
Both the ECG and PPG are commonly acquired during clinical
assessment, and also by many wearable sensors in healthcare
and fitness monitoring. Therefore, BR algorithms could provide
automated, electronic BR measurements without the need for
additional sensors.

The aims of this paper are: to provide a comprehensive re-
view of the literature on BR estimation from the ECG and PPG;
to present a methodological framework for the assessment of
BR algorithms; and to highlight the most pressing directions
for future research. The background to the problem is sum-
marized in the remainder of this section. In Section II, we
present the methodology and results of a review of the liter-
ature on the topic. The BR algorithms reported in the literature
are reviewed in Section III. Section IV-A provides a critical
review of the experimental methodologies used previously to
assess the performance of BR algorithms. In Section IV-B, we
present a methodological framework for assessment of BR al-
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gorithms. Finally, in Section V, we highlight the most pressing
directions for future research. This review builds on the work
presented in [1].

A. Importance of BR

BR is a valuable diagnostic and prognostic marker of health
(also known as respiratory rate). In hospital healthcare, it is a
highly sensitive marker of acute deterioration [2]. For instance,
elevated BR is a predictor of cardiac arrest [3] and in-hospital
mortality [4], and can indicate respiratory dysfunction [5]. Con-
sequently, BR is measured every 4–6 h in acutely ill hospital
patients [6]. BR is also used in emergency department screen-
ing [7]. In primary care, BR is used in the identification of
pneumonia [8], [9] and sepsis [10], [11], and as a marker of
hypercarbia [12] and pulmonary embolism [13], [14]. How-
ever, BR is usually measured by manually counting chest wall
movements (outside of intensive care). This process is time con-
suming, inaccurate [15], [16], and poorly carried out [12], [17].
Furthermore, BR monitoring is not widely incorporated into
wearable sensors such as fitness devices [18]. Therefore, there
is potentially an important role for an unobtrusive, electronic
method for measuring BR, such as the estimation of BR from
the ECG or PPG.

B. ECG and PPG

The ECG and PPG are easily and widely acquired by non-
invasive sensors in both healthcare and consumer electronics
devices, making them suitable candidates for BR measurement
in a range of settings.

The ECG is a measure of the electrical current generated by
the action potentials in the myocardium (heart muscle) each
heartbeat. It is acquired by measuring the voltage difference
between two points on the body surface over time caused by
this current [19]. The ECG can be measured using low-cost
circuitry and electrodes (typically applied to the thorax) [20].
Static monitors are used to obtain single ECG measurements
during screening for heart disorders and for continuous moni-
toring in critical care units. ECG monitoring is also incorporated
into wearable sensors for use with ambulatory patients to iden-
tify changes in heart rate (HR) and rhythm [21] and in personal
fitness devices.

The PPG is a measure of changes in blood volume over time
in a bed of tissue [22]. It is measured by applying a sensor
to the skin, or by noncontact imaging of a region of the skin
using a camera [23]. A tissue bed is illuminated by either a
supplementary light source (such as an LED) [24] or ambient
light [25]. The intensity of light transmitted through or reflected
from the bed is then measured by a photodetector [26]. Contact
PPG measurements are commonly performed at peripheral sites
(such as the finger or ear) using a low-cost pulse oximeter probe,
which can be quickly attached [10]. Noncontact measurements
are performed by measuring the light reflected from areas of
exposed skin, such as the face or hand [23], [27]. Smartphones
and tablets can also be used to acquire contact and noncon-
tact PPG signals [28], [29]. The PPG is routinely measured in
a wide range of clinical settings to obtain peripheral arterial
blood oxygen saturation (SpO2) and pulse rate measurements.

Fig. 1. ECG and PPG are subject to three respiratory mod-
ulations: baseline wander (BW), amplitude modulation (AM),
and frequency modulation (FM). Source: [33] (CC BY-NC 4.0:
http://creativecommons.org/licenses/by-nc/4.0/).

It is continuously monitored in critically ill patients and can be
monitored in ambulatory patients using wearable sensors [30].
In addition, the PPG is used for continuous HR monitoring in
fitness devices [31]. Further applications of the PPG are be-
ing developed, including blood perfusion assessment and pulse
transit time measurement. These use PPG signals obtained si-
multaneously at multiple sites from a single noncontact imaging
PPG [23].

C. Respiratory Modulation of the ECG and PPG

It is widely reported that the ECG and PPG both exhibit three
respiratory modulations as illustrated in Fig. 1: baseline wander
(BW), amplitude modulation (AM), and frequency modulation
(FM) [8], [13], [18], [32]. BR algorithms estimate BR by ana-
lyzing one or more of these modulations [8], [31].

The physiological mechanisms that cause respiratory mod-
ulations can be summarized as follows [34]. BW and AM of
the ECG are caused by changes in the orientation of the heart’s
electrical axis relative to the electrodes and changes in thoracic
impedance [35]. BW of the PPG is due to changes in tissue blood
volume caused by: changes in intrathoracic pressure transmit-
ted through the arterial tree; and vasoconstriction of arteries
during inhalation transferring blood to the veins [36]. AM of
the PPG is caused by reduced stroke volume during inhalation
due to changes in intrathoracic pressure, reducing pulse ampli-
tude [37]. FM is the manifestation of the spontaneous increase in
HR during inspiration, and decreases during exhalation, known
as respiratory sinus arrhythmia (RSA) [38]. RSA is caused by
at least three mechanisms [34], which are as follows:

1) changes in intrathoracic pressure during inhalation stretch
the sinoatrial node, increasing HR;

2) increased vagal outflow during exhalation reduces HR;
and

3) reduced intrathoracic pressure during inhalation de-
creases left ventricular stroke volume, causing a
baroreflex-mediated increase in HR [39].

The strengths of each modulation may differ between sub-
jects and between patient groups [13]. Indeed, large intersubject
variations have been observed [34], [40]. Furthermore, partic-
ular modulations may be diminished in certain groups, such as
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Fig. 2. Stages of a BR algorithm. Dashed stages are optional.

FM in elderly subjects [34]. Consequently, many BR algorithms
analyze multiple modulations, providing improved performance
[8], [18].

II. SEARCH STRATEGY AND RESULTS

A review of the literature was performed to identify pub-
lications describing BR algorithms for use with the ECG or
PPG. Publications were identified through manual searches and
searches of online databases (Google Scholar, IEEE Xplore,
PubMed, Science Direct, and Scopus). Additional details of the
search strategy are provided in Section S1 (Supplimentary Ma-
terial), allowing the search to be reproduced and updated.

