
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 17, 2024 19

Artificial Intelligence and Machine Learning for
Improving Glycemic Control in Diabetes: Best

Practices, Pitfalls, and Opportunities
Peter G. Jacobs , Member, IEEE, Pau Herrero , Andrea Facchinetti , Josep Vehi ,

Boris Kovatchev , Marc D. Breton , Ali Cinar , Konstantina S. Nikita , Fellow, IEEE, Francis J. Doyle
III , Fellow, IEEE, Jorge Bondia , Tadej Battelino , Jessica R. Castle ,

Konstantia Zarkogianni , Member, IEEE, Rahul Narayan, and Clara Mosquera-Lopez , Member, IEEE

(Methodological Review)

Abstract—Objective: Artificial intelligence and machine
learning are transforming many fields including medicine.
In diabetes, robust biosensing technologies and automated
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insulin delivery therapies have created a substantial oppor-
tunity to improve health. While the number of manuscripts
addressing the topic of applying machine learning to dia-
betes has grown in recent years, there has been a lack of
consistency in the methods, metrics, and data used to train
and evaluate these algorithms. This manuscript provides
consensus guidelines for machine learning practitioners in
the field of diabetes, including best practice recommended
approaches and warnings about pitfalls to avoid. Methods:
Algorithmic approaches are reviewed and benefits of dif-
ferent algorithms are discussed including importance of
clinical accuracy, explainability, interpretability, and per-
sonalization. We review the most common features used in
machine learning applications in diabetes glucose control
and provide an open-source library of functions for calcu-
lating features, as well as a framework for specifying data
sets using data sheets. A review of current data sets avail-
able for training algorithms is provided as well as an online
repository of data sources. Significance: These consensus
guidelines are designed to improve performance and trans-
latability of new machine learning algorithms developed in
the field of diabetes for engineers and data scientists.

Index Terms—Diabetes, machine learning, artificial intel-
ligence, deep learning, decision support, automated insulin
delivery, glucose prediction, data science, feature engineer-
ing.

I. INTRODUCTION

A. Diabetes and Its Complications

TYPE 1 diabetes (T1D) is an autoimmune metabolic dis-
order whereby the beta cells within the pancreas are de-

stroyed and are no longer able to produce insulin [1]. People
living with T1D must therefore take exogenous insulin to enable
their body to utilize glucose in the blood [2]. Without exogenous
insulin, glucose levels in the blood can become dangerously
high, which can be toxic and can lead to long term damage to
tissue including diabetic retinopathy, neuropathy, cardiovascular
disease, and limb loss [3]. Exogenous insulin delivery poses risk
as well because too much insulin delivery can lead to dangerous
hypoglycemia which can be fatal if extreme and untreated [4].
Type 2 diabetes (T2D) is different from T1D in that the beta
cells in the pancreas can initially still produce insulin; however,
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the cells in the person’s body have become resistant to insulin
and so glucose levels can become dangerously elevated and
toxic to the person when insulin secretion becomes inadequate
relative to insulin resistance. In addition to T1D and T2D there is
gestational diabetes, which is a condition that can happen during
pregnancy whereby a woman becomes increasingly resistant
to insulin and may require exogenous insulin delivery or other
medications to manage their glucose [5]. New treatments in the
area of diabetes care are now becoming possible because of
advances in sensor technology, mobile computing, new control
algorithms, data mining and also in artificial intelligence (AI)
and machine learning (ML).

B. Current Treatment Approaches in Diabetes

In T1D, the state-of-the-art therapy for managing glucose
is automated insulin delivery (AID). An AID is a closed-loop
system that comprises a continuous glucose monitor (CGM)
that measures glucose subcutaneously about once every 1 to
5 minutes, an insulin pump that delivers insulin through a
subcutaneous tube, and a control algorithm that receives the
current and historical CGM data and calculates how much
insulin to deliver to the person through the pump [6]. The
introduction of AID into clinical care has resulted in signif-
icant improvements in glucose management such that use of
AID can yield a reduction of hemoglobin A1C (HbA1c) by
0.2–0.5% compared with basal-bolus insulin therapy [7], [8],
[9] in which there is no continuous feedback from glucose
sensing devices and automated adjustments to insulin dosage
as in closed-loop systems. Examples of open-loop therapies
include basal-bolus insulin therapy and multiple daily injections
(MDI). A lower HbA1c means that the person is spending less
time in high glucose ranges that can cause long-term damage to
health.

While AID has made a positive impact on helping people
with T1D better manage their glucose levels, AID is not perfect
[10]. Current commercial AIDs are so-called hybrid closed-loop
systems, which means that they are not fully automated and
require the person using the system to announce their car-
bohydrate intake to the system so that meal insulin may be
dosed. People oftentimes forget to announce their meals to the
system or they indicate an incorrect carbohydrate in the meal,
which can cause large glucose excursions during the daytime
when food is consumed. Exercise can be challenging because
exercise (especially aerobic exercise) can cause sharp drops in
glucose and dangerous hypoglycemia[11]. For these reasons,
AID systems have primarily shown benefit during the overnight
time, when meals and exercise do not occur [12].

Complicating the problem further is that many people still
choose not to use AID systems for a variety of reasons in-
cluding cost, comfort, and inconvenience of having multiple
subcutaneous devices connected to their body. The majority of
people with diabetes on intensive insulin therapy still use MDI
therapy whereby they deliver insulin through an insulin pen.
People using MDI therapy oftentimes make incorrect decisions
about how much insulin to dose themselves and can therefore
suffer from the complications associated with inadequate glu-
cose management.

C. Improving Diabetes Treatment Using AI and ML

AI and in particular ML, are driving discovery across the
sciences in engineering, computer science, medicine and the
field of diabetes treatment and therapeutics. ML has become
particularly important as ubiquitous connected sensors and drug
delivery devices are becoming integrated with mobile com-
puting to generate large data sets that can be used to iden-
tify patterns that are relevant for improving health outcomes
(Fig. 1).

While the past 20 years have led to profound innovations in
CGM and connected insulin pumps and pens, the field of ML
has also had significant growth and innovation during this time.
ML is a powerful tool that can be used to overcome the current
challenges of current AID and MDI therapies. For example, ML
can be used for identifying patterns in CGM that are useful for
AID control algorithms [13]. ML can also be used to augment
the automation of insulin or other hormone delivery using re-
inforcement learning to adapt over time to individuals’ unique
physiologies or to respond to disturbances such as exercise [14],
[15], [16], [17], [18]. ML can be leveraged to develop automate
recommendation systems used in decision support systems to
help people living with diabetes on MDI therapy and care
providers better manage insulin dosing [19], [20], [21], [22].
There have been major successes in use of ML in applications
of diabetes care. Deep learning methods have been successfully
reported for automated detection of diabetic retinopathy and
diabetic macular edema in retinal fundus photographs [23], [24].
Closed-loop control algorithms for automated insulin and other
hormone delivery have been augmented with ML methods for
automating the detection of hypoglycemia during exercise [16],
[18], [25], [26], [27], meal detection [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37] and time series prediction models
that can be incorporated into model predictive control algo-
rithms to achieve over 70% time in glucose target range (TIR,
70–180 mg/dL) [16], [26]. Anomaly detection techniques can
identify disturbances and complications in diabetes management
[38], [39].

However, with the growth of new ML algorithms for use in
diabetes applications, and their associated challenges in their
development and implementation, there is an increasing need
for best practices including guidelines on (1) how features are
generated, (2) standards in metrics and how they are calculated,
(3) standards on how data reconciliation, and data imputation
methods are reported and performed, and (4) best practices
on algorithmic approaches to enable better reproducibility and
well-informed comparisons as new technologies are presented.
Developing ML algorithms for diabetes applications is particu-
larly difficult, mainly due to the scarcity and lack of structure in
available datasets. Moreover, the high inter- and intra-individual
variability in glucose dynamics across people living with dia-
betes further compounds the challenge. This variability is in-
fluenced by many factors including nutrition, lifestyle choices,
medication regimens, stress, and underlying health conditions
beyond diabetes [40]. In an ideal scenario, a larger volume
of data would be employed to train ML algorithms on highly
variable data sets. However, this is not often the case within
the diabetes field. Many of the available data sets are collected
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Fig. 1. Current therapies for people living with T1D include automated insulin delivery and multiple daily injection therapy (MDI). Advances in
mobile, cloud connected devices and improved computing power in combination with AI/ML are enabling new technologies in diabetes therapeutics
including fully-automated hormone delivery and advanced decision support for use in MDI.

either in clinical studies under highly controlled conditions that
are difficult to reproduce in real-world scenarios or under free
living conditions when reporting of daily activities (e.g., meals,
physical activity, sleep quality, pain, etc.) and life events (e.g.,
those leading to high stress levels) is imperfect. Therefore, it
becomes critical to establish and adhere to best practices for
data processing to ensure ML models used in drug delivery
and diabetes therapy are generalizable and pose minimal risk
to users.

Similar to other survey manuscripts on ML in diabetes [41],
[42], [43], this manuscript provides a review of prior work on
ML methods in various applications in the area of diabetes
with focus on T1D. Additionally, this manuscript provides
a framework for how researchers can approach feature engi-
neering, limited data set sizes, data imbalance issues, data set
variability, model explainability and interpretability, personal-
ization, and application-specific considerations for algorithm
selection that can be generally applied to other applications in
medicine.

We present consensus-based best practices and pitfalls to
avoid when designing, training, and evaluating new models
that are used in glycemic control. This guide compiles lessons
learned by examining prior work in ML in diabetes. The field
is dynamic, so no guide can be exhaustive. As data science
evolves, some methods might need revision or could altogether
be replaced by better approaches. This consensus manuscript
has three primary objectives:

i) Provide a tutorial style guide to data scientists working
in the field to accelerate the development and use of ML,

ii) Provide consensus guidelines on standards and best prac-
tices to appropriately exploit available data sets, create
training/validation/test data sets, apply ML methodol-
ogy, perform feature engineering, and present results,

iii) Provide recommendations and an open-source library
for standardizing calculations of common features and
model evaluation metrics used in diabetes ML algorithms
and an online list of data sources.

D. Methods for Selecting Manuscripts,
Reaching Consensus

The PubMed, Science Direct and Google Scholar databases
were considered to obtain the most relevant research works
of the last thirty years using the search terms ‘diabetes’,
‘machine learning’, ‘glucose prediction’, ‘continuous glucose
monitoring’, ‘automated insulin delivery’, ‘closed-loop’, ‘deci-
sion support’, and ‘artificial intelligence’. Our search identified
189 manuscripts that were used to support the best practices and
pitfalls presented. Manuscripts were reviewed based on one of
the following modeling aims related to glucose control: (i) short-
term continuous glucose monitoring (CGM) prediction within
< 60 min, (ii) long-term CGM prediction over 60 min, (iii)
CGM prediction during exercise, (iv) nocturnal CGM prediction,
(v) detection and estimation of events including hypoglycemia
and meals (vi) personalization and adaptation (vii) other appli-
cations of ML in diabetes management including closed-loop
control and decision support. While many manuscripts have re-
ported on T1D because of the availability of CGM in this patient
cohort, most of the methods presented here may be applied to
T2D and gestational diabetes as well. Certain manuscripts are
included as examples of good practices or pitfalls in the field.
We used a modified Delphi method [44] for reaching consensus
on the guidelines. In-person meetings were arranged with each
author to discuss the approach and gather initial feedback. A set
of questions were distributed to authors regarding a preliminary
set of guidelines. Authors provided written feedback on the ques-
tions and authors met in person and virtually at the Advanced
Technologies and Treatments in Diabetes in Barcelona in April
2022. A first draft was released, and three subsequent meetings
were organized to reach consensus among the authors before a
final draft was completed.

E. Related Work

There have been several survey, review, and meta-analyses
manuscripts on ML in the diabetes domain [43], [45], [46],
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[47], presenting, mainly, summaries of various algorithms and
methodologies while displaying the advantages of using ML
algorithms. There are also a few manuscripts describing ML
in clinical research [45], its use in education [48], and its
use in clinical guidelines and recommendations [49]. A few
manuscripts present ML-on-the-edge and Internet-of-things that
describe methods to combine ML with smart devices [50]. Other
manuscripts focus on subtopics like metrics [51], or glucose
prediction [52]. This manuscript weighs the pros and cons of
different approaches after forming consensus from all authors
for the practitioner to make informed decisions.

II. DATA

A. Current Real-World and Clinical Study Data
Sets Available

The commercial availability of CGM sensors, insulin pumps,
smart insulin pens, and other wearable fitness sensors that push
data to cloud servers has led to rapid growth in the amount
of time-matched glucose, insulin, nutrient, exercise and other
sensor data. There are three types of data that are typically used
in diabetes ML applications: (1) real-world data collected under
free-living conditions, (2) data collected under controlled con-
ditions within the frame of clinical trials that may take place in a
hospital, in the home, or a combination of both, and (3) simulated
data generated by means of executing simulation scenarios to
a virtual environment (e.g., data farming). For data collected in
clinical studies, participants usually adhere to strict protocols for
food intake and exercise, and often the type of food and exercise
is controlled as well. A controlled environment is preferred for
measuring the efficacy of drugs, algorithms or interventions
whereas free-living data sets are suited for the development of
multiple-hormone closed-loop systems and decisions support
algorithms. Simulated or synthetic data can be easily generated
by physiological (compartmental) models expressed as ordinary
differential equations (ODE) using simulation environments as
described further in Section II-C. There are methods of adding
noise and variability to simulated data to make them more
real but these in silico subjects still behave differently than
real-world people since all factors affecting metabolism are not
being modeled.

An example of the type of CGM, carbohydrate, insulin, and
exercise data collected from people living with T1D is shown in
Fig. 2. One clinical data set that is widely used in ML in diabetes
applications is the Ohio T1DM Data set which was originally
published in 2018 and then updated in 2020 [53]. The most recent
Ohio data set includes time matched CGM and insulin data from
12 people with T1D over 8 weeks under free-living conditions.
Physical activity and self-reported stress are also included in this
data set. Various algorithms have been trained using this data set
including Zhu et al. [17], however this data set is small compared
with some other recently available data sets.

A much larger real-world data set is being collected by a
company called Tidepool [54]. People with T1D donate their
CGM data, insulin data, and other data types including phys-
ical activity data to the Tidepool Big Data Donation Data set.
Tidepool then licenses the data set to companies and academic
institutions interested in extracting knowledge and mining the

Fig. 2. Top panel shows example traces of CGM (blue) and carbohy-
drate intake (red) in a person with T1D. Bottom panel shows examples
of basal insulin (green) and bolus insulin (red lines) taken by the person.

data to develop new ML algorithms. The Tidepool data set
has been used to train ML algorithms for predicting overnight
hypoglycemia at the time when a person goes to sleep [55] and
also to predict short-term glucose and hypoglycemia up to 60
minutes in the future [26]. It has also been used to develop a
DNN to detect meals, exercise and their concurrent occurrences
as well [25], [56].

A data set that was recently collected and released to the
public in 2022 is the T1-Dexi data set [57]. The T1-Dexi data
set is one of the largest data sets comprising time-matched
CGM, insulin, genetics data, food intake, and physical activity
data (heart rate and accelerometry). It was obtained through the
execution of a 4-week study involving 497 people with T1D
who performed aerobic (n = 162), resistance (n = 170), or
interval (n=165) exercise several days per week while recording
nutrition information using a custom smart phone app [58]. It is
an excellent resource for designing ML algorithms, especially
as related to exercise and food intake.

In addition to these data sets, the Jaeb Center for Health
Research maintains a web site listing data sets available for
use [59].

B. Simulators Available to Generate Data in
Diabetes Research

A simulator in diabetes comprises a set of equations that
describe the dynamics of glucose metabolism as a set of com-
partments in the body representing subcutaneous tissue, the gut,
plasma, and other non-observable compartments. Parameters
of the metabolic model can be statistically sampled from a
distribution of parameter values. The distribution of parameter
values is typically identified using physiology tracer-study
experiments [60] to generate a virtual patient population of
simulated people with diabetes with different insulin absorption
kinetics and dynamics, carbohydrate absorption kinetics and
dynamics, other hormones (e.g., glucagon and pramlintide),
and different responses to exercise (e.g., aerobic, resistance,
interval). The T1D simulator has been an important tool that has
helped in the design and commercialization of the first commer-
cial AID systems [7], [9] and also in the design of multi-hormone
delivery algorithms [16], [34], [61], [62], [63], [64], [65], [66].
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Fig. 3. Example of CGM and carbohydrate traces (top panel) and
insulin delivery (bottom panel) from a metabolic simulator (dashed line)
vs. real-world data (solid line) [68].

Many ML algorithms are initially designed and tested on simu-
lated data prior to being evaluated in human studies[20], [22]. In
this way, simulators based on compartmental modeling play an
important role in the preliminary design process of ML-based
closed-loop control algorithms and decision support algorithms
in diabetes an example of an open source simulator is shown in
Fig. 3.

The UVA-Padova T1D simulator [67] is the only FDA-
accepted simulator that has been published as a substitute for
animal trials. The simulator has been used in a variety of ap-
plications and has been instrumental in the preliminary design
and evaluation of several control algorithms including the now
commercially available Control IQ [9] and others described
below.

The open-source OHSU T1D simulator was published in
2019 and is available for download and extensions from a Git
repository [68]. This simulator has been used to evaluate several
control algorithms prior to a clinical study [16], [61], [64] and
also to pre-train ML algorithms prior to evaluation in human
studies [20], [26], [55], [69], [70], [71].

Other simulators have also been described and can be obtained
by contacting the authors. These include a statistical virtual pa-
tient population published by Haidar et al. [72], a multivariable
simulator developed by Cinar and colleagues [73] that permits
scheduling of exercise bouts (with intensity and duration that can
be randomly modified) and also provides as outputs the values
of physiological variables that are reported or predicted (energy
expenditure) by wearable devices, a simulator developed by Vehi
and colleagues [74], and a simulator developed by Wilinska and
Hovorka [75].

Data scientists should use caution when designing new ML
algorithms with simulators as the algorithms may work well
on simulated data, but perform poorly in a real-world situation
because simulation does not capture real-world events that influ-
ence glucose levels that are not included in the models such as
medications, menstrual cycle, and stress. Data scientists should
always verify their algorithm performance on real-world data
and include these results in their publication (see Common Pitfall
9 and Best Practice 12).

TABLE I
COMPARISON OF DATA SET SIZES IN DIABETES (TOP) COMPARED WITH

OTHER FIELDS (BOTTOM)

C. Standardization of Reporting on Data Sets Used in
ML Algorithm Development and Evaluation

Currently, it is challenging to compare algorithms described
in different publications because the algorithms are typically
trained and evaluated on different data sets. Comparing algo-
rithms across benchmark data sets is critical for improving
reproducibility of ML algorithms [76], [77]. In the area of
short-term glucose forecasting, it is especially important to
clearly indicate the variability of the glucose data [78]. The use
of AID or automated multi-hormone delivery, may results in
less glucose variability compared to those obtained by apply-
ing sensor-augmented pump therapy or multiple daily injection
therapy [79]. Consequently, an algorithm trained and evaluated
on a data set with AID control may have superior performance
and less error compared with an algorithm trained and evaluated
on MDI data. Mosquera-Lopez et al. [26] discussed utilizing
regression metrics to quantify how glucose prediction changes
with variability in the glucose data set using the glucose variabil-
ity impact index (GVII) and the glucose prediction consistency
index (GPCI). GVII is the slope of a regression line between the
RMSE error and the variance of the glucose data. If the GVII
(slope) is flat, then it means that the error is not significantly
impacted by the variance of the glucose data. The GPCI is
the standard deviation about the regression line, indicating how
consistent the RMSE is across the data set.

Common Pitfall 1: Beware of training and evaluation data
that lack heterogeneity or with low glucose variance. It is easy
to achieve good accuracy on a data set with low variability.

Best practice 1: Evaluate algorithms on open-source baseline
data sets if available (Table I or [59]). Alternatively, evaluate
on a data set that is included with the publication.
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Best practice 2: Include performance across data sets with
differing variability using metrics such as the GVII and GPCI
[26] for any data set used to train or evaluate an ML algorithm.

Best practice 3: When training an algorithm that is designed
to work regardless of the therapy (e.g., MDI, closed-loop, sensor
augmented pump), include data balanced across all of those
therapies in the training and test data sets and ensure that the
data sets are well representative.

Best practice 4: Include a data sheet [80] for the data set used
in training, validation and testing.

Data scientists should publish detailed information on the data
sets used in algorithm development as a formal data sheet [80].
The data sheet (Supplemental Table I) should include informa-
tion about the data set including information regarding volume
(e.g., number of participants), demographics, and treatment plan,
along with missing data and interpolation done if any, variability
of the data, and other relevant information to be considered when
developing comparator algorithms.

Common Pitfall 2: Mixing individual data with both training
and test data sets can lead to reporting of unrealistically high
accuracy compared with when evaluated on individuals who
were not included in the training set. In ML algorithm develop-
ment, there is a training data set, a validation data set used for
hyperparameter tuning, and a test data set. The test data set is not
used at all in training the algorithm or in hyperparameter tuning.
When training and cross-validation are done, a portion of data
is held out as the test data set is used for evaluation. One of the
natural consequences of limited data sizes in the field of diabetes
is the temptation to increase the data available for training by
including in the training data set data from a patient reserved for
testing. This is problematic for several reasons. First, it implies
that the accuracy reported on the algorithm would require access
to a certain amount of the person’s own data for use in training.
A population-level ML model is not re-trained when new data is
available from an individual. An adaptive or personalized model,
however, can be potentially re-trained when new data is observed
to improve the accuracy for a given individual.

An example of an algorithm that was designed to be per-
sonalized for specific individuals is presented in Zhu et al.
[17] whereby they designed a CNN for forecasting glucose 30
minutes in the future. They included data from all six of the
participants in the Ohio T1DM Data set in the training, and
then forecasted on future data from one of the participants. In
addition, data was augmented by extending by 50%, each of the
six participants’ glucose data sets with a mixture of the other
five participants’ glucose data. In this way, each participant’s
data set was doubled in size by including a mixture of data
from the five other participants. This type of an algorithm would
be appropriate for a personalized model, but would not be
appropriate as a general population model. Population models
can be personalized using transfer learning [81], [82] or meta
learning [83], [84], [85], [86] approaches.