A total of 196 publications describing BR algorithms were
identified, which form the basis for this review [8], [10], [13],
[18], [24], [28], [29], [31]–[33], [41]–[226]. The earliest publi-
cation was in 1971 [211], and only nine more were published
between then and 1998. Since 1999, the rate of publication has
risen steadily to the present rate of approximately 20 publi-
cations per year (see Fig. S2 [Supplimentary Material]). This
demonstrates the increasing interest in BR algorithms and the
importance placed upon the topic. Approximately half of the
publications (101, 51.5%) were presented at conferences. The
remainder were journal articles (88, 44.9%), theses (5, 2.6%),
or book chapters (2, 1.0%).

III. BR ALGORITHMS

BR algorithms can be considered to consist of up to five
stages, as illustrated in Fig. 2.

The role of each stage is as follows.
1) Extract Respiratory Signal(s): consists of extracting one

or more signals dominated by respiratory modulation.
2) Fusion of Respiratory Signals: multiple respiratory sig-

nals can be fused to give one respiratory signal (optional).
3) Estimate BR(s): consists of estimating a BR from a win-

dow of a respiratory signal.
4) Fuse BR(s): multiple BR estimates can be fused to obtain

one final estimate (optional).
5) Quality Assessment: used to reject or mitigate against

imprecise estimates (optional).
The mathematical techniques that have been used at each

stage are summarized in this section. Some of the content in
this section has been adapted from [18] and [34] (CC BY 3.0:
http://creativecommons.org/licenses/by/3.0/) and [1] (CC BY
4.0: http://creativecommons.org/licenses/by/4.0/).

A. Extraction of Respiratory Signals

ECG and PPG signals are primarily cardiac in origin, with
secondary respiratory modulations of much lower magnitudes.

Fig. 3. Extraction of exemplary respiratory signals: ECG (upper plot)
and PPG (lower plot) signals and extracted respiratory signals (grey)
are shown on the left. The corresponding frequency spectra are shown
on the right. The frequency spectra of the raw ECG and PPG signals
are dominated by cardiac frequency content at 1.2 Hz. In contrast, the
extracted respiratory signals are dominated by respiration at 0.3 Hz,
which is approximately the BR provided by a reference respiratory signal
(shown by the dashed line).

Therefore, the first stage of a BR algorithm is the extraction of
a signal dominated by respiratory modulation from which BR
can be more easily estimated, as demonstrated in Fig. 3.

Techniques for extraction of a respiratory signal fall into two
categories: filter based or feature based [13]. Filter-based tech-
niques consist of filtering the raw signal to attenuate nonrespira-
tory frequency components (e.g., bandpass filtering the PPG to
extract a respiratory signal exhibiting BW). Feature-based tech-
niques consist of extracting beat-by-beat feature measurements
(e.g., the amplitude of each QRS complex). The individual pro-
cessing steps used for extracting a respiratory signal are now
described.

1) Elimination of Very Low Frequencies: The first step is
the elimination of very low frequency (VLF) components of the
PPG and ECG, i.e., those at subrespiratory frequencies. VLFs
have been eliminated through high-pass filtering using: a median
filter [74], [174], [179]; subtraction of a baseline trend calculated
using a linear or polynomial fit [10], [148]; or measurements of
the baseline at a specific point in the cardiac cycle (e.g., shortly
before the QRS complex [147], or at midpoints between succes-
sive R waves [47] in the ECG). A cutoff frequency between 0.03
and 0.05 Hz is typically chosen [148], [196], [197], [205]. This
step is beneficial regardless of whether a filter- or feature-based
technique is being used, unless VLFs are removed during data
acquisition, for instance by some commercial monitors [26].

2) Filter-Based Techniques: Filter-based techniques for
extraction of a respiratory signal are performed in a single step.
Several techniques have been proposed, as listed in Table I.

3) Feature-Based Techniques: Feature-based techniques
involve several steps to extract a time series of beat-by-beat
features. Examples of the use of feature-based techniques are
shown in Fig. 4. The first step is the elimination of very high
frequency (VHF) noise by low-pass filtering to improve the
accuracy of beat detection and feature measurements. Higher
cutoff frequencies are used for the ECG (e.g., 40, 75, or 100 Hz
[61], [97], [197]) than the PPG (e.g., 10 or 35 Hz [97], [114]),
to preserve the high-frequency content of the QRS complex. In
addition, the ECG is particularly susceptible to power-line inter-
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TABLE I
FILTER-BASED TECHNIQUES FOR EXTRACTION OF RESPIRATORY SIGNALS

• Bandpass filter to eliminate frequencies outside the range of plausible
respiratory frequencies [132].
• Use (ensemble) empirical mode decomposition to extract a respiratory
signal as either one particular oscillation mode (intrinsic mode function, IMF)
or the sum of the IMFs indicative of respiration [170], [193].
• Decompose signal using the discrete wavelet transform to reconstruct the
detail signal at a predefined decomposition scale [59], optionally with
automated selection of the mother wavelet [77].
• Extract respiratory oscillation using principal component analysis (PCA)
[144] or singular spectrum analysis [134] after identifying the periodicity
using singular value decomposition. The use of PCA has been refined using
multiscale PCA [137], and modified multiscale PCA [140], in which wavelet
decomposition was combined with PCA. PCA has also been applied to
intrinsic mode functions extracted using ensemble empirical mode
decomposition [157], [158].
• Extract the instantaneous amplitudes or frequencies of cardiac modulation
using the continuous wavelet transform [41], the Teager-Kaiser energy
operator [204], variable frequency complex demodulation [28], [67], the
Hilbert transform [129], or the synchrosqueezing transform [79].
• Filter using the centered correntropy function [90].
• Decimate by detrending the signal, low-pass filtering to eliminate
frequencies higher than respiration, and resampling at a reduced sampling
frequency [85] of 1–2 Hz [10].
• Extract an electromyogram signal from the high-frequency content (> 250
Hz) of the ECG caused by the activation of the diaphragm and intercostal
muscles during respiration [95].

Fig. 4. Exemplary feature-based techniques for extraction of respira-
tory signals from ECG (left) and PPG (right) signals: measurements
of baseline wander (BW), amplitude modulation (AM), and frequency
modulation (FM) have been extracted for each beat from fiducial points
(shown as dots). Adapted from [33] (CC BY-NC 4.0).

ference, which may be eliminated using an additional band-stop
filter [110]. Commercial monitoring devices typically remove
VHFs internally, similar to VLFs [26]. Next, individual beats are
detected (see Section S2-A [Supplimentary Material] for details
of beat detectors used in the literature). Fiducial points (such as
Q- and R-waves, shown as black dots in Fig. 4) are then identi-
fied for each beat. These are used to measure a feature that varies
with respiration (such as the difference in amplitudes between
Q- and R-waves for AM). The fiducial points identified and
subsequent feature measurements are specific to the particular
feature-based technique being used, as summarized in Table II
(additional features are proposed in [40]). Several feature-based

TABLE II
FEATURE-BASED TECHNIQUES FOR EXTRACTION OF RESPIRATORY SIGNALS

• Extract BW as the mean amplitude of peaks and preceding troughs [18] or
the mean signal value between consecutive troughs [180].
• Extract AM as the difference between the amplitudes of peaks and
preceding troughs [8].
• Extract FM as the time interval between consecutive peaks [8].
• Extract peak amplitudes [8].
• Extract trough amplitudes [180].
• PCA of heartbeats [181], [227].
• Extract the kurtosis between adjacent peaks [80].
• Extract the morphological scale variation of part of the signal (e.g., QRS
complexes) by comparing the current beat to a template beat [45].
• Extract QRS durations [179].
• Extract QRS areas [196].
• Extract maximum Q–R or R–S slopes (using either a straight line fit [113]
or fourth-order central moments [185]) or QRS-wave angles from the
difference between them [113].
• Extract PPG pulse widths [111].
• Extract the difference between the durations of the upslope and downslope
of the PPG [207].
• Extract the direction or magnitude of the mean QRS vector axis using the
arctangent of the ratio of QRS complex areas from two simultaneous ECG
leads [195], [224].
• Extract rotation angles of vectorcardiogram loops using multiple ECG
leads [53].
• Extract the main direction of the electric heart vector at a specific phase in
the cardiac cycle (e.g., T-wave) [165].
• Extract the pulse transit time using the R-wave of the ECG and the
subsequent PPG pulse onset [44], [97], peak [213], or upslope midpoint [110] .
• Extract the maximum upslope during diastole of a venous signal extracted
from dual wavelength PPG signals [219].

techniques use multilead ECG signals [35] or nonstandard leads
derived from them [113]. Lastly, the time series of beat-by-beat
feature measurements is resampled at a regular sampling fre-
quency of approximately 4–10 Hz. This is usually necessary
since signals obtained from beat-by-beat feature measurements
are irregularly sampled (once per beat), whereas subsequent
processing often requires a regularly sampled signal. Often lin-
ear [8], [210] or cubic spline interpolation [110] is used. More
complex methods include: Berger’s algorithm, designed for use
with an FM signal [228], used in [8] and [101], the integral
pulse frequency modulation model, also designed for use with
FM signals [229], used in [193]; and the discrete wavelet trans-
form [179].

4) Elimination of Nonrespiratory Frequencies: Nonres-
piratory frequencies should be removed from respiratory signals
to avoid erroneously identifying spurious frequency content as
the BR. Bandpass filtering has been used, with cutoffs at either
end of the range of plausible respiratory frequencies [50], [74],
[110], [114], [171]. There is no consensus on the optimal range
of plausible respiratory frequencies. Furthermore, it may need
to be adjusted according to the patient population, particularly
for children [230]. Indeed, some BR algorithms use a range that
adapts to the HR [85], [128], [159], [160], [209]. As a guide-
line, Karlen et al. used a conservative range of 4–65 breaths per
minute (bpm) [8].

B. Fusion of Respiratory Signals

The second stage is the fusion of multiple respiratory
signals to provide one respiratory signal from which BR can be
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TABLE III
TECHNIQUES FOR FUSION OF RESPIRATORY SIGNALS

• Spectral averaging: calculate the individual power spectra of multiple
respiratory signals, and then find the average spectrum [110], [114], [196].
• Peak-conditioned spectral averaging [110], [114]: only sufficiently peaked
spectra are included in calculation of a peak-conditioned average power
spectrum. To qualify, a spectrum must have a certain proportion of its power
within an interval surrounding the frequency corresponding to the maximum
power [51] or the previous BR estimate [114].
• Cross power spectral analysis: calculate the individual power spectra of
multiple respiratory signals, and then multiply the spectra [117].
• Cross time–frequency analysis [168]: use the smoothed pseudo
Wigner–Ville distribution to estimate time–frequency spectra between two
signals.
• Time–frequency coherence [168]: used to measure the degree of coupling
between two signals.
• Vector autoregressive (AR) modeling [138]: the poles of multiple AR
models (one for each respiratory signal) are calculated. Only those poles that
are common to both models, and which fall within the range of plausible
respiratory frequencies, are used to extract a respiratory signal.
• Point-by-point multiplication of signals [109].
• Use of a neural network with multiple input signals to identify periods of
inhalation and exhalation [32], [44].

estimated. Multiple respiratory signals can be obtained either by
extracting multiple signals simultaneously (e.g., by using both
the ECG and PPG [44] or by using multiple extraction methods
[109]) or by segmenting a respiratory signal into several (often
overlapping) windows and treating these as individual signals
[51]. Techniques for fusion of multiple respiratory signals are
listed in Table III. This stage is optional and is intended to
increase the accuracy and robustness of BR estimates [44].

Techniques for fusion of simultaneous respiratory signals re-
sult in a single respiratory signal with enhanced respiratory con-
tent and reduced spurious frequency content. These techniques,
such as spectral averaging, can improve BR algorithm accuracy
even beyond that achieved by using the respiratory signal with
the strongest respiratory modulation [110], [114]. This is bene-
ficial since the relative strengths of different modulations are of-
ten unknown, since it can vary between individuals and with BR
[40]. The contribution of spurious frequencies, such as Traube–
Hering–Mayer waves at ≈0.1 Hz [132], is reduced since these
are unlikely to be manifested consistently across all respiratory
signals. Fusion of spectra obtained from short segments of a
single respiratory signal reduces variance and increases robust-
ness [110]. This is particularly advantageous during exercise,
when there is significant motion artifact [53]. Fusion techniques
often incorporate quality assessment that excludes signals from
the calculation which exhibit little respiratory modulation [110].
This can prevent a BR from being calculated if there is insuffi-
cient respiratory modulation [114], which is appropriate when
monitoring BR continuously to detect abnormalities.

C. Estimation of BRs

The third stage of BR algorithms is the estimation of BR.
The input to this stage is a window of a respiratory signal
and the output is a BR estimate. The techniques used for this
stage, listed in Table IV, act in either the time or frequency
domain. Time-domain techniques involve detecting individual

TABLE IV
TECHNIQUES TO ESTIMATE BR FROM A RESPIRATORY SIGNAL

Frequency-based techniques

• Spectral analysis: identify the respiratory frequency from a power spectrum
calculated using either: the fast Fourier Transform [8] (which can operate on
unevenly sampled signals [87]), AR spectral analysis using Burg or
Yule–Walker algorithms [199], the Welch periodogram [111], the short-time
Fourier transform [192], the Lomb–Scargle periodogram (which can operate
on unevenly sampled signals) [52], or sparse signal reconstruction (which can
be applied to multiple respiratory signals) [222], [223]. The BR is usually
identified as the frequency corresponding to the maximum spectral power in
the range of plausible respiratory frequencies although other approaches have
been proposed [224].
• Identify the respiratory frequency as the dominant frequency of a
scalogram calculated using the continuous wavelet transform [41].
• Identify the common frequency component in multiple respiratory signals
using the weighted multisignal oscillator based least-mean-square algorithm
[92].
• Estimate instantaneous BR [92] using an adaptive notch filter [106], [173]
or an adaptive bandpass filter [155].
• Find periodicity using the autocorrelation function [184].
• Estimate the instantaneous BR from either a single signal or multiple
signals using a bank of notch filters [153], [154].
• Autoregressive all-pole modeling, with BR estimated from the frequency of
either the highest magnitude pole [10], or the lowest frequency pole [85]. The
(order reduced) modified covariance method has also been used [136], [139]
• Use Gaussian process regression to estimate periodicity [177].