The heterogeneity of the test set should also be balanced with
that of the training set. For example, if there are no children or
adolescents in the training set, but they are present in the test set,
then the algorithm may not perform as well on the adolescents
during evaluation (Best Practice 5). Furthermore, the training

and test sets should include approximately the same number of
observations for the different target classes (classification prob-
lems) or comparable overall dynamics (regression problems).
Checks should be made to ensure that training, validation, and
test sets are balanced as much as possible. Care should be taken
not to under-sample the majority class in case the dynamics
are not preserved. Under- or over-sampling must be done in a
smart way so as not to introduce bias using methods such as
cluster-based centroid sampling described by Yen et al. [87].

Best practice 5: Ensure that the training, validation, and test
sets are balanced and cover the same population groups.

D. Handling Missing, Calibration, Interpolated, and
Synthetic Data

CGM and insulin data are frequently incomplete because they
are collected from devices that are wirelessly connected and they
sometimes fail. Sensor misplacement or infusion site failures can
cause gaps in data as well. Sensor faults can occur in closed-loop
systems [88] which can be caused by pressure-induced sensor
attenuations as reported by Bequette and colleagues. Insulin
pumps can also fail during usage as caused by infusion set
actuation problems [89]. Machine learning approaches have
been applied to detecting these anomalies and alerting patients
to these failures [90]. Data scientists must decide how to handle
missing CGM and insulin data in the training, validation, and
test sets. Some examples for handling missing data include (1)
linear and nonlinear interpolation, (2) extrapolation if current
data is not available using forecasting models, (3) zero-order
hold, and (4) exclude missing data from the training and test sets.
CGM tends to change rapidly enough that linear interpolation is
a good choice if the gaps are less than about 20 minutes. After
that, interpolation may not be appropriate. Data scientists should
clearly describe their methods for handling missing data. Data
scientists should also be careful not to report prediction accu-
racy on interpolated values to prevent data leakage from future
values. Furthermore, data sets also may include calibration data
from blood glucose meters. Data scientists should be clear to
specify how calibration data or data from blood glucose meters
is handled differently than CGM data.

Insulin data collected from pumps or smart pens (e.g., the
Tidepool data set [54]) may not always clearly indicate if the
insulin was taken for a meal or as a correction for a high glucose
reading. Meal insulin is typically calculated by dividing the
grams of carbohydrate consumed by a carbohydrate ratio, but
this information may not be available in a pump record. If there
is knowledge of the person’s correction factor (CF), their target
glucose (CGMtarget), and the glucose at the time that insulin
was dosed (CGMcurrent), we may presume that a portion of the
insulin dosed was to get their glucose to return to their target
glucose using their correction factor minus any insulin on board
(IOB) that is not being used [91]. The inferred meal insulin is
then just the difference of the actual insulin dosed minus the
inferred correction dose as shown in (1) and (2).

inferred correction dose =
CGMcurrent − CGMtarget

CF
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− IOBunused (1)

inferred meal dose = actual dose

− inferred correction dose (2)

Note that inference introduces inaccuracies and should be
clearly explained as a limitation by data scientists if used.

Best practice 6: Report methods to handle calibration data
and interpolation of missing data in training, validation, and
test sets.

Common pitfall 3: Reporting accuracy on interpolated data
in the test set can lead to invalid estimates of accuracy on actual
data. Performance should be reported without using interpolated
values in the test data set.

Common pitfall 4: Use caution when applying imputation
or smoothing to the test data set as it can cause future data
points to impact current data points if done incorrectly. CGM
cannot change faster than what is physiologically plausible. In a
manuscript by Clarke and Kovatchev [92], they showed that the
CGM does not typically change faster than ± 4 mg/dL/minute.
Therefore, smoothing outliers may help to remove noise that is
not physiologically possible.

Common pitfall 5: Evaluating algorithms on synthetic data
may yield invalid accuracy results. Data scientists may improve
algorithms by including synthetic data using methods such as
SMOTE [93] or generative adversarial neural networks to fab-
ricate synthetic glucose data [94] to improve model accuracy or
handle class imbalance during training. It is important to apply
the synthetic method only on the training data and ensure that
synthetic data are not in the test set.

E. Data Size Considerations in Diabetes ML

The size of publicly available data sets in diabetes are typically
a lot smaller than data sets used in other fields of ML (Table I).
For this reason, the machine learning methods employed in
diabetes and medicine that rely on smaller data sets need to
be different than the ones used on larger text and imaging data
sets. It is important for data scientists to consider the size of
the data set prior to selecting various candidate ML algorithms.
As a rough rule of thumb, a model should train on at least an
order of magnitude more examples than trainable parameters
[95]. Simple models trained on large data sets generalize better
and therefore perform better than more complex models trained
on small data sets. Particular care has to be taken when exploring
the use of deep neural networks (DNNs) on small data sets, since
there are a large number of parameters that must be learned and
this can lead to overfitting [96]. DNNs often need more data
than traditional ML methods to train, and do not generalize well
when the data set is small relative to the number of parameters.
In computational learning theory there exists the concept of
the Vapnik–Chervonenkis (VC) dimension [97], which gives
a lower bound on the minimal number of training examples
required to learn a model correctly. However, the VC-dimension
is a theoretical concept and not often used in practice. More
often, a data scientist can explore how accuracy of an algorithm
changes when trained on increasing fractions of the complete
development data set. The expectation is that the performance
will improve with increasing amounts of training data and

then plateau after a certain upper bound amount of data is
reached [95].

III. FEATURES AND OUTCOMES USEFUL IN DIABETES ML

When designing an ML algorithm for predicting future glu-
cose, the common data types that may be useful as input features
for the algorithm include (1) recent CGM measurements and
statistics on CGM, (2) recent nutrient intake, especially carbo-
hydrates, (3) recent insulin doses, (4) recent other hormone doses
(if applicable), (5) recent physical activity, stress, or other physi-
ologic measures as estimated from wearable sensor data, and (6)
demographics information. When wearable device data are used
to determine the metabolic state of a person, additional features
may be helpful including classification of physical activities and
stress to improve accuracy of estimated glucose concentrations
[25], [98], [99], [100]. While it is important for data scientists to
freely explore and experiment with many ways of representing
features as inputs to glucose forecasting algorithms, this section
provides standard ways of representing common features. In ad-
dition, in online supplementary materials, we provide functions
in Python to calculate each of these features to help improve
standardization and repeatability.

A. Statistical Representations of CGM as Possible
Features in ML Algorithms and for Use as
Performance Metrics

For most commercial glucose sensors, data is sampled ev-
ery one or five minutes. The Dexcom G6/G7 and Medtronic
Guardian Sensor 3 provide data every 5 minutes while the Abbott
Freestyle Libre 3, Waveform (Agamatrix) and the GlucoMen
(A. Menarini Diagnostics) sensors provide data every minute.
Most CGM forecasting models use a history of CGM data as
input features. Autoregressive (AR) and autoregressive with
exogenous inputs (ARX) models are examples whereby the use
of this history of CGM is explicit [101], [102].

The collinearity of CGM as measured by autocorrelation tend
to disappear after about 1 hour [103]. For regression-based
models, collinearity can be a problem, whereas for time-series
models like AR and ARX, the collinearity is positive, and
histories are selected based on the autocorrelation being above a
certain threshold. Choosing the history length is application spe-
cific and data scientists should explore different history lengths
when designing their algorithm. Some groups have used grid
search to determine what an optimal history of CGM is required
to maximize performance. For example, Mosquera-Lopez and
Jacobs compared CGM history of 1, 2, and 3 hours and found
that 3 hours was optimal for short-term prediction of glucose
using a long-short-term memory neural network [26]. However,
other algorithms have reported on shorter histories, though not
indicating if other history lengths were explored (e.g., Perez-
Gandia et al. [104] used a 20-minute history of CGM as their
input to a neural network).

The downside of choosing longer histories is that CGM
sometimes drops out due to connectivity problems, and so there
could be gaps in the data. Interpolating large gaps in data
may negatively affect the glucose performance of a forecasting
algorithm. While the history length is application and algorithm
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TABLE II
CGM FEATURES USED IN IN DIABETES RESEARCH

specific, it could be preferable to choose shorter histories of
glucose for calculating CGM-related features to minimize the
impact of CGM drop-out when used in practice.

Best practice 7: For short-term glucose forecasting tasks (e.g.,
30–60 minutes), it could be preferable to choose a short history
of glucose for calculating CGM-related features as inputs to
ML algorithms to minimize the impact of device-related missing
CGM, which happens in real-world practice. To mitigate the
impact of missing data, data imputation can be used to fill in
gaps in data. In addition, during training, missing data should
be introduced into the data set to ensure that the algorithm can
appropriately handle it.

The history length should be determined to optimize the per-
formance of the prediction task. For example, if the data scientist
is designing an algorithm for predicting overnight hypoglycemia
prior to bedtime, over the course of the next 4–8 hours, summary
measures of CGM that have occurred over the past one to two
days could be important as well as recent CGM. When predicting
glucose over an 8-hour window overnight to estimate likelihood
of hypoglycemia during this window, Mosquera-Lopez et al.
used statistical measures of glucose across the prior 1 h, 3 h, 6 h,
9 h, 12 h and also summary measures across the past week [55].

Glucose outcome metrics that are traditionally used as indi-
cators of glucose management performance may also be useful
as inputs to ML algorithms. Common outcome metrics that may
optionally be used as inputs to glucose forecasting algorithms
include statistical measures of the glucose across a historical
time window such as mean, variance, skewness, and kurtosis.
In addition, there are clinically relevant metrics that are also
used as inputs to ML algorithms. These metrics are included in
Table II. The clinically relevant ranges have been determined

by a consensus of clinical experts [105] and would be use-
ful whenever considering clinically relevant input features to
ML algorithms. Many of the glucose outcome measures are
correlated with each other and using all of these features as
inputs may induce collinearity in data and not be helpful in
ML. For example, the % time in range is correlated with the
% time below plus % time above range. To avoid the problem
of correlated features, principal component analysis (PCA) can
be used to do dimensionality reduction of correlated features
into a smaller set of orthogonal features [100], [106], [107]. The
disadvantage of using PCA-based features is that the features
are less interpretable. Another option for handling correlation
amongst features is to perform feature selection by eliminating
less relevant features that are correlated with more relevant
features.

Best practice 8: When including clinically relevant summary
measures to quantify performance of the forecasting algorithm
in clinically relevant ranges, it is important to use the ranges
agreed upon by an international consensus group and summa-
rized in [105]. These measures may also be useful as ML features,
but the ranges and features should be selected based on the task
of the algorithm and their impact on accuracy and explainability.

B. Representation of Carbohydrate Intake

Carbohydrate intake frequently causes a significant increase
in glucose levels in people with diabetes. For this reason, carbo-
hydrates on board or carbohydrates in plasma can be used as an
input to glucose forecasting algorithms. One way to represent
carbohydrates as a feature in an ML algorithm is to use a two-
compartment differential equation carbohydrate-absorption in
plasma model. In his 2004 manuscript, Hovorka et al. [108]
described a second order differential equation representation of
carbohydrate absorption in plasma. The equations for this model
are given below whereby the carbs in grams is represented by
the variable c. Q1(t) is the amount of glucose in the gut and
Q2(t) represents available carbs in plasma. The constant tmax

represents the time constant for meal absorption and its default
value is 40 minutes but this might change depending on the type
of meal.

Q̇1(t) = −
(
Q1(t)

tmax

)
+ 0.8c,

Q̇2(t) =

(
Q1(t)

tmax

)
−
(
Q2(t)

tmax

)
. (3)

Notice in that the Hovorka et al. [108] representation of carbo-
hydrate availability assumes that only 80% of the carbohydrate
consumed is utilized (e.g., 0.8c). Another model for estimating
carbohydrate availability is described by Patek et al. [109]. The
Patek model is also a two-compartment model. However, there
are two time constants, a short-acting meal absorption t1 of
11.2 min, and a longer-acting absorption constant tabs of 83.8
min.

Q̇1(t) = −
(
Q1(t)

t1

)
+ c,
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Fig. 4. Carbohydrate availability and carbohydrate on board by Hov-
orka et al. [108] and Patek et al. [109] The top plot shows the plasma
glucose following a 40 g carbohydrate meal. The Patek et al. model
peaks earlier (27 min) compared with the Hovorka et al. model (40
minutes). Also note that the Hovorka model only presumes that 80%
of the meal (32 g) is available to the body.

Q̇2(t) =

(
Q1(t)

t1

)
−
(
Q2(t)

tabs

)
. (4)

Others have described meal models including Dalla Man et al.
[110]. Regardless of the method for representing carbohydrate
distribution and disposal, we define carbohydrate in plasma and
carbohydrates on board using (5) and (6).

Estimated carbs in plasma (t) = Q2 (t) (5)

Carbs on board (t) = c (z)−
∫ t

z = carb_start
Q2 (z) , (6)

In (6), carb_start is the time of carbohydrate ingestion and
c(z) is the grams of carbohydrate ingested at time z.

Fig. 4 shows carbohydrate availability and carbohydrates on
board and the comparison of these two methods for estimating
carbohydrate availability after consuming a 40 g carbohydrate
meal. The Patek et al. model peaks somewhat earlier (27 min-
utes) compared with the Hovorka model (40 minutes). This leads
to a higher peak carbs on board, which is even larger because
the Patek et al. model presumes that the entire carbohydrate
consumed is utilized, rather than 80% of it. The Python functions
for calculating carbohydrate in plasma for these two methods is
included in Supplemental Materials.

Carbohydrate in plasma is not monotonic, as it will have the
identical value when it is rising as when it is falling. This is
important to consider if used as a feature in ML algorithms,
because a monotonic representation of carbohydrates provides
more information about the future than a non-monotonic repre-
sentation. Therefore, a better feature for a forecasting algorithm
can be to use carbohydrates on board rather than carbohydrate
availability.

Importantly, current meal models do not account for other nu-
trients (fat, protein and fiber) which also affect glucose response,
primarily in the area of delayed gastric emptying.

C. Representing Estimated Plasma Insulin vs. Insulin on
Board as Features

Insulin that is injected subcutaneously does not appear im-
mediately in the plasma. There is a delay that is caused by the
metabolism of insulin from a hexamer into a monomer and then

Fig. 5. Insulin on board and plasma insulin availability as calculated
by Hovorka et al. [108] 3-compartment insulin kinetics model.

movement from the subcutaneous space to plasma. The peak
appearance of fast-acting insulin in plasma after injection subcu-
taneously is typically 40-60 minutes. Estimated plasma insulin
is the amount of insulin in plasma, and as with carbohydrate
availability, it can be represented by a set of differential equations
or alternatively as a linear function over time. Most glucose
metabolism simulators [67], [68] use multi-compartment dif-
ferential equation models to represent the kinetics of insulin
into plasma. For example, estimated plasma insulin can be
represented using a 3-compartment model described by Hovorka
et al. [108]. This model of estimated plasma insulin (I) is given
by (7) whereby uI is the insulin injected subcutaneously and I
is the insulin in plasma or estimated plasma insulin and tmaxI is
the time constant for insulin absorption into plasma.

Ṡ1(t) = uI −
(
S1(t)

tmax

)
,

Ṡ2 (t) =

(
S1(t)

tmaxI

)
−
(

S2(t)

tmaxI

)
,

İ (t) =

(
S2(t)

tmaxI

)
− S2(t)I(t). (7)

Insulin on board is defined according to (9)

Insulin availability(t) = I(t) (8)

Insulin on board (t) = uI (z)−
∫ t

z = ins_dose
I (z) , (9)

where z = ins_dose is the time when uI(z) insulin was dosed.
Other groups have used a triangular compartmental model

trained on data from Swan et al. to describe action and then use
convolution with past insulin injected [111]. It is also possible
to represent estimated plasma insulin and insulin on board as
a simple linear decay with a 3- or 4-hour linear decay over
time from the time that it is delivered. While the linear decay
representation of estimated plasma insulin is simpler, it is clear
that it ignores the delayed peak in estimated plasma insulin that
is representative of insulin kinetics. A real-time personalized
plasma insulin concentration estimation based on CGM and
insulin data, and demographic information has also been de-
veloped and used in AID systems [112], [113]. Fig. 5 shows a
comparison of estimated plasma insulin availability and insulin
on board as calculated by (8) and (9), respectively.

Best practice 9: When considering food and drug intake as
features in an ML model, it is important to consider the kinetics
and dynamics of these compounds within the body as they metab-
olize. Selecting the way to represent these compounds should be
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considered based on application to maximize algorithm perfor-
mance and to minimize the risk to the person using the algorithm.
Estimated plasma carbohydrate and insulin as calculated using
(5) and (8), respectively could be suitable features for short-term
glucose forecasting. Carbohydrates on board (6) and insulin
on board (9) may be more useful for longer-term predictions,
because the carbs and insulin consumed will tend to act for many
hours in the future and the monotonic nature of these parameters
is helpful. As new insulin formulations become available, ODE
model parameters for insulin on board calculations will need to
be updated. Note that deep learning approaches will not need
these transformations as the insulin and carbohydrate dynamics
can be learned by the network.

D. Representation of Exercise

1) Exercise is Challenging in Diabetes: Exercise can im-
pact glucose changes in people with diabetes in different ways
depending on the type of exercise, the duration, the intensity of
the exercise, and the timing of the exercise relative to meal intake
and insulin dosing [57]. Exercise causes increases in insulin-
mediated and non-insulin mediated glucose uptake [114]. Sharp
drops in glucose can occur when people with T1D perform
aerobic exercise 1-2 hours following a meal when insulin on
board is high. While people with T1D are advised to reduce basal
and meal bolus insulin 1-2 hours prior to an exercise event to
avoid hypoglycemia during and following exercise, they often-
times do not do this and therefore suffer from exercise-induced
hypoglycemia [11], [115]. Current commercial AID systems do
not automatically respond to or anticipate exercise, and this can
result in hypoglycemia during and following exercise.

2) Enabling Automated Response to Exercise Using ML:
Automating the detection of exercise and the automated response
of an AID to exercise represents an opportunity for the use of
ML in AID therapy. Some AID algorithms have features that
enable the user to announce exercise in advance so that they can
exercise more safely by raising the glucose target, but this is
not automated. Multivariable AID control algorithms have been
reported that automatically detect exercise from wearable fitness
sensors and adjust insulin dosing in response to different types
of exercise [18], [113], [116]. ML algorithms that attempt to
predict glucose changes during exercise therefore must consider
many factors during the prediction. Riddell and colleagues [57]
identified the most relevant features related to glucose drops
during exercise in a large free-living data set in T1D (the T1-
Dexi Initiative) given in Table III. These features are useful as
inputs to ML algorithms for forecasting change in glucose during
exercise.

3) Sensors Used to Capture and Quantify Physical Exer-
tion: Enabling an AID system to automatically respond to ex-
ercise requires collection of physiologic metrics representative
of exercise. Exercise physiology data is typically in the form
of either heart rate or accelerometry data. There has been an
explosion of wearable fitness sensors that can be worn on the
wrist or the chest to track heart rate and accelerometry during
exercise. It is important to consider where on the body heart
rate and accelerometry data are being acquired. For example,

TABLE III
FEATURES STATISTICALLY RELATED TO GLUCOSE CHANGE

DURING EXERCISE

accelerometry data acquired from the wrist will look very dif-
ferent than when acquired from a sensor worn on the chest.
Heart rate data acquired on the chest will typically be more
accurate than when acquired on the wrist [117], although it
is more convenient for a person to wear a wrist-based activity
monitor than a chest-based monitor.

Common pitfall 6: An exercise detection algorithm trained
on physical activity data collected from a chest-mounted sensor
may not work as well if tested on activity data collected from
the wrist, and vice-versa. When reporting results on algorithms
utilizing physical activity data, it is important to consider and
report where the sensor was positioned on the body. Accuracy of
commercial wrist-worn devices has been assessed and there can
be variability across different manufacturers and models [117].
Skin color can also affect accuracy [118].

AID algorithms that use ML to respond automatically to ex-
ercise will need to be robust so that they can handle the different
types of exercise being done. There are three broad categories of
physical activity, aerobic (e.g., jogging), resistance (e.g., weight
lifting), and interval exercise (e.g., Crossfit, soccer, etc.) and
these different types of physical activity can impact glucose in
different ways. For example, Riddell and colleagues showed
in a large free-living study that aerobic exercise can cause an
average drop in glucose of −18±39 mg/dL while resistance
and interval exercise cause drops of -14±32 and -9±36 mg/dL,
respectively [57]. Exercise can also cause glucose to increase,
especially when interval exercise is done in the fasted state or
during competition [115]. Algorithms have been published to
classify the type of exercise [119], [120]. Various groups have
published methods for detecting the onset of physical activity
[121], [122] and categorizing the types of physical activity [98],
[100], [123]. These algorithms typically use blood volume pulse
or heart rate, averaged over a window of time, and a tri-axial
accelerometer magnitude, also averaged over a period of time,
as features within the algorithm. Depending on the forecasting
task being done, the time window across which heart rate and
accelerometry data should be averaged should be carefully con-
sidered. For example, during interval exercise and resistance
exercise, the heart rate and accelerometry signals tend to change
very rapidly from minute-to-minute. Therefore, using a shorter
time window for averaging these signals would be important for
an algorithm classifying exercise type.
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Best practice 10: Heart rate and accelerometry offer a reliable
set of physiological measurements based on wearable devices
to quantify exercise and impacts on glucose changes. Selection
of time windows for averaging these signals and generating
features should be specific to the forecasting task.

Heart rate and accelerometry offer their own advantages and
disadvantages for quantifying energy expenditure during exer-
cise. If heart rate is estimated from blood volume pulse signals
from a wristband, the arm movement causes large artifacts on
blood volume pulse. In this case artifacts must be eliminated
before computing heart rate as described [98], [100], [129].
Accelerometry has the advantage of capturing the more rapid
onset and offset of exercise, since it takes time for the heart
rate signal to increase or decrease during transitions from rest
to exercise and vice versa. However, heart rate may increase as
a result of stress [130] instead of physical activity. In this way, a
combination of heart rate and accelerometry may jointly provide
a complete set of features for predicting the impact of exercise
on changing glucose levels.