Time-domain breath detection techniques

• Detect breaths using peak detection.
• Detect breaths by identifying zero-crossings with a positive gradient (after
detrending) [32].
• Detect breaths from peaks and troughs using (adaptive) thresholding to
identify those breaths that have been reliably detected [74], [147], [184]

breaths, followed by calculation of the BR as the mean breath
duration. Time-domain techniques have the advantage of not
requiring a quasi-stationary BR although they are susceptible
to spurious breath detection due to abnormal respiratory signal
morphology [18]. Frequency-domain techniques involve identi-
fying the frequency component related to respiration, typically
through spectral analysis or identification of the instantaneous
dominant frequency. One aspect of using AR frequency-domain
techniques is the selection of a model order, detailed in Section
2-B (Supplementary Material). The BR estimation stage may
be the last in a BR algorithm. However, two further stages can
optionally be used and are now described.

D. Fusion of BRs

Techniques for fusion of multiple BR estimates can be used
to improve the robustness of a final BR estimate. Several ap-
proaches have been used to fuse simultaneous BR estimates
derived from different respiratory signals. First, BRs can be
fused by averaging using the mean, median, or mode [8], [64],
[176], optionally after exclusion of outliers [64], [113]. The
quality of the final estimate can then be assessed from the stan-
dard deviation of the individual estimates [8]. Second, BRs can
be combined by weighting them according to their variances
[13], [226]. Third, a Kalman filter can be used to fuse BRs,
which can be weighted according to confidence metrics [128],
[163]. Fourth, candidate BRs obtained through AR modeling
can be fused using the pole magnitude criterion [169] or the
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pole ranking criterion [171]. Finally, BRs derived from a single
respiratory signal at different time points can be fused using
temporal smoothing [114] or particle filtering [122].

E. Quality Assessment

Quality assessment techniques are optional and fall into two
categories: signal quality indices (SQIs) and respiratory quality
indices (RQIs).

SQIs are used to identify segments of ECG or PPG data of
low quality, which are typically rejected based on the assump-
tion that BRs derived from them are likely to be inaccurate
[8]. SQIs based on template matching involve constructing a
template of average beat morphology and calculation of the
correlation between individual beats and the template [231].
A signal segment is deemed to be of high or low quality by
comparing the average correlation coefficient for that segment
to an empirically determined threshold. Hjorth parameters have
also been used, quantifying the strength of an oscillation in a
signal [176]. Furthermore, signal quality can be assessed using
multiple beat detectors, with agreement between detectors indi-
cating high quality [161]. Beat-by-beat characteristics have also
been analyzed to identify low-quality input signals, including
beat-to-beat intervals, pulse amplitudes, and clipped pulses [8].

In addition to SQIs, a relatively recent development in the
quality assessment of BR algorithms has been the derivation of
RQIs [56], [65], [101], [163], [232]. RQIs are used to assess
the quality of extracted respiratory signals. RQIs are an impor-
tant development since the presence or absence of respiratory
modulations of the ECG or PPG is independent of the overall
quality of those signals and instead varies based on factors such
as gender, age, pre-existing health conditions, level of hydration,
body position, and the value of the BR itself [40], [163], [233].
Presently, RQIs assess the quality of respiratory signals based
on the regularity of breathing peaks and the periodicity of the
respiratory waveform. Time- and frequency-domain techniques
have been used including: statistical analysis of the variations
in the respiratory peaks [65], Hjorth descriptors, Fourier trans-
form, autoregression, and autocorrelation [56], [163]. Because
RQIs return a range of values (often between 0 and 1) as op-
posed to a binary outcome, one of the important considerations
in RQI implementation is the compromise between data reten-
tion and improved estimation accuracy. Recent results using
RQIs to fuse BR estimates from multiple ECG and PPG mod-
ulations have shown that RQIs both increase data retention and
decrease estimation error compared to existing fusion meth-
ods [232]. Further work is required to investigate the perfor-
mance of RQIs in the presence of diseases that cause irregular
or shallow breathing, such as in premature infants at risk of
apnoea.

IV. ASSESSMENT OF BR ALGORITHMS

A. Assessment Methodologies Used in the Literature

A wide range of methodologies were used to assess the per-
formance of BR algorithms in the 196 publications. These are
summarized in Table V and critically reviewed in this section.

TABLE V
METHODS USED TO ASSESS BR ALGORITHM PERFORMANCE

Category No. publications (%)

Application of BR algorithms
Number of algorithms assessed

1 94 (48.0)
2–5 76 (38.8)
6–10 17 (8.7)
11–15 6 (3.1)
≥ 16 3 (1.5)

Input signal(s)
ECG 98 (50.0)
PPG 112 (57.1)
Fusion of ECG and PPG 5 (2.6)
Pulse transit time 8 (4.1)

Window duration [s]
< 30 10 (5.1)
30–59 46 (23.5)
60–89 50 (25.5)
≥ 90 10 (5.1)
Unknown 78 (39.8)

Datasets
Age(s) of subjects [years]

0–0.1: Neonate 5 (2.6)
0.1–17: Pediatric 27 (13.8)
18–39: Young adult 122 (62.2)
40–69: Middle-aged adult 76 (38.8)
≥ 70: Elderly adult 50 (25.5)
Unknown 57 (29.1)

Level(s) of illness
Healthy 127 (64.8)
Sick in community 22 (11.2)
Acutely ill 15 (7.7)
Critically ill 52 (26.5)
unknown 9 (4.6)

Type(s) of breathing
Spontaneous 150 (76.5)
Metronome 45 (23.0)
Ventilated 32 (16.3)
Simulated 7 (3.6)
unknown 25 (12.8)

Number of datasets used
1 164 (83.7)
2 30 (15.3)
3 1 (0.5)
4 1 (0.5)

Comparison with reference BRs
Reference BR equipment

Air flow or pressure 45 (23.0)
Impedance pneumography (ImP) 48 (24.5)
Capnography 33 (16.8)
Inductance plethymography (InP) 14 (7.1)
Piezoelectric 9 (4.6)
Strain gauge 19 (9.7)
Metronome 9 (4.6)
Other 22 (11.2)
None 5 (2.6)
unknown 26 (13.3)

Common statistical measures
Error statistic 127 (64.8)
Breath detection statistic 19 (9.7)
Bias 46 (23.5)
Limits of agreement (LOAs) 46 (23.5)
Correlation 27 (13.8)
Proportion of windows 14 (7.1)

The methods used to obtain Table V are described in Section S3
(Supplimentary Material).