Common pitfall 7: Utilizing only accelerometry signals to
estimate physical activity can be inaccurate, especially with
wrist-worn fitness watches.

4) Quantifying Exercise Features Using ODE-Based
Models: Features used in an ML algorithm that quantify exer-
cise can be derived from ODE-based compartment models that
describe the impact of exercise on glucose dynamics. These ODE
models could be useful for deriving features used in glucose
forecasting algorithms during and following exercise. A number
of ODE exercise models have been published and most use heart
rate and/or accelerometry as an input to the model. For example,
the OHSU T1D compartment [68] model metabolic simulator
includes a model of exercise described by Hernández-Odoñez
et al. [124] that uses metabolic expenditure as a function of active
muscle mass and metabolic equivalent of task (METs) to impact
glucose disposal. As METs increases, insulin sensitivity also in-
creases and thereby more glucose is disposed. Hobbs et al. [125]
proposed a more comprehensive model of the effects of physical
activities on glucose concentration that was instrumental in the
multivariable glucose-insulin-physiological variables simulator
that provides estimates of various physiological variables as out-
puts. Dalla Man and colleagues have also incorporated exercise
into a metabolic compartment model [126] following on work by
Breton [127]. Ozaslan et al. [128] introduce the idea of physical
activity on board (similar to insulin and carbohydrates on board),
which presumes that past exercise has an additive effect on future
changes in glucose.

Best practice 11: Compartment models offer physically in-
terpretable models of metabolism and can be used to generate
features for ML algorithms for representing exercise by heart
rate and accelerometry.

IV. ML METHODS APPLIED TO MODELING IN DIABETES

While much of ML research has been based on algo-
rithms trained on very large data sets oftentimes involving
2-dimensional data (e.g., images), ML efforts in the application
area of forecasting and modeling in diabetes typically involve
much smaller data sets primarily using multivariable time-series

Fig. 6. Top panel shows CGM over time (blue) and forecasted CGM
(dashed red) where the pink region indicates hypoglycemia region
(<70 mg/dL), the green region is a target glucose range (70–180 mg/dL),
and beige is a hyperglycemia region (>180 mg/dL). Bottom panel shows
meal insulin (red) and basal insulin in green. Notice that the basal insulin
is turned off when CGM is predicted to go into the hypoglycemia region.

data. In addition to the CGM data that are sampled every 1–5
minutes, insulin data are available from pumps that deliver
insulin either continuously throughout the day as basal insulin
or as bolus doses for meals and correction of hyperglycemia.
Meal carbohydrate estimates are usually acquired via electronic
logbooks [57].

A. Short-Term Glucose Prediction (Less Than 60
minutes)

Many ML algorithms have been developed for predicting
glucose over short-term prediction horizons of 5–60 minutes
and also over longer prediction horizons of 1–4 hours. Predict-
ing glucose in the short-term of 5–60 minutes can be useful
in automated insulin delivery systems that shut off insulin in
response to predicted low glucose (Fig. 6).

The prediction horizon over which the forecasting is being
done can help indicate the best type of algorithm to use for the
prediction. When predicting over 5–30 minutes, it is possible to
estimate the glucose within a reasonable error tolerance (e.g.,
14–24 mg/dl) using a regression-based algorithm (e.g., linear
regression, support vector regression, long-short-term memory
neural network, convolutional neural networks). One of the early
algorithms for predicting glucose 30 minutes in the future was by
Sparacino and colleagues who used an AR model and achieved
an accuracy of about 18 mg/dL root mean squared error (RMSE)
[101]. Turksoy et al. used an AR predictive model with exoge-
nous inputs (ARX) to recommend carbohydrates if low glucose
was predicted to reduce hypoglycemia, though no accuracy
measures were included in the manuscript [102]. Random forests
have also been used to predict glucose in the short-term with very
low RMSE reported [131]. However, the RMSE reported in this
manuscript (8.15 mg/dL) is lower than the typical error of a glu-
cose sensor, which at the time of that publication was on the order
of about 10–12%. The ML community including Schwartz-Ziv
and Armon [132] showed that for tabular data, random forests
tend to outperform deep learning methods when the number
of observations is relatively small (e.g., <1 million), which is
typically the case for T1D data sets. Georga et al. published an
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algorithm on short-term glucose prediction using support vector
regression with RMSE even lower at 6 mg/dL [133]. RMSE can
be low if there is not much glucose variability in a data set. For
this reason, it is important to report glucose variability along
with RMSE. Neural network algorithms have also been used
to predict short-term glucose [26], [104], [134], [135], [136],
[137], [138]. Li et al. [134] utilized a convolutional recurrent
neural network and achieved an RMSE of 9.38±0.71 mg/dL
on simulated patient data and 21.07±2.35 mg/dL on real-world
data. Results from this manuscript highlight the importance of
evaluating glucose forecasting algorithms on real-world data
compared with simulated data since the performance can be
higher in simulation.

Common pitfall 8: RMSE can be found to be very low if the
variability of the data set is low. When presenting RMSE results,
it is also important to present information about the glucose
variability such as standard deviation or coefficient of variation
in the data set. Another option is to present accuracy results
as the normalized RMSE whereby RMSE is normalized with
respect to the inter-quartile range, the standard deviation, or the
coefficient of variation.

Common pitfall 9: Presenting glucose forecasting accuracy
results only on simulated glucose data can yield results that are
overly optimistic. Introducing noise, missing data, outliers, and
other disturbance artifacts can help to make simulated data sets
more realistic. When presenting forecasting results on simulated
data, glucose variability should also be reported along with
information about how meal insulin dosing was done and how
meal time were presented to the simulator, and how meal time
and meal amount variability were imposed.

Common pitfall 10: When reporting algorithm accuracy re-
sults on a data set, it is important to clearly state that the
algorithm was evaluated on either the entire data set or a subset
of data. An explanation should be provided if only a subset was
used.

Best practice 12: Always present final results on free-living
real-world human data if available. If results are shown only on
simulated data or on in-clinic data collected under prescribed
conditions to a particular study design, this should be listed as a
limitation in the results.

Best practice 13: When presenting results on a new glucose
forecasting algorithm, it is important to compare it with best-in-
class previously published algorithms and also include results
of that algorithm on a benchmark data set for a comparison
(Table I). This is especially true if very low RMSE prediction
results are found. This is possible if the prior publications have
included code for implementing the algorithm. If the algorithm
must be retrained, differences in performance could be expected
compared with publication.

Best practice 14: When presenting results on a new algorithm,
it is important to compare that algorithm’s performance with the
performance of a naïve algorithm including a zero-order hold
predictor, a simple linear regression predictor, and a low-order
autoregressive model. A zero-order hold algorithm simply as-
sumes that glucose will not change in the future. Work on the
Tidepool data set indicates that a zero-order-hold algorithm can
achieve an RMSE of 25 mg/dL on 30-minute prediction for

closed-loop data and 24 mg/dL on sensor-augmented pump data
[26]. A simple linear extrapolation where you fit a regression
line across the most recent 10 minutes can predict 30-minutes
in the future with 21 and 20 mg/dL RMSE for closed-loop and
sensor augmented pump in the Tidepool data sets, respectively
[26]. In addition, a 3rd or 4th order autoregressive model can
be used as a comparator model. Importantly, a zero-order hold
algorithm will work well when there is less variability in a data
set while a simple linear regression algorithm will work well
when glucose is changing at a constant rate. It is important
to compare algorithm performance with these naïve prediction
algorithms.

Zecchin et al. [136] describe a jump neural network design
for predicting short-term glucose. This jump neural network is
a feed-forward, shallow neural network with one hidden layer
of 5 neurons that have inputs connected to both the first layer
but also to the output layer. Despite the small amount of data
used to train the model, it achieved good performance with
an RMSE of 16.6±3.1 mg/dL (mean±standard deviation) with
a time gain (TG) of 18.5±3.4 minutes. Zecchin et al. [137]
also demonstrated that improved performance could be obtained
when including carbohydrate information as a feature. Pappada
et al. [135] also proposed a shallow neural network for predicting
glucose with a prediction horizon of 75 minutes. Their network
had a single hidden layer with nine neurons. They used CGM,
SMBG glucose, CGM trend information, insulin, carbs, and
hypo/hyperglycemic symptoms, activities, and even emotional
factors as inputs. Perez-Gandia [104] also used a shallow neural
network to predict glucose 15, 30, and 45 minutes in the future
using prior glucose data from up to 20 minutes before the predic-
tion time. Results showed an RMSE of 18 mg/dL at 30 minutes
with a prediction delay of approximately 9-15 minutes. All of
these early publications on ML approaches to short-term glucose
forecasting had very little data for training and evaluation. More
recently, Mosquera-Lopez and Jacobs [26] showed that on a
large real-world data set from the Tidepool Big Data Donation
Data set with 175 people and 41318 days of data from people
on both closed-loop (CL) and sensor-augmented pump (SAP)
therapy, a long short-term memory neural network could achieve
an RMSE of 19.8±3.2 mg/dL (CL) and 19.6±3.8 mg/dL (SAP)
for a 30-minute prediction horizon, with 99.6% of predications
within the A+B zones of the Parkes Consensus grid. Because
of the larger data size, the architecture was more complex with
5 hidden layers including an LSTM layer with 128 units, and
4 dense units with 64, 32, 16, 12 units respectively. The higher
RMSE compared with other studies is because the model was
trained and evaluated on real-world data across a large hetero-
geneous population of people with T1D. Simpler models were
considered, but the higher complexity LSTM was best.

Common pitfall 11: Using an overly complex model that is
trained on a small data set may not yield good performance.
Time-series or tabular data with fewer than 1 million observa-
tions may be more accurately modeled using regression models
or random forests than deep learning [132].

Best practice 15: If a data set is of limited size, select an
ML algorithm that requires fewer parameters to tune such as
AR/ARX models, support vector regression, random forest, or
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shallow neural networks. For larger data (e.g., Tidepool), more
complex models can be used.

Best practice 16: When reporting on results on an algorithm,
include the training time, model and number of CPUs/GPUs,
and include the model and code in a repository.

Common pitfall 12: Presenting glucose forecasting results
may not be accurate if the delay of the prediction algorithm is
not also reported. Some algorithms impose a certain amount of
delay in the prediction and this should be reported.

Best practice 17: When predicting glucose in the future,
include an estimate of the time gain (TG) of the prediction
model (defined below). TG is the prediction horizon over which
prediction is desired, minus the delay of the prediction model.
Delay in the prediction is found by performing cross-correlation
of the actual glucose with the predicted signal.

TG = PH −Delay (10)

B. Binary Classifiers of Hypoglycemic Events and
Glucose Prediction Over Longer-Term Horizons Over
1 Hour

Predicting glucose over 1–4 hours is more challenging within
a reasonable accuracy. Kushner et al. [139] used shallow neu-
ral networks to predict glucose 1–4 hours in the future and
they reported accuracy of 38±6 mg/dL for a 2-hour prediction
horizon and 43±12 mg/dL at 4 hours. For longer prediction
horizons, it may be optimal to instead predict binary events such
as hypoglycemia. Regression algorithms can still be used for the
prediction, but the algorithms are trained to only predict when
a threshold is exceeded. For example, Mosquera-Lopez et al.
described use of a support vector regression algorithm to predict
hypoglycemia overnight up to 8 hours in advance. The algorithm
had a sensitivity of 94.1% with a specificity of 72% and an area
under the receiver operating characteristic curve (AUC-ROC) of
86%. The optimal threshold was selected using decision theory
to optimize net benefit of acting on the classifier output whereby
net benefit was defined as the negative of the sum of the low blood
glucose index and the high blood glucose index (see section on
metrics below). Jensen et al. [140] also designed a forecasting
algorithm for predicting nocturnal hypoglycemia. They used a
linear discriminant analysis classifier and achieved a sensitivity
of 75% and specificity of 70%. Various ML algorithms are
used for physical activity and psychological stress detection
and characterization by Sevil et al. for glucose concentration
estimation and in AID systems [98], [99], [100] and by Askari
et al. for meal and exercise detection [25].

Common pitfall 13: When predicting glucose and the error
is less than the error of the CGM (e.g., 8-10% for commercial
CGM), there could be a problem with the algorithm.

Common pitfall 14: When predicting glucose or binary events,
it is important to consider how unanticipated events may affect
the prediction accuracy. For example, a prediction model may
provide good accuracy in forecasting glucose 30 minutes in the
future, but if a meal is consumed 5 minutes after the prediction
is made, this will degrade the prediction accuracy since glucose
may unexpectedly rise rapidly in response to the meal. When
designing a forecasting algorithm, it is important to consider

how unexplained events impact training and also evaluation of
the algorithm.

Best practice 18: Prediction tasks and prediction metrics
should be selected based on the forecast interval, and care
should be taken in properly selecting features and prediction
events depending on this forecast window. For long-term glucose
prediction, it is challenging to achieve low error (RMSE or
MARD) when predicting glucose values. When using classifiers
instead, it is important to include the definition of true positive
(TP), true negative (TN), false positive (FP), and false negative
(FN). Outcomes will differ depending on these definitions. For
example, in meal detection, a TP could be defined as a detection
within 30 minutes after a meal has been ingested. For short-
term hypoglycemia detection, a TP could detection of glucose
dropping below 70 mg/dL for at least 15 minutes. In any case,
the definition of the prediction task will must be defined. Error
metrics like RMSE and MARD are more relevant prediction
metrics when predicting short-term glucose (e.g., 30 minutes).

Although regression algorithms can be used to predict binary
events (e.g., hypoglycemia or hyperglycemia), an algorithm used
for binary classification will perform better if it is trained specif-
ically to predict that event. For example, a glucose prediction
algorithm may have a very low RMSE, but it may have a poor
sensitivity for predicting low glucose readings. This is likely
to occur because of the large imbalance in glucose data in the
low glucose range (<70 mg/dl) compared with glucose above
this range. Binary classifiers that are used to predict events like
hypoglycemia need to be designed by dealing with the inherent
imbalance in the data set.

It is helpful to use an outcome metric weighted by the glucose
range in which the error was made. It is more dangerous to
make an error in a low glucose range (<70 mg/dL) than in a
normal glucose range (90-140 mg/d). Del Favero, Facchinetti
and Cobelli [141] described a glucose-range-specific metric to
better capture the increased risk of making errors in different
ranges of glucose such that errors made in dangerous regions
were weighted more heavily than those made in less dangerous
regions. This group also showed in Faccioli et al. [142] that
through use of this glucose-specific weighted error term, they
could improve forecasting of hypoglycemia. Cameron et al.
also report on a risk-based closed-loop algorithm that prioritizes
mitigation of the increased risk of hypoglycemia compared with
hyperglycemia [143].

Common pitfall 15: When using a regression algorithm to
detect a rare event such as low glucose (e.g.,< 70 mg/dL), a meal
event, or an exercise event, sensitivity and specificity may be poor
because the cost function for a regression algorithm is designed
to minimize overall error, not detection of the hypoglycemia or
meal event. These events are defined based on thresholds, such
glucose dropping below a threshold of 70 mg/dL, glucose rising
faster than 5 mg/dL/minute in response to a forecasted meal
event. A cost function that penalizes based on glucose error
alone may not be sufficient to optimize detection of the actual
event of interest such as low glucose or a meal event. Further-
more, a person’s glucose can vary right around the threshold
defining the binary event (e.g., the threshold for low glucose is<
70 mg/dL, but glucose varies right around 70, 71, 68, etc.). When
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Fig. 7. Block diagram of a fully-automated insulin delivery system in-
cluding a basal insulin controller and a meal detection and bolus priming
module.

designing a binary classifier, it is important to consider points
near the threshold that defines the binary event and how detection
errors near this threshold are considered during training of the
algorithm. Alternatively, a cost function that weights error near
the threshold based on risk associated with that error may yield
better performance (see Best Practice 33).

Best practice 19: When designing an algorithm to predict an
event such as low glucose (<70 mg/dL), it may be optimal to
design a binary classifier rather than a classifier based on a
regression algorithm whereby there is a penalty for failing to
identify the binary event. Alternatively, it could be optimal to
use a glucose-range-specific penalty [141], [142].

C. Use of ML in Detecting Meal Events

Another type of sparse event classifier in diabetes is detecting
a meal event (Fig. 7). Detecting meal ingestions using various
features including CGM, insulin, and other features may be
an important step towards enabling a fully-automated hormone
delivery system. The ideal time to dose meal insulin is before
the meal is consumed due to the delayed kinetics of insulin
relative to carbohydrate absorption. This requires the person
with T1D to remember to dose meal insulin and also to properly
estimate the carbohydrates consumed in the meal. This is a
burden leading some to miss mealtime insulin and for those
that do take mealtime insulin, carbohydrate estimation is prone
to errors [58]. However, if a meal can be detected using an ML
algorithm, a portion of the meal insulin bolus can be dosed once
a meal has been detected[144]. The amount of meal dosed in
response to the detected meal should depend on the estimated
size of the meal and the estimated time that the meal was taken.
Most meal detection algorithms can detect the meal within 25-45
minutes of the consumption of the meal. Although this is not an
ML method, Mahmoudi et al. [145] used a Kalman filter within
a control framework to determine if a meal has been consumed.
They demonstrated that when dosing for this missed meal using
the UVA-Padova simulator, they could improve TIR from 53%
to 83%. However, the algorithm still needs to be evaluated in a
human study. Samadi and Cinar [146] reported on a qualitative
trend analysis and fuzzy logic method for meal detection that
achieved 87% sensitivity in silico and 93% sensitivity on actual
human data. Their algorithm could detect a meal on average
34.8 minutes after the meal was consumed. One of the few
ML-based meal detection algorithms was done by Garcia-Tirado

et al. who showed that integrating a bolus priming system (BPS)
to estimate the probability of a meal being consumed into their
model predictive control algorithm improved time in range in an
in-clinic human study [37]. Another ML approach for automated
meal detection in T1D was based on an ensemble of LSTMs that
received as input sequences of CGM records and classified the
most recent CGM records as positive or negative for a meal
onset. The in silico evaluation demonstrated the potential of the
approach to achieve acceptable performance (mean c-statistic:
>75%, mean detection time errors: 7-13 min) [147].

Since meal events are relatively rare (3-5 per day) compared
with the total number of CGM readings in a day (∼288), it
is important that data scientists balance the data sets during
training. A result of the imbalance in the data set is that accuracy
can seem very high even for algorithms with poor sensitivity
since there are so many non-meal events in a day. Therefore,
reporting on balanced accuracy, area under the curve [148],
and F1 are important metrics for evaluating meal detection.
Lastly, specificity as a percentage is not that helpful for meal
detection because of the data imbalance. Rather, the specificity
of a meal detection algorithm should be reported as number of
false positives per day.

1. This manuscript is targeted to students, postdocs, clini-
cians and data scientists interested in developing machine
learning algorithms for use in diabetes applications.

2. This manuscript provides consensus guidelines for ma-
chine learning practitioners in the field of diabetes, includ-
ing best practice recommended approaches and warnings
and pitfalls to avoid.

3. A review of current data sets available for training algo-
rithms is provided including an online repository of data
sources.

4. Features used in machine learning applications in dia-
betes are discussed along with an open-source library of
functions for calculating features.

5. Algorithmic approaches are discussed including the im-
portance of clinical accuracy, explainability, interpretabil-
ity and personalization.

Best practice 20: When designing an algorithm to detect a
meal, it is important to report on the sensitivity, the specificity,
and the area under the receiver operating characteristic curve
(AUC-ROC) of the algorithm. Specificity should be reported as
number of false positives per day. A false positive event for a
meal detection algorithm may carry a significant risk of hypo-
glycemia, and the impact of acting on these false positive events
should be evaluated in simulations. The additional outcome
metrics to report on are covered in Section III. The challenge
with predicting sparse events such as a meal is that the prediction
accuracy is highly dependent on the definition of the event. For
example, a meal event can be defined as consuming a 10 g carbo-
hydrate meal, or as consuming a 100 g carbohydrate meal, which
yield vastly different glucose responses. It is far easier to detect
a large carbohydrate meal compared with a small carbohydrate
meal. Data scientists must carefully consider how the meal event
is defined, how the detection window is defined, and how a
detection event from the algorithm will be used when defining
the definition for the meal size and when reporting accuracy.
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Best practice 21: The mean time of the meal consumption
relative to prediction time should be reported with all meal
prediction algorithms. An optimal meal detection time is as soon
as possible relative to the start of the meal consumption, though
the change in glucose in response to a meal does not typically
appear until 20-45 minutes after the meal. Insulin on board and
macronutrient contents of the meal (protein and fat) will also
affect the response to the meal [149].

Best practice 22: For automated meal detection, it may be
important to both detect a meal and also to estimate the size of
the meal, though this is application-specific. Certain meal fore-
casting algorithms may be used to automate meal insulin dosing
in full closed-loop AID applications in response to detected meal
events. Certain algorithms can utilize a size estimation as well to
determine how much meal insulin should be dosed in response to
the detected meal event [144]. Other algorithms that automate
meal insulin dosing, may not require a meal size estimation
to determine how to dose for meal insulin but instead use
anticipation using probabilities derived from prior meal events
[150]. Meal anticipation is possible as done by Garcia-Tirado
and colleagues if conservative meal dosing is employed. It is
important to report the sensitivity and false positives per day of
the meal detection event and optionally on the accuracy of the
size estimation algorithm if size estimation is important for the
application.

D. Hyperparameter Tuning

In all ML algorithms, there are hyperparameters that need to
be tuned. These hyperparameters may include the features used,
aspects of the architecture such as the number of layers or nodes
in a layer of a neural network, or the selection of gamma, C,
or the kernel in support vector machines. The hyperparameters
can be tuned through a search across the parameter space, such
as grid search. It is important for data scientists to (1) report
final hyperparameters of their model and (2) clearly report how
hyperparameters were tuned (e.g., using a validation set or N-
fold cross validation).

Common Pitfall 16: Finalizing a model structure without hy-
perparameter tuning or not discussing how the hyperparameters
were chosen could lead to sub-optimal model performance and
lack of reproducibility.