The literature has focused on the development of novel BR al-
gorithms rather than comparisons of existing algorithms. This is
shown by approximately half (48.0%) of publications assessing
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the performance of only one algorithm, without any compara-
tor. Furthermore, only nine publications (4.6%) compared more
than ten algorithms. Several issues make it difficult to compare
the reported performance of algorithms between different pub-
lications: the use of different statistical measures, the use of data
from different subject populations, and the lack of standardized
implementations of algorithms (with the exception of [227]),
to name but a few [18]. Consequently, it is not possible to de-
termine from the literature which algorithms perform best. The
RRest Toolbox (http://peterhcharlton.github.io/RRest) has been
designed to address these issues [18], [33], [34]. It provides stan-
dardized implementations of several algorithms, as well as code
to assess their performance using a range of statistics across
multiple publicly available datasets. Further comparisons of al-
gorithms would provide equipment designers with much needed
evidence to determine which algorithms are most suitable for
implementation.

Most algorithms assessed in the literature take either the ECG
or PPG as the input signal (used in 50.0% and 57.1% of publica-
tions, respectively). Very few publications reported algorithms
using both ECG and PPG [44], [81], [138], [145], [170] or pulse
transit time [44], [69], [81], [97], [110], [111], [114], [213]. It
may be beneficial to use multiple input signals when they are
available, such as in wearable sensors [170].

There are pros and cons to the use of shorter and longer
window durations with BR algorithms. Most studies used du-
rations of between 30 and 90 s although durations of 5–300 s
have been used [184], [216]. Several studies have investigated
the impact of window duration on performance [8], [31], [51],
[55], [71], [108], [184], [206], [216]. A (nonsignificant) trend
toward lower errors at longer window durations has been re-
ported [8], [31] although there is not yet a consensus as to the
optimal window length. The optimal length is likely to differ
between populations and applications [55]. On one hand, using
shorter windows reduces both the time required to measure BR
and the computational requirements of BR algorithms [8]. It
also increases the likelihood that the BR is stable throughout
the window and allows variations in BR to be tracked more ac-
curately, both of which are concerns during exercise [51]. On
the other hand, longer windows may improve the accuracy of
algorithms and increase the range of detectable BRs [31]. Con-
sequently, a duration of 32 s was chosen as a compromise in [8]
and [206].

The datasets used were often not representative of target pop-
ulations and not publicly available. Datasets were often acquired
from young, healthy subjects. Fewer publications used data
acquired from elderly adults (25.5%), patients suffering from
chronic diseases in the community (11.2%), or acutely ill pa-
tients in hospital (7.7%), who are more representative of target
patient populations. In addition, few publications used ambula-
tory data (16.3%). Some publications used data from ventilated
patients (16.3%) or subjects breathing in time with a metronome
(23.0%). It is not yet clear whether the respiratory mechanics
of these subjects can be presumed to be similar to those of
spontaneously breathing patients [18]. Consequently, it is not
clear whether the performance of BR algorithms reported in
these studies is truly indicative of expected performance in tar-

get populations. A total of 13 publicly available datasets have
been used to assess BR algorithms (see Table VI). However,
only two publications have used more than two datasets [57],
[111]. The range of available datasets makes it possible to as-
sess algorithms across multiple datasets, which is important as
performance may differ significantly between datasets [31].

A range of techniques have been used to acquire reference
BRs. Typically, a respiratory signal such as ImP was acquired
from which reference BRs were estimated using a bespoke al-
gorithm. Many bespoke algorithms were used although often
there was no assessment of the performance of these algorithms.
This makes it difficult to know whether errors in BR estimates
derived from the ECG and PPG were solely due to poor BR
algorithm performance or contributed to by inaccuracies in ref-
erence BRs. Notable exceptions are [18], [155], and [184]. In
[155], eight methods were used to obtain reference BRs and the
final estimate was calculated as the mean of the three estimates
closest to the median. In [184], several algorithms for obtaining
reference BRs were compared and time-domain breath detec-
tion methods were found to be “the only serious candidates,”
with frequency-domain spectral methods and an autocorrelation
method performing poorly. In [18], a time-domain breath detec-
tion algorithm was also used and its performance was quanti-
fied by comparing the reference BRs provided by the algorithm
to those obtained from manual annotations of a subset of the
data. An alternative approach is to manually annotate individual
breaths in the entire dataset [8], [31]. Regardless of the approach
chosen, it is important that reference BRs are accurate for robust
assessment of BR algorithms.

A wide range of statistics have been used to assess BR algo-
rithm performance. Statistics were most commonly calculated
from the errors between reference and estimated BRs (used
in 64.8% of publications), including the mean (absolute) er-
ror, root-mean-square error, and the percentage error. The re-
lated LOAs method, consisting of the systematic bias and LOAs
within which 95% of errors are expected to lie, was used less
often (23.5%) even though this has the advantage of quanti-
fying both accuracy and precision [18]. This method is useful
because certain applications require greater accuracy (such as
identification of pneumonia indicated by BR > 40 bpm [8]),
whereas others require greater precision (such as detection of
acute changes in BR indicative of deterioration [18]). Statis-
tics indicating the reliability with which individual breaths are
detected were used in 9.7% of publications. These included
statistics such as sensitivity, specificity, false negative, and false
positive rates. Correlation coefficients were used in a minority
of publications (13.8%). The wide range of statistics reflects the
difficulty of quantifying the performance of algorithms using
one single metric.