Best Practice 23: Hyperparameters in a model should be
tuned. Examples of hyperparameter tuning approaches may
include grid search, random search, evolutionary algorithms,
or Bayesian sampling. Data scientists should clearly state how
hyperparameter tuning was done to enable reproducibility.

E. Considerations on Types of Sensors and
Devices Used

Different studies are done using various types of commercial
and/or developmental sensors and insulin delivery devices. This
should be considered when comparing ML algorithms trained
and evaluated from different studies using different devices. The
accuracy of different CGM sensors under different conditions
(e.g., during exercise, or with certain types of medication) should
be considered.

Common Pitfall 17: Comparing algorithms built on glucose
data collected using different CGM sensors may yield inconclu-
sive results. CGM manufacturers use different algorithms, that
may introduce bias on the CGM data. Data scientists should
report on the devices used in the study and be aware that
performance may differ if algorithms are evaluated on devices
on which the algorithm was not trained.

Best Practice 24: ML algorithms designed using data from
different models may need to consider manufacturer and model
as inputs so that bias differences between the CGM manufac-
turers can be appropriately handled by the algorithm.

F. Personalized ML in Diabetes
Forecasting and Treatment

There is heterogeneity in physiology, glucose responses, in-
sulin dosing, nutrient intake, exercise patterns, sleep patterns
etc. in people living with diabetes. This large amount of het-
erogeneity can make it challenging to design an ML algorithm
that will work well for everyone. Adapting a population model
once new data from an individual becomes available may lead to
significant improvements in accuracy. Romero-Ugalde et al. de-
veloped an autoregressive with exogenous inputs (ARX) model
for glucose prediction during and after exercise [151]. They
found that personalization could improve the prediction accu-
racy. Tyler and colleagues also found that using data recorded
from prior exercise sessions could be used to personalize a
glucose forecasting algorithm and improve accuracy during
future exercise events [71]. Askari et al. used the Tidepool
data set to develop personalized DNN models for meal and
physical activity detection [25]. Reinforcement learning could
be an important approach at personalizing glucose control al-
gorithms in the future as discussed by Tejedor and colleagues
[152] and Fox and colleagues [153]. However, it remains an
open question of whether population models are better than
personalized models when used in the real-world. Individuals’
glucose profiles change a lot day-to-day. Herrero and colleagues
showed that individuals’ glucose traces could uniquely identify
each person thereby generating a CGM equivalent to a ‘finger-
print’ [154]. If individual glucose profiles have a larger inter-day
variation than the variation observed in a population model,
then there could be no benefit of personalization. It is important
for any personalized model to be compared with a population
model.

Best practice 25: When presenting results on a personalized
ML model, compare performance with a population model to
show the benefit of personalization. Architecture should be
identical between personalized and population models.

V. APPLICATIONS OF ML IN DECISION SUPPORT AND

CLOSED-LOOP

ML has the potential to improve glucose control beyond just
glucose forecasting. ML techniques can be used to optimally
provide recommendations to patients about modifying their in-
sulin dosing settings in closed-loop systems or using open-loop
therapy.
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A. ML Algorithms Used in Decision Support

Noaro et al. [155], [156] trained multiple ML models to
estimate the optimal pre-meal bolus. The models were shown to
improve glucose control in silico and results were also presented
on retrospective real-world data.

Though not an ML approach, a common approach for select-
ing optimal recommendations for adjusting insulin settings is to
use a run-to-run approach whereby settings are selected based on
the similarities of the circumstances with prior circumstances.
Various groups [157], [158], [159], [160] have demonstrated
how run-to-run methods can be used to provide decision support
and improve glucose outcomes in silico.

Similar to run-to-run methods, Tyler et al. [20] developed
a k-nearest-neighbors decision support system (KNN-DSS) to
provide weekly optimal recommendations to help people with
T1D on multiple daily injections (MDI) to modify correction
factors and carbohydrate ratios. The algorithm was trained on
50000 in silico observations derived via simulator [68] and then
evaluated in a short 4-week real-world study that demonstrated
reduction of time in hypoglycemia with use of the recommenda-
tions compared with a baseline period. Tyler et al. compared the
recommendations provided by the KNN-DSS with recommen-
dations provided by physicians and found that the algorithm
agreed with a consensus of board-certified endocrinologists
67.9% of the time. This study emphasized several important best
practices and also pitfalls important for ML algorithms designed
for use in decision support in diabetes. First, while the algorithm
was trained on a simulator, it was evaluated on clinical study data
and results were reported on both in silico and real-world data
(Best Practice #12). Second, a comparison was done between
the algorithm’s recommendations with those of board-certified
endocrinologists (Best Practice #26).

Best Practice 26: When evaluating an ML-driven recom-
mender engine, comparing a recommender engine with rec-
ommendations by board certified endocrinologists can provide
some assurance of acceptable safety.

More recently, Castle et al. [161] reported that the Tyler et al.
algorithm was evaluated in an 8-week trial in people with T1D.
There was no improvement in the percent time in target glucose
range (70-180 mg/dl) in the final 2 weeks of the study com-
pared with the baseline two weeks. However, for weeks when
participants followed most or all of the recommendations, they
realized a 6.3% increased time in range compared with weeks
when they did not follow the recommendations. Importantly,
the in silico evaluation in the UVA Padova simulator done by
Tyler et al. showed a 6.7% increase in time in range, which is
close to the improvement shown in the Castle et al. study of
6.3%. However, when Tyler et al. evaluated the performance in
the OHSU simulator using different virtual participants than the
one on which the algorithm was trained, the performance was
higher demonstrating an expected improvement in percent time
in range of 20.3%. The variable performance across simulators
emphasizes the need to evaluate algorithms across multiple
simulators.

Best practice 27: If a decision support or control algorithm is
trained on virtual participants from a given simulator, it is impor-
tant to evaluate it on virtual participants in a different simulator,
which should be at least comparable in terms of specifications

to the first one. If a second simulator is not available, a data
scientist may use a sub-sample of virtual participants from the
same simulator not used to train the algorithm, and test on this
sub-sample. However, results will likely be overly optimistic. It
is also important to consider how closely the scenarios in a test
set are represented by those in the training set. Scenarios should
be well represented in both training and test sets and should
be close to real-world (e.g., utilizing real-world meal amounts,
meal size misestimations, meal timing and exercise intensities,
durations, and timing).

Best practice 28: When training and evaluating a clinical
decision support or control algorithm, it is important to simu-
late lack of adherence to recommendations when determining
changes in glucose outcomes. In decision support, it has been
shown that people tend to not to adhere to recommendations
about 25% of the time [161]. Lack of adherence in a closed-
loop setting could be scenarios where a participant does not
adequately follow meal bolus recommendations or does not
dose for meals altogether in a hybrid closed-loop application.
Lack of adherence in a clinical decision support system could
be where a person does not announce a meal or uses an incorrect
carbohydrate ratio or correction factor and does not change it
when recommended to do so [162].

Additional work on clinical decision support systems (CDSS)
was reported by Nimri et al. [163] on a clinical decision support
algorithm (AI-CDSS) for use in adjusting insulin pump settings
for open loop insulin therapy. This algorithm uses fuzzy logic
rather than ML. Recommendations were provided to the partic-
ipants once every 3 weeks for adjusting carb ratios, correction
factors, and basal insulin rates. This CDSS was cleared by
the FDA. Nimri et al. reported non-inferiority data comparing
AI-CDSS with board certified endocrinologists in patients using
MDI therapy [164].

Bisio et al. [165] showed that 80 participants with T1D
using CGM + MDI therapy in combination with a decision
support also did not improve their time in range compared
with participants using CGM + MDI without decision support.
However, as with Castle et al., they also showed that ‘active
users’ of the app experienced a higher time in range than a group
that was not defined as ‘active users’. This further supports the
need to model adherence and lack-of-adherence when evaluating
expected benefit of use of decision support.

Best Practice 29: A decision support algorithm providing
recommendations on changes to carb ratios, correction factors
or basal rates should require a minimum amount of historical
data prior to making a subsequent recommendation. Because
of the variability of CGM and day-to-day behavior as well
as the differences in behavior during the week vs. weekend,
the recommendation is to require at least 1 week of historical
data prior to making a recommendation. Herrero and colleagues
found that a minimum of two weeks of observing CGM when
people use ultra-long-acting insulin (e.g., Tresiba and Toujeo
which reach steady state in 3-4 days) is sufficient for estimat-
ing glucose outcomes [166]. Therefore, multiple weeks could
be required to assess glucose outcomes prior to providing a
recommendation for these types of basal insulin. In addition,
improvement should be assessed across multiple weeks using a
statistical test as a comparison against another algorithm (e.g.,
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standard care). The amount of time needed between recommen-
dations is likely application-dependent and should optimally be
determined through hyper-parameter tuning.

Best practice 30: When assessing a clinical decision support
algorithm, it is best to compare glucose outcomes (Table II)
relative to a baseline time period. A recommended baseline
window would be a minimum of 2 weeks [167]. Menstrual
cycle can affect glucose levels, and for that reason, it would
be beneficial to have at least 4 weeks in a baseline period.

Best practice 31: When comparing different algorithms, it
is important to do a statistical test (e.g., t-test or a general
linear model) to show if an improvement is significant. A test
of normality should also be done if using a t-test to ensure
normality of the distribution, otherwise a non-parametric test
(e.g., Wilcoxon rank-sum test) should be done.

B. ML Algorithms Used in Closed-Loop Control

ML algorithms can be used within systems that automate
delivery of insulin and other hormones [168]. A model predictive
control algorithm requires a forecasting model that is used to pre-
dict glucose across a future time horizon [169]. This forecasting
model can be a physical model comprising ordinary differential
equations as was done in Hovorka et al. [108] and by others [66],
[170], or the model may also include a data-driven model as was
done by Zarkogianni and colleagues [171] where they combined
a compartment model with a recurrent neural network. ML
algorithms can also be used within a closed-loop framework to
predict a low glucose event as was done using a long-short-term
memory neural network [26] within a dual-hormone closed loop
system to shut off insulin in the event that a low glucose event is
predicted [16]. ML algorithms can also be used to predict when
a meal has occurred such that a percentage of meal insulin can
be delivered when the meal is detected or to detect an exercise
event so that insulin can be reduced during or following exercise
[144], [150]. The application in which an algorithm is intended
to be used is critical to understand when designing it because the
resulting actions of its use can be catastrophic if the algorithm is
incorrect. For example, depending on the dosing strategy, when
designing a meal detection algorithm designed to dose insulin
in the event of a non-reported meal, it is optimal to minimize or
eliminate false positives at the expense of reduced sensitivity,
since dosing insulin in response to a false positive meal de-
tection could potentially result in severe hypoglycemia, which
can be life-threatening. Whereas, a hypoglycemia prediction
algorithm should be optimized for higher sensitivity because
a hypoglycemic event is a dangerous event; if the algorithm
misses a prediction, and insulin is not reduced by the closed-loop
system, then it again could be harmful to the user.

Best practice 32: When designing ML algorithms used within
a closed-loop system, the outcome metrics [172] should be
carefully considered to minimize risk to the user.