B. Methodological Framework for Algorithm
Assessments

We now present a general methodological framework for
assessment of BR algorithms. The reader is referred to
[1, Chs. 6–7] for examples of BR algorithm assessments con-
ducted in line with this framework.
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TABLE VI
PUBLICLY AVAILABLE DATASETS USED TO ASSESS BR ALGORITHMS

Dataset Ref No subjs Age ECG PPG Resp sigs Type of breathing Level of illness

Datasets containing breath annotations

BIDMC [31] 53 adult Y Y ImP spont, vent critical
CapnoBase [8] 42 paed, adult Y Y CO2 spont, vent surgery, anesthesia

Datasets without breath annotations

MIMIC-II [234] 23,180 paed, adult Y Y ImP spont, vent critical
MGH/MF [235] 250 paed, adult Y N ImP, CO2 spont, vent critical
MIMIC [236] 72 unk Y Y ImP spont, vent critical
VORTAL [18] 57 adult Y Y ImP, Press spont healthy
Fantasia [237] 40 adult Y N unk spont healthy
UCD Sleep Apnea [238] 25 adult Y N flow spont healthy, apnea
CEBS [239] 20 adult Y N piezo spont healthy
ECG and resp [240] 20 adult Y N flow, pleth spont healthy
MIT-BIH Polysomnographic [241] 18 adult Y N flow spont, vent healthy, apnea
Apnea-ECG [242] 8 adult Y Y InP, flow spont healthy, apnea
Portland State [243] 1 paed Y Y unk unk critical

Definitions: Age—pediatric (paed); respiratory signals (Resp Sigs)—capnometry (CO2 ), piezoresistive thoracic band (piezo), oral or nasal flow (flow), oral–nasal
pressure (press), inductance plethysmography (InP), impedance pneumography (ImP), body plethysmography (pleth); Breathing—spontaneous (spont), ventilated
(vent); unknown (unk).

1) Purpose of Assessment: It is important to identify the
purpose of an algorithm assessment: either exploratory analysis
or validation of a BR algorithm. Exploratory analyses are used
to determine the performance of a novel algorithm, often in
comparison to existing algorithms [31], [90]. They provide evi-
dence to inform the direction of algorithm development and can
be used to identify candidate algorithms for validation studies.
Validation studies assess BR algorithms to determine whether
they are suitable for a particular application [43]. The purpose
of the assessment informs the study design.

2) Dataset(s): The dataset required for an assessment dif-
fers according to its purpose. In a validation study, the dataset
should be as representative as possible of the intended appli-
cation, to ensure the results indicate the expected performance.
The subject population should be closely matched to the in-
tended users, including: age, level of illness, range of BRs, and
type of breathing. Signal acquisition equipment should be sim-
ilar to that which will be used, considering: transducers, signal
fidelity (sampling frequency and resolution), and any signal fil-
tering. The recording setting, including the presence or absence
of subject movement, should also be similar. If any publicly
available datasets (see Table VI) meet these criteria, then they
can be used. Otherwise, a novel dataset should be acquired. The
requirements for datasets in exploratory analyses are less strin-
gent. In fact, variation within a dataset can allow a greater range
of hypotheses to be tested, such as: multiple heart rhythms [216];
young and elderly subjects [169]; multiple input signals (both
ECG and PPG) [18]; and the presence and absence of move-
ment [171]. An assessment’s generalizability can be increased
by using multiple datasets.

The methodology used to obtain reference BRs is highly im-
portant (see Section IV-A). If possible, reference BRs should be
obtained independently from the input signals (ECG or PPG).
For instance, ImP signals are often acquired using the same elec-
trodes as the ECG. In contrast, gold standard spirometry signals

are measured from air flow at the mouth (and nostrils) avoiding
dependencies with input signals. Methods for estimating BRs
from a reference signal should be carefully chosen and prefer-
ably evaluated. The reliability of manual breath annotations
can be improved by using two independent annotators, partic-
ularly when signal periods containing disagreements between
annotators are discarded [31]. Reliability can be assessed using
interannotator agreement. When using an automated algorithm,
its performance can be evaluated using manual annotations on
a subset of the data [18].

3) BR Algorithm(s): The choice of BR algorithm(s) is
straightforward in validation studies. The performance of one
or a few algorithms is evaluated, without the need for additional
comparator algorithms, to determine whether the proposed al-
gorithm(s) perform sufficiently well for the chosen application.

There are additional considerations when choosing BR al-
gorithms for exploratory studies. First, additional comparator
algorithms should be included to contextualize the results, par-
ticularly if using a novel dataset since no comparative results
will be available. Comparator algorithms should include leading
algorithms from the literature (the Smart Fusion algorithm [8]
is often used for this purpose [31], [106], [223], [226]). It may
also be beneficial to include algorithms created by varying the
technique used at a particular stage of the algorithm to identify
techniques that improve performance [18], [226]. Second, the
BR algorithms can be optimized in a preliminary analysis prior
to assessment (ideally using a separate dataset). Aspects suit-
able for optimization include: window duration, whether or not
to use a fusion technique [8], choice of beat detector, which res-
piratory signals to use, and the threshold for quality assessment
[1]. For instance, the simulated dataset in [18] is suitable for
verifying algorithm implementations. Third, the range of BRs
that can be outputted by an algorithm should be fixed.

4) Statistical Analysis: The nature of the statistical anal-
ysis differs between exploratory and validation studies. In ex-
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ploratory studies, a wide range of statistics should be used to
quantify different aspects of algorithm performance (such as
errors, the proportion of windows for which a BR estimate is
provided, power requirements, and the time delay between the
start of signal acquisition and a BR estimate being outputted).
The analysis need not identify the best algorithm. Rather, it
should identify algorithm techniques that lead to improved per-
formance. This may be aided by subgroup analyses of algo-
rithms that use different techniques and of different subject
populations. In validation studies, a primary statistic should be
identified a priori with which to determine whether the algo-
rithm performs sufficiently well. Ideally, a threshold value of this
statistic, indicating sufficient performance, should be chosen a
priori (such as a mean absolute error of < 2 bpm). Although
there are no standardized performance thresholds, further guid-
ance on selecting primary endpoints is provided in Section V-C.
Additional statistics can also be used to quantify secondary as-
pects of algorithm performance.

The following should also be considered:
1) whether a statistical test is required to identify improved

performance (such as the Wilcoxon signed rank test for
paired data or the Wilcoxon rank sum test for unpaired
data [34]);

2) the expected distribution of errors since parametric statis-
tics such as LOAs are influenced more by nonnormal
error distributions than nonparametric statistics such as
coverage probability [18]; and

3) whether statistics are required to assess ability to detect
apnoea [200], [203].

5) Reproducibility: It is helpful to decide at the outset
whether study resources will be made publicly available (in-
cluding datasets, BR algorithms, and evaluation code) [18], par-
ticularly if ethical approval is needed. One should also decide
whether the analysis should be reproducible [33].

V. FUTURE RESEARCH DIRECTIONS

A. Areas for Algorithm Development

There are several promising areas for BR algorithm devel-
opment. First, little research has been conducted into the use
of models of respiratory modulations in BR algorithms. Wom-
ack presented a model relating RSA to respiration [211]. If
mathematical models such as this were incorporated into BR
algorithms, then this could improve performance, particularly
if they exploit relationships between the different respiratory
modulations. Second, it has recently been proposed that the
BRs provided by many different BR algorithms could be fused
to improve performance [64], consequently reducing errors and
increasing the proportion of windows for which a BR estimate
is provided [226]. Further work is required to determine which
BR algorithms should be used in this approach. Third, as the
availability of annotated data increases, there is opportunity to
use machine learning techniques in BR algorithms. Fourth, the
utility of BR algorithms would be greatly enhanced if the un-
certainty associated with a BR estimate was quantified since
unreliable BR estimates could be easily discarded [13]. Fifth,
further research is required to identify BR algorithms with low-

computational requirements that are suitable for use in miniatur-
ized devices such as wearable sensors [88], [221]. Finally, BR
algorithms that use a breath detection technique could be used
to estimate BR variability, which may have utility as a marker
of mental state and disease progression [210].

B. Equipment

Research into BR algorithms has mostly used ECG and PPG
signals acquired from routine equipment to assess the perfor-
mance of algorithms. Some research has investigated alternative
equipment for acquiring ECG and PPG signals, to either improve
the performance of BR algorithms or to increase their utility.

Design considerations when using PPG signals include the
following:

1) the anatomical site for PPG measurement (such as fin-
ger, ear, forehead, forearm, shoulder, wrist, and sternum),
which may influence the strength of respiratory modula-
tions [34], [68], [244]–[246];

2) the wavelength of emitted light [28], [247]; and
3) the use of transmission or reflection mode PPG [245].

Each of these factors may influence algorithm performance.
Recent research indicates that low-fidelity PPG signals can be
used with BR algorithms, such as those acquired at low sampling
frequencies [34] or from smartphones or tablets [28], [29], [102],
[115], [116]. This will potentially increase the utility of BR
algorithms since they could be used in ubiquitous devices such as
smartphones in resource-constrained settings [29], [102], [115],
[116].

Design considerations when using ECG signals include: 1)
whether suitable signals can be acquired without needing elec-
trodes to be attached at several anatomical sites; and 2) whether
multilead signals confer a significant benefit over single-lead
signals. Klum et al. proposed that ECG electrodes positioned
as little as 24 mm apart can be used to acquire respiratory sig-
nals [248]. This is promising for the implementation of BR
algorithms in patch-style wearable sensors [249]. The use of
textile-based systems to acquire ECG signals has also been
investigated [174], [198], [215]. This could allow BR to be
monitored by incorporating sensors into bed sheets [215] or a
specialized t-shirt [128]. It has also been proposed that ECG
signals could be acquired at locations other than the thorax such
as the wrist [82] when an FM-based BR algorithm is used. Some
studies have investigated the relative merits of single- and mul-
tilead ECG signals [197], [250] or fusion of respiratory signals
acquired from single- and multilead signals [117]. It is not yet
clear whether multilead signals provide improved performance,
and therefore whether this should be considered when designing
ECG acquisition equipment.

C. Applications

BR algorithms may have utility in a range of clinical and per-
sonal settings, with each setting having different requirements.
The benefits and challenges of using algorithms in each setting
are now described.

1) Clinical Assessment: At present, BR is usually mea-
sured manually in clinical assessment in both hospitals and the
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community (as described in Section I-A). In contrast, BR al-
gorithms could provide automated BR measurements. The key
design challenges in this setting are to provide an accurate and
precise BR, for most windows of input signal, preferably us-
ing the PPG since pulse oximeters can be attached quickly and
easily, without any additional disposables. In particular, BR al-
gorithm designs often include a tradeoff between performance
and the proportion of windows for which BR estimates are pro-
vided [8]. The latter is likely to be more important since the
present manual BR measurements have been reported to have
poor performance (e.g., LoAs of −8.6 to 9.5 bpm [15]). An
attractive case can be made for the use of BR algorithms in 4–6
hourly assessment of hospital inpatients since the time saved
by using an automated method could reduce healthcare costs,
and if BR algorithms provide improved performance, then this
could improve patient safety.

2) Clinical Monitoring Using Wearable Sensors: It is im-
portant that wearable sensors are capable of monitoring BR since
BR is a sensitive marker of physiological deterioration preceding
adverse events (see Section I-A). However, existing approaches
for monitoring BR using wearable sensors are not ideal [18].
Many use impedance pneumography [251]. This is unobtrusive,
involving measurement of variations in thoracic impedance with
respiration through injection of a high frequency current into the
thorax at ECG electrodes [252]. However, it is prone to errors
caused by posture changes and motion [251], and has been ob-
served to be imprecise (e.g., LoAs of −9.9 to 7.5 bpm [15]
and −11.1 to 11.9 bpm [253]). Inductance plethysmography
has also been used to monitor BR although this requires cum-
bersome chest bands [251], which may be too uncomfortable
for prolonged monitoring [254]. More recently accelerometers
have been used for BR monitoring [30] although this is still an
ongoing area of research [255].

An alternative approach is to estimate BR from the ECG or
PPG signals already acquired by many wearable sensors. This
would allow BR to be monitored relatively unobtrusively, with-
out an additional transducer. Wearable sensors can acquire ECG
and PPG continuously, whereas clinical deterioration usually oc-
curs over several hours. Therefore, one has the luxury of being
able to discard data from which a BR cannot be confidently es-
timated. The key challenge is to provide accurate BR estimates
since erroneous estimates may trigger false alerts, which are
resource consuming and can erode trust in the wearable sensor
[256]. Fusion techniques can reduce the frequency of erroneous
estimates [18]. An additional challenge arises due to ambula-
tory data being highly susceptible to artifact, caused by poor
sensor contact or movement [13], [198]. Methods for improv-
ing BR algorithms for use with wearable sensors include the
following:

1) using SQIs to identify (and discard) artifactual data [231];
2) using techniques to reduce the influence of motion artifact

[55], [88], [107], [135], [144], [198]; and
3) fusing BRs according to the uncertainties associ-

ated with each determined by either deriving features
from extracted respiratory signals (such as variation in
breath-to-breath intervals) [65] or analyzing the respira-
tory signals using Gaussian processes [13].

Furthermore, wearable sensors often acquire more than one
signal from which BR could be estimated to improve robust-
ness to artifact, such as ECG and PPG [44], [170] or ECG and
accelerometry [65], [128]. The impact of motion on BR algo-
rithms should be investigated further [59], as it is important both
in clinical settings (such as during mobilization after surgery)
and for fitness applications. Such a study would require reli-
able reference respiratory monitoring (such as spirometry) and
would benefit from incremental increases in the level of motion
(such as on a treadmill).

3) Exercise Monitoring: It has been proposed that BR algo-
rithms could be used in exercise monitoring. In healthcare, BR
algorithms could be used during stress tests, which otherwise
require a device (such as a spirometer), which is uncomfortable
and may interfere with breathing [51]. Typically the ECG sig-
nal would be used since it is already monitored during exercise
tests. This is a particularly challenging setting because: 1) in-
put signals are greatly contaminated with motion artifact; and
2) ideally BR would be provided continuously, making it diffi-
cult to reject periods of low quality data. Temporal filtering has
been widely used in this setting to increase BR algorithm perfor-
mance [51], [53], [112]. In addition, multilead ECG signals have
been used to improve performance, involving deriving cardiac
rotation angles, including correction and rejection of outlying
measurements [53].