VI. METRICS USED TO EVALUATE ALGORITHMS

A. Glucose Forecasting Metrics

Kovatchev provides a review of metrics that can be used to
assess outcomes of predictive algorithms [51]. When predicting
glucose, the most common metrics used to assess performance

are root mean squared error (RMSE), mean absolute error
(MAE), mean absolute relative difference (MARE), mean error
(ME), mean relative error (MRE), and time gain (TG). In the
equations below, ŷ(k + PH) is the predicted glucose at time
k, for a given prediction horizon (PH) while y(k+PH) is the
measured glucose at that time.
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∣∣∣∣ ŷ (k + PH)− y (k + PH)

y (k + PH)

∣∣∣∣ (13)

ME =
1

N

N∑
1
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Notice that RMSE and MAE are very similar measures. How-
ever, RMSE includes the square root of the sum of the square
of errors, which yields an error metric that is more sensitive
to large deviations. A large glucose prediction error can be
life-threatening to a person with T1D using that prediction to
dose insulin. RMSE should be the primary metric used to present
results on glucose forecasting.

Common pitfall 18: When reporting on absolute error for
glucose forecasting, MAE may not provide a complete picture
as it does not weight large mistakes in prediction like RMSE.

Best practice 33: When reporting on an absolute error for
glucose forecasting performance, include RMSE as the primary
reporting measure. It may also be helpful to report glucose-
specific RMSE (gRMSE) which weights the risk associated with
errors in different glucose ranges [141].

When used in glucose prediction, RMSE and MAE are typi-
cally in units of either mg/dL or mmol/L. MARE is helpful in that
it is given as a percentage, which is an important way to display
the data since a 30 mg/dL error in glucose estimation is far more
concerning when glucose is low compared with when glucose is
high, for example. ME and MRE provide information about the
bias of a prediction estimate, indicating if the prediction tends
to be lower or higher than the actual value on average. While
designers may prefer to have an algorithm that has no bias, it is
important to consider that a negative bias could be preferable to a
positive bias. Hypoglycemia can be life-threatening while some
amount of hyperglycemia can be tolerated, and so an algorithm
that errs on the side of estimating glucose as too low, is actually
safer than an algorithm that estimates glucose as higher than the
actual value. It is important to limit false positives as this can
cause alarm fatigue.

Common pitfall 19: Presenting prediction results only as an
absolute value (e.g., RMSE, MARE, or MAE) is not sufficient
because there is no information about bias in the prediction.
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Fig. 8. Clarke error grid (a) and Parkes consensus grid (b).

Common pitfall 20: When calculating an error metric such
as RMSE for a given prediction horizon (e.g., 30 minutes),
averaging the RMSE across multiple horizons yields an error
that is incorrectly small. For example, if a data scientist was to
report an RMSE for a 30-minute horizon as an average of the
RMSE at 5-, 10-, 15-, 20-, 25-, and 30-min horizons, the RMSE
will be unrealistically lower than if reported solely at 30 min.

Best practice 34: In addition to including absolute outcome
metrics of RMSE, MARE, and MAE, also include relative error
measures including MRE and ME. One of the disadvantages
of including mathematical metrics of accuracy such as RMSE,
MARE, MAE, MRE, and ME is that there is no penalization
for errors that are made in regions that are dangerous when
predictions are used by an insulin dosing algorithm or a decision
support algorithm. Del Favero et al. [141] introduced a new
metric called the glucose-specific mean squared error (gMSE)
that penalizes mean squared error more significantly in low and
high regions of glucose where the impact of an error is more
clinically significant. If the glucose is less than a lower threshold
of 70 mg/dL (TL), then a penalty is applied.

The Clarke error grid [173], the Parkes consensus grid [174],
the continuous error grid [175], and the surveillance error grid
[176] are other important tools that can be used to demonstrate
how bias in a prediction is more or less clinically relevant. The
Clarke error grid shown in Fig. 8(a) [173] is a plot of predicted vs.
reference glucose values over the range of 0-400 mg/dL (0-22.2
mmol/l). Regions of the plot are indicated by the letters A, B,
C, D, and E whereby regions A and B are considered safe and
regions C, D, and E are considered progressively more dangerous
and even life-threatening if a person or device was to act on
these inaccurate predictions. The Clarke error grid was originally
designed to help people with diabetes gauge awareness their
glucose levels. The Parkes Consensus grid [174] in Fig. 8(b)
and the surveillance error grid also have the regions A-E, but
the boundaries are smooth and were determined by a consensus
among a group of endocrinologists who agreed on the regions
that were most dangerous to a patient if a mistake in forecasting
is made. Importantly, the risk attributed to the different regions of
these grids was designed for decision making based on real-time
blood glucose meter measurements, not predictions made 30–60
minutes in the future. Because risk based on forecasting errors

is likely different than risk based on real-time blood glucose
measurements, there is an opportunity in the future to re-think
how risk should be quantified for glucose forecasting.

Best Practice 35: Present glucose prediction results in the
form of a Parkes consensus grid or surveillance error grid figure
while also summarizing results in a table showing the percent
of predictions in the A, B, C, D, and E regions.

B. Metrics Used for Sparse Event Prediction (e.g.,
Hypoglycemia, Hyperglycemia, Meal Events, etc.)

When assessing accuracy for a sparse event / binary classifier,
it is important to account for the potential imbalance in the
data set. For example, if there are 4% CGM readings below
70 mg/dL, an algorithm which always predicts that the glucose
is not hypoglycemic will therefore have an accuracy of 96%,
even if it misses every hypoglycemic event. For this reason, it is
important to report both sensitivity and specificity as well as area
under the receiver operating characteristic curve along with ac-
curacy measures for sparse event classifiers (see Supplementary
Equations 3.1-3.5).

In addition, rather than reporting accuracy, it is important
to report prediction accuracy using a metric that is robust to
this imbalance. Balanced accuracy is the arithmetic mean of the
sensitivity and specificity, and so it is a more robust metric to
imbalance than simply reporting accuracy. Another metric ro-
bust to imbalance for binary classifiers is Matthews Correlation
Coefficient (MCC) [177] (Supplementary Equation 3.5).

Supplementary Equation 3.5 shows that when the classifier is
perfect (FP = FN = 0) the value of MCC is 1, indicating perfect
accuracy. Conversely, when the classifier always misclassifies
(TP = TN = 0), we get a value of −1, representing perfect
negative correlation (in this case, you can simply reverse the
classifier’s outcome to get the ideal classifier). MCC value is
always between−1 and 1, with 0 meaning that the classifier is no
better than a random flip of a fair coin. MCC is also symmetric,
so no class is more important than the other.

Common pitfall 21: If accuracy is reported on a sparse event
classifier algorithm in a highly unbalanced data set with an
excessive number of negative observations, it is possible to have
a very high accuracy, but a very low or even zero value for
sensitivity of detecting the positive event. The definitions of the
thresholds used to define the sparse event is critical; it will impact
the sensitivity and specificity of the algorithm.

Best practice 36: When data sets are being used for a sparse
event predictor, and if there is a large class imbalance between
positive and negative observations, report sensitivity, specificity
(FP/day), area under the ROC curve [148], and balanced accu-
racy such as MCC.

C. Metrics for Evaluating Postprandial
Glucose Prediction

When predicting the glucose response after a meal (i.e.,
postprandial glucose response), there are various metrics that
are of interest and can be used to determine if the amount of
insulin dosed for the meal was appropriate. The area under
the curve (AUC) of the CGM trace is calculated by using the
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trapezoidal rule and summing the area under this curve from
the start of a meal to 3–4 hours after the meal. The AUC is
not appropriate to assess postprandial glucose response because
it inherently includes the starting glucose in the calculation,
which is unrelated to the meal response. A better metric is
the incremental area under the curve (iAUC) of the glucose
trace, which sums the area under the CGM curve relative to the
starting glucose value, only including in the sum the CGM values
that are greater than the starting glucose value (Supplementary
Fig. 1). An additional metric is the netAUC which is the same as
the iAUC however it also sums the negative areas under the curve
relative to the starting CGM. Brouns et al. provide an overview
of AUC, iAUC, and netAUC [178]. If the insulin dosing for the
meal is optimal, then there will be no low glucose following the
meal (<70 mg/dL) and the iAUC and netAUC will be minimal.

In addition to iAUC and netAUC, the maximum postprandial
glucose, minimum postprandial glucose, and the delta between
the peak and starting glucose are also useful.

Common pitfall 22: AUC as a postprandial glucose metric
can be deceptive because it is correlated with starting glucose.

Best practice 37: When assessing prediction of postprandial
glucose responses, appropriate metrics are the iAUC, netAUC,
maximum delta glucose from the glucose at the start of the meal.
All account for glucose at the start of the meal.

D. Metrics for Assessing Explainability of Algorithms

Regulatory bodies like the Food and Drug Administration
(FDA) in the U.S. will typically require that ML algorithms used
within life-critical operations such as drug delivery maintain a
certain level of explainability and interpretability. Interpretabil-
ity implies that it is possible to understand how an algorithm
arrived at giving a certain prediction or recommendation. Ex-
plainability describes how certain aspects, parameters, or fea-
tures in a model influence the output of that model. Simple
classes of algorithms (e.g., logistic regression, decision tree)
are inherently interpretable. However, other algorithms such as
random forest and deep learning algorithms are not interpretable,
but explainability can be incorporated into them. Some of the
popular methods of incorporating explainability into complex
black-box ML algorithms include SHAP [179], LIME [180],
DeepLIFT [181], MACE [182], GAN based methods [183].
These tools help illuminate ML models making predictions more
comprehensible.

SHAP stands for SHapley Additive exPlanations and is more
widely used and more similar to human explanations. The core
idea behind Shapley value-based explanations of ML models is
to use fair allocation results from cooperative game theory to
allocate credit for a model’s output among its input features.

Best practice 38: Data scientists should strive to develop
algorithms that are explainable and interpretable. When using
algorithms that are not inherently explainable, methods like
SHAP, LIME, etc. should be used to provide a certain measure
of explainability into the algorithm.

Common pitfall 23: When features are correlated, if the
algorithm is used to identify input variables that are signifi-
cantly related to the outcome, these correlations may lead to

conclusions that are incorrect. For example, people with T1D
take insulin at the same time as consuming a meal. In this way,
both insulin and meal intake are correlated with rises in glucose.
However, insulin does not cause the rise in glucose. The meal
causes the rise. When exploring explainability of a model, it
is important to be aware of correlated features to avoid invalid
conclusions about which features are impacting prediction.

VII. CONCLUDING REMARKS

In this manuscript, we have presented an overview of current
best practices and common pitfalls for data scientists interested
in working on the development of AI and ML algorithms for di-
abetes and glucose management. Future guidelines may include
best practices and pitfalls as they relate to newer technologies
such as adaptive therapies [184], [185], adjunctive therapies
such as SGLT-2 inhibitors [186], multi-hormone closed-loop
systems (insulin, glucagon [16], [187], pramlintide [34]) and
use of cloud-based computing approaches vs. computing on the
edge [188], [189]. Our aim is to present current consensus-based
guidelines and recommendations that will aid in the advance-
ment of the field to ultimately improve glucose outcomes and
overall health of people living with diabetes.
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