BR algorithms could also be used in fitness devices. Many
fitness trackers do not measure BR, but do acquire PPG for
HR monitoring [31]. The ability to measure BR would be a
valuable addition. This setting is less challenging than that of
exercise tests since continuous BRs are not required, but could
be provided only when expected to be reliable. In addition, BRs
do not need to be as accurate as in healthcare. However, in
this setting, the PPG is likely to be highly corrupted by motion
artifact [13].

4) Telemonitoring in the Home: Telemonitoring can be
used to conduct frequent assessment of physiology in patients
with chronic diseases living at home [257]. Telemonitoring se-
tups often include a pulse oximeter, which patients use to assess
their own HR and SpO2 [31]. However, it is difficult to measure
BR remotely. A simple solution would be to incorporate a BR
algorithm into a pulse oximeter. Indeed, Shah et al. recently
found that BRs estimated from telemonitoring PPG data were
predictive of exacerbations in chronic obstructive pulmonary
(COPD) disease [258]. The design challenges in this setting
are similar to those for clinical assessment although greater im-
portance should be placed on obtaining an accurate BR than
obtaining the measurement quickly. Ideally, a telemonitoring
device would estimate BR in real time, continuing until an esti-
mate with a high degree of confidence was available. The user
would then be prompted to remove the device. Furthermore, if an
abnormal BR was detected, then the user could be prompted to
repeat the measurement to reduce the likelihood of false alerts.

5) Remote Video Monitoring: The applications presented
so far require sensors to be attached to the subject [259]. This
requires manual intervention, may be poorly tolerated [260]
and may cause discomfort and skin irritation [259], particularly
when used over prolonged time periods. It has recently been pro-
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posed that BR algorithms could be applied to imaging-PPG sig-
nals acquired using noncontact video cameras [23]–[25], [27],
[152]. Additional preprocessing steps are required to extract
PPG signals from imaging-PPG videos for use with BR algo-
rithms [23]: automatic detection of a region of interest (such
as the face); synthesis of spatial information to extract a signal
from the region; and color channel selection (using information
from either a single or multiple color channels). HR and SpO2
can also be estimated from imaging-PPG signals, increasing
their utility [25], [27]. Further work is required to determine
whether BR measurements are best extracted from the cardiac-
synchronous component of imaging-PPG signals, or from the
changes in reflected light caused by the motion of breathing.

D. Translation Into Clinical Practice

Three key areas for future work to translate BR algorithms
into clinical practice are now considered.

First, it is not clear whether different patient populations and
clinical settings require different BR algorithms. This may arise
due to differences in the requirements of algorithms (e.g., pre-
cision versus the proportion of windows for which an estimate
is provided) or differences in respiratory physiology between
patient groups (such as breathing patterns or the strength of res-
piratory modulations). Therefore, the first area for future work
is to assess the performance of BR algorithms in the patient pop-
ulations in which they are intended to be used. This will provide
evidence for the expected performance of a BR algorithm in
a particular target population (such as children [125], [189],
[209]), and it will allow the most suitable BR algorithm for that
population to be identified. For instance, Addison et al. have
conducted several studies to assess the performance of BR al-
gorithm performance across a range of populations (low-acuity
hospitalized patients [43], [54] and patients in the postanesthesia
care unit [151]) and in the presence of several pathophysiolo-
gies (respiratory disease [72], congestive heart failure [150],
and COPD disease [149]). This provides an understanding of
the performance of the Medtronic Nellcor BR algorithm (found
to have LoAs of 0.07 ± 3.90 bpm in hospitalized patients [54])
and how its performance may be affected by pathophysiologies.
Further, investigation of the impact of cardiac arrhythmias on
performance is much needed [216] since arrhythmias may af-
fect the physiological mechanisms responsible for respiratory
modulation of the ECG and PPG [261].

Second, BR algorithms must be implemented in clinical mon-
itors to be widely used in clinical practice. This review identified
one clinical monitor in which a BR algorithm has been imple-
mented: the Nellcor bedside patient monitoring system with
reported LoAs of 2.25 ± 10.60 bpm when assessed against
capnography derived BRs in patients undergoing procedural
sedation and analgesia for endoscopy procedures [200]. This
clinical implementation of a BR algorithm marks the beginning
of a new phase in the use of BR algorithms since research into
the potential clinical benefit of BR algorithms can be conducted
with greater ease after clinical implementation. The process of
implementing BR algorithms in monitors is likely to benefit
from collaboration across multiple disciplines.

The third key area for future work is to conduct clinical trials
to determine how BR algorithms can be used to deliver ben-
efit to patients. These are likely to consist of two stages: an
observational trial to determine whether a BR algorithm could
be expected to be beneficial, followed by an interventional trial
in which clinicians respond to the BRs, prompting changes in
treatment. The first stage could be conducted using retrospective
analysis of ECG or PPG signals, whereas the second is likely
to require a clinical monitor in which a BR algorithm has been
implemented. For example, Shah et al. used a PPG-based BR
algorithm to perform a retrospective analysis of the utility of BR
for prediction of exacerbations in COPD patients [258]. They
observed that BRs derived from the PPG were predictive of ex-
acerbations although the clinical utility of this approach needs
to be assessed in an interventional trial.

E. Novel Physiological Insights

Novel insights into respiratory physiology can be gained by
using BR algorithms in settings where it would otherwise not
be practical to either measure BR or to monitor it continuously.
In [195] and [262], an ECG-based BR algorithm was used to
study changes in BR in the days following an acute myocardial
infarction through secondary analysis of Holter ECG monitor-
ing. This led to the insight that an elevated nocturnal BR (of ≥
18.6 bpm) was associated with an increased risk of nonsudden
cardiac death. It has also been suggested that BR algorithms
can be used to investigate changes in breathing patterns due to
pathology. In [185], an ECG-based BR algorithm was used to
study changes in inspiration time, exhalation time, and the ratio
of inspiration to exhalation time (as well as BR), associated with
schizophrenia. In this particular study, no respiratory signal was
available, so the BR algorithm provided additional insights.

VI. CONCLUSION

A wide range of algorithms to estimate BR from the ECG and
PPG have been reported in the literature. These mostly conform
to a standardized structure, with many different mathematical
techniques proposed for each stage. BR algorithms are now be-
ing incorporated into clinical devices, with encouraging initial
studies of their performance and utility in both hospitals and
the community. Further work is required to identify the most
suitable BR algorithms for use in different settings and to deter-
mine how BR algorithms can be used to deliver patient benefit.
The great potential of BR algorithms is only likely to be realized
through close collaboration between researchers, clinicians, and
industrial partners.
